Regulating Li+ Transport and Interfacial Stability with Zwitterionic COF Protective Layer Towards High-Performance Lithium Metal Batteries
Corresponding Author: Tao Mei
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 163
Abstract
The sluggish Li+ migration kinetics and unstable electrode/electrolyte interface severely hinder the commercial application of high-performance lithium metal batteries (LMBs). Herein, an artificial protective layer is constructed using zwitterionic covalent organic framework (Z-COF) simultaneously containing sulfonate and ethidium groups, aiming to facilitate rapid, uniform Li+ transport and stabilize anode interface. The sulfonate groups with high lithiophilicity provide abundant hopping sites for fast Li+ diffusion. The ethidium cations immobilize TFSI− and solvent molecules by ion–dipole interactions, which accelerate the dissociation of LiTFSI and Li+ desolvation. Moreover, the monodispersed zwitterionic units coupling with ordered micropore structures in Z-COF create exclusive Li+ migration channels, modulate homogeneous space charge distribution, kinetically facilitating uniform Li+ deposition. Experiments and theoretical calculations indicate that C–F and S–N bonds of TFSI− exhibit enhanced cleavage susceptibility driven by electrostatic attraction, realizing a LiF/Li3N-rich electrolyte/electrode interface. The designed Z-COF protection layer enables Li|Li symmetrical cells stable cycling over 6300 h at 2 mA cm−2/2 mAh cm−2. The Z-COF@Li|LiFePO4 (LFP) full cells deliver high-capacity retention of 85.2% after 1000 cycles at 8 C. The assembled Z-COF@Li|LFP pouch cells demonstrate a lifespan of more than 240 cycles. This work provides fresh insights into the practical application of zwitterionic COF in next-generation LMBs.
Highlights:
1 Ethidium cations acted as “anion capturers” to immobilize TFSI−, which rendered the C-F and S-N bonds prone to cleavage, facilitating the formation of LiF/Li3N-rich solid electrolyte interphase.
2 Ion–dipole interaction between ethidium groups and dimethoxyethane/dioxolane, boosting Li+ desolvation.
3 Sulfonate groups exhibited an ion-sieving effect that selectively attracted Li⁺ while excluding TFSI⁻, promoting LiTFSI dissociation and accelerating Li+ migration.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Zhou, M. Bao, Y. Fang, P. He, J. Ren et al., Single-atom zirconium coordination polyimide aerogel as separator coating toward high-rate lithium metal battery. Adv. Funct. Mater. 35(1), 2411963 (2025). https://doi.org/10.1002/adfm.202411963
- Y. Yang, S. Ma, H. Yin, Y. Li, S. Chen et al., Remodeling highly fluorinated electrolyte via shielding agent regulation toward practical lithium metal batteries. Adv. Sci. 11(45), 2404248 (2024). https://doi.org/10.1002/advs.202404248
- Y. Xie, Y. Huang, H. Chen, W. Lin, T. Wu et al., Dual-protective role of PM475: bolstering anode and cathode stability in lithium metal batteries. Adv. Funct. Mater. 34(21), 2310867 (2024). https://doi.org/10.1002/adfm.202310867
- F. Ma, X. Xiong, Z. Zhang, Y. Wu, D. Chen et al., Interface engineering of heterostructural quantum dots towards high-rate and long-life lithium-sulfur full batteries. Nano Energy 133, 110445 (2025). https://doi.org/10.1016/j.nanoen.2024.110445
- J.B. Park, C. Choi, M.S. Kim, H. Kang, E. Kwon et al., Designing metal phosphide solid-electrolyte interphase for stable lithium metal batteries through electrified interface optimization and synergistic conversion. Nano-Micro Lett. 17(1), 315 (2025). https://doi.org/10.1007/s40820-025-01813-1
- Q. Jin, T. Zhang, Z. Dai, M. Zhao, L. Wu et al., Tuning solvation behavior within electric double layer via halogenated MXene for reliable lithium metal batteries. Energy Storage Mater. 73, 103837 (2024). https://doi.org/10.1016/j.ensm.2024.103837
- P. Wei, H. Wang, M. Yang, J. Wang, D. Wang, Relocatable hollow multishelled structure-based membrane enables dendrite-free lithium deposition for ultrastable lithium metal batteries. Adv. Energy Mater. 14(22), 2400108 (2024). https://doi.org/10.1002/aenm.202400108
