High-Density 1D Ionic Wire Arrays for Osmotic Energy Conversion
Corresponding Author: Kunyan Sui
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 125
Abstract
Osmotic energy, existing between the seawater and river water, is a renewable energy source, which can be directly converted into electricity by ion-exchange membranes (IEM). In traditional IEMs, the ion transport channels are formed by nanophase separation of hydrophilic ion carriers and hydrophobic segments. It is difficult to realize high-density ion channels with controlled spatial arrangement and length scale of ion carriers. Herein, we construct high-density 1D ion wires as transmission channels. Through molecular design, hydrophilic imidazole groups and hydrophobic alkyl tails were introduced into the repeat units, which self-assembled into 1D ion transporting core and protecting shell along the main chains. The areal density of the ionic wire arrays is up to ~ 1012 cm−2, which is the highest value. The ionic wires ensure both high ion flux transport and high selectivity, achieving an ultrahigh-power density of 40.5 W m−2 at a 500-fold salinity gradient. Besides, the ionic wire array membrane is well recyclable and antibacterial. The ionic wires provide novel concept for next generation of high-performance membranes.
Highlights:
1 Ultrahigh-Density 1D Ionic Wire Arrays. A high density (~1012 cm−2) of 1D ionic channels is achieved via self-assembly of a homopolymer, enabling simultaneous high ion selectivity and conductivity for efficient osmotic energy conversion.
2 Anti-Swelling Membrane with Superior Performance. The membrane exhibits an ultrahigh ion-exchange capacity (~2.69 meq g−1) yet minimal swelling (<10%) due to hydrophobic alkyl shell protection, leading to a breakthrough power density of 40.5 W m⁻² under a 500-fold salinity gradient.
3 Multifunctional Design with Antibacterial Properties. The imidazole-functionalized membrane not only enhances osmotic energy harvesting but also provides excellent antibacterial performance, offering a novel strategy for advanced separation membranes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Zhang, L. Wen, L. Jiang, Nanofluidics for osmotic energy conversion. Nat. Rev. Mater. 6(7), 622–639 (2021). https://doi.org/10.1038/s41578-021-00300-4
- P. Wang, W. Tao, T. Zhou, J. Wang, C. Zhao et al., Nanoarchitectonics in advanced membranes for enhanced osmotic energy harvesting. Adv. Mater. 36(35), 2404418 (2024). https://doi.org/10.1002/adma.202404418
- A. Siria, M.-L. Bocquet, L. Bocquet, New avenues for the large-scale harvesting of blue energy. Nat. Rev. Chem. 1(11), 91 (2017). https://doi.org/10.1038/s41570-017-0091
- S. Jiang, B.P. Ladewig, High ion-exchange capacity semihomogeneous cation exchange membranes prepared via a novel polymerization and sulfonation approach in porous polypropylene. ACS Appl. Mater. Interfaces 9(44), 38612–38620 (2017). https://doi.org/10.1021/acsami.7b13076
- G.Z. Ramon, B.J. Feinberg, E.M.V. Hoek, Membrane-based production of salinity-gradient power. Energy Environ. Sci. 4(11), 4423 (2011). https://doi.org/10.1039/c1ee01913a
- D.-K. Kim, C. Duan, Y.-F. Chen, A. Majumdar, Power generation from concentration gradient by reverse electrodialysis in ion-selective nanochannels. Microfluid. Nanofluid. 9(6), 1215–1224 (2010). https://doi.org/10.1007/s10404-010-0641-0
