Emerging Chemical and Biological Materials Technologies in the Extraplanetary Environment
Corresponding Author: Yuan Lu
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 151
Abstract
Space exploration and manufacturing are of critical importance for scientific advancement, technological innovation, national security, and the acquisition of extraterrestrial resources. In view of this, chemical and biological nano-/micro-/meso-scale manufacturing provide complementary approaches to overcome key space exploration challenges by enabling the in-situ production of essential life-support materials, propellants, and other resources. This review examines the origin and historical evolution of space manufacturing and the latest advances across different environments—from orbital space stations and the lunar surface to Mars and asteroids. It is structured to present the current state of research, outline key manufacturing strategies and technologies, assess the technical and environmental challenges, and discuss emerging trends and future directions. Besides, the potential applications of emerging technologies such as synthetic biology and artificial intelligence in overcoming the limitations of microgravity, limited resources, and extreme conditions are discussed. Ultimately, this integrative review could serve to guide future development, from advancing space science and disruptive manufacturing to enabling interdisciplinary and application-level innovations.
Highlights:
1 The exploration and multiscale manufacturing in outer space hold vital significance
2 Chemical and biological nano/micro/meso-scale manufacturing offer strategies to address challenges
3 Emerging advances encompass novel manufacturing technologies and resource utilization strategies across orbital space stations, the Moon, Mars, and asteroids
4 Emerging technologies like synthetic biology and artificial intelligence are discussed
5 Key innovations, cross-disciplinary applications, and limitations are highlighted
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.S. Cockell, Bridging the gap between microbial limits and extremes in space: space microbial biotechnology in the next 15 years. Microb. Biotechnol. 15(1), 29–41 (2022). https://doi.org/10.1111/1751-7915.13927
- R. Santomartino, N.J.H. Averesch, M. Bhuiyan, C.S. Cockell, J. Colangelo et al., Toward sustainable space exploration: a roadmap for harnessing the power of microorganisms. Nat. Commun. 14(1), 1391 (2023). https://doi.org/10.1038/s41467-023-37070-2
- S.M. Castelein, T.F. Aarts, J. Schleppi, R. Hendrikx, A.J. Böttger et al., Iron can be microbially extracted from Lunar and Martian regolith simulants and 3D printed into tough structural materials. PLoS ONE 16(4), e0249962 (2021). https://doi.org/10.1371/journal.pone.0249962
- J. Marrero, O. Coto, A Schippers, in 11 Metal Bioleaching: Fundamentals and Geobiotechnical Application of Aerobic and Anaerobic Acidophiles. ed. by M.L. Natuschka (De Gruyter, Berlin, Boston, 2020), pp.261–288
- C. Cockell, R Santomartino, in Mining and Microbiology for the Solar System Silicate and Basalt Economy. ed. by 2022), pp. 163–185
- W.V. Boynton, D.W. Ming, S.P. Kounaves, S.M.M. Young, R.E. Arvidson et al., Evidence for calcium carbonate at the Mars Phoenix landing site. Science 325(5936), 61–64 (2009). https://doi.org/10.1126/science.1172768
- R.B. Leighton, B.C. Murray, Behavior of carbon dioxide and other volatiles on Mars. Science 153(3732), 136–144 (1966). https://doi.org/10.1126/science.153.3732.136
- C.M. Dundas, A.M. Bramson, L. Ojha, J.J. Wray, M.T. Mellon et al., Exposed subsurface ice sheets in the Martian mid-latitudes. Science 359(6372), 199–201 (2018). https://doi.org/10.1126/science.aao1619
- P.R. Christensen, Water at the poles and in permafrost regions of Mars. Elements 2(3), 151–155 (2006). https://doi.org/10.2113/gselements.2.3.151
- P.D. Spudis, D.B.J. Bussey, S.M. Baloga, J.T.S. Cahill, L.S. Glaze et al., Evidence for water ice on the Moon: results for anomalous polar craters from the LRO mini-RF imaging radar. J. Geophys. Res. Planets 118(10), 2016–2029 (2013). https://doi.org/10.1002/jgre.20156
- W. Ambrose. Water and hydrogen resources on the moon, mercury, and mars. AAPG. Houston, TX, 2014. https://www.searchanddiscovery.com/abstracts/html/2014/90189ace/abstracts/1840560.html. 11 February 2025
- M. Nazari-Sharabian, M. Aghababaei, M. Karakouzian, M. Karami, Water on Mars: a literature review. Galaxies 8(2), 40 (2020). https://doi.org/10.3390/galaxies8020040
- R.S. Blue, T.M. Bayuse, V.R. Daniels, V.E. Wotring, R. Suresh et al., Supplying a pharmacy for NASA exploration spaceflight: challenges and current understanding. NPJ Microgravity 5, 14 (2019). https://doi.org/10.1038/s41526-019-0075-2
- C.S. Cockell, R. Santomartino, K. Finster, A.C. Waajen, L.J. Eades et al., Space station biomining experiment demonstrates rare earth element extraction in microgravity and Mars gravity. Nat. Commun. 11(1), 5523 (2020). https://doi.org/10.1038/s41467-020-19276-w
- A.W. Smith, Reshaping drug delivery millions of crystals at a time. ISS National Laboratory. 2018. https://upward.issnationallab.org/millions-of-crystals-at-a-time/ 20 December 2024
- Á. Simon, A. Smarandache, V. Iancu, M.L. Pascu, Stability of antimicrobial drug molecules in different gravitational and radiation conditions in view of applications during outer space missions. Molecules 26(8), 2221 (2021). https://doi.org/10.3390/molecules26082221
- M. Montague, G.H. McArthur 4th., C.S. Cockell, J. Held, W. Marshall et al., The role of synthetic biology for in situ resource utilization (ISRU). Astrobiology 12(12), 1135–1142 (2012). https://doi.org/10.1089/ast.2012.0829
- P. Reichert, W. Prosise, T.O. Fischmann, G. Scapin, C. Narasimhan et al., Pembrolizumab microgravity crystallization experimentation. NPJ Microgravity 5, 28 (2019). https://doi.org/10.1038/s41526-019-0090-3
- G.B. Sanders, W.E. Larson, Progress made in lunar in situ resource utilization under NASA’s exploration technology and development program. J. Aerosp. Eng. 26(1), 5–17 (2013). https://doi.org/10.1061/(asce)as.1943-5525.0000208
- R.E.F. Lindeboom, J. De Paepe, M. Vanoppen, B. Alonso-Fariñas, W. Coessens et al., A five-stage treatment train for water recovery from urine and shower water for long-term human space missions. Desalination 495, 114634 (2020). https://doi.org/10.1016/j.desal.2020.114634
- C.T.C.J. Savage, Water recovery in space. ESA. 1999. https://www.esa.int/esapub/bulletin/bullet97/tamponne.pdf. 11 December 2024
- B. Rich, H. Läkk, M. Arnhof, I. Cheibas, Advanced concepts for isru-based additive manufacturing of planetary habitats. ESA. 2021. https://www.esa.int/gsp/ACT/doc/HAB/ACT-RPR-HAB-2021-ECSSMET-ISRU_AM_Planetary_Habitats.pdf. 11 December 2024
- ESA. Growing fungi structures in space. ESA. 2017. https://www.esa.int/gsp/ACT/projects/fungi_structures. 11 December 2024
- ESA. Building a lunar base with 3d printing. ESA. 2013. https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Building_a_lunar_base_with_3D_printing. 11 December 2024
- Y. Yao, L. Wang, X. Zhu, W. Tu, Y. Zhou et al., Extraterrestrial photosynthesis by Chang’E-5 lunar soil. Joule 6(5), 1008–1014 (2022). https://doi.org/10.1016/j.joule.2022.04.011
- C. Li, H. Hu, M.-F. Yang, Z.-Y. Pei, Q. Zhou et al., Characteristics of the lunar samples returned by the Chang’E-5 mission. Natl. Sci. Rev. 9(2), 188 (2022). https://doi.org/10.1093/nsr/nwab188
- Y. Qian, L. Xiao, Q. Wang, J.W. Head, R. Yang et al., China’s Chang’e-5 landing site: geology, stratigraphy, and provenance of materials. Earth Planet. Sci. Lett. 561, 116855 (2021). https://doi.org/10.1016/j.epsl.2021.116855
- eoPortal. Tiangong space station. eoPortal. 2024. https://www.eoportal.org/satellite-missions/tiangong-space-station. 11 April 2025
- Z. Yin, Z. Zhu, P. Guo, Z. Wang, J. Yang et al., On-orbit space technology experiment and verification project outlook of China’s Tiangong space station. Space Sci. Technol. 3, 61 (2023). https://doi.org/10.34133/space.0061
- C. Na, China’s space station delivers new samples for research. Chinese Academy of Sciences. 2025. https://english.cas.cn/newsroom/cas_media/202505/t20250506_1042543.shtml. 11 August 2025
- A. Makaya, L. Pambaguian, T. Ghidini, T. Rohr, U. Lafont et al., Towards out of earth manufacturing: overview of the ESA materials and processes activities on manufacturing in space. CEAS Space J. 15(1), 69–75 (2023). https://doi.org/10.1007/s12567-022-00428-1
- T. Zhang, Y. Li, Y. Chen, X. Feng, X. Zhu et al., Review on space energy. Appl. Energy 292, 116896 (2021). https://doi.org/10.1016/j.apenergy.2021.116896
- N.J.H. Averesch, A.J. Berliner, S.N. Nangle, S. Zezulka, G.L. Vengerova et al., Microbial biomanufacturing for space-exploration: what to take and when to make. Nat. Commun. 14, 2311 (2023). https://doi.org/10.1038/s41467-023-37910-1
- E.J. Llanos, W. Leal, D.H. Luu, J. Jost, P.F. Stadler et al., Exploration of the chemical space and its three historical regimes. Proc. Natl. Acad. Sci. U. S. A. 116(26), 12660–12665 (2019). https://doi.org/10.1073/pnas.1816039116
- R. Chen, L. Wan, J. Luo, Extraterrestrial artificial photosynthesis. Joule 6(5), 944–946 (2022). https://doi.org/10.1016/j.joule.2022.04.021
- J.A. Hoffman, M.H. Hecht, D. Rapp, J.J. Hartvigsen, J.G. SooHoo et al., Mars oxygen ISRU experiment (MOXIE)-preparing for human Mars exploration. Sci. Adv. 8(35), 8636 (2022). https://doi.org/10.1126/sciadv.abp8636
- E. Hinterman, J.A. Hoffman, Simulating oxygen production on Mars for the Mars oxygen in situ resource utilization experiment. Acta Astronaut. 170, 678–685 (2020). https://doi.org/10.1016/j.actaastro.2020.02.043
- T.P. Ramalho, G. Chopin, O.M. Pérez-Carrascal, N. Tromas, C. Verseux, Selection of Anabaena sp. PCC 7938 as a cyanobacterium model for biological ISRU on Mars. Appl. Environ. Microbiol. 88(15), e00594-22 (2022). https://doi.org/10.1128/aem.00594-22
- A.P. Koehle, S.L. Brumwell, E.P. Seto, A.M. Lynch, C. Urbaniak, Microbial applications for sustainable space exploration beyond low Earth orbit. NPJ Microgravity 9(1), 47 (2023). https://doi.org/10.1038/s41526-023-00285-0
- G. Ellena, J. Fahrion, S. Gupta, C.-G. Dussap, A. Mazzoli et al., Development and implementation of a simulated microgravity setup for edible cyanobacteria. Npj Microgravity 10(1), 99 (2024). https://doi.org/10.1038/s41526-024-00436-x
- J. Fahrion, C. Renaud, I. Coninx, W. Heylen, F. Mastroleo et al., ARTHROSPIRA-C space flight experiment: validation of biomass and oxygen production bioprocesses in a space bioreactor prior to upload to space. Acta Astronaut. 229, 374–390 (2025). https://doi.org/10.1016/j.actaastro.2024.11.010
- B. Llorente, T.C. Williams, H.D. Goold, I.S. Pretorius, I.T. Paulsen, Harnessing bioengineered microbes as a versatile platform for space nutrition. Nat. Commun. 13(1), 6177 (2022). https://doi.org/10.1038/s41467-022-33974-7
- A. Hindupur, Bionutrients-1: On-demand production of nutrients in space. NASA. 2019. https://ntrs.nasa.gov/citations/20190033398. 18 August 2025
- K. Foy, Scientists look to synthetic biology and 3d printing for life support in space. Lincoln Laboratory, Massachusetts Institute of Technology. 2019. https://www.ll.mit.edu/news/scientists-look-synthetic-biology-and-3d-printing-life-support-space. 11 December 2024
- J.C. Way, P.A. Silver, R.J. Howard, Sun-driven microbial synthesis of chemicals in space. Int. J. Astrobiol. 10(4), 359–364 (2011). https://doi.org/10.1017/s1473550411000218
- J. Ungerer, L. Tao, M. Davis, M. Ghirardi, P.-C. Maness et al., Sustained photosynthetic conversion of CO2 to ethylene in recombinant Cyanobacteriumsynechocystis 6803. Energy Environ. Sci. 5(10), 8998 (2012). https://doi.org/10.1039/c2ee22555g
- A.A. Menezes, J. Cumbers, J.A. Hogan, A.P. Arkin, Towards synthetic biological approaches to resource utilization on space missions. J. R. Soc. Interface. 12(102), 20140715 (2015). https://doi.org/10.1098/rsif.2014.0715
- J.S. Center, Human exploration of mars design reference architecture 5.0, addendum #2. NASA. 2014. https://ntrs.nasa.gov/citations/20160003093. 11 January 2025
- B.G. Drake, S.J. Hoffman, D.W. Beaty, Human exploration of mars, design reference architecture 5.0. IEEE. 2010. https://ieeexplore.ieee.org/document/5446736. 11 October 2024
- M. Chen, R. Goyal, M. Majji, R.E. Skelton, Review of space habitat designs for long term space explorations. Prog. Aerosp. Sci. 122, 100692 (2021). https://doi.org/10.1016/j.paerosci.2020.100692