- X. Zhang, L. Zhou, K. Hu, D. Gao, S. Tang et al., Uniform lithium deposition regulated by lithiophilic Mo3N2/MoN heterojunction nanobelts interlayer for stable lithium metal batteries. Chem. Eng. J. 476, 146612 (2023). https://doi.org/10.1016/j.cej.2023.146612
- L. Wang, J. Guo, Q. Qi, X. Li, Y. Ge et al., Revisiting dipole-induced fluorinated-anion decomposition reaction for promoting a LiF-rich interphase in lithium-metal batteries. Nano-Micro Lett. 17(1), 111 (2025). https://doi.org/10.1007/s40820-024-01637-5
- C. Deng, B. Yang, Y. Liang, Y. Zhao, B. Gui et al., Bipolar polymeric protective layer for dendrite-free and corrosion-resistant lithium metal anode in ethylene carbonate electrolyte. Angew. Chem. Int. Ed. 63(17), e202400619 (2024). https://doi.org/10.1002/anie.202400619
- J. Yang, M. Li, Z. Sun, X. Lian, Y. Wang et al., Prolonging the cycling lifetime of lithium metal batteries with a monolithic and inorganic-rich solid electrolyte interphase. Energy Environ. Sci. 16(9), 3837–3846 (2023). https://doi.org/10.1039/D3EE00161J
- X. Gao, Y.-N. Zhou, D. Han, J. Zhou, D. Zhou et al., Thermodynamic understanding of Li-dendrite formation. Joule 4(9), 1864–1879 (2020). https://doi.org/10.1016/j.joule.2020.06.016
- Y. Jin, R. Lin, Y. Li, X. Zhang, S. Tan et al., Revealing the influence of electron migration inside polymer electrolyte on Li+ transport and interphase reconfiguration for Li metal batteries. Angew. Chem. Int. Ed. 63(24), e202403661 (2024). https://doi.org/10.1002/anie.202403661
- S. Weng, X. Zhang, G. Yang, S. Zhang, B. Ma et al., Temperature-dependent interphase formation and Li+ transport in lithium metal batteries. Nat. Commun. 14, 4474 (2023). https://doi.org/10.1038/s41467-023-40221-0
- J. Li, T. Zhang, X. Hui, R. Zhu, Q. Sun et al., Competitive Li+ coordination in ionogel electrolytes for enhanced Li-ion transport kinetics. Adv. Sci. 10(23), 2300226 (2023). https://doi.org/10.1002/advs.202300226
- Z. Yu, C. Gan, A.S. Mijailovic, A. Stone, R. Hurt et al., Lithium dendrite deflection at mixed ionic–electronic conducting interlayers in solid electrolytes. Adv. Energy Mater. 15(13), 2403179 (2025). https://doi.org/10.1002/aenm.202403179
- Y. Mu, Z. Liao, Y. Chu, Q. Zhang, L. Zou et al., Electron acceptor-driven solid electrolyte interphases with elevated LiF content for 4.7 V lithium metal batteries. Nano-Micro Lett. 17(1), 163 (2025). https://doi.org/10.1007/s40820-025-01663-x
- H. Hu, J. Li, F. Lin, J. Huang, H. Zheng et al., Induction effect of fluorine-grafted polymer-based electrolytes for high-performance lithium metal batteries. Nano-Micro Lett. 17(1), 256 (2025). https://doi.org/10.1007/s40820-025-01738-9
- M. Cui, N. Gao, W. Zhao, H. Zhao, Z. Cao et al., Self-regulating interfacial space charge through polyanion repulsion effect towards dendrite-free polymer lithium-metal batteries. Adv. Energy Mater. 14(13), 2303834 (2024). https://doi.org/10.1002/aenm.202303834
- Y.-Y. Wang, X.-Q. Zhang, M.-Y. Zhou, J.-Q. Huang, Mechanism, quantitative characterization, and inhibition of corrosion in lithium batteries. Nano Res. Energy 2, e9120046 (2023). https://doi.org/10.26599/nre.2023.9120046
- Q. Miao, Y. Wang, D. Chen, N. Cao, J. Pang, Development of novel ionic covalent organic frameworks composite nanofiltration membranes for dye/salt separation. J. Hazard. Mater. 465, 133049 (2024). https://doi.org/10.1016/j.jhazmat.2023.133049
- Y. Cao, S. Zhang, B. Zhang, C. Han, Y. Zhang et al., Local electric field promoted kinetics and interfacial stability of a phosphorus anode with ionic covalent organic frameworks. Adv. Mater. 35(3), 2208514 (2023). https://doi.org/10.1002/adma.202208514
- G. Das, F. Abou Ibrahim, Z. Abou Khalil, P. Bazin, F. Chandra et al., Ionic covalent organic framework as a dual functional sensor for temperature and humidity. Small 20(32), 2470241 (2024). https://doi.org/10.1002/smll.202470241
- X. Liang, Y. Tian, Y. Yuan, Y. Kim, Ionic covalent organic frameworks for energy devices. Adv. Mater. 33(52), e2105647 (2021). https://doi.org/10.1002/adma.202105647
- Y. Xu, H. Xue, X. Li, X. Fan, P. Li et al., Application of metal-organic frameworks, covalent organic frameworks and their derivates for the metal-air batteries. Nano Res. Energy 2, e9120052 (2023). https://doi.org/10.26599/nre.2023.9120052