- W.Y. Hsu, T.D. Gierke, Elastic theory for ionic clustering in perfluorinated ionomers. Macromolecules 15(1), 101–105 (1982). https://doi.org/10.1021/ma00229a020
- W.Y. Hsu, T.D. Gierke, Ion transport and clustering in Nafion perfluorinated membranes. J. Membr. Sci. 13(3), 307–326 (1983). https://doi.org/10.1016/S0376-7388(00)81563-X
- X. Hou, W. Guo, L. Jiang, Biomimetic smart nanopores and nanochannels. Chem. Soc. Rev. 40(5), 2385 (2011). https://doi.org/10.1039/c0cs00053a
- Q. Dai, Z. Liu, L. Huang, C. Wang, Y. Zhao et al., Thin-film composite membrane breaking the trade-off between conductivity and selectivity for a flow battery. Nat. Commun. 11(1), 13 (2020). https://doi.org/10.1038/s41467-019-13704-2
- H.B. Park, J. Kamcev, L.M. Robeson, M. Elimelech, B.D. Freeman, Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356(6343), eaab0530 (2017). https://doi.org/10.1126/science.aab0530
- R.M. DuChanois, C.J. Porter, C. Violet, R. Verduzco, M. Elimelech, Membrane materials for selective ion separations at the water-energy nexus. Adv. Mater. 33(38), e2101312 (2021). https://doi.org/10.1002/adma.202101312
- L. Yang, X.-Y. Kong, L. Wen, Bio-inspired nano-/ micro-channels via supramolecular assembling: from fundamentals to applications. Supramol. Mater. 2, 100043 (2023). https://doi.org/10.1016/j.supmat.2023.100043
- M.A. Alkhadra, X. Su, M.E. Suss, H. Tian, E.N. Guyes et al., Electrochemical methods for water purification, ion separations, and energy conversion. Chem. Rev. 122(16), 13547–13635 (2022). https://doi.org/10.1021/acs.chemrev.1c00396
- Z.-Q. Li, G.-L. Zhu, R.-J. Mo, M.-Y. Wu, X.-L. Ding et al., Light-enhanced osmotic energy harvester using photoactive porphyrin metal-organic framework membranes. Angew. Chem. Int. Ed. 61(22), e202202698 (2022). https://doi.org/10.1002/anie.202202698
- S. Hou, Q. Zhang, Z. Zhang, X. Kong, B. Lu et al., Charged porous asymmetric membrane for enhancing salinity gradient energy conversion. Nano Energy 79, 105509 (2021). https://doi.org/10.1016/j.nanoen.2020.105509
- Y.-C. Liu, L.-H. Yeh, M.-J. Zheng, K.C. Wu, Highly selective and high-performance osmotic power generators in subnanochannel membranes enabled by metal-organic frameworks. Sci. Adv. 7(10), eabe9924 (2021). https://doi.org/10.1126/sciadv.abe9924
- C. Wang, F.-F. Liu, Z. Tan, Y.-M. Chen, W.-C. Hu et al., Fabrication of bio-inspired 2D MOFs/PAA hybrid membrane for asymmetric ion transport. Adv. Funct. Mater. 30(9), 1908804 (2020). https://doi.org/10.1002/adfm.201908804
- J. Wang, Z. Song, M. He, Y. Qian, D. Wang et al., Light-responsive and ultrapermeable two-dimensional metal-organic framework membrane for efficient ionic energy harvesting. Nat. Commun. 15(1), 2125 (2024). https://doi.org/10.1038/s41467-024-46439-w
- Y. Bai, C. Liu, Y. Shan, T. Chen, Y. Zhao et al., Metal-organic frameworks nanocomposites with different dimensionalities for energy conversion and storage. Adv. Energy Mater. 12(4), 2100346 (2022). https://doi.org/10.1002/aenm.202100346
- L. Cao, I.-C. Chen, C. Chen, D.B. Shinde, X. Liu et al., Giant osmotic energy conversion through vertical-aligned ion-permselective nanochannels in covalent organic framework membranes. J. Am. Chem. Soc. 144(27), 12400–12409 (2022). https://doi.org/10.1021/jacs.2c04223