- M.A. Garcia. International space station. NASA. 2023. https://www.nasa.gov/reference/international-space-station/. 20 August 2025
- V. De Micco, C. Amitrano, F. Mastroleo, G. Aronne, A. Battistelli et al., Plant and microbial science and technology as cornerstones to bioregenerative life support systems in space. NPJ Microgravity 9(1), 69 (2023). https://doi.org/10.1038/s41526-023-00317-9
- J. Gonçalves, P. Lima, B. Krause, P. Pötschke, U. Lafont et al., Electrically conductive polyetheretherketone nanocomposite filaments: from production to fused deposition modeling. Polymers 10(8), 925 (2018). https://doi.org/10.3390/polym10080925
- L. Hendrickx, H. De Wever, V. Hermans, F. Mastroleo, N. Morin et al., Microbial ecology of the closed artificial ecosystem MELiSSA (micro-ecological life support system alternative): reinventing and compartmentalizing the Earth’s food and oxygen regeneration system for long-haul space exploration missions. Res. Microbiol. 157(1), 77–86 (2006). https://doi.org/10.1016/j.resmic.2005.06.014
- ESA. Esa’s melissa life-support programme wins academic recognition. European Space Agency. 2017. https://www.esa.int/Enabling_Support/Space_Engineering_Technology/ESA_s_MELiSSA_life-support_programme_wins_academic_recognition. 6 February 2025
- L. Regel, Research experiences on materials science in space aboard salyut and mir. NASA. 2013. https://ntrs.nasa.gov/citations/19930013431. 16 June 2025
- P. Hasbrook, Expanding nasa and roscosmos scientific collaboration on the international space station. NASA. 2016. https://ntrs.nasa.gov/citations/20160005653. 11 December 2024
- JAXA. Protein crystals produced on "kibo" contribute to discovery of a compound that may lead to development of a new type of antibacterial drug such as curative drug for periodontal disease. Japan Aerospace Exploration Agency. 2019. https://iss.jaxa.jp/en/kiboexp/news/191226.html#:~:text=A%20Japanese%20research%20team%20has, Mitsugu. 16 August 2025
- S.S.R.I. Office, Crystallizing proteins in space helping to identify potential treatments for diseases. NASA. 2022. https://www.nasa.gov/missions/station/iss-research/crystallizing-proteins-in-space-helping-to-identify-potential-treatments-for-diseases/. 11 December 2024
- A. Mann, China’s chang’e 5 mission: Sampling the lunar surface. Space Exploration. 2020. https://www.space.com/change-5-mission.html. 11 January 2025
- C. Li, C. Wang, Y. Wei, Y. Lin, China’s present and future lunar exploration program. Science 365(6450), 238–239 (2019). https://doi.org/10.1126/science.aax9908
- L. Xiao, P. Zhu, G. Fang, Z. Xiao, Y. Zou et al., A young multilayered terrane of the northern Mare Imbrium revealed by Chang’E-3 mission. Science 347(6227), 1226–1229 (2015). https://doi.org/10.1126/science.1259866
- CSA. About canadarm3. Canadian Space Agency. 2025. https://www.asc-csa.gc.ca/eng/canadarm3/about.asp. 16 August 2025
- R. Duffy, A q+a with carlos moura, president of brazil’s space agency Payload. 2022. https://payloadspace.com/a-qa-with-carlos-moura-president-of-brazils-space-agency/#:~:text=%E2%80%9CBrazil%20is%20one%20of%20the,microgravity%20experiments%2C%20and%20ground%20stations. 16 August 2025
- M.L. Gaskill, Nasa, isro research aboard fourth private astronaut mission to station. NASA. 2025. https://www.nasa.gov/missions/station/iss-research/nasa-isro-research-aboard-fourth-private-astronaut-mission-to-station. 16 August 2025
- G.o.D.M. Office, Mbrsc showcases uae’s space industry. Government of Dubai Media Office. 2025. https://www.mediaoffice.ae/en/news/2025/may/18-05/mbrsc-showcases-uaes-space-industry. 16 August 2025
- I.F. OFFICE, Türkiye, axiom space strengthen cooperation in space industry. INVESTMENT&FINANCE OFFICE. 2025. https://www.invest.gov.tr/en/news/news-from-turkey/pages/t%C3%BCrkiye-axiom-space-strengthen-cooperation-space-industry.aspx. 11 August 2025
- T. Emen, From vision to reality: can public funding sustain Türkiye’s ambitious 10-year space program? Eur. J. Futur. Res. 13(1), 10 (2025). https://doi.org/10.1186/s40309-025-00255-7
- L.W. Clare Skelly, Nasa-supported payloads to get lift from blue origin. NASA. 2018. https://www.nasa.gov/centers-and-facilities/goddard/nasa-supported-payloads-to-get-lift-from-blue-origin. 11 December 2025
- E.B. Wagner, Research flights on Blue Origin’s new Shepard. Gravitational Space Res 9(1), 62–67 (2021). https://doi.org/10.2478/gsr-2021-0005
- M. Wall, Private varda space capsule returns to earth with space-grown antiviral drug aboard. Future US Inc. 2024. https://www.space.com/varda-in-space-manufacturing-capsule-landing-success. 18 August 2025
- S. Waldek, ‘Them space drugs cooked real good:’ Varda space just made an hiv medicine in earth orbit. Future US Inc. 2024. https://www.space.com/varda-space-microgravity-pharmaceutical-production-success. 11 January 2025
- T. Cross, Varda space industries advances space-based manufacturing and hypersonic testing. Space Explored. 2024. https://spaceexplored.com/2024/12/23/varda-space-industries-advances-space-based-manufacturing-and-hypersonic-testing. 11 January 2025
- Y.K. McKenna, Commercial resupply services overview. NASA. 2023. https://www.nasa.gov/commercial-resupply-services-overview/. 16 August 2025
- B. Ridgeway, About human landing systems development. NASA. 2025. https://www.nasa.gov/reference/human-landing-systems/. 16 August 2025
- B. Sloboda, A glimpse at the future of space-based solar power. National Rural Utilities Cooperative Finance Corporation. 2025. https://www.nrucfc.coop/content/solutions/en/stories/energy-tech/a-glimpse-at-the-future-of-space-based-solar-power.html. 17 August 2025
- R.E. Desk, Significant milestone: Ananth technologies partnership with isro completes 100 satellites. Raksha-Anirveda. 2024. https://raksha-anirveda.com/ananth-technologies-isro-achieve-100-satellites-milestone. 11 August 2025
- M. Ostovar, The apollo program. NASA. 2024. https://www.nasa.gov/the-apollo-program/. 11 January 2025
- N.A.a.S. Museum, Mercury program. National Air and Space Museum. 2024. https://airandspace.si.edu/explore/topics/spaceflight/mercury-program#deep-dives. 11 January 2025
- N.A.A.S. MUSEUM, Gemini program. Airandspace. 2024. https://airandspace.si.edu/explore/topics/spaceflight/gemini-program. 11 January 2025
- C.E. Williams, Artemis iii: Nasa’s first human mission to the lunar south pole. NASA. Jan 13, 2023. https://www.nasa.gov/missions/artemis/artemis-iii/. 11 January 2025
- G. Daines,. Artemis iii. NASA. 2025. https://www.nasa.gov/reference/artemis-iii/. 11 January 2025
- ESA. Esa explores cultivated meat for space food. European Space Agency. 2023. https://www.esa.int/Enabling_Support/Preparing_for_the_Future/Discovery_and_Preparation/ESA_explores_cultivated_meat_for_space_food. 6 February 2025
- CNSA. Tianwen-1 mission marks 1st year on mars. CHINA NATIONAL SPACE ADMINISTRATION. 2022. https://www.cnsa.gov.cn/english/n6465652/n6465653/c6840321/content.html. 11 January 2025
- Skymania. Missions to mars. Skymania. 2024. https://www.skymania.com/the-solar-system/mars/missions-to-mars. 11 January 2025
- S.A. Loff, Explorer 1 overview. NASA. 2015. https://www.nasa.gov/history/explorer-1-overview/. 11 January 2025. 88. M. Ostovar, In the beginning: Project mercury. NASA. 2008. https://www.nasa.gov/history/in-the-beginning-project-mercury/. 11 January 2025
- M. Ostovar, In the beginning: Project mercury. NASA. 2008. https://www.nasa.gov/history/in-the-beginning-project-mercury/. 11 January 2025
- W. Tomaszewski, Manufacturing in space no longer so far-out. The New York Times. 1970. https://www.nytimes.com/1970/02/15/archives/manufacturing-in-space-no-longer-so-farout-private-manufacturing-in.html. 17 January 2025
- M.R. Brashears, Research study of materials processing in space experiment m512. NASA. 1973. https://ntrs.nasa.gov/citations/19730023636. 11 January 2025
- J. Grey, Space manufacturing facilities 2. SPACE STUDIES INSTITUTE. 1977. https://ssi.org/ssi-conference-abstracts/space-manufacturing-facilities-ii. 11 January 2025
- J. Grey, Space manufacturing facilities: Space colonies. NSS. 1977. https://nss.org/space-manufacturing-facilities-space-colonies/. 12 January 2025
- R.L. Randolph, Nasa/industry joint venture on a commercial materials processing in space idea. Embry-Riddle Aeronautical University Scholarly Commons. 1982. https://commons.erau.edu/space-congress-proceedings/proceedings-1982-19th/session-5/4/ utm_source=commons.erau.edu%2Fspace-congress-proceedings%2Fproceedings-1982–19th%2Fsession-5%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages. 11 January 2025
- OTA. Civilian space policy and applications. June 1982. https://ota.fas.org/reports/8205.pdf. 17 January 2025
- T.N.Y. Times, Space factory makes beads for science. The New York Times. 1984. https://www.nytimes.com/1984/01/18/us/space-factory-makes-beads-for-science.html. 11 January 2025
- T. Riley, Redwire opens new commer-cial market for in space production with first sale of space-manufactured opti-cal crystal.Business wire. Businesswire. June 2022. https://www.businesswire.com/news/home/20220622006062/en/Redwire-Opens-New-Commercial-Market-for-In-Space-Production-with-First-Sale-of-Space-Manufactured-Optical-Crystal. 11 December 2024
- M.M. Boeing, Commercial space transport study final report. NASA. 1994. https://www.nasa.gov/wp-content/uploads/2023/12/csts-1994.pdf. 11 January 2025
- T. Economou, Chemical analyses of Martian soil and rocks obtained by the Pathfinder Alpha Proton X-ray spectrometer. Radiat. Phys. Chem. 61(3–6), 191–197 (2001). https://doi.org/10.1016/S0969-806X(01)00240-7
- P. Davis, Mars pathfinder. NASA. 1997. https://science.nasa.gov/mission/mars-pathfinder. 11 February 2025
- JAXA. Overview of the "kaguya (selene)". Japan Aerospace Exploration Agency. 2007. https://www.jaxa.jp/countdown/f13/index_e.html. 11 January 2025
- R. McCormick, Nasa is the first to 3dprint objects in space. Theverge. 2014. https://www.theverge.com/2014/11/25/7289299/nasa-is-the-first-to-3dprint-objects-in-space. 17 January 2025
- E. Kulu, In-space Manufacturing - 2022 Industry Survey and Commercial Landscape (2022)
- S. Holtz, Nasa funds demo of 3d-printed spacecraft parts made, assembled in orbit. NASA. 2019. https://www.nasa.gov/news-release/nasa-funds-demo-of-3d-printed-spacecraft-parts-made-assembled-in-orbit. 11 February 2025
- SpaceDaily. Microgravity on demand with earth return through esa’s boost! Space daily. SpaceDaily. 2021. https://www.spacedaily.com/reports/Microgravity_on_demand_with_Earth_return_through_ESAs_Boost!_999.html. 17 January 2025
- B. Gormley, Space-medicines startup varda nabs $187 million financing. The Wall Street Journal. 2025. https://www.wsj.com/s/space-medicines-startup-varda-nabs-187-million-financing-ddc44b52. 11 August 2025
- P. O'Neill, New research opportunity from iss national lab focuses on in-space manufacturing of advanced materials. ISS National Laboratory. February 2022. https://issnationallab.org/press-releases/research-opportunity-inspace-production-advanced-materials. 17 January 2025
- E.S. Agency, Solaris activity plan. European Space Agency. 2022. https://www.esa.int/Enabling_Support/Space_Engineering_Technology/SOLARIS/SOLARIS_activity_plan. 11 January 2025
- G.J. Taylor, L.M.V. Martel, P.G. Lucey, J.J. Gillis-Davis, D.F. Blake et al., Modal analyses of lunar soils by quantitative X-ray diffraction analysis. Geochim. Cosmochim. Acta 266, 17–28 (2019). https://doi.org/10.1016/j.gca.2019.07.046
- C.N. Foley, T. Economou, R.N. Clayton, Final chemical results from the Mars Pathfinder alpha proton X-ray spectrometer. J. Geophys. Res. Planets 108(E12), 2002JE002019 (2003). https://doi.org/10.1029/2002JE002019
- C.L.M. Khodadad, M.E. Hummerick, L.E. Spencer, A.R. Dixit, J.T. Richards et al., Microbiological and nutritional analysis of lettuce crops grown on the International Space Station. Front. Plant Sci. 11, 199 (2020). https://doi.org/10.3389/fpls.2020.00199
- C.M. Johnson, H.O. Boles, L.E. Spencer, L. Poulet, M. Romeyn et al., Supplemental food production with plants: a review of NASA research. Front. Astron. Space Sci. 8, 734343 (2021). https://doi.org/10.3389/fspas.2021.734343
- D. Viúdez-Moreiras, J. Gómez-Elvira, C.E. Newman, S. Navarro, M. Marin et al., Gale surface wind characterization based on the Mars Science Laboratory REMS dataset. Part II: Wind probability distributions. Icarus 319, 645–656 (2019). https://doi.org/10.1016/j.icarus.2018.10.010