- Y. Zhao, K. Feng, Y. Yu, A review on covalent organic frameworks as artificial interface layers for Li and Zn metal anodes in rechargeable batteries. Adv. Sci. 11(7), 2308087 (2024). https://doi.org/10.1002/advs.202308087
- Y. Yang, S. Yao, Z. Liang, Y. Wen, Z. Liu et al., A self-supporting covalent organic framework separator with desolvation effect for high energy density lithium metal batteries. ACS Energy Lett. 7(2), 885–896 (2022). https://doi.org/10.1021/acsenergylett.1c02719
- X. Li, Z. Zhang, D. Chen, F. Ma, J. Huang et al., A dual-protective MXene/COF artificial interface for dendrite-free and stable lithium metal anodes. Adv. Funct. Mater. 35(42), 2505390 (2025). https://doi.org/10.1002/adfm.202505390
- J. Meng, M. Yin, K. Guo, X. Zhou, Z. Xue, In situ polymerization in COF boosts Li-ion conduction in solid polymer electrolytes for Li metal batteries. Nano-Micro Lett. 17(1), 248 (2025). https://doi.org/10.1007/s40820-025-01768-3
- J. Zou, K. Fan, Y. Chen, W. Hu, C. Wang, Perspectives of ionic covalent organic frameworks for rechargeable batteries. Coord. Chem. Rev. 458, 214431 (2022). https://doi.org/10.1016/j.ccr.2022.214431
- P. Zhang, Z. Wang, P. Cheng, Y. Chen, Z. Zhang, Design and application of ionic covalent organic frameworks. Coord. Chem. Rev. 438, 213873 (2021). https://doi.org/10.1016/j.ccr.2021.213873
- Y. Yang, C. Zhang, G. Zhao, Q. An, Z.-Y. Mei et al., Regulating the electron structure of covalent organic frameworks by strong electron-withdrawing nitro to construct specific Li+ oriented channel. Adv. Energy Mater. 13(26), 2300725 (2023). https://doi.org/10.1002/aenm.202300725
- K. Zhang, X. Li, L. Ma, F. Chen, Z. Chen et al., Fluorinated covalent organic framework-based nanofluidic interface for robust lithium-sulfur batteries. ACS Nano 17(3), 2901–2911 (2023). https://doi.org/10.1021/acsnano.2c11300
- C. Wang, S. Wang, J. Tang, J. Zhang, J. Wang et al., Eliminating lithium dendrites via dependable ion regulation of charged nanochannels. Energy Storage Mater. 69, 103427 (2024). https://doi.org/10.1016/j.ensm.2024.103427
- G. Yu, Y. Cui, S. Lin, R. Liu, S. Liu et al., Ultrathin composite separator based on lithiated COF nanosheet for high stability lithium metal batteries. Adv. Funct. Mater. 34(24), 2314935 (2024). https://doi.org/10.1002/adfm.202314935
- L. Sun, Z. Li, L. Zhai, H. Moon, C. Song et al., Electrostatic polarity-regulated, vinylene-linked cationic covalent organic frameworks as an ionic sieve membrane for long-cyclable lithium-sulfur batteries. Energy Storage Mater. 66, 103222 (2024). https://doi.org/10.1016/j.ensm.2024.103222
- S. Yao, Y. Yang, Z. Liang, J. Chen, J. Ding et al., A dual−functional cationic covalent organic frameworks modified separator for high energy lithium metal batteries. Adv. Funct. Mater. 33(13), 2212466 (2023). https://doi.org/10.1002/adfm.202212466
- Y. Wen, J. Ding, Y. Yang, X. Lan, J. Liu et al., Introducing NO3–into carbonate-based electrolytes via covalent organic framework to incubate stable interface for Li-metal batteries. Adv. Funct. Mater. 32(15), 2109377 (2022). https://doi.org/10.1002/adfm.202109377
- Z. Zhang, Y. Xu, Hydrothermal synthesis of highly crystalline zwitterionic vinylene-linked covalent organic frameworks with exceptional photocatalytic properties. J. Am. Chem. Soc. 145(46), 25222–25232 (2023). https://doi.org/10.1021/jacs.3c08220
- G. Jiang, W. Zou, Z. Ou, W. Zhang, J. Huo et al., Precise regulation of intra-nanopore charge microenvironment in covalent organic frameworks for efficient monovalent cation transport. Angew. Chem. Int. Ed. 64(10), e202420333 (2025). https://doi.org/10.1002/anie.202420333
- M.L. Barsoum, K.M. Fahy, W. Morris, V.P. Dravid, B. Hernandez et al., The road ahead for metal–organic frameworks: current landscape, challenges and future prospects. ACS Nano 19(1), 13–20 (2025). https://doi.org/10.1021/acsnano.4c14744
- L. Han, Y. Li, Y. Yang, S. Sun, M. Li et al., Zwitterionic covalent organic framework as a multifunctional sulfur host toward durable lithium-sulfur batteries. J. Colloid Interface Sci. 628, 144–153 (2022). https://doi.org/10.1016/j.jcis.2022.07.123