- Z. Zhang, X. Sui, P. Li, G. Xie, X.-Y. Kong et al., Ultrathin and ion-selective Janus membranes for high-performance osmotic energy conversion. J. Am. Chem. Soc. 139(26), 8905–8914 (2017). https://doi.org/10.1021/jacs.7b02794
- X. Sui, Z. Zhang, Z. Zhang, Z. Wang, C. Li et al., Biomimetic nanofluidic diode composed of dual amphoteric channels maintains rectification direction over a wide pH range. Angew. Chem. Int. Ed. 55(42), 13056–13060 (2016). https://doi.org/10.1002/anie.201606469
- C. Li, H. Jiang, P. Liu, Y. Zhai, X. Yang et al., One porphyrin per chain self-assembled helical ion-exchange channels for ultrahigh osmotic energy conversion. J. Am. Chem. Soc. 144(21), 9472–9478 (2022). https://doi.org/10.1021/jacs.2c02798
- X. Tong, S. Liu, J. Crittenden, Y. Chen, Nanofluidic membranes to address the challenges of salinity gradient power harvesting. ACS Nano 15(4), 5838–5860 (2021). https://doi.org/10.1021/acsnano.0c09513
- P.R. Brooks, Reactions of oriented molecules. Science 193, 11–16 (1976). https://doi.org/10.1126/science.193.4247.11
- S. Feng, Y. Shang, Z. Wang, Z. Kang, R. Wang et al., Fabrication of a hydrogen-bonded organic framework membrane through solution processing for pressure-regulated gas separation. Angew. Chem. Int. Ed. 59(10), 3840–3845 (2020). https://doi.org/10.1002/anie.201914548
- L. Cusin, P. Cieciórski, S. Van Gele, F. Heck, S. Krause et al., Synthesis of micrometre-thick oriented 2D covalent organic framework films by a kinetic polymerization pathway. Nat. Synth. 4(5), 632–641 (2025). https://doi.org/10.1038/s44160-025-00741-7
- S. Garaj, W. Hubbard, A. Reina, J. Kong, D. Branton et al., Graphene as a subnanometre trans-electrode membrane. Nature 467(7312), 190–193 (2010). https://doi.org/10.1038/nature09379
- Q. Guo, Z. Lai, X. Zuo, W. Xian, S. Wu et al., Photoelectric responsive ionic channel for sustainable energy harvesting. Nat. Commun. 14, 6702 (2023). https://doi.org/10.1038/s41467-023-42584-w
- K. Zou, H. Ling, Q. Wang, C. Zhu, Z. Zhang et al., Turing-type nanochannel membranes with extrinsic ion transport pathways for high-efficiency osmotic energy harvesting. Nat. Commun. 15(1), 10231 (2024). https://doi.org/10.1038/s41467-024-54622-2
- G. Bian, N. Pan, Z. Luan, X. Sui, W. Fan et al., Anti-swelling gradient polyelectrolyte hydrogel membranes as high-performance osmotic energy generators. Angew. Chem. Int. Ed. 60(37), 20294–20300 (2021). https://doi.org/10.1002/anie.202108549
- C. Lin, W. Jia, L. Chang, G. Ren, S. Hu et al., Anti-swelling 3d nanohydrogel for efficient osmotic energy conversion. Adv. Funct. Mater. 35(10), 2416425 (2025). https://doi.org/10.1002/adfm.202416425
- C. Li, L. Wen, X. Sui, Y. Cheng, L. Gao et al., Large-scale, robust mushroom-shaped nanochannel array membrane for ultrahigh osmotic energy conversion. Sci. Adv. 7(21), eabg2183 (2021). https://doi.org/10.1126/sciadv.abg2183
- Z. Li, D. Wu, Q. Wang, Q. Zhang, P. Xu et al., Bioinspired homonuclear diatomic iron active site regulation for efficient antifouling osmotic energy conversion. Adv. Mater. 36(46), 2408364 (2024). https://doi.org/10.1002/adma.202408364