- K. Burke, Small Portable PEM Fuel Cell Systems for NASA Exploration Missions3rd International Energy Conversion Engineering Conference. 15 August 2005-18 August 2005, San Francisco, California. Reston, Virginia: AIAA, 2005: 5680. https://doi.org/10.2514/6.2005-5680
- F. Zaccardi, E. Toto, M.G. Santonicola, S. Laurenzi, 3D printing of radiation shielding polyethylene composites filled with Martian regolith simulant using fused filament fabrication. Acta Astronaut. 190, 1–13 (2022). https://doi.org/10.1016/j.actaastro.2021.09.040
- CNSA. United nations/china forum on space solutions: Realizing the sustainable development goals. CNSA. 2019. https://www.cnsa.gov.cn/english/n6465684/n6760084/index.html. 11 January 2025
- J. Foust. Nasa opens door to additional cooperation with china. SpaceNews. 2018. https://spacenews.com/nasa-opens-door-to-additional-cooperation-with-china/. 11 January 2025
- R. Thirsk, A. Kuipers, C. Mukai, D. Williams, The space-flight environment: the international space station and beyond. CMAJ 180(12), 1216–1220 (2009). https://doi.org/10.1503/cmaj.081125
- K. Jules, K. McPherson, K. Hrovat, E. Kelly, T. Reckart, A status report on the characterization of the microgravity environment of the International Space Station. Acta Astronaut. 55(3–9), 335–364 (2004). https://doi.org/10.1016/j.actaastro.2004.05.057
- C. Soares, R. Mikatarian, D. Schmidl, K. Smith, C. Pankop et al., Natural and Induced Space Environments Effects on the International Space Station (2005)
- E.R. Benton, E.V. Benton, Space radiation dosimetry in low-Earth orbit and beyond. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 184(1–2), 255–294 (2001). https://doi.org/10.1016/S0168-583X(01)00748-0
- L.W. Townsend, R.J.M. Fry, Radiation protection guidance for activities in low-earth orbit. Adv. Space Res. 30(4), 957–963 (2002). https://doi.org/10.1016/S0273-1177(02)00160-6
- A. Valinia, J. R. Allen, D. R. Francisco, J. I. Minow, J. A. Pellish, A. H. Vera. Safe human expeditions beyond low earth orbit (leo). NASA. 2022. https://ntrs.nasa.gov/citations/20220002905. 11 November 2024
- F.A. Cucinotta, M. Durante, Cancer risk from exposure to galactic cosmic rays: implications for space exploration by human beings. Lancet Oncol. 7(5), 431–435 (2006). https://doi.org/10.1016/S1470-2045(06)70695-7
- J.C. Chancellor, R.S. Blue, K.A. Cengel, S.M. Auñón-Chancellor, K.H. Rubins et al., Limitations in predicting the space radiation health risk for exploration astronauts. NPJ Microgravity 4, 8 (2018). https://doi.org/10.1038/s41526-018-0043-2
- R.S. Blue, J.C. Chancellor, E.L. Antonsen, T.M. Bayuse, V.R. Daniels et al., Limitations in predicting radiation-induced pharmaceutical instability during long-duration spaceflight. NPJ Microgravity 5, 15 (2019). https://doi.org/10.1038/s41526-019-0076-1
- J.W. Norbury, T.C. Slaba, S. Aghara, F.F. Badavi, S.R. Blattnig et al., Advances in space radiation physics and transport at NASA. Life Sci. Space Res. 22, 98–124 (2019). https://doi.org/10.1016/j.lssr.2019.07.003
- L.M. Logan, G.R. Hunt, Infrared emission spectra: enhancement of diagnostic features by the lunar environment. Science 169(3948), 865–866 (1970). https://doi.org/10.1126/science.169.3948.865
- F.L. Hinton, D.R. Taeusch, Variation of the lunar atmosphere with the strength of the solar wind. J. Geophys. Res. 69(7), 1341–1347 (1964). https://doi.org/10.1029/JZ069i007p01341
- J.A. Dallas, S. Raval, J.P. Alvarez Gaitan, S. Saydam, A.G. Dempster, Mining beyond earth for sustainable development: will humanity benefit from resource extraction in outer space? Acta Astronaut. 167, 181–188 (2020). https://doi.org/10.1016/j.actaastro.2019.11.006
- Y. Wang, L. Hao, Y. Li, Q. Sun, M. Sun et al., In-situ utilization of regolith resource and future exploration of additive manufacturing for lunar/Martian habitats: a review. Appl. Clay Sci. 229, 106673 (2022). https://doi.org/10.1016/j.clay.2022.106673
- E.A. Fisher, P.G. Lucey, M. Lemelin, B.T. Greenhagen, M.A. Siegler et al., Evidence for surface water ice in the lunar polar regions using reflectance measurements from the Lunar Orbiter Laser Altimeter and temperature measurements from the Diviner Lunar Radiometer Experiment. Icarus 292, 74–85 (2017). https://doi.org/10.1016/j.icarus.2017.03.023
- P.O. Hayne, A. Hendrix, E. Sefton-Nash, M.A. Siegler, P.G. Lucey et al., Evidence for exposed water ice in the Moon’s south polar regions from Lunar Reconnaissance Orbiter ultraviolet albedo and temperature measurements. Icarus 255, 58–69 (2015). https://doi.org/10.1016/j.icarus.2015.03.032
- S. Nozette, C.L. Lichtenberg, P. Spudis, R. Bonner, W. Ort et al., The clementine bistatic radar experiment. Science 274(5292), 1495–1498 (1996). https://doi.org/10.1126/science.274.5292.1495
- D. R. Williams. Moon fact sheet. NASA. 2024. https://nssdc.gsfc.nasa.gov/planetary/factsheet/moonfact.html. 18 January 2025
- A.I. Crawford, Lunar resources: A review. Prog. Phys. Geogr. 39(2), 137–167 (2014). https://doi.org/10.48550/arXiv.1410.6865
- C.P. McKay, O.B. Toon, J.F. Kasting, Making Mars habitable. Nature 352(6335), 489–496 (1991). https://doi.org/10.1038/352489a0
- F.S. Johnson, Atmosphere of Mars. Science 150(3702), 1445–1448 (1965). https://doi.org/10.1126/science.150.3702.1445
- B.M. Jakosky, R.J. Phillips, Mars’ volatile and climate history. Nature 412(6843), 237–244 (2001). https://doi.org/10.1038/35084184
- C.E. Newman, M. de la Torre Juárez, J. Pla-García, R.J. Wilson, S.R. Lewis et al., Multi-model meteorological and aeolian predictions for Mars 2020 and the jezero crater region. Space Sci. Rev. 217, 20 (2021). https://doi.org/10.1007/s11214-020-00788-2
- B. McKeown, A.G. Dempster, S. Saydam, J. Coulton, Commercial lunar ice mining: is there a role for royalties? Space Policy 64, 101525 (2023). https://doi.org/10.1016/j.spacepol.2022.101525
- S.E. Lauro, E. Pettinelli, G. Caprarelli, L. Guallini, A.P. Rossi et al., Multiple subglacial water bodies below the south pole of Mars unveiled by new MARSIS data. Nat. Astron. 5(1), 63–70 (2021). https://doi.org/10.1038/s41550-020-1200-6
- R. Orosei, S.E. Lauro, E. Pettinelli, A. Cicchetti, M. Coradini et al., Radar evidence of subglacial liquid water on Mars. Science 361(6401), 490–493 (2018). https://doi.org/10.1126/science.aar7268
- P. Zhang, W. Dai, R. Niu, G. Zhang, G. Liu et al., Overview of the lunar in situ resource utilization techniques for future lunar missions. Space Sci. Technol. 3, 37 (2023). https://doi.org/10.34133/space.0037
- R.A. Kerr, Planetary science. Eons of a cold, dry, dusty Mars, Science 301(5636), 1037–1038 (2003). https://doi.org/10.1126/science.301.5636.1037
- E.V. Benton, K. Ogura, A.L. Frank, T.M. Atallah, V. Rowe, Response of different types of CR-39 to energetic ions. Int. J. Radiat. Appl. Instrum. Part D Nucl. Tracks Radiat. Meas. 12(1–6), 79–82 (1986). https://doi.org/10.1016/1359-0189(86)90542-X
- B. Ma, L. Zheng, B. Xie, L. Ma, M. Jia et al., Sustainable wastewater treatment and reuse in space. J. Environ. Sci. 146, 237–240 (2024). https://doi.org/10.1016/j.jes.2023.08.023
- M.J. Post, Cultured beef: medical technology to produce food. J. Sci. Food Agric. 94(6), 1039–1041 (2014). https://doi.org/10.1002/jsfa.6474
- P.D. Fraser, E.M.A. Enfissi, P.M. Bramley, Genetic engineering of carotenoid formation in tomato fruit and the potential application of systems and synthetic biology approaches. Arch. Biochem. Biophys. 483(2), 196–204 (2009). https://doi.org/10.1016/j.abb.2008.10.009
- S. Furukawa, A. Nagamatsu, M. Nenoi, A. Fujimori, S. Kakinuma et al., Space radiation biology for “living in space.” BioMed Res. Int. 2020, 4703286 (2020). https://doi.org/10.1155/2020/4703286
- C. Schwandt, J.A. Hamilton, D.J. Fray, I.A. Crawford, The production of oxygen and metal from lunar regolith. Planet. Space Sci. 74(1), 49–56 (2012). https://doi.org/10.1016/j.pss.2012.06.011
- E. Kulu, In-space manufacturing-2022 industry survey and commercial landscape. International Astronautical Federation 2022. https://www.researchgate.net/publication/364107062_In-Space_Manufacturing_-_2022_Industry_Survey_and_Commercial_Landscape. 11 May 2025
- C. Bao, D. Zhang, Q. Wang, Y. Cui, P. Feng, Lunar in situ large-scale construction: quantitative evaluation of regolith solidification techniques. Engineering 39, 204–221 (2024). https://doi.org/10.1016/j.eng.2024.03.004
- L. Hall, Myco-architecture off planet: Growing surface structures at destination. NASA. 2018. https://www.nasa.gov/general/myco-architecture-off-planet-growing-surface-structures-at-destination/. 11 June 2025
- M.J. Castro-Alonso, L.E. Montañez-Hernandez, M.A. Sanchez-Muñoz, M.R. Macias Franco, R. Narayanasamy et al., Microbially induced calcium carbonate precipitation (MICP) and its potential in bioconcrete: microbiological and molecular concepts. Front. Mater. 6, 126 (2019). https://doi.org/10.3389/fmats.2019.00126
- J. Tang, S. Jiang, Q. Quan, J. Liang, Y. Shen et al., Soil simulant preparation for lunar deep drilling exploration: modeling and validation. Planet. Space Sci. 173, 1–13 (2019). https://doi.org/10.1016/j.pss.2019.05.005
- P. Mehta, D. Bhayani, Impact of space environment on stability of medicines: challenges and prospects. J. Pharm. Biomed. Anal. 136, 111–119 (2017). https://doi.org/10.1016/j.jpba.2016.12.040
- R. Rufu, O. Aharonson, H.B. Perets, A multiple-impact origin for the Moon. Nat. Geosci. 10(2), 89–94 (2017). https://doi.org/10.1038/ngeo2866
- H. Chen, T. Sarton du Jonchay, L. Hou, K. Ho, Integrated in situ resource utilization system design and logistics for Mars exploration. Acta Astronaut. 170, 80–92 (2020). https://doi.org/10.1016/j.actaastro.2020.01.031
- NASA. Space-sugar with electrochemical energy technology. NASA CO2 Conversion Challenge. 2018. https://www.co2conversionchallenge.org/#winners/1. 11 November 2024
- S. Cestellos-Blanco, S. Louisia, M.B. Ross, Y. Li, N.E. Soland et al., Toward abiotic sugar synthesis from CO2 electrolysis. Joule 6(10), 2304–2323 (2022). https://doi.org/10.1016/j.joule.2022.08.007
- K. Brinkert, M.H. Richter, Ö. Akay, J. Liedtke, M. Giersig et al., Efficient solar hydrogen generation in microgravity environment. Nat. Commun. 9(1), 2527 (2018). https://doi.org/10.1038/s41467-018-04844-y
- A. Meurisse, B. Lomax, Á. Selmeci, M. Conti, R. Lindner et al., Lower temperature electrochemical reduction of lunar regolith simulants in molten salts. Planet. Space Sci. 211, 105408 (2022). https://doi.org/10.1016/j.pss.2021.105408
- G. Liu, Y. Zhong, Z. Liu, G. Wang, F. Gao et al., Solar-driven sugar production directly from CO2 via a customizable electrocatalytic-biocatalytic flow system. Nat. Commun. 15(1), 2636 (2024). https://doi.org/10.1038/s41467-024-46954-w
- S. Stahl-Rommel, D. Li, M. Sung, R. Li, A. Vijayakumar et al., A crispr-based assay for the study of eukaryotic DNA repair onboard the International Space Station. PLoS ONE 16(6), e0253403 (2021). https://doi.org/10.1371/journal.pone.0253403
- H. Lee, J. Diao, Y. Tian, R. Guleria, E. Lee et al., Developing an alternative medium for in-space biomanufacturing. Nat. Commun. 16(1), 728 (2025). https://doi.org/10.1038/s41467-025-56088-2
- R. Berni, C.C. Leclercq, P. Roux, J.-F. Hausman, J. Renaut et al., A molecular study of Italian ryegrass grown on Martian regolith simulant. Sci. Total. Environ. 854, 158774 (2023). https://doi.org/10.1016/j.scitotenv.2022.158774
- A.G. Caporale, M. Amato, L.G. Duri, R. Bochicchio, S. De Pascale et al., Can lunar and Martian soils support food plant production? effects of horse/swine monogastric manure fertilisation on regolith simulants enzymatic activity, nutrient bioavailability, and lettuce growth. Plants 11(23), 3345 (2022). https://doi.org/10.3390/plants11233345
- K. Chinnannan, P. Somagattu, H. Yammanuru, P. Nimmakayala, M. Chakrabarti et al., Effects of Mars global simulant (MGS-1) on growth and physiology of sweet potato: a space model plant. Plants 13(1), 55 (2023). https://doi.org/10.3390/plants13010055
- R. Gonçalves, G.W.W. Wamelink, P. van der Putten, J.B. Evers, Intercropping on Mars: a promising system to optimise fresh food production in future Martian colonies. PLoS ONE 19(5), e0302149 (2024). https://doi.org/10.1371/journal.pone.0302149
- L.E. Fackrell, S. Humphrey, R. Loureiro, A.G. Palmer, J. Long-Fox, Overview and recommendations for research on plants and microbes in regolith-based agriculture. NPJ Sustain. Agric. 2, 15 (2024). https://doi.org/10.1038/s44264-024-00013-5