- N. Ding, T. Zhou, W. Weng, Z. Lin, S. Liu et al., Multivariate synthetic strategy for improving crystallinity of zwitterionic squaraine-linked covalent organic frameworks with enhanced photothermal performance. Small 18(24), 2201275 (2022). https://doi.org/10.1002/smll.202201275
- G. Jiang, W. Zou, W. Zhang, Z. Ou, S. Qi et al., Lithium-ion accelerated regulators by locally-zwitterionic covalent organic framework nanosheets. Adv. Energy Mater. 14(12), 2303672 (2024). https://doi.org/10.1002/aenm.202303672
- T.W. Kang, J.-H. Lee, J. Lee, J.H. Park, J.-H. Shin et al., An ion-channel-restructured zwitterionic covalent organic framework solid electrolyte for all-solid-state lithium-metal batteries. Adv. Mater. 35(30), 2301308 (2023). https://doi.org/10.1002/adma.202301308
- X. Li, Q. Hou, W. Huang, H.-S. Xu, X. Wang et al., Solution-processable covalent organic framework electrolytes for all-solid-state Li–organic batteries. ACS Energy Lett. 5(11), 3498–3506 (2020). https://doi.org/10.1021/acsenergylett.0c01889
- Y. Fu, Y. Wu, S. Chen, W. Zhang, Y. Zhang et al., Zwitterionic covalent organic frameworks: attractive porous host for gas separation and anhydrous proton conduction. ACS Nano 15(12), 19743–19755 (2021). https://doi.org/10.1021/acsnano.1c07178
- P. Zou, Y. Sui, H. Zhan, C. Wang, H.L. Xin et al., Polymorph evolution mechanisms and regulation strategies of lithium metal anode under multiphysical fields. Chem. Rev. 121(10), 5986–6056 (2021). https://doi.org/10.1021/acs.chemrev.0c01100
- P. Zhai, N. Ahmad, S. Qu, L. Feng, W. Yang, A lithiophilic–lithiophobic gradient solid electrolyte interface toward a highly stable solid-state polymer lithium metal batteries. Adv. Funct. Mater. 34(27), 2316561 (2024). https://doi.org/10.1002/adfm.202316561
- H. Zhuang, H. Xiao, T. Zhang, F. Zhang, P. Han et al., LiF-rich alloy-doped SEI enabling ultra-stable and high-rate Li metal anode. Angew. Chem. Int. Ed. 63(33), e202407315 (2024). https://doi.org/10.1002/anie.202407315
- K.-S. Oh, S. Park, J.-S. Kim, Y. Yao, J.-H. Kim et al., Electrostatic covalent organic frameworks as on-demand molecular traps for high-energy Li metal battery electrodes. ACS Energy Lett. 8(5), 2463–2474 (2023). https://doi.org/10.1021/acsenergylett.3c00600
- S. Zheng, S. Bi, Y. Fu, Y. Wu, M. Liu et al., 3D crown ether covalent organic framework as interphase layer toward high-performance lithium metal batteries. Adv. Mater. 36(21), e2313076 (2024). https://doi.org/10.1002/adma.202313076
- L. Sheng, Q. Wang, X. Liu, H. Cui, X. Wang et al., Suppressing electrolyte-lithium metal reactivity via Li+-desolvation in uniform nano-porous separator. Nat. Commun. 13(1), 172 (2022). https://doi.org/10.1038/s41467-021-27841-0
- Y. Lu, C.-Z. Zhao, J.-Q. Huang, Q. Zhang, The timescale identification decoupling complicated kinetic processes in lithium batteries. Joule 6(6), 1172–1198 (2022). https://doi.org/10.1016/j.joule.2022.05.005
- P. Wang, H. Mou, Y. Wang, N. Song, X. Li et al., Niobium phosphide-induced sulfur cathode interface with fast lithium-ion flux enables highly stable lithium–sulfur catalytic conversion. Angew. Chem. Int. Ed. 64(20), e202502255 (2025). https://doi.org/10.1002/anie.202502255
- W. Wang, Z. Yang, Y. Zhang, A. Wang, Y. Zhang et al., Highly stable lithium metal anode enabled by lithiophilic and spatial-confined spherical-covalent organic framework. Energy Storage Mater. 46, 374–383 (2022). https://doi.org/10.1016/j.ensm.2022.01.018
- X.-M. Lu, Y. Cao, Y. Sun, H. Wang, W. Sun et al., Sp-carbon-conjugated organic polymer as multifunctional interfacial layers for ultra-long dendrite-free lithium metal batteries. Angew. Chem. Int. Ed. 63(15), e202320259 (2024). https://doi.org/10.1002/anie.202320259
- Z. Lin, Y. Wang, Y. Li, Y. Liu, S. Zhong et al., Regulating solvation structure in gel polymer electrolytes with covalent organic frameworks for lithium metal batteries. Energy Storage Mater. 53, 917–926 (2022). https://doi.org/10.1016/j.ensm.2022.10.019