- M. Chen, K. Yang, J. Wang, H. Sun, X.-H. Xia et al., In situ growth of imine-bridged anion-selective COF/AAO membrane for ion current rectification and nanofluidic osmotic energy conversion. Adv. Funct. Mater. 33(36), 2302427 (2023). https://doi.org/10.1002/adfm.202302427
- C. Zhang, T. Xiao, B. Lu, J. He, Y. Wang et al., Large-area covalent organic polymers membrane via sol–gel approach for harvesting the salinity gradient energy. Small 18(20), 2107600 (2022). https://doi.org/10.1002/smll.202107600
- M. Rastgar, K. Moradi, C. Burroughs, A. Hemmati, E. Hoek et al., Harvesting blue energy based on salinity and temperature gradient: challenges, solutions, and opportunities. Chem. Rev. 123(16), 10156–10205 (2023). https://doi.org/10.1021/acs.chemrev.3c00168
- H. Peng, W.-H. Zhang, W.-S. Hung, N. Wang, J. Sun et al., Phosphonium modification leads to ultrapermeable antibacterial polyamide composite membranes with unreduced thickness. Adv. Mater. 32(23), 2001383 (2020). https://doi.org/10.1002/adma.202001383
- Q. Xin, H. Shah, A. Nawaz, W. Xie, M.Z. Akram et al., Antibacterial carbon-based nanomaterials. Adv. Mater. 31(45), 1804838 (2019). https://doi.org/10.1002/adma.201804838
References
Z. Zhang, L. Wen, L. Jiang, Nanofluidics for osmotic energy conversion. Nat. Rev. Mater. 6(7), 622–639 (2021). https://doi.org/10.1038/s41578-021-00300-4
P. Wang, W. Tao, T. Zhou, J. Wang, C. Zhao et al., Nanoarchitectonics in advanced membranes for enhanced osmotic energy harvesting. Adv. Mater. 36(35), 2404418 (2024). https://doi.org/10.1002/adma.202404418
A. Siria, M.-L. Bocquet, L. Bocquet, New avenues for the large-scale harvesting of blue energy. Nat. Rev. Chem. 1(11), 91 (2017). https://doi.org/10.1038/s41570-017-0091
S. Jiang, B.P. Ladewig, High ion-exchange capacity semihomogeneous cation exchange membranes prepared via a novel polymerization and sulfonation approach in porous polypropylene. ACS Appl. Mater. Interfaces 9(44), 38612–38620 (2017). https://doi.org/10.1021/acsami.7b13076
G.Z. Ramon, B.J. Feinberg, E.M.V. Hoek, Membrane-based production of salinity-gradient power. Energy Environ. Sci. 4(11), 4423 (2011). https://doi.org/10.1039/c1ee01913a
D.-K. Kim, C. Duan, Y.-F. Chen, A. Majumdar, Power generation from concentration gradient by reverse electrodialysis in ion-selective nanochannels. Microfluid. Nanofluid. 9(6), 1215–1224 (2010). https://doi.org/10.1007/s10404-010-0641-0
W.Y. Hsu, T.D. Gierke, Elastic theory for ionic clustering in perfluorinated ionomers. Macromolecules 15(1), 101–105 (1982). https://doi.org/10.1021/ma00229a020
W.Y. Hsu, T.D. Gierke, Ion transport and clustering in Nafion perfluorinated membranes. J. Membr. Sci. 13(3), 307–326 (1983). https://doi.org/10.1016/S0376-7388(00)81563-X
X. Hou, W. Guo, L. Jiang, Biomimetic smart nanopores and nanochannels. Chem. Soc. Rev. 40(5), 2385 (2011). https://doi.org/10.1039/c0cs00053a
Q. Dai, Z. Liu, L. Huang, C. Wang, Y. Zhao et al., Thin-film composite membrane breaking the trade-off between conductivity and selectivity for a flow battery. Nat. Commun. 11(1), 13 (2020). https://doi.org/10.1038/s41467-019-13704-2
H.B. Park, J. Kamcev, L.M. Robeson, M. Elimelech, B.D. Freeman, Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356(6343), eaab0530 (2017). https://doi.org/10.1126/science.aab0530