- A.E. Jakus, K.D. Koube, N.R. Geisendorfer, R.N. Shah, Robust and elastic lunar and Martian structures from 3d-printed regolith inks. Sci. Rep. 7, 44931 (2017). https://doi.org/10.1038/srep44931
- H. Zhao, J. Zhu, S. Yuan, S. Li, W. Zhang, Development of lunar regolith-based composite for in situ 3D printing via high-pressure extrusion system. Front. Mech. Eng. 18(2), 29 (2023). https://doi.org/10.1007/s11465-022-0745-8
- T. Tafsirojjaman, S.T. Smith, M.A. Hossain, Development of regolith-resin-composite (RRC) material for lunar construction. Acta Astronaut. 228, 652–663 (2025). https://doi.org/10.1016/j.actaastro.2024.10.064
- X.-F. Pan, B. Wu, H.-L. Gao, S.-M. Chen, Y. Zhu et al., Double-layer nacre-inspired polyimide-Mica nanocomposite films with excellent mechanical stability for LEO environmental conditions. Adv. Mater. 34(2), 2105299 (2022). https://doi.org/10.1002/adma.202105299
- L. Pernigoni, U. Lafont, A.M. Grande, Self-healing polymers for space: a study on autonomous repair performance and response to space radiation. Acta Astronaut. 210, 627–634 (2023). https://doi.org/10.1016/j.actaastro.2023.05.032
- S.L. Taylor, A.E. Jakus, K.D. Koube, A.J. Ibeh, N.R. Geisendorfer et al., Sintering of micro-trusses created by extrusion-3D-printing of lunar regolith inks. Acta Astronaut. 143, 1–8 (2018). https://doi.org/10.1016/j.actaastro.2017.11.005
- R. Rainwater, A. Mukherjee, The legume-rhizobia symbiosis can be supported on Mars soil simulants. PLoS ONE 16(12), e0259957 (2021). https://doi.org/10.1371/journal.pone.0259957
- L.G. Duri, I. Romano, P. Adamo, Y. Rouphael, A. Pannico et al., From earth to space: how bacterial consortia and green compost improve lettuce growth on lunar and Martian simulants. Biol. Fertil. Soils 61(7), 1145–1164 (2025). https://doi.org/10.1007/s00374-025-01923-3
- I. N. Laboratory. Benefits of space research. ISS National Laboratory Center for The Advancement of Science in Space (2020). https://issnationallab.org/research-and-science/space-research-overview/benefits-of-space-research/. 11 December 2024
- S. Antony Jose, J. Jackson, J. Foster, T. Silva, E. Markham et al., In-space manufacturing: technologies, challenges, and future horizons. J. Manuf. Mater. Process. 9(3), 84 (2025). https://doi.org/10.3390/jmmp9030084
- R.A. Salido, H.N. Zhao, D. McDonald, H. Mannochio-Russo, S. Zuffa et al., The international space station has a unique and extreme microbial and chemical environment driven by use patterns. Cell 188(7), 2022-2041.e23 (2025). https://doi.org/10.1016/j.cell.2025.01.039
- CellAgri. Aleph farms brings cell-based steak to outer space. CellAgri. 2019. https://www.cell.ag/blog/aleph-farms-brings-cell-based-steak-to-outer-space. 11 December 2024
- M.M. Bomgardner, Cultured meat grows in space, attracts funds. American Chemical Society. 2019. https://cen.acs.org/business/start-ups/Cultured-meat-grows-space-attracts/97/i41. 11 December 2024
- G. Zhang, X. Zhao, X. Li, G. Du, J. Zhou et al., Challenges and possibilities for bio-manufacturing cultured meat. Trends Food Sci. Technol. 97, 443–450 (2020). https://doi.org/10.1016/j.tifs.2020.01.026
- T. Yu, Y.J. Zhou, M. Huang, Q. Liu, R. Pereira et al., Reprogramming yeast metabolism from alcoholic fermentation to lipogenesis. Cell 174(6), 1549-1558.e14 (2018). https://doi.org/10.1016/j.cell.2018.07.013
- G. Figliozzi, A fresh take: Nasa bionutrients for future artemis missions. NASA. 2022. https://www.nasa.gov/image-/fresh-take-nasa-bionutrients-future-artemis-missions/. 26 December 2024
- S. Ng, M. Kurisawa, Integrating biomaterials and food biopolymers for cultured meat production. Acta Biomater. 124, 108–129 (2021). https://doi.org/10.1016/j.actbio.2021.01.017
- M.J. Post, S. Levenberg, D.L. Kaplan, N. Genovese, J. Fu et al., Scientific, sustainability and regulatory challenges of cultured meat. Nat. Food 1(7), 403–415 (2020). https://doi.org/10.1038/s43016-020-0112-z
- P. Santhoshkumar, A. Negi, J.A. Moses, 3D printing for space food applications: advancements, challenges, and prospects. Life Sci. Space Res. 40, 158–165 (2024). https://doi.org/10.1016/j.lssr.2023.08.002
- T. Prater, N. Werkheiser, F. Ledbetter, D. Timucin, K. Wheeler et al., 3D printing in zero G technology demonstration mission: complete experimental results and summary of related material modeling efforts. Int. J. Adv. Manuf. Technol. 101(1–4), 391–417 (2019). https://doi.org/10.1007/s00170-018-2827-7
- J. Sun, Z. Peng, L. Yan, J.Y.H. Fuh, G.S. Hong, 3D food printing: an innovative way of mass customization in food fabrication. Int. J. Bioprinting 1(1), 27 (2015). https://doi.org/10.18063/ijb.2015.01.006
- E.N. Grossi, J.A. Hogan, M. Flynn, The utilization of urine processing for the advancement of life support technologies. Ames Research Center. 2014. https://ntrs.nasa.gov/citations/20140013280. 11 November 2024
- L.M. Steinberg, R.E. Kronyak, C.H. House, Coupling of anaerobic waste treatment to produce protein- and lipid-rich bacterial biomass. Life Sci. Space Res. 15, 32–42 (2017). https://doi.org/10.1016/j.lssr.2017.07.006
- H. Liu, Z. Yao, Y. Fu, J. Feng, Review of research into bioregenerative life support system(s) which can support humans living in space. Life Sci. Space Res. 31, 113–120 (2021). https://doi.org/10.1016/j.lssr.2021.09.003
- P. Clauwaert, M. Muys, A. Alloul, J. De Paepe, A. Luther et al., Nitrogen cycling in bioregenerative life support systems: challenges for waste refinery and food production processes. Prog. Aerosp. Sci. 91, 87–98 (2017). https://doi.org/10.1016/j.paerosci.2017.04.002
- A. Lloyd, Station science 101: Plant research. NASA. 2023. https://www.nasa.gov/missions/station/ways-the-international-space-station-helps-us-study-plant-growth-in-space. 11 December 2024
- L. Yang, H. Li, T. Liu, Y. Zhong, C. Ji et al., Microalgae biotechnology as an attempt for bioregenerative life support systems: problems and prospects. J. Chem. Technol. Biotechnol. 94(10), 3039–3048 (2019). https://doi.org/10.1002/jctb.6159
- X. Xie, A. Jaleel, J. Zhan, M. Ren, Microalgae: towards human health from urban areas to space missions. Front. Plant Sci. 15, 1419157 (2024). https://doi.org/10.3389/fpls.2024.1419157
- W. Wu, J. Shen, H. Kong, Y. Yang, E. Ren et al., Energy system and resource utilization in space: a state-of-the-art review. The Innovation Energy 1(2), 100029 (2024). https://doi.org/10.59717/j.xinn-energy.2024.100029
- H. Helisch, J. Keppler, G. Detrell, S. Belz, R. Ewald et al., High density long-term cultivation of Chlorella vulgaris SAG 211–12 in a novel microgravity-capable membrane raceway photobioreactor for future bioregenerative life support in space. Life Sci. Space Res. 24, 91–107 (2020). https://doi.org/10.1016/j.lssr.2019.08.001
- A. McPherson, L.J. DeLucas, Microgravity protein crystallization. NPJ Microgravity 1, 15010 (2015). https://doi.org/10.1038/npjmgrav.2015.10
- L. Hall, A flexible, personalized, on-demand astropharmacy. NASA. 2023. https://www.nasa.gov/general/a-flexible-personalized-on-demand-astropharmacy/. 13 January 2025
- M. L. Gaskill. Creating new and better drugs with protein crystal growth experiments. NASA. 2023. https://www.nasa.gov/missions/station/iss-research/creating-new-and-better-drugs-with-protein-crystal-growth-experiments/. 20 August 2025
- S. Mathea, M. Baptista, P. Reichert, A. Spinale, S. Knapp, Crystallizing the parkinson’s disease protein lrrk2 under microgravity conditions. bioRxiv. 259655 (2018). https://doi.org/10.1101/259655
- S. Carney, What is lrrk2’s role in parkinson’s disease ISS National Laboratory. 2018. https://issnationallab.org/iss360/going-beyond-earths-limitations-to-understand-parkinsons-disease. 27 December 2024
- S. Onofri, R. Moeller, D. Billi, M. Balsamo, A. Becker et al., Synthetic biology for space exploration. NPJ Microgravity 11, 41 (2025). https://doi.org/10.1038/s41526-025-00488-7
- J. Zhang, W. Yang, S. Hu, Y. Lin, G. Fang et al., Volcanic history of the Imbrium basin: a close-up view from the lunar rover Yutu. Proc. Natl. Acad. Sci. U. S. A. 112(17), 5342–5347 (2015). https://doi.org/10.1073/pnas.1503082112
- M. Isachenkov, S. Chugunov, I. Akhatov, I. Shishkovsky, Regolith-based additive manufacturing for sustainable development of lunar infrastructure–an overview. Acta Astronaut. 180, 650–678 (2021). https://doi.org/10.1016/j.actaastro.2021.01.005
- R.N. Grugel, H. Toutanji, Sulfur “concrete” for lunar applications–Sublimation concerns. Adv. Space Res. 41(1), 103–112 (2008). https://doi.org/10.1016/j.asr.2007.08.018
- K.-T. Wang, P.N. Lemougna, Q. Tang, W. Li, X.-M. Cui, Lunar regolith can allow the synthesis of cement materials with near-zero water consumption. Gondwana Res. 44, 1–6 (2017). https://doi.org/10.1016/j.gr.2016.11.001
- J. Lee, K.Y. Ann, T.S. Lee, B.B. Mitikie, Bottom-up heating method for producing polyethylene lunar concrete in lunar environment. Adv. Space Res. 62(1), 164–173 (2018). https://doi.org/10.1016/j.asr.2018.03.039
- H.A. Toutanji, S. Evans, R.N. Grugel, Performance of lunar sulfur concrete in lunar environments. Constr. Build. Mater. 29, 444–448 (2012). https://doi.org/10.1016/j.conbuildmat.2011.10.041
- S. Iranfar, M.M. Karbala, M.H. Shahsavari, V. Vandeginste, Prioritization of habitat construction materials on Mars based on multi-criteria decision-making. J. Build. Eng. 66, 105864 (2023). https://doi.org/10.1016/j.jobe.2023.105864
- J. Mullerova, Proceedings of spie-the international society for optical engineering: Introduction. SPIE. 2010. https://www.researchgate.net/publication/296432173_Proceedings_of_SPIE_-_The_International_Society_for_Optical_Engineering_Introduction. 11 January 2025
- A. Goulas, J.G.P. Binner, R.A. Harris, R.J. Friel, Assessing extraterrestrial regolith material simulants for in situ resource utilisation based 3D printing. Appl. Mater. Today 6, 54–61 (2017). https://doi.org/10.1016/j.apmt.2016.11.004
- R. Wang, G. Qiao, G. Song, Additive manufacturing by laser powder bed fusion and thermal post-treatment of the lunar-regolith-based glass-ceramics for in situ resource utilization. Constr. B uild. Mater. 392, 132051 (2023). https://doi.org/10.1016/j.conbuildmat.2023.132051
- V. Srivastava, S. Lim, M. Anand, Microwave processing of lunar soil for supporting longer-term surface exploration on the Moon. Space Policy 37, 92–96 (2016). https://doi.org/10.1016/j.spacepol.2016.07.005
- M. Fateri, A. Gebhardt, Process parameters development of selective laser melting of lunar regolith for on-site manufacturing applications. Int. J. Appl. Ceram. Technol. 12(1), 46–52 (2015). https://doi.org/10.1111/ijac.12326
- M. Liu, W. Tang, W. Duan, S. Li, R. Dou et al., Digital light processing of lunar regolith structures with high mechanical properties. Ceram. Int. 45(5), 5829–5836 (2019). https://doi.org/10.1016/j.ceramint.2018.12.049
- B.A. Aguiar, A. Nisar, T. Thomas, C. Zhang, A. Agarwal, In-situ resource utilization of lunar Highlands regolith via additive manufacturing using digital light processing. Ceram. Int. 49(11), 17283–17295 (2023). https://doi.org/10.1016/j.ceramint.2023.02.095
- G. Cesaretti, E. Dini, X. De Kestelier, V. Colla, L. Pambaguian, Building components for an outpost on the Lunar soil by means of a novel 3D printing technology. Acta Astronaut. 93, 430–450 (2014). https://doi.org/10.1016/j.actaastro.2013.07.034
- L.A. Haskin, R.O. Colson, D.J. Lindstrom, R.H. Lewis, K.W. Semkow, Electrolytic smelting of lunar rock for oxygen, iron, and silicon. NASA. 1992. https://ntrs.nasa.gov/citations/19930004791. 11 November 2024
- L.L. Barton, F.A. Tomei-Torres, H. Xu, T. Zocco, Nanops formed by microbial metabolism of metals and minerals. In: Nanomicrobiology, pp. 145–176. Springer New York (2014). https://doi.org/10.1007/978-1-4939-1667-2_7
- R.P. Mueller, I. I. Townsend. Lunar regolith simulant feed system for a hydrogen reduction reactor system. NASA. 2009. https://ntrs.nasa.gov/api/citations/20110011479/downloads/20110011479.pdf. 11 December 2024
- K.D. Burgess, B.A. Cymes, R.M. Stroud, Hydrogen-bearing vesicles in space weathered lunar calcium-phosphates. Commun. Earth Environ. 4, 414 (2023). https://doi.org/10.1038/s43247-023-01060-5
- B.A. Cymes, K.D. Burgess, R.M. Stroud, Helium reservoirs in iron nanops on the lunar surface. Commun. Earth Environ. 5, 189 (2024). https://doi.org/10.1038/s43247-024-01349-z