- G. Zhao, H. Ma, C. Zhang, Y. Yang, S. Yu et al., Constructing donor-acceptor-linked COFs electrolytes to regulate electron density and accelerate the Li+ migration in quasi-solid-state battery. Nano-Micro Lett. 17(1), 21 (2024). https://doi.org/10.1007/s40820-024-01509-y
- Z. Li, W. Ji, T.-X. Wang, Y. Zhang, Z. Li et al., Guiding uniformly distributed Li-ion flux by lithiophilic covalent organic framework interlayers for high-performance lithium metal anodes. ACS Appl. Mater. Interfaces 13(19), 22586–22596 (2021). https://doi.org/10.1021/acsami.1c04517
- W. Zhang, G. Jiang, W. Zou, L. Zhang, S. Li et al., Ionic covalent organic frameworks triggered efficient synergy: Li+ de-solvation and the formation of LiF-rich interphase. J. Power. Sources 548, 232001 (2022). https://doi.org/10.1016/j.jpowsour.2022.232001
- Y. Cao, Y. Zhang, C. Han, S. Liu, S. Zhang et al., Zwitterionic covalent organic framework based electrostatic field electrocatalysts for durable lithium–sulfur batteries. ACS Nano 17(22), 22632–22641 (2023). https://doi.org/10.1021/acsnano.3c06826
- J. Lee, J.-H. Shin, S. Hong, J.-H. Lee, D.-H. Jeong et al., Eutectic-like ion-conductive phase-incorporated zwitterionic covalent organic framework solid electrolyte for all-solid-state Li metal batteries. Adv. Sci. 12(33), e05530 (2025). https://doi.org/10.1002/advs.202505530
References
K. Zhou, M. Bao, Y. Fang, P. He, J. Ren et al., Single-atom zirconium coordination polyimide aerogel as separator coating toward high-rate lithium metal battery. Adv. Funct. Mater. 35(1), 2411963 (2025). https://doi.org/10.1002/adfm.202411963
Y. Yang, S. Ma, H. Yin, Y. Li, S. Chen et al., Remodeling highly fluorinated electrolyte via shielding agent regulation toward practical lithium metal batteries. Adv. Sci. 11(45), 2404248 (2024). https://doi.org/10.1002/advs.202404248
Y. Xie, Y. Huang, H. Chen, W. Lin, T. Wu et al., Dual-protective role of PM475: bolstering anode and cathode stability in lithium metal batteries. Adv. Funct. Mater. 34(21), 2310867 (2024). https://doi.org/10.1002/adfm.202310867
F. Ma, X. Xiong, Z. Zhang, Y. Wu, D. Chen et al., Interface engineering of heterostructural quantum dots towards high-rate and long-life lithium-sulfur full batteries. Nano Energy 133, 110445 (2025). https://doi.org/10.1016/j.nanoen.2024.110445
J.B. Park, C. Choi, M.S. Kim, H. Kang, E. Kwon et al., Designing metal phosphide solid-electrolyte interphase for stable lithium metal batteries through electrified interface optimization and synergistic conversion. Nano-Micro Lett. 17(1), 315 (2025). https://doi.org/10.1007/s40820-025-01813-1
Q. Jin, T. Zhang, Z. Dai, M. Zhao, L. Wu et al., Tuning solvation behavior within electric double layer via halogenated MXene for reliable lithium metal batteries. Energy Storage Mater. 73, 103837 (2024). https://doi.org/10.1016/j.ensm.2024.103837
P. Wei, H. Wang, M. Yang, J. Wang, D. Wang, Relocatable hollow multishelled structure-based membrane enables dendrite-free lithium deposition for ultrastable lithium metal batteries. Adv. Energy Mater. 14(22), 2400108 (2024). https://doi.org/10.1002/aenm.202400108
X. Zhang, L. Zhou, K. Hu, D. Gao, S. Tang et al., Uniform lithium deposition regulated by lithiophilic Mo3N2/MoN heterojunction nanobelts interlayer for stable lithium metal batteries. Chem. Eng. J. 476, 146612 (2023). https://doi.org/10.1016/j.cej.2023.146612
L. Wang, J. Guo, Q. Qi, X. Li, Y. Ge et al., Revisiting dipole-induced fluorinated-anion decomposition reaction for promoting a LiF-rich interphase in lithium-metal batteries. Nano-Micro Lett. 17(1), 111 (2025). https://doi.org/10.1007/s40820-024-01637-5
C. Deng, B. Yang, Y. Liang, Y. Zhao, B. Gui et al., Bipolar polymeric protective layer for dendrite-free and corrosion-resistant lithium metal anode in ethylene carbonate electrolyte. Angew. Chem. Int. Ed. 63(17), e202400619 (2024). https://doi.org/10.1002/anie.202400619
J. Yang, M. Li, Z. Sun, X. Lian, Y. Wang et al., Prolonging the cycling lifetime of lithium metal batteries with a monolithic and inorganic-rich solid electrolyte interphase. Energy Environ. Sci. 16(9), 3837–3846 (2023). https://doi.org/10.1039/D3EE00161J
X. Gao, Y.-N. Zhou, D. Han, J. Zhou, D. Zhou et al., Thermodynamic understanding of Li-dendrite formation. Joule 4(9), 1864–1879 (2020). https://doi.org/10.1016/j.joule.2020.06.016