R.M. DuChanois, C.J. Porter, C. Violet, R. Verduzco, M. Elimelech, Membrane materials for selective ion separations at the water-energy nexus. Adv. Mater. 33(38), e2101312 (2021). https://doi.org/10.1002/adma.202101312
L. Yang, X.-Y. Kong, L. Wen, Bio-inspired nano-/ micro-channels via supramolecular assembling: from fundamentals to applications. Supramol. Mater. 2, 100043 (2023). https://doi.org/10.1016/j.supmat.2023.100043
M.A. Alkhadra, X. Su, M.E. Suss, H. Tian, E.N. Guyes et al., Electrochemical methods for water purification, ion separations, and energy conversion. Chem. Rev. 122(16), 13547–13635 (2022). https://doi.org/10.1021/acs.chemrev.1c00396
Z.-Q. Li, G.-L. Zhu, R.-J. Mo, M.-Y. Wu, X.-L. Ding et al., Light-enhanced osmotic energy harvester using photoactive porphyrin metal-organic framework membranes. Angew. Chem. Int. Ed. 61(22), e202202698 (2022). https://doi.org/10.1002/anie.202202698
S. Hou, Q. Zhang, Z. Zhang, X. Kong, B. Lu et al., Charged porous asymmetric membrane for enhancing salinity gradient energy conversion. Nano Energy 79, 105509 (2021). https://doi.org/10.1016/j.nanoen.2020.105509
Y.-C. Liu, L.-H. Yeh, M.-J. Zheng, K.C. Wu, Highly selective and high-performance osmotic power generators in subnanochannel membranes enabled by metal-organic frameworks. Sci. Adv. 7(10), eabe9924 (2021). https://doi.org/10.1126/sciadv.abe9924
C. Wang, F.-F. Liu, Z. Tan, Y.-M. Chen, W.-C. Hu et al., Fabrication of bio-inspired 2D MOFs/PAA hybrid membrane for asymmetric ion transport. Adv. Funct. Mater. 30(9), 1908804 (2020). https://doi.org/10.1002/adfm.201908804
J. Wang, Z. Song, M. He, Y. Qian, D. Wang et al., Light-responsive and ultrapermeable two-dimensional metal-organic framework membrane for efficient ionic energy harvesting. Nat. Commun. 15(1), 2125 (2024). https://doi.org/10.1038/s41467-024-46439-w
Y. Bai, C. Liu, Y. Shan, T. Chen, Y. Zhao et al., Metal-organic frameworks nanocomposites with different dimensionalities for energy conversion and storage. Adv. Energy Mater. 12(4), 2100346 (2022). https://doi.org/10.1002/aenm.202100346
L. Cao, I.-C. Chen, C. Chen, D.B. Shinde, X. Liu et al., Giant osmotic energy conversion through vertical-aligned ion-permselective nanochannels in covalent organic framework membranes. J. Am. Chem. Soc. 144(27), 12400–12409 (2022). https://doi.org/10.1021/jacs.2c04223
Z. Zhang, X. Sui, P. Li, G. Xie, X.-Y. Kong et al., Ultrathin and ion-selective Janus membranes for high-performance osmotic energy conversion. J. Am. Chem. Soc. 139(26), 8905–8914 (2017). https://doi.org/10.1021/jacs.7b02794
X. Sui, Z. Zhang, Z. Zhang, Z. Wang, C. Li et al., Biomimetic nanofluidic diode composed of dual amphoteric channels maintains rectification direction over a wide pH range. Angew. Chem. Int. Ed. 55(42), 13056–13060 (2016). https://doi.org/10.1002/anie.201606469
C. Li, H. Jiang, P. Liu, Y. Zhai, X. Yang et al., One porphyrin per chain self-assembled helical ion-exchange channels for ultrahigh osmotic energy conversion. J. Am. Chem. Soc. 144(21), 9472–9478 (2022). https://doi.org/10.1021/jacs.2c02798
X. Tong, S. Liu, J. Crittenden, Y. Chen, Nanofluidic membranes to address the challenges of salinity gradient power harvesting. ACS Nano 15(4), 5838–5860 (2021). https://doi.org/10.1021/acsnano.0c09513
P.R. Brooks, Reactions of oriented molecules. Science 193, 11–16 (1976). https://doi.org/10.1126/science.193.4247.11