- L. Yang, C. Zhang, X. Yu, Y. Yao, Z. Li et al., Extraterrestrial artificial photosynthetic materials for in situ resource utilization. Natl. Sci. Rev. 8(8), 104 (2021). https://doi.org/10.1093/nsr/nwab104
- F.J. Guerrero-Gonzalez, P. Zabel, System analysis of an ISRU production plant: extraction of metals and oxygen from lunar regolith. Acta Astronaut. 203, 187–201 (2023). https://doi.org/10.1016/j.actaastro.2022.11.050
- L. Schlüter, A. Cowley, Review of techniques for in-situ oxygen extraction on the Moon. Planet. Space Sci. 181, 104753 (2020). https://doi.org/10.1016/j.pss.2019.104753
- M. Shamsuddin, Reduction of oxides and reduction smelting. In: Physical Chemistry of Metallurgical Processes, Second Edition, Springer International Publishing (2021). pp. 149–203. https://doi.org/10.1007/978-3-030-58069-8_5
- S. Tembhurne, F. Nandjou, S. Haussener, A thermally synergistic photo-electrochemical hydrogen generator operating under concentrated solar irradiation. Nat. Energy 4(5), 399–407 (2019). https://doi.org/10.1038/s41560-019-0373-7
- S. Rohde, H. Wiltsche, A. Cowley, B. Gollas, Dissolution and electrolysis of lunar regolith in ionic liquids. Planet. Space Sci. 219, 105534 (2022). https://doi.org/10.1016/j.pss.2022.105534
- H.M. Sargeant, S.J. Barber, M. Anand, F.A.J. Abernethy, S. Sheridan et al., Hydrogen reduction of lunar samples in a static system for a water production demonstration on the Moon. Planet. Space Sci. 205, 105287 (2021). https://doi.org/10.1016/j.pss.2021.105287
- S. Trigwell, J. Captain, K. Weis, J. Quinn, Electrostatic beneficiation of lunar regolith: applications in in situ resource utilization. J. Aerosp. Eng. 26(1), 30–36 (2013). https://doi.org/10.1061/(asce)as.1943-5525.0000226
- S.S. Schreiner, L. Sibille, J.A. Dominguez, J.A. Hoffman, A parametric sizing model for molten regolith electrolysis reactors to produce oxygen on the Moon. Adv. Space Res. 57(7), 1585–1603 (2016). https://doi.org/10.1016/j.asr.2016.01.006
- Development of a Molten Regolith Electrolysis Reactor Model for Lunar In-Situ Resource Utilizatio Reston, Virginia: AIAA
- A. Ellery, Supplementing closed ecological life support systems with in situ resources on the Moon. Life 11(8), 770 (2021). https://doi.org/10.3390/life11080770
- S. Li, P.G. Lucey, R.E. Milliken, P.O. Hayne, E. Fisher et al., Direct evidence of surface exposed water ice in the lunar polar regions. Proc. Natl. Acad. Sci. U. S. A. 115(36), 8907–8912 (2018). https://doi.org/10.1073/pnas.1802345115
- A. Colaprete, P. Schultz, J. Heldmann, D. Wooden, M. Shirley et al., Detection of water in the LCROSS ejecta plume. Science 330(6003), 463–468 (2010). https://doi.org/10.1126/science.1186986
- H. Song, J. Zhang, D. Ni, Y. Sun, Y. Zheng et al., Investigation on in situ water ice recovery considering energy efficiency at the lunar south pole. Appl. Energy 298, 117136 (2021). https://doi.org/10.1016/j.apenergy.2021.117136
- G.F. Sowers, C.B. Dreyer, Ice mining in lunar permanently shadowed regions. New Space 7(4), 235–244 (2019). https://doi.org/10.1089/space.2019.0002
- J.D. Cole, S. Lim, H.M. Sargeant, S. Sheridan, M. Anand et al., Water extraction from icy lunar simulants using low power microwave heating. Acta Astronaut. 209, 95–103 (2023). https://doi.org/10.1016/j.actaastro.2023.04.035
- G. Chi, Z. Zhang, J. Tang, S. Jiang, Z. Lu et al., Quantitative sampling and thermal extraction of the lunar regolith for lunar volatile exploration: method and validation. Acta Astronaut. 220, 274–282 (2024). https://doi.org/10.1016/j.actaastro.2024.04.029
- K. Zacny, P. Chu, G. Paulsen, A. Avanesyan, J. Craft et al., Mobile in-situ water extractor (miswe) for mars, moon, and asteroids in situ resource utilization. American Institute of Aeronautics and Astronautics. 2012. https://www.semanticscholar.org/paper/Mobile-In-Situ-Water-Extractor-%28MISWE%29-for-Mars%2C-In-Zacny-Chu/0d3bb5b8a4a4084800db4689e30890527d4b514a. 11 December 2024
- L. He, C. Wang, G. Zhang, Y. Pang, W. Yao, A novel auger-based system for extraterrestrial in situ water resource extraction. Icarus 367, 114552 (2021). https://doi.org/10.1016/j.icarus.2021.114552
- Y. Liu, C. Wang, Y. Pang, Q. Wang, Z. Zhao et al., Water extraction from icy lunar regolith by drilling-based thermal method in a pilot-scale unit. Acta Astronaut. 202, 386–399 (2023). https://doi.org/10.1016/j.actaastro.2022.11.002
- A. Hindupur, N. Ball, H. Kagawa, A. Kostakis, J. Levri et al., Bionutrients-1: On-demand production of nutrients in space. NASA. 2019. https://ntrs.nasa.gov/citations/20190033398. 11 November 2024
- E. Kanervo, K. Lehto, K. Ståhle, H. Lehto, P. Mäenpää, Characterization of growth and photosynthesis of Synechocystis sp. PCC 6803 cultures under reduced atmospheric pressures and enhanced CO2 levels. Int. J. Astrobiol. 4(1), 97–100 (2005). https://doi.org/10.1017/s1473550405002466
- A.J. Berliner, J.M. Hilzinger, A.J. Abel, M.J. McNulty, G. Makrygiorgos et al., Towards a biomanufactory on Mars. Front. Astron. Space Sci. 8, 711550 (2021). https://doi.org/10.3389/fspas.2021.711550
- P. Kasiviswanathan, E.D. Swanner, L.J. Halverson, P. Vijayapalani, Farming on Mars: treatment of basaltic regolith soil and briny water simulants sustains plant growth. PLoS ONE 17(8), e0272209 (2022). https://doi.org/10.1371/journal.pone.0272209
- L.J. Mapstone, M.N. Leite, S. Purton, I.A. Crawford, L. Dartnell, Cyanobacteria and microalgae in supporting human habitation on Mars. Biotechnol. Adv. 59, 107946 (2022). https://doi.org/10.1016/j.biotechadv.2022.107946
- P. Agarwal, R. Soni, P. Kaur, A. Madan, R. Mishra et al., Cyanobacteria as a promising alternative for sustainable environment: synthesis of biofuel and biodegradable plastics. Front. Microbiol. 13, 939347 (2022). https://doi.org/10.3389/fmicb.2022.939347
- C. Verseux, M. Baqué, K. Lehto, J.P. de Vera, L.J. Rothschild et al., Sustainable life support on Mars–the potential roles of cyanobacteria. Int. J. Astrobiol. 15(1), 65–92 (2016). https://doi.org/10.1017/s147355041500021x
- K.B. Möllers, D. Cannella, H. Jørgensen, N.-U. Frigaard, Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation. Biotechnol. Biofuels 7, 64 (2014). https://doi.org/10.1186/1754-6834-7-64
- S. Aikawa, A. Joseph, R. Yamada, Y. Izumi, T. Yamagishi et al., Direct conversion of Spirulina to ethanol without pretreatment or enzymatic hydrolysis processes. Energy Environ. Sci. 6(6), 1844 (2013). https://doi.org/10.1039/c3ee40305j
- B. Kading, J. Straub, Utilizing in situ resources and 3D printing structures for a manned Mars mission. Acta Astronaut. 107, 317–326 (2015). https://doi.org/10.1016/j.actaastro.2014.11.036
- R. Hedayati, V. Stulova, 3D printing of habitats on Mars: effects of low temperature and pressure. Materials 16(14), 5175 (2023). https://doi.org/10.3390/ma16145175
- K. Short, D. Buren. Printable spacecraft: Flexible electronic platforms for nasa missions. Phase one. NASA. 2012. https://ntrs.nasa.gov/citations/20160009486. 13 December 2024
- A. Devieneni, C. A. Vélez, D. Benjamin, J. Hollenbeck. Cost-effective additive manufacturing in space: Helios technology challenge guide. 2013. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20130001751.pdf
- S. Benvenuti, F. Ceccanti, X. De Kestelier, Living on the moon: topological optimization of a 3D-printed lunar shelter. Nexus Netw. J. 15(2), 285–302 (2013). https://doi.org/10.1007/s00004-013-0155-7
- J.Y. Wong, A.C. Pfahnl, 3D printed surgical instruments evaluated by a simulated crew of a Mars mission. Aerosp. Med. Hum. Perform. 87(9), 806–810 (2016). https://doi.org/10.3357/amhp.4281.2016
- NASA. Combination 3d printer will recycle plastic in space. NASA. 2018. https://www.nasa.gov/image-/combination-3d-printer-will-recycle-plastic-space. 11 December 2024
- R. Dikshit, N. Gupta, A. Dey, K. Viswanathan, A. Kumar, Microbial induced calcite precipitation can consolidate Martian and lunar regolith simulants. PLoS ONE 17(4), e0266415 (2022). https://doi.org/10.1371/journal.pone.0266415
- S. Cestellos-Blanco, S. Friedline, K.B. Sander, A.J. Abel, J.M. Kim et al., Production of PHB from CO2-derived acetate with minimal processing assessed for space biomanufacturing. Front. Microbiol. 12, 700010 (2021). https://doi.org/10.3389/fmicb.2021.700010
- L. Garcia-Gonzalez, M.S.I. Mozumder, M. Dubreuil, E.I.P. Volcke, H. De Wever, Sustainable autotrophic production of polyhydroxybutyrate (PHB) from CO2 using a two-stage cultivation system. Catal. Today 257, 237–245 (2015). https://doi.org/10.1016/j.cattod.2014.05.025
- E. Touloupakis, E.G. Poloniataki, D.F. Ghanotakis, P. Carlozzi, Production of biohydrogen and/or poly-β-hydroxybutyrate by Rhodopseudomonas sp. using various carbon sources as substrate. Appl. Biochem. Biotechnol. 193(1), 307–318 (2021). https://doi.org/10.1007/s12010-020-03428-1
- H. Brandl, E.J. Knee Jr., R.C. Fuller, R.A. Gross, R.W. Lenz, Ability of the phototrophic bacterium Rhodospirillum rubrum to produce various poly (beta-hydroxyalkanoates): potential sources for biodegradable polyesters. Int. J. Biol. Macromol. 11(1), 49–55 (1989). https://doi.org/10.1016/0141-8130(89)90040-8
- R.M.M. Abed, S. Dobretsov, K. Sudesh, Applications of cyanobacteria in biotechnology. J. Appl. Microbiol. 106(1), 1–12 (2009). https://doi.org/10.1111/j.1365-2672.2008.03918.x
- N. Hartono. Nasa’s oxygen-generating experiment moxie completes mars mission. NASA. 2023. https://www.nasa.gov/missions/mars-2020-perseverance/perseverance-rover/nasas-oxygen-generating-experiment-moxie-completes-mars-mission. 11 December 2024
- M. Hecht, J. Hoffman, D. Rapp, J. McClean, J. SooHoo et al., Mars oxygen ISRU experiment (MOXIE). Space Sci. Rev. 217, 9 (2021). https://doi.org/10.1007/s11214-020-00782-8
- V. Guerra, T. Silva, P. Ogloblina, M. Grofulović, L. Terraz et al., The case forin situresource utilisation for oxygen production on Mars by non-equilibrium plasmas. Plasma Sources Sci. Technol. 26(11), 11LT01 (2017). https://doi.org/10.1088/1361-6595/aa8dcc
- V. Guerra, T. Silva, N. Pinhão, O. Guaitella, C. Guerra-Garcia et al., Plasmas for in situ resource utilization on Mars: fuels, life support, and agriculture. J. Appl. Phys. 132(7), 070902 (2022). https://doi.org/10.1063/5.0098011
- S. Kelly, C. Verheyen, A. Cowley, A. Bogaerts, Producing oxygen and fertilizer with the Martian atmosphere by using microwave plasma. Chem 8(10), 2797–2816 (2022). https://doi.org/10.1016/j.chempr.2022.07.015
- L.G. McKinney, T. Silva, V. Guerra, C. Guerra-Garcia, in A Numerical model for Plasma Reactor Design: Application to CO2 Conversion for Mars in-situ Resource Utilization
- G. Sanders, In Situ Resource Utilization on Mars - Update from DRA 5.0 Study48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 04 January 2010 - 07 January 2010, Orlando, Florida. Reston, Virginia: AIAA, 2010: 799. https://doi.org/10.2514/6.2010-799
- G.B. Sanders, A. Paz, L. Oryshchyn, K. Araghi, A. Muscatello et al., Mars ISRU for Production of Mission Critical Consumables - Options, Recent Studies, and Current State of the ArtAIAA SPACE 2015 Conference and Exposition. 31 Aug-2 Sep 2015, Pasadena, California. Reston, Virginia: AIAA, 2015: 4458. https://doi.org/10.2514/6.2015-4458
- N.S. Kruyer, M.J. Realff, W. Sun, C.L. Genzale, P. Peralta-Yahya, Designing the bioproduction of Martian rocket propellant via a biotechnology-enabled in situ resource utilization strategy. Nat. Commun. 12, 6166 (2021). https://doi.org/10.1038/s41467-021-26393-7
- G. Bhattacharyya, P. Oliveira, S.T. Krishnaji, D. Chen, M. Hinman et al., Large scale production of synthetic spider silk proteins in Escherichia coli. Protein Expr. Purif. 183, 105839 (2021). https://doi.org/10.1016/j.pep.2021.105839
- R. Fan, K. Knuuttila, B. Schmuck, G. Greco, A. Rising et al., Sustainable spinning of artificial spider silk fibers with excellent toughness and inherent potential for functionalization. Adv. Funct. Mater. 35(15), 2410415 (2025). https://doi.org/10.1002/adfm.202410415
- Z. Li, Y.-L. Zhu, W. Niu, X. Yang, Z. Jiang et al., Healable and recyclable elastomers with record-high mechanical robustness, unprecedented crack tolerance, and superhigh elastic restorability. Adv. Mater. 33(27), 2101498 (2021). https://doi.org/10.1002/adma.202101498
- Y. Tsuda, T. Saiki, F. Terui, S. Nakazawa, M. Yoshikawa et al., Hayabusa2 mission status: landing, roving and cratering on asteroid Ryugu. Acta Astronaut. 171, 42–54 (2020). https://doi.org/10.1016/j.actaastro.2020.02.035