Y. Jin, R. Lin, Y. Li, X. Zhang, S. Tan et al., Revealing the influence of electron migration inside polymer electrolyte on Li+ transport and interphase reconfiguration for Li metal batteries. Angew. Chem. Int. Ed. 63(24), e202403661 (2024). https://doi.org/10.1002/anie.202403661
S. Weng, X. Zhang, G. Yang, S. Zhang, B. Ma et al., Temperature-dependent interphase formation and Li+ transport in lithium metal batteries. Nat. Commun. 14, 4474 (2023). https://doi.org/10.1038/s41467-023-40221-0
J. Li, T. Zhang, X. Hui, R. Zhu, Q. Sun et al., Competitive Li+ coordination in ionogel electrolytes for enhanced Li-ion transport kinetics. Adv. Sci. 10(23), 2300226 (2023). https://doi.org/10.1002/advs.202300226
Z. Yu, C. Gan, A.S. Mijailovic, A. Stone, R. Hurt et al., Lithium dendrite deflection at mixed ionic–electronic conducting interlayers in solid electrolytes. Adv. Energy Mater. 15(13), 2403179 (2025). https://doi.org/10.1002/aenm.202403179
Y. Mu, Z. Liao, Y. Chu, Q. Zhang, L. Zou et al., Electron acceptor-driven solid electrolyte interphases with elevated LiF content for 4.7 V lithium metal batteries. Nano-Micro Lett. 17(1), 163 (2025). https://doi.org/10.1007/s40820-025-01663-x
H. Hu, J. Li, F. Lin, J. Huang, H. Zheng et al., Induction effect of fluorine-grafted polymer-based electrolytes for high-performance lithium metal batteries. Nano-Micro Lett. 17(1), 256 (2025). https://doi.org/10.1007/s40820-025-01738-9
M. Cui, N. Gao, W. Zhao, H. Zhao, Z. Cao et al., Self-regulating interfacial space charge through polyanion repulsion effect towards dendrite-free polymer lithium-metal batteries. Adv. Energy Mater. 14(13), 2303834 (2024). https://doi.org/10.1002/aenm.202303834
Y.-Y. Wang, X.-Q. Zhang, M.-Y. Zhou, J.-Q. Huang, Mechanism, quantitative characterization, and inhibition of corrosion in lithium batteries. Nano Res. Energy 2, e9120046 (2023). https://doi.org/10.26599/nre.2023.9120046
Q. Miao, Y. Wang, D. Chen, N. Cao, J. Pang, Development of novel ionic covalent organic frameworks composite nanofiltration membranes for dye/salt separation. J. Hazard. Mater. 465, 133049 (2024). https://doi.org/10.1016/j.jhazmat.2023.133049
Y. Cao, S. Zhang, B. Zhang, C. Han, Y. Zhang et al., Local electric field promoted kinetics and interfacial stability of a phosphorus anode with ionic covalent organic frameworks. Adv. Mater. 35(3), 2208514 (2023). https://doi.org/10.1002/adma.202208514
G. Das, F. Abou Ibrahim, Z. Abou Khalil, P. Bazin, F. Chandra et al., Ionic covalent organic framework as a dual functional sensor for temperature and humidity. Small 20(32), 2470241 (2024). https://doi.org/10.1002/smll.202470241
X. Liang, Y. Tian, Y. Yuan, Y. Kim, Ionic covalent organic frameworks for energy devices. Adv. Mater. 33(52), e2105647 (2021). https://doi.org/10.1002/adma.202105647
Y. Xu, H. Xue, X. Li, X. Fan, P. Li et al., Application of metal-organic frameworks, covalent organic frameworks and their derivates for the metal-air batteries. Nano Res. Energy 2, e9120052 (2023). https://doi.org/10.26599/nre.2023.9120052
Y. Zhao, K. Feng, Y. Yu, A review on covalent organic frameworks as artificial interface layers for Li and Zn metal anodes in rechargeable batteries. Adv. Sci. 11(7), 2308087 (2024). https://doi.org/10.1002/advs.202308087
Y. Yang, S. Yao, Z. Liang, Y. Wen, Z. Liu et al., A self-supporting covalent organic framework separator with desolvation effect for high energy density lithium metal batteries. ACS Energy Lett. 7(2), 885–896 (2022). https://doi.org/10.1021/acsenergylett.1c02719
X. Li, Z. Zhang, D. Chen, F. Ma, J. Huang et al., A dual-protective MXene/COF artificial interface for dendrite-free and stable lithium metal anodes. Adv. Funct. Mater. 35(42), 2505390 (2025). https://doi.org/10.1002/adfm.202505390
J. Meng, M. Yin, K. Guo, X. Zhou, Z. Xue, In situ polymerization in COF boosts Li-ion conduction in solid polymer electrolytes for Li metal batteries. Nano-Micro Lett. 17(1), 248 (2025). https://doi.org/10.1007/s40820-025-01768-3
J. Zou, K. Fan, Y. Chen, W. Hu, C. Wang, Perspectives of ionic covalent organic frameworks for rechargeable batteries. Coord. Chem. Rev. 458, 214431 (2022). https://doi.org/10.1016/j.ccr.2022.214431