S. Feng, Y. Shang, Z. Wang, Z. Kang, R. Wang et al., Fabrication of a hydrogen-bonded organic framework membrane through solution processing for pressure-regulated gas separation. Angew. Chem. Int. Ed. 59(10), 3840–3845 (2020). https://doi.org/10.1002/anie.201914548
L. Cusin, P. Cieciórski, S. Van Gele, F. Heck, S. Krause et al., Synthesis of micrometre-thick oriented 2D covalent organic framework films by a kinetic polymerization pathway. Nat. Synth. 4(5), 632–641 (2025). https://doi.org/10.1038/s44160-025-00741-7
S. Garaj, W. Hubbard, A. Reina, J. Kong, D. Branton et al., Graphene as a subnanometre trans-electrode membrane. Nature 467(7312), 190–193 (2010). https://doi.org/10.1038/nature09379
Q. Guo, Z. Lai, X. Zuo, W. Xian, S. Wu et al., Photoelectric responsive ionic channel for sustainable energy harvesting. Nat. Commun. 14, 6702 (2023). https://doi.org/10.1038/s41467-023-42584-w
K. Zou, H. Ling, Q. Wang, C. Zhu, Z. Zhang et al., Turing-type nanochannel membranes with extrinsic ion transport pathways for high-efficiency osmotic energy harvesting. Nat. Commun. 15(1), 10231 (2024). https://doi.org/10.1038/s41467-024-54622-2
G. Bian, N. Pan, Z. Luan, X. Sui, W. Fan et al., Anti-swelling gradient polyelectrolyte hydrogel membranes as high-performance osmotic energy generators. Angew. Chem. Int. Ed. 60(37), 20294–20300 (2021). https://doi.org/10.1002/anie.202108549
C. Lin, W. Jia, L. Chang, G. Ren, S. Hu et al., Anti-swelling 3d nanohydrogel for efficient osmotic energy conversion. Adv. Funct. Mater. 35(10), 2416425 (2025). https://doi.org/10.1002/adfm.202416425
C. Li, L. Wen, X. Sui, Y. Cheng, L. Gao et al., Large-scale, robust mushroom-shaped nanochannel array membrane for ultrahigh osmotic energy conversion. Sci. Adv. 7(21), eabg2183 (2021). https://doi.org/10.1126/sciadv.abg2183
Z. Li, D. Wu, Q. Wang, Q. Zhang, P. Xu et al., Bioinspired homonuclear diatomic iron active site regulation for efficient antifouling osmotic energy conversion. Adv. Mater. 36(46), 2408364 (2024). https://doi.org/10.1002/adma.202408364
M. Chen, K. Yang, J. Wang, H. Sun, X.-H. Xia et al., In situ growth of imine-bridged anion-selective COF/AAO membrane for ion current rectification and nanofluidic osmotic energy conversion. Adv. Funct. Mater. 33(36), 2302427 (2023). https://doi.org/10.1002/adfm.202302427
C. Zhang, T. Xiao, B. Lu, J. He, Y. Wang et al., Large-area covalent organic polymers membrane via sol–gel approach for harvesting the salinity gradient energy. Small 18(20), 2107600 (2022). https://doi.org/10.1002/smll.202107600
M. Rastgar, K. Moradi, C. Burroughs, A. Hemmati, E. Hoek et al., Harvesting blue energy based on salinity and temperature gradient: challenges, solutions, and opportunities. Chem. Rev. 123(16), 10156–10205 (2023). https://doi.org/10.1021/acs.chemrev.3c00168
H. Peng, W.-H. Zhang, W.-S. Hung, N. Wang, J. Sun et al., Phosphonium modification leads to ultrapermeable antibacterial polyamide composite membranes with unreduced thickness. Adv. Mater. 32(23), 2001383 (2020). https://doi.org/10.1002/adma.202001383
Q. Xin, H. Shah, A. Nawaz, W. Xie, M.Z. Akram et al., Antibacterial carbon-based nanomaterials. Adv. Mater. 31(45), 1804838 (2019). https://doi.org/10.1002/adma.201804838