- S. Watanabe, M. Hirabayashi, N. Hirata, N. Hirata, R. Noguchi et al., Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu-a spinning top-shaped rubble pile. Science 364(6437), 268–272 (2019). https://doi.org/10.1126/science.aav8032
- S. Tachibana, H. Sawada, R. Okazaki, Y. Takano, K. Sakamoto et al., Pebbles and sand on asteroid (162173) Ryugu: in situ observation and ps returned to Earth. Science 375(6584), 1011–1016 (2022). https://doi.org/10.1126/science.abj8624
- T.J. Colvin, K. Crane, B. Lal, Assessing the economics of asteroid-derived water for propellant. Acta Astronaut. 176, 298–305 (2020). https://doi.org/10.1016/j.actaastro.2020.05.029
- K. Nagao, R. Okazaki, T. Nakamura, Y.N. Miura, T. Osawa et al., Irradiation history of Itokawa regolith material deduced from noble gases in the Hayabusa samples. Science 333(6046), 1128–1131 (2011). https://doi.org/10.1126/science.1207785
- A. Fujiwara, J. Kawaguchi, D.K. Yeomans, M. Abe, T. Mukai et al., The rubble-pile asteroid Itokawa as observed by Hayabusa. Science 312(5778), 1330–1334 (2006). https://doi.org/10.1126/science.1125841
- P.J. Schubert, Economical extraction of platinum from main belt asteroids. Adv. Space Res. 75(8), 6132–6139 (2025). https://doi.org/10.1016/j.asr.2025.02.035
- Á. Romero-Calvo, Ö. Akay, H. Schaub, K. Brinkert, Magnetic phase separation in microgravity. NPJ Microgravity 8, 32 (2022). https://doi.org/10.1038/s41526-022-00212-9
- S. Schwartz, J. Thangavelautham, E. Asphaug, A. Chandra, R. T. Nallapu, L. Vance. Investigating asteroid surface geophysics with an ultra-low-gravity centrifuge in low-earth orbit. ResearchGate. 2019. https://www.researchgate.net/publication/336348604_Investigating_Asteroid_Surface_Geophysics_with_an_Ultra-Low-Gravity_Centrifuge_in_Low-Earth_Orbit. 11 December 2024
- L. Shekhtman, Osiris-rex NASA. 2023. https://science.nasa.gov/mission/osiris-rex. 13 January 2025
- G.D. Team, Surprising phosphate finding in nasa’s osiris-rex asteroid sample. NASA. 2024. https://www.nasa.gov/missions/osiris-rex/surprising-phosphate-finding-in-nasas-osiris-rex-asteroid-sample/. 13 January 2025
- R. Xie, N.J. Bennett, A.G. Dempster, Target evaluation for near earth asteroid long-term mining missions. Acta Astronaut. 181, 249–270 (2021). https://doi.org/10.1016/j.actaastro.2021.01.011
- B. Dreyer Christopher, J. Sercel, L. Gertsch, A. Lampe, J. Canney Travis et al., in Optical Mining Subscale Testing. (2017), pp. 493–506
- Ö. Akay, A. Bashkatov, E. Coy, K. Eckert, K.E. Einarsrud et al., Electrolysis in reduced gravitational environments: current research perspectives and future applications. npj Microgravity 8(1), 56 (2022). https://doi.org/10.1038/s41526-022-00239-y
- M. Elvis, How many ore-bearing asteroids? Planet. Space Sci. 91, 20–26 (2014). https://doi.org/10.1016/j.pss.2013.11.008
- J.P. Sanchez, C.R. McInnes, Assessment on the feasibility of future shepherding of asteroid resources. Acta Astronaut. 73, 49–66 (2012). https://doi.org/10.1016/j.actaastro.2011.12.010
- J.A. Sanchez, C. Thomas, V. Reddy, N. Frere, S.S. Lindsay et al., A new method for deriving composition of S-type asteroids from noisy and incomplete near-infrared spectra. Astron. J. 159(4), 146 (2020). https://doi.org/10.3847/1538-3881/ab723f
- C. Lewicki, A. Graps, M. Elvis, P. Metzger, A. Rivkin, Furthering asteroid resource utilization in the next decade though technology leadership. Bull. AAS 53(4), (2021). https://doi.org/10.3847/25c2cfeb.b39bbe37
- J. D'Souza. Fungi could make soil from asteroids and homes on mars. Happyeconews. 2022. https://happyeconews.com/fungi-could-make-soil-from-asteroids-and-homes-on-mars/. 18 January 2025
- J. Shevtsov. Seeding asteroids with fungi for space habitat soil. Space Settlement Progress. 2021. https://spacesettlementprogress.com/seeding-asteroids-with-fungi-for-space-habitat-soil/. 11 January 2025
- L. Hall. Making soil for space habitats by seeding asteroids with fungi. NASA. 2021. https://www.nasa.gov/general/making-soil-for-space-habitats-by-seeding-asteroids-with-fungi/. 11 January 2025
- J. Wang, E.S.W. Wong, J.C. Whitley, J. Li, J.M. Stringer et al., Ancient antimicrobial peptides kill antibiotic-resistant pathogens: Australian mammals provide new options. PLoS ONE 6(8), e24030 (2011). https://doi.org/10.1371/journal.pone.0024030
- L. Towers. Pilot plant to turn co2 into algae for the aquaculture industry. The Fish Site. 2014. https://thefishsite.com/s/pilot-plant-to-turn-co2-into-algae-for-the-aquaculture-industry. 11 January 2025
- C. Li, Agronomy in space–China’s crop breeding program. Space Policy 27(3), 157–164 (2011). https://doi.org/10.1016/j.spacepol.2011.06.001
- Q. Ma, H. Zhou, X. Sui, C. Su, Y. Yu et al., Generation of new salt-tolerant wheat lines and transcriptomic exploration of the responsive genes to ethylene and salt stress. Plant Growth Regul. 94(1), 33–48 (2021). https://doi.org/10.1007/s10725-021-00694-9
- P. O'Neill. Stanford university sends semiconductor investigation to the international space station. ISS National Laboratory. 2023. https://issnationallab.org/press-releases/spx28-
References
C.S. Cockell, Bridging the gap between microbial limits and extremes in space: space microbial biotechnology in the next 15 years. Microb. Biotechnol. 15(1), 29–41 (2022). https://doi.org/10.1111/1751-7915.13927
R. Santomartino, N.J.H. Averesch, M. Bhuiyan, C.S. Cockell, J. Colangelo et al., Toward sustainable space exploration: a roadmap for harnessing the power of microorganisms. Nat. Commun. 14(1), 1391 (2023). https://doi.org/10.1038/s41467-023-37070-2
S.M. Castelein, T.F. Aarts, J. Schleppi, R. Hendrikx, A.J. Böttger et al., Iron can be microbially extracted from Lunar and Martian regolith simulants and 3D printed into tough structural materials. PLoS ONE 16(4), e0249962 (2021). https://doi.org/10.1371/journal.pone.0249962
J. Marrero, O. Coto, A Schippers, in 11 Metal Bioleaching: Fundamentals and Geobiotechnical Application of Aerobic and Anaerobic Acidophiles. ed. by M.L. Natuschka (De Gruyter, Berlin, Boston, 2020), pp.261–288
C. Cockell, R Santomartino, in Mining and Microbiology for the Solar System Silicate and Basalt Economy. ed. by 2022), pp. 163–185
W.V. Boynton, D.W. Ming, S.P. Kounaves, S.M.M. Young, R.E. Arvidson et al., Evidence for calcium carbonate at the Mars Phoenix landing site. Science 325(5936), 61–64 (2009). https://doi.org/10.1126/science.1172768
R.B. Leighton, B.C. Murray, Behavior of carbon dioxide and other volatiles on Mars. Science 153(3732), 136–144 (1966). https://doi.org/10.1126/science.153.3732.136
C.M. Dundas, A.M. Bramson, L. Ojha, J.J. Wray, M.T. Mellon et al., Exposed subsurface ice sheets in the Martian mid-latitudes. Science 359(6372), 199–201 (2018). https://doi.org/10.1126/science.aao1619
P.R. Christensen, Water at the poles and in permafrost regions of Mars. Elements 2(3), 151–155 (2006). https://doi.org/10.2113/gselements.2.3.151
P.D. Spudis, D.B.J. Bussey, S.M. Baloga, J.T.S. Cahill, L.S. Glaze et al., Evidence for water ice on the Moon: results for anomalous polar craters from the LRO mini-RF imaging radar. J. Geophys. Res. Planets 118(10), 2016–2029 (2013). https://doi.org/10.1002/jgre.20156
W. Ambrose. Water and hydrogen resources on the moon, mercury, and mars. AAPG. Houston, TX, 2014. https://www.searchanddiscovery.com/abstracts/html/2014/90189ace/abstracts/1840560.html. 11 February 2025
M. Nazari-Sharabian, M. Aghababaei, M. Karakouzian, M. Karami, Water on Mars: a literature review. Galaxies 8(2), 40 (2020). https://doi.org/10.3390/galaxies8020040
R.S. Blue, T.M. Bayuse, V.R. Daniels, V.E. Wotring, R. Suresh et al., Supplying a pharmacy for NASA exploration spaceflight: challenges and current understanding. NPJ Microgravity 5, 14 (2019). https://doi.org/10.1038/s41526-019-0075-2
C.S. Cockell, R. Santomartino, K. Finster, A.C. Waajen, L.J. Eades et al., Space station biomining experiment demonstrates rare earth element extraction in microgravity and Mars gravity. Nat. Commun. 11(1), 5523 (2020). https://doi.org/10.1038/s41467-020-19276-w
A.W. Smith, Reshaping drug delivery millions of crystals at a time. ISS National Laboratory. 2018. https://upward.issnationallab.org/millions-of-crystals-at-a-time/ 20 December 2024
Á. Simon, A. Smarandache, V. Iancu, M.L. Pascu, Stability of antimicrobial drug molecules in different gravitational and radiation conditions in view of applications during outer space missions. Molecules 26(8), 2221 (2021). https://doi.org/10.3390/molecules26082221
M. Montague, G.H. McArthur 4th., C.S. Cockell, J. Held, W. Marshall et al., The role of synthetic biology for in situ resource utilization (ISRU). Astrobiology 12(12), 1135–1142 (2012). https://doi.org/10.1089/ast.2012.0829
P. Reichert, W. Prosise, T.O. Fischmann, G. Scapin, C. Narasimhan et al., Pembrolizumab microgravity crystallization experimentation. NPJ Microgravity 5, 28 (2019). https://doi.org/10.1038/s41526-019-0090-3
G.B. Sanders, W.E. Larson, Progress made in lunar in situ resource utilization under NASA’s exploration technology and development program. J. Aerosp. Eng. 26(1), 5–17 (2013). https://doi.org/10.1061/(asce)as.1943-5525.0000208
R.E.F. Lindeboom, J. De Paepe, M. Vanoppen, B. Alonso-Fariñas, W. Coessens et al., A five-stage treatment train for water recovery from urine and shower water for long-term human space missions. Desalination 495, 114634 (2020). https://doi.org/10.1016/j.desal.2020.114634
C.T.C.J. Savage, Water recovery in space. ESA. 1999. https://www.esa.int/esapub/bulletin/bullet97/tamponne.pdf. 11 December 2024
B. Rich, H. Läkk, M. Arnhof, I. Cheibas, Advanced concepts for isru-based additive manufacturing of planetary habitats. ESA. 2021. https://www.esa.int/gsp/ACT/doc/HAB/ACT-RPR-HAB-2021-ECSSMET-ISRU_AM_Planetary_Habitats.pdf. 11 December 2024
ESA. Growing fungi structures in space. ESA. 2017. https://www.esa.int/gsp/ACT/projects/fungi_structures. 11 December 2024
ESA. Building a lunar base with 3d printing. ESA. 2013. https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Building_a_lunar_base_with_3D_printing. 11 December 2024
Y. Yao, L. Wang, X. Zhu, W. Tu, Y. Zhou et al., Extraterrestrial photosynthesis by Chang’E-5 lunar soil. Joule 6(5), 1008–1014 (2022). https://doi.org/10.1016/j.joule.2022.04.011
C. Li, H. Hu, M.-F. Yang, Z.-Y. Pei, Q. Zhou et al., Characteristics of the lunar samples returned by the Chang’E-5 mission. Natl. Sci. Rev. 9(2), 188 (2022). https://doi.org/10.1093/nsr/nwab188
Y. Qian, L. Xiao, Q. Wang, J.W. Head, R. Yang et al., China’s Chang’e-5 landing site: geology, stratigraphy, and provenance of materials. Earth Planet. Sci. Lett. 561, 116855 (2021). https://doi.org/10.1016/j.epsl.2021.116855
eoPortal. Tiangong space station. eoPortal. 2024. https://www.eoportal.org/satellite-missions/tiangong-space-station. 11 April 2025
Z. Yin, Z. Zhu, P. Guo, Z. Wang, J. Yang et al., On-orbit space technology experiment and verification project outlook of China’s Tiangong space station. Space Sci. Technol. 3, 61 (2023). https://doi.org/10.34133/space.0061
C. Na, China’s space station delivers new samples for research. Chinese Academy of Sciences. 2025. https://english.cas.cn/newsroom/cas_media/202505/t20250506_1042543.shtml. 11 August 2025
A. Makaya, L. Pambaguian, T. Ghidini, T. Rohr, U. Lafont et al., Towards out of earth manufacturing: overview of the ESA materials and processes activities on manufacturing in space. CEAS Space J. 15(1), 69–75 (2023). https://doi.org/10.1007/s12567-022-00428-1
T. Zhang, Y. Li, Y. Chen, X. Feng, X. Zhu et al., Review on space energy. Appl. Energy 292, 116896 (2021). https://doi.org/10.1016/j.apenergy.2021.116896
N.J.H. Averesch, A.J. Berliner, S.N. Nangle, S. Zezulka, G.L. Vengerova et al., Microbial biomanufacturing for space-exploration: what to take and when to make. Nat. Commun. 14, 2311 (2023). https://doi.org/10.1038/s41467-023-37910-1
E.J. Llanos, W. Leal, D.H. Luu, J. Jost, P.F. Stadler et al., Exploration of the chemical space and its three historical regimes. Proc. Natl. Acad. Sci. U. S. A. 116(26), 12660–12665 (2019). https://doi.org/10.1073/pnas.1816039116
R. Chen, L. Wan, J. Luo, Extraterrestrial artificial photosynthesis. Joule 6(5), 944–946 (2022). https://doi.org/10.1016/j.joule.2022.04.021
J.A. Hoffman, M.H. Hecht, D. Rapp, J.J. Hartvigsen, J.G. SooHoo et al., Mars oxygen ISRU experiment (MOXIE)-preparing for human Mars exploration. Sci. Adv. 8(35), 8636 (2022). https://doi.org/10.1126/sciadv.abp8636