P. Zhang, Z. Wang, P. Cheng, Y. Chen, Z. Zhang, Design and application of ionic covalent organic frameworks. Coord. Chem. Rev. 438, 213873 (2021). https://doi.org/10.1016/j.ccr.2021.213873
Y. Yang, C. Zhang, G. Zhao, Q. An, Z.-Y. Mei et al., Regulating the electron structure of covalent organic frameworks by strong electron-withdrawing nitro to construct specific Li+ oriented channel. Adv. Energy Mater. 13(26), 2300725 (2023). https://doi.org/10.1002/aenm.202300725
K. Zhang, X. Li, L. Ma, F. Chen, Z. Chen et al., Fluorinated covalent organic framework-based nanofluidic interface for robust lithium-sulfur batteries. ACS Nano 17(3), 2901–2911 (2023). https://doi.org/10.1021/acsnano.2c11300
C. Wang, S. Wang, J. Tang, J. Zhang, J. Wang et al., Eliminating lithium dendrites via dependable ion regulation of charged nanochannels. Energy Storage Mater. 69, 103427 (2024). https://doi.org/10.1016/j.ensm.2024.103427
G. Yu, Y. Cui, S. Lin, R. Liu, S. Liu et al., Ultrathin composite separator based on lithiated COF nanosheet for high stability lithium metal batteries. Adv. Funct. Mater. 34(24), 2314935 (2024). https://doi.org/10.1002/adfm.202314935
L. Sun, Z. Li, L. Zhai, H. Moon, C. Song et al., Electrostatic polarity-regulated, vinylene-linked cationic covalent organic frameworks as an ionic sieve membrane for long-cyclable lithium-sulfur batteries. Energy Storage Mater. 66, 103222 (2024). https://doi.org/10.1016/j.ensm.2024.103222
S. Yao, Y. Yang, Z. Liang, J. Chen, J. Ding et al., A dual−functional cationic covalent organic frameworks modified separator for high energy lithium metal batteries. Adv. Funct. Mater. 33(13), 2212466 (2023). https://doi.org/10.1002/adfm.202212466
Y. Wen, J. Ding, Y. Yang, X. Lan, J. Liu et al., Introducing NO3–into carbonate-based electrolytes via covalent organic framework to incubate stable interface for Li-metal batteries. Adv. Funct. Mater. 32(15), 2109377 (2022). https://doi.org/10.1002/adfm.202109377
Z. Zhang, Y. Xu, Hydrothermal synthesis of highly crystalline zwitterionic vinylene-linked covalent organic frameworks with exceptional photocatalytic properties. J. Am. Chem. Soc. 145(46), 25222–25232 (2023). https://doi.org/10.1021/jacs.3c08220
G. Jiang, W. Zou, Z. Ou, W. Zhang, J. Huo et al., Precise regulation of intra-nanopore charge microenvironment in covalent organic frameworks for efficient monovalent cation transport. Angew. Chem. Int. Ed. 64(10), e202420333 (2025). https://doi.org/10.1002/anie.202420333
M.L. Barsoum, K.M. Fahy, W. Morris, V.P. Dravid, B. Hernandez et al., The road ahead for metal–organic frameworks: current landscape, challenges and future prospects. ACS Nano 19(1), 13–20 (2025). https://doi.org/10.1021/acsnano.4c14744
L. Han, Y. Li, Y. Yang, S. Sun, M. Li et al., Zwitterionic covalent organic framework as a multifunctional sulfur host toward durable lithium-sulfur batteries. J. Colloid Interface Sci. 628, 144–153 (2022). https://doi.org/10.1016/j.jcis.2022.07.123
N. Ding, T. Zhou, W. Weng, Z. Lin, S. Liu et al., Multivariate synthetic strategy for improving crystallinity of zwitterionic squaraine-linked covalent organic frameworks with enhanced photothermal performance. Small 18(24), 2201275 (2022). https://doi.org/10.1002/smll.202201275
G. Jiang, W. Zou, W. Zhang, Z. Ou, S. Qi et al., Lithium-ion accelerated regulators by locally-zwitterionic covalent organic framework nanosheets. Adv. Energy Mater. 14(12), 2303672 (2024). https://doi.org/10.1002/aenm.202303672
T.W. Kang, J.-H. Lee, J. Lee, J.H. Park, J.-H. Shin et al., An ion-channel-restructured zwitterionic covalent organic framework solid electrolyte for all-solid-state lithium-metal batteries. Adv. Mater. 35(30), 2301308 (2023). https://doi.org/10.1002/adma.202301308
X. Li, Q. Hou, W. Huang, H.-S. Xu, X. Wang et al., Solution-processable covalent organic framework electrolytes for all-solid-state Li–organic batteries. ACS Energy Lett. 5(11), 3498–3506 (2020). https://doi.org/10.1021/acsenergylett.0c01889