E. Hinterman, J.A. Hoffman, Simulating oxygen production on Mars for the Mars oxygen in situ resource utilization experiment. Acta Astronaut. 170, 678–685 (2020). https://doi.org/10.1016/j.actaastro.2020.02.043
T.P. Ramalho, G. Chopin, O.M. Pérez-Carrascal, N. Tromas, C. Verseux, Selection of Anabaena sp. PCC 7938 as a cyanobacterium model for biological ISRU on Mars. Appl. Environ. Microbiol. 88(15), e00594-22 (2022). https://doi.org/10.1128/aem.00594-22
A.P. Koehle, S.L. Brumwell, E.P. Seto, A.M. Lynch, C. Urbaniak, Microbial applications for sustainable space exploration beyond low Earth orbit. NPJ Microgravity 9(1), 47 (2023). https://doi.org/10.1038/s41526-023-00285-0
G. Ellena, J. Fahrion, S. Gupta, C.-G. Dussap, A. Mazzoli et al., Development and implementation of a simulated microgravity setup for edible cyanobacteria. Npj Microgravity 10(1), 99 (2024). https://doi.org/10.1038/s41526-024-00436-x
J. Fahrion, C. Renaud, I. Coninx, W. Heylen, F. Mastroleo et al., ARTHROSPIRA-C space flight experiment: validation of biomass and oxygen production bioprocesses in a space bioreactor prior to upload to space. Acta Astronaut. 229, 374–390 (2025). https://doi.org/10.1016/j.actaastro.2024.11.010
B. Llorente, T.C. Williams, H.D. Goold, I.S. Pretorius, I.T. Paulsen, Harnessing bioengineered microbes as a versatile platform for space nutrition. Nat. Commun. 13(1), 6177 (2022). https://doi.org/10.1038/s41467-022-33974-7
A. Hindupur, Bionutrients-1: On-demand production of nutrients in space. NASA. 2019. https://ntrs.nasa.gov/citations/20190033398. 18 August 2025
K. Foy, Scientists look to synthetic biology and 3d printing for life support in space. Lincoln Laboratory, Massachusetts Institute of Technology. 2019. https://www.ll.mit.edu/news/scientists-look-synthetic-biology-and-3d-printing-life-support-space. 11 December 2024
J.C. Way, P.A. Silver, R.J. Howard, Sun-driven microbial synthesis of chemicals in space. Int. J. Astrobiol. 10(4), 359–364 (2011). https://doi.org/10.1017/s1473550411000218
J. Ungerer, L. Tao, M. Davis, M. Ghirardi, P.-C. Maness et al., Sustained photosynthetic conversion of CO2 to ethylene in recombinant Cyanobacteriumsynechocystis 6803. Energy Environ. Sci. 5(10), 8998 (2012). https://doi.org/10.1039/c2ee22555g
A.A. Menezes, J. Cumbers, J.A. Hogan, A.P. Arkin, Towards synthetic biological approaches to resource utilization on space missions. J. R. Soc. Interface. 12(102), 20140715 (2015). https://doi.org/10.1098/rsif.2014.0715
J.S. Center, Human exploration of mars design reference architecture 5.0, addendum #2. NASA. 2014. https://ntrs.nasa.gov/citations/20160003093. 11 January 2025
B.G. Drake, S.J. Hoffman, D.W. Beaty, Human exploration of mars, design reference architecture 5.0. IEEE. 2010. https://ieeexplore.ieee.org/document/5446736. 11 October 2024
M. Chen, R. Goyal, M. Majji, R.E. Skelton, Review of space habitat designs for long term space explorations. Prog. Aerosp. Sci. 122, 100692 (2021). https://doi.org/10.1016/j.paerosci.2020.100692
M.A. Garcia. International space station. NASA. 2023. https://www.nasa.gov/reference/international-space-station/. 20 August 2025
V. De Micco, C. Amitrano, F. Mastroleo, G. Aronne, A. Battistelli et al., Plant and microbial science and technology as cornerstones to bioregenerative life support systems in space. NPJ Microgravity 9(1), 69 (2023). https://doi.org/10.1038/s41526-023-00317-9
J. Gonçalves, P. Lima, B. Krause, P. Pötschke, U. Lafont et al., Electrically conductive polyetheretherketone nanocomposite filaments: from production to fused deposition modeling. Polymers 10(8), 925 (2018). https://doi.org/10.3390/polym10080925
L. Hendrickx, H. De Wever, V. Hermans, F. Mastroleo, N. Morin et al., Microbial ecology of the closed artificial ecosystem MELiSSA (micro-ecological life support system alternative): reinventing and compartmentalizing the Earth’s food and oxygen regeneration system for long-haul space exploration missions. Res. Microbiol. 157(1), 77–86 (2006). https://doi.org/10.1016/j.resmic.2005.06.014
ESA. Esa’s melissa life-support programme wins academic recognition. European Space Agency. 2017. https://www.esa.int/Enabling_Support/Space_Engineering_Technology/ESA_s_MELiSSA_life-support_programme_wins_academic_recognition. 6 February 2025
L. Regel, Research experiences on materials science in space aboard salyut and mir. NASA. 2013. https://ntrs.nasa.gov/citations/19930013431. 16 June 2025
P. Hasbrook, Expanding nasa and roscosmos scientific collaboration on the international space station. NASA. 2016. https://ntrs.nasa.gov/citations/20160005653. 11 December 2024
JAXA. Protein crystals produced on "kibo" contribute to discovery of a compound that may lead to development of a new type of antibacterial drug such as curative drug for periodontal disease. Japan Aerospace Exploration Agency. 2019. https://iss.jaxa.jp/en/kiboexp/news/191226.html#:~:text=A%20Japanese%20research%20team%20has, Mitsugu. 16 August 2025
S.S.R.I. Office, Crystallizing proteins in space helping to identify potential treatments for diseases. NASA. 2022. https://www.nasa.gov/missions/station/iss-research/crystallizing-proteins-in-space-helping-to-identify-potential-treatments-for-diseases/. 11 December 2024
A. Mann, China’s chang’e 5 mission: Sampling the lunar surface. Space Exploration. 2020. https://www.space.com/change-5-mission.html. 11 January 2025
C. Li, C. Wang, Y. Wei, Y. Lin, China’s present and future lunar exploration program. Science 365(6450), 238–239 (2019). https://doi.org/10.1126/science.aax9908
L. Xiao, P. Zhu, G. Fang, Z. Xiao, Y. Zou et al., A young multilayered terrane of the northern Mare Imbrium revealed by Chang’E-3 mission. Science 347(6227), 1226–1229 (2015). https://doi.org/10.1126/science.1259866
CSA. About canadarm3. Canadian Space Agency. 2025. https://www.asc-csa.gc.ca/eng/canadarm3/about.asp. 16 August 2025
R. Duffy, A q+a with carlos moura, president of brazil’s space agency Payload. 2022. https://payloadspace.com/a-qa-with-carlos-moura-president-of-brazils-space-agency/#:~:text=%E2%80%9CBrazil%20is%20one%20of%20the,microgravity%20experiments%2C%20and%20ground%20stations. 16 August 2025
M.L. Gaskill, Nasa, isro research aboard fourth private astronaut mission to station. NASA. 2025. https://www.nasa.gov/missions/station/iss-research/nasa-isro-research-aboard-fourth-private-astronaut-mission-to-station. 16 August 2025
G.o.D.M. Office, Mbrsc showcases uae’s space industry. Government of Dubai Media Office. 2025. https://www.mediaoffice.ae/en/news/2025/may/18-05/mbrsc-showcases-uaes-space-industry. 16 August 2025
I.F. OFFICE, Türkiye, axiom space strengthen cooperation in space industry. INVESTMENT&FINANCE OFFICE. 2025. https://www.invest.gov.tr/en/news/news-from-turkey/pages/t%C3%BCrkiye-axiom-space-strengthen-cooperation-space-industry.aspx. 11 August 2025
T. Emen, From vision to reality: can public funding sustain Türkiye’s ambitious 10-year space program? Eur. J. Futur. Res. 13(1), 10 (2025). https://doi.org/10.1186/s40309-025-00255-7
L.W. Clare Skelly, Nasa-supported payloads to get lift from blue origin. NASA. 2018. https://www.nasa.gov/centers-and-facilities/goddard/nasa-supported-payloads-to-get-lift-from-blue-origin. 11 December 2025
E.B. Wagner, Research flights on Blue Origin’s new Shepard. Gravitational Space Res 9(1), 62–67 (2021). https://doi.org/10.2478/gsr-2021-0005
M. Wall, Private varda space capsule returns to earth with space-grown antiviral drug aboard. Future US Inc. 2024. https://www.space.com/varda-in-space-manufacturing-capsule-landing-success. 18 August 2025
S. Waldek, ‘Them space drugs cooked real good:’ Varda space just made an hiv medicine in earth orbit. Future US Inc. 2024. https://www.space.com/varda-space-microgravity-pharmaceutical-production-success. 11 January 2025
T. Cross, Varda space industries advances space-based manufacturing and hypersonic testing. Space Explored. 2024. https://spaceexplored.com/2024/12/23/varda-space-industries-advances-space-based-manufacturing-and-hypersonic-testing. 11 January 2025
Y.K. McKenna, Commercial resupply services overview. NASA. 2023. https://www.nasa.gov/commercial-resupply-services-overview/. 16 August 2025
B. Ridgeway, About human landing systems development. NASA. 2025. https://www.nasa.gov/reference/human-landing-systems/. 16 August 2025
B. Sloboda, A glimpse at the future of space-based solar power. National Rural Utilities Cooperative Finance Corporation. 2025. https://www.nrucfc.coop/content/solutions/en/stories/energy-tech/a-glimpse-at-the-future-of-space-based-solar-power.html. 17 August 2025
R.E. Desk, Significant milestone: Ananth technologies partnership with isro completes 100 satellites. Raksha-Anirveda. 2024. https://raksha-anirveda.com/ananth-technologies-isro-achieve-100-satellites-milestone. 11 August 2025
M. Ostovar, The apollo program. NASA. 2024. https://www.nasa.gov/the-apollo-program/. 11 January 2025
N.A.a.S. Museum, Mercury program. National Air and Space Museum. 2024. https://airandspace.si.edu/explore/topics/spaceflight/mercury-program#deep-dives. 11 January 2025
N.A.A.S. MUSEUM, Gemini program. Airandspace. 2024. https://airandspace.si.edu/explore/topics/spaceflight/gemini-program. 11 January 2025
C.E. Williams, Artemis iii: Nasa’s first human mission to the lunar south pole. NASA. Jan 13, 2023. https://www.nasa.gov/missions/artemis/artemis-iii/. 11 January 2025
G. Daines,. Artemis iii. NASA. 2025. https://www.nasa.gov/reference/artemis-iii/. 11 January 2025
ESA. Esa explores cultivated meat for space food. European Space Agency. 2023. https://www.esa.int/Enabling_Support/Preparing_for_the_Future/Discovery_and_Preparation/ESA_explores_cultivated_meat_for_space_food. 6 February 2025
CNSA. Tianwen-1 mission marks 1st year on mars. CHINA NATIONAL SPACE ADMINISTRATION. 2022. https://www.cnsa.gov.cn/english/n6465652/n6465653/c6840321/content.html. 11 January 2025
Skymania. Missions to mars. Skymania. 2024. https://www.skymania.com/the-solar-system/mars/missions-to-mars. 11 January 2025
S.A. Loff, Explorer 1 overview. NASA. 2015. https://www.nasa.gov/history/explorer-1-overview/. 11 January 2025. 88. M. Ostovar, In the beginning: Project mercury. NASA. 2008. https://www.nasa.gov/history/in-the-beginning-project-mercury/. 11 January 2025
M. Ostovar, In the beginning: Project mercury. NASA. 2008. https://www.nasa.gov/history/in-the-beginning-project-mercury/. 11 January 2025
W. Tomaszewski, Manufacturing in space no longer so far-out. The New York Times. 1970. https://www.nytimes.com/1970/02/15/archives/manufacturing-in-space-no-longer-so-farout-private-manufacturing-in.html. 17 January 2025
M.R. Brashears, Research study of materials processing in space experiment m512. NASA. 1973. https://ntrs.nasa.gov/citations/19730023636. 11 January 2025
J. Grey, Space manufacturing facilities 2. SPACE STUDIES INSTITUTE. 1977. https://ssi.org/ssi-conference-abstracts/space-manufacturing-facilities-ii. 11 January 2025
J. Grey, Space manufacturing facilities: Space colonies. NSS. 1977. https://nss.org/space-manufacturing-facilities-space-colonies/. 12 January 2025
R.L. Randolph, Nasa/industry joint venture on a commercial materials processing in space idea. Embry-Riddle Aeronautical University Scholarly Commons. 1982. https://commons.erau.edu/space-congress-proceedings/proceedings-1982-19th/session-5/4/ utm_source=commons.erau.edu%2Fspace-congress-proceedings%2Fproceedings-1982–19th%2Fsession-5%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages. 11 January 2025
OTA. Civilian space policy and applications. June 1982. https://ota.fas.org/reports/8205.pdf. 17 January 2025
T.N.Y. Times, Space factory makes beads for science. The New York Times. 1984. https://www.nytimes.com/1984/01/18/us/space-factory-makes-beads-for-science.html. 11 January 2025
T. Riley, Redwire opens new commer-cial market for in space production with first sale of space-manufactured opti-cal crystal.Business wire. Businesswire. June 2022. https://www.businesswire.com/news/home/20220622006062/en/Redwire-Opens-New-Commercial-Market-for-In-Space-Production-with-First-Sale-of-Space-Manufactured-Optical-Crystal. 11 December 2024
M.M. Boeing, Commercial space transport study final report. NASA. 1994. https://www.nasa.gov/wp-content/uploads/2023/12/csts-1994.pdf. 11 January 2025
T. Economou, Chemical analyses of Martian soil and rocks obtained by the Pathfinder Alpha Proton X-ray spectrometer. Radiat. Phys. Chem. 61(3–6), 191–197 (2001). https://doi.org/10.1016/S0969-806X(01)00240-7