Y. Fu, Y. Wu, S. Chen, W. Zhang, Y. Zhang et al., Zwitterionic covalent organic frameworks: attractive porous host for gas separation and anhydrous proton conduction. ACS Nano 15(12), 19743–19755 (2021). https://doi.org/10.1021/acsnano.1c07178
P. Zou, Y. Sui, H. Zhan, C. Wang, H.L. Xin et al., Polymorph evolution mechanisms and regulation strategies of lithium metal anode under multiphysical fields. Chem. Rev. 121(10), 5986–6056 (2021). https://doi.org/10.1021/acs.chemrev.0c01100
P. Zhai, N. Ahmad, S. Qu, L. Feng, W. Yang, A lithiophilic–lithiophobic gradient solid electrolyte interface toward a highly stable solid-state polymer lithium metal batteries. Adv. Funct. Mater. 34(27), 2316561 (2024). https://doi.org/10.1002/adfm.202316561
H. Zhuang, H. Xiao, T. Zhang, F. Zhang, P. Han et al., LiF-rich alloy-doped SEI enabling ultra-stable and high-rate Li metal anode. Angew. Chem. Int. Ed. 63(33), e202407315 (2024). https://doi.org/10.1002/anie.202407315
K.-S. Oh, S. Park, J.-S. Kim, Y. Yao, J.-H. Kim et al., Electrostatic covalent organic frameworks as on-demand molecular traps for high-energy Li metal battery electrodes. ACS Energy Lett. 8(5), 2463–2474 (2023). https://doi.org/10.1021/acsenergylett.3c00600
S. Zheng, S. Bi, Y. Fu, Y. Wu, M. Liu et al., 3D crown ether covalent organic framework as interphase layer toward high-performance lithium metal batteries. Adv. Mater. 36(21), e2313076 (2024). https://doi.org/10.1002/adma.202313076
L. Sheng, Q. Wang, X. Liu, H. Cui, X. Wang et al., Suppressing electrolyte-lithium metal reactivity via Li+-desolvation in uniform nano-porous separator. Nat. Commun. 13(1), 172 (2022). https://doi.org/10.1038/s41467-021-27841-0
Y. Lu, C.-Z. Zhao, J.-Q. Huang, Q. Zhang, The timescale identification decoupling complicated kinetic processes in lithium batteries. Joule 6(6), 1172–1198 (2022). https://doi.org/10.1016/j.joule.2022.05.005
P. Wang, H. Mou, Y. Wang, N. Song, X. Li et al., Niobium phosphide-induced sulfur cathode interface with fast lithium-ion flux enables highly stable lithium–sulfur catalytic conversion. Angew. Chem. Int. Ed. 64(20), e202502255 (2025). https://doi.org/10.1002/anie.202502255
W. Wang, Z. Yang, Y. Zhang, A. Wang, Y. Zhang et al., Highly stable lithium metal anode enabled by lithiophilic and spatial-confined spherical-covalent organic framework. Energy Storage Mater. 46, 374–383 (2022). https://doi.org/10.1016/j.ensm.2022.01.018
X.-M. Lu, Y. Cao, Y. Sun, H. Wang, W. Sun et al., Sp-carbon-conjugated organic polymer as multifunctional interfacial layers for ultra-long dendrite-free lithium metal batteries. Angew. Chem. Int. Ed. 63(15), e202320259 (2024). https://doi.org/10.1002/anie.202320259
Z. Lin, Y. Wang, Y. Li, Y. Liu, S. Zhong et al., Regulating solvation structure in gel polymer electrolytes with covalent organic frameworks for lithium metal batteries. Energy Storage Mater. 53, 917–926 (2022). https://doi.org/10.1016/j.ensm.2022.10.019
G. Zhao, H. Ma, C. Zhang, Y. Yang, S. Yu et al., Constructing donor-acceptor-linked COFs electrolytes to regulate electron density and accelerate the Li+ migration in quasi-solid-state battery. Nano-Micro Lett. 17(1), 21 (2024). https://doi.org/10.1007/s40820-024-01509-y
Z. Li, W. Ji, T.-X. Wang, Y. Zhang, Z. Li et al., Guiding uniformly distributed Li-ion flux by lithiophilic covalent organic framework interlayers for high-performance lithium metal anodes. ACS Appl. Mater. Interfaces 13(19), 22586–22596 (2021). https://doi.org/10.1021/acsami.1c04517
W. Zhang, G. Jiang, W. Zou, L. Zhang, S. Li et al., Ionic covalent organic frameworks triggered efficient synergy: Li+ de-solvation and the formation of LiF-rich interphase. J. Power. Sources 548, 232001 (2022). https://doi.org/10.1016/j.jpowsour.2022.232001
Y. Cao, Y. Zhang, C. Han, S. Liu, S. Zhang et al., Zwitterionic covalent organic framework based electrostatic field electrocatalysts for durable lithium–sulfur batteries. ACS Nano 17(22), 22632–22641 (2023). https://doi.org/10.1021/acsnano.3c06826
J. Lee, J.-H. Shin, S. Hong, J.-H. Lee, D.-H. Jeong et al., Eutectic-like ion-conductive phase-incorporated zwitterionic covalent organic framework solid electrolyte for all-solid-state Li metal batteries. Adv. Sci. 12(33), e05530 (2025). https://doi.org/10.1002/advs.202505530