P. Davis, Mars pathfinder. NASA. 1997. https://science.nasa.gov/mission/mars-pathfinder. 11 February 2025
JAXA. Overview of the "kaguya (selene)". Japan Aerospace Exploration Agency. 2007. https://www.jaxa.jp/countdown/f13/index_e.html. 11 January 2025
R. McCormick, Nasa is the first to 3dprint objects in space. Theverge. 2014. https://www.theverge.com/2014/11/25/7289299/nasa-is-the-first-to-3dprint-objects-in-space. 17 January 2025
E. Kulu, In-space Manufacturing - 2022 Industry Survey and Commercial Landscape (2022)
S. Holtz, Nasa funds demo of 3d-printed spacecraft parts made, assembled in orbit. NASA. 2019. https://www.nasa.gov/news-release/nasa-funds-demo-of-3d-printed-spacecraft-parts-made-assembled-in-orbit. 11 February 2025
SpaceDaily. Microgravity on demand with earth return through esa’s boost! Space daily. SpaceDaily. 2021. https://www.spacedaily.com/reports/Microgravity_on_demand_with_Earth_return_through_ESAs_Boost!_999.html. 17 January 2025
B. Gormley, Space-medicines startup varda nabs $187 million financing. The Wall Street Journal. 2025. https://www.wsj.com/s/space-medicines-startup-varda-nabs-187-million-financing-ddc44b52. 11 August 2025
P. O'Neill, New research opportunity from iss national lab focuses on in-space manufacturing of advanced materials. ISS National Laboratory. February 2022. https://issnationallab.org/press-releases/research-opportunity-inspace-production-advanced-materials. 17 January 2025
E.S. Agency, Solaris activity plan. European Space Agency. 2022. https://www.esa.int/Enabling_Support/Space_Engineering_Technology/SOLARIS/SOLARIS_activity_plan. 11 January 2025
G.J. Taylor, L.M.V. Martel, P.G. Lucey, J.J. Gillis-Davis, D.F. Blake et al., Modal analyses of lunar soils by quantitative X-ray diffraction analysis. Geochim. Cosmochim. Acta 266, 17–28 (2019). https://doi.org/10.1016/j.gca.2019.07.046
C.N. Foley, T. Economou, R.N. Clayton, Final chemical results from the Mars Pathfinder alpha proton X-ray spectrometer. J. Geophys. Res. Planets 108(E12), 2002JE002019 (2003). https://doi.org/10.1029/2002JE002019
C.L.M. Khodadad, M.E. Hummerick, L.E. Spencer, A.R. Dixit, J.T. Richards et al., Microbiological and nutritional analysis of lettuce crops grown on the International Space Station. Front. Plant Sci. 11, 199 (2020). https://doi.org/10.3389/fpls.2020.00199
C.M. Johnson, H.O. Boles, L.E. Spencer, L. Poulet, M. Romeyn et al., Supplemental food production with plants: a review of NASA research. Front. Astron. Space Sci. 8, 734343 (2021). https://doi.org/10.3389/fspas.2021.734343
D. Viúdez-Moreiras, J. Gómez-Elvira, C.E. Newman, S. Navarro, M. Marin et al., Gale surface wind characterization based on the Mars Science Laboratory REMS dataset. Part II: Wind probability distributions. Icarus 319, 645–656 (2019). https://doi.org/10.1016/j.icarus.2018.10.010
K. Burke, Small Portable PEM Fuel Cell Systems for NASA Exploration Missions3rd International Energy Conversion Engineering Conference. 15 August 2005-18 August 2005, San Francisco, California. Reston, Virginia: AIAA, 2005: 5680. https://doi.org/10.2514/6.2005-5680
F. Zaccardi, E. Toto, M.G. Santonicola, S. Laurenzi, 3D printing of radiation shielding polyethylene composites filled with Martian regolith simulant using fused filament fabrication. Acta Astronaut. 190, 1–13 (2022). https://doi.org/10.1016/j.actaastro.2021.09.040
CNSA. United nations/china forum on space solutions: Realizing the sustainable development goals. CNSA. 2019. https://www.cnsa.gov.cn/english/n6465684/n6760084/index.html. 11 January 2025
J. Foust. Nasa opens door to additional cooperation with china. SpaceNews. 2018. https://spacenews.com/nasa-opens-door-to-additional-cooperation-with-china/. 11 January 2025
R. Thirsk, A. Kuipers, C. Mukai, D. Williams, The space-flight environment: the international space station and beyond. CMAJ 180(12), 1216–1220 (2009). https://doi.org/10.1503/cmaj.081125
K. Jules, K. McPherson, K. Hrovat, E. Kelly, T. Reckart, A status report on the characterization of the microgravity environment of the International Space Station. Acta Astronaut. 55(3–9), 335–364 (2004). https://doi.org/10.1016/j.actaastro.2004.05.057
C. Soares, R. Mikatarian, D. Schmidl, K. Smith, C. Pankop et al., Natural and Induced Space Environments Effects on the International Space Station (2005)
E.R. Benton, E.V. Benton, Space radiation dosimetry in low-Earth orbit and beyond. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 184(1–2), 255–294 (2001). https://doi.org/10.1016/S0168-583X(01)00748-0
L.W. Townsend, R.J.M. Fry, Radiation protection guidance for activities in low-earth orbit. Adv. Space Res. 30(4), 957–963 (2002). https://doi.org/10.1016/S0273-1177(02)00160-6
A. Valinia, J. R. Allen, D. R. Francisco, J. I. Minow, J. A. Pellish, A. H. Vera. Safe human expeditions beyond low earth orbit (leo). NASA. 2022. https://ntrs.nasa.gov/citations/20220002905. 11 November 2024
F.A. Cucinotta, M. Durante, Cancer risk from exposure to galactic cosmic rays: implications for space exploration by human beings. Lancet Oncol. 7(5), 431–435 (2006). https://doi.org/10.1016/S1470-2045(06)70695-7
J.C. Chancellor, R.S. Blue, K.A. Cengel, S.M. Auñón-Chancellor, K.H. Rubins et al., Limitations in predicting the space radiation health risk for exploration astronauts. NPJ Microgravity 4, 8 (2018). https://doi.org/10.1038/s41526-018-0043-2
R.S. Blue, J.C. Chancellor, E.L. Antonsen, T.M. Bayuse, V.R. Daniels et al., Limitations in predicting radiation-induced pharmaceutical instability during long-duration spaceflight. NPJ Microgravity 5, 15 (2019). https://doi.org/10.1038/s41526-019-0076-1
J.W. Norbury, T.C. Slaba, S. Aghara, F.F. Badavi, S.R. Blattnig et al., Advances in space radiation physics and transport at NASA. Life Sci. Space Res. 22, 98–124 (2019). https://doi.org/10.1016/j.lssr.2019.07.003
L.M. Logan, G.R. Hunt, Infrared emission spectra: enhancement of diagnostic features by the lunar environment. Science 169(3948), 865–866 (1970). https://doi.org/10.1126/science.169.3948.865
F.L. Hinton, D.R. Taeusch, Variation of the lunar atmosphere with the strength of the solar wind. J. Geophys. Res. 69(7), 1341–1347 (1964). https://doi.org/10.1029/JZ069i007p01341
J.A. Dallas, S. Raval, J.P. Alvarez Gaitan, S. Saydam, A.G. Dempster, Mining beyond earth for sustainable development: will humanity benefit from resource extraction in outer space? Acta Astronaut. 167, 181–188 (2020). https://doi.org/10.1016/j.actaastro.2019.11.006
Y. Wang, L. Hao, Y. Li, Q. Sun, M. Sun et al., In-situ utilization of regolith resource and future exploration of additive manufacturing for lunar/Martian habitats: a review. Appl. Clay Sci. 229, 106673 (2022). https://doi.org/10.1016/j.clay.2022.106673
E.A. Fisher, P.G. Lucey, M. Lemelin, B.T. Greenhagen, M.A. Siegler et al., Evidence for surface water ice in the lunar polar regions using reflectance measurements from the Lunar Orbiter Laser Altimeter and temperature measurements from the Diviner Lunar Radiometer Experiment. Icarus 292, 74–85 (2017). https://doi.org/10.1016/j.icarus.2017.03.023
P.O. Hayne, A. Hendrix, E. Sefton-Nash, M.A. Siegler, P.G. Lucey et al., Evidence for exposed water ice in the Moon’s south polar regions from Lunar Reconnaissance Orbiter ultraviolet albedo and temperature measurements. Icarus 255, 58–69 (2015). https://doi.org/10.1016/j.icarus.2015.03.032
S. Nozette, C.L. Lichtenberg, P. Spudis, R. Bonner, W. Ort et al., The clementine bistatic radar experiment. Science 274(5292), 1495–1498 (1996). https://doi.org/10.1126/science.274.5292.1495
D. R. Williams. Moon fact sheet. NASA. 2024. https://nssdc.gsfc.nasa.gov/planetary/factsheet/moonfact.html. 18 January 2025
A.I. Crawford, Lunar resources: A review. Prog. Phys. Geogr. 39(2), 137–167 (2014). https://doi.org/10.48550/arXiv.1410.6865
C.P. McKay, O.B. Toon, J.F. Kasting, Making Mars habitable. Nature 352(6335), 489–496 (1991). https://doi.org/10.1038/352489a0
F.S. Johnson, Atmosphere of Mars. Science 150(3702), 1445–1448 (1965). https://doi.org/10.1126/science.150.3702.1445
B.M. Jakosky, R.J. Phillips, Mars’ volatile and climate history. Nature 412(6843), 237–244 (2001). https://doi.org/10.1038/35084184
C.E. Newman, M. de la Torre Juárez, J. Pla-García, R.J. Wilson, S.R. Lewis et al., Multi-model meteorological and aeolian predictions for Mars 2020 and the jezero crater region. Space Sci. Rev. 217, 20 (2021). https://doi.org/10.1007/s11214-020-00788-2
B. McKeown, A.G. Dempster, S. Saydam, J. Coulton, Commercial lunar ice mining: is there a role for royalties? Space Policy 64, 101525 (2023). https://doi.org/10.1016/j.spacepol.2022.101525
S.E. Lauro, E. Pettinelli, G. Caprarelli, L. Guallini, A.P. Rossi et al., Multiple subglacial water bodies below the south pole of Mars unveiled by new MARSIS data. Nat. Astron. 5(1), 63–70 (2021). https://doi.org/10.1038/s41550-020-1200-6
R. Orosei, S.E. Lauro, E. Pettinelli, A. Cicchetti, M. Coradini et al., Radar evidence of subglacial liquid water on Mars. Science 361(6401), 490–493 (2018). https://doi.org/10.1126/science.aar7268
P. Zhang, W. Dai, R. Niu, G. Zhang, G. Liu et al., Overview of the lunar in situ resource utilization techniques for future lunar missions. Space Sci. Technol. 3, 37 (2023). https://doi.org/10.34133/space.0037
R.A. Kerr, Planetary science. Eons of a cold, dry, dusty Mars, Science 301(5636), 1037–1038 (2003). https://doi.org/10.1126/science.301.5636.1037
E.V. Benton, K. Ogura, A.L. Frank, T.M. Atallah, V. Rowe, Response of different types of CR-39 to energetic ions. Int. J. Radiat. Appl. Instrum. Part D Nucl. Tracks Radiat. Meas. 12(1–6), 79–82 (1986). https://doi.org/10.1016/1359-0189(86)90542-X
B. Ma, L. Zheng, B. Xie, L. Ma, M. Jia et al., Sustainable wastewater treatment and reuse in space. J. Environ. Sci. 146, 237–240 (2024). https://doi.org/10.1016/j.jes.2023.08.023
M.J. Post, Cultured beef: medical technology to produce food. J. Sci. Food Agric. 94(6), 1039–1041 (2014). https://doi.org/10.1002/jsfa.6474
P.D. Fraser, E.M.A. Enfissi, P.M. Bramley, Genetic engineering of carotenoid formation in tomato fruit and the potential application of systems and synthetic biology approaches. Arch. Biochem. Biophys. 483(2), 196–204 (2009). https://doi.org/10.1016/j.abb.2008.10.009
S. Furukawa, A. Nagamatsu, M. Nenoi, A. Fujimori, S. Kakinuma et al., Space radiation biology for “living in space.” BioMed Res. Int. 2020, 4703286 (2020). https://doi.org/10.1155/2020/4703286
C. Schwandt, J.A. Hamilton, D.J. Fray, I.A. Crawford, The production of oxygen and metal from lunar regolith. Planet. Space Sci. 74(1), 49–56 (2012). https://doi.org/10.1016/j.pss.2012.06.011
E. Kulu, In-space manufacturing-2022 industry survey and commercial landscape. International Astronautical Federation 2022. https://www.researchgate.net/publication/364107062_In-Space_Manufacturing_-_2022_Industry_Survey_and_Commercial_Landscape. 11 May 2025
C. Bao, D. Zhang, Q. Wang, Y. Cui, P. Feng, Lunar in situ large-scale construction: quantitative evaluation of regolith solidification techniques. Engineering 39, 204–221 (2024). https://doi.org/10.1016/j.eng.2024.03.004
L. Hall, Myco-architecture off planet: Growing surface structures at destination. NASA. 2018. https://www.nasa.gov/general/myco-architecture-off-planet-growing-surface-structures-at-destination/. 11 June 2025
M.J. Castro-Alonso, L.E. Montañez-Hernandez, M.A. Sanchez-Muñoz, M.R. Macias Franco, R. Narayanasamy et al., Microbially induced calcium carbonate precipitation (MICP) and its potential in bioconcrete: microbiological and molecular concepts. Front. Mater. 6, 126 (2019). https://doi.org/10.3389/fmats.2019.00126
J. Tang, S. Jiang, Q. Quan, J. Liang, Y. Shen et al., Soil simulant preparation for lunar deep drilling exploration: modeling and validation. Planet. Space Sci. 173, 1–13 (2019). https://doi.org/10.1016/j.pss.2019.05.005
P. Mehta, D. Bhayani, Impact of space environment on stability of medicines: challenges and prospects. J. Pharm. Biomed. Anal. 136, 111–119 (2017). https://doi.org/10.1016/j.jpba.2016.12.040
R. Rufu, O. Aharonson, H.B. Perets, A multiple-impact origin for the Moon. Nat. Geosci. 10(2), 89–94 (2017). https://doi.org/10.1038/ngeo2866
H. Chen, T. Sarton du Jonchay, L. Hou, K. Ho, Integrated in situ resource utilization system design and logistics for Mars exploration. Acta Astronaut. 170, 80–92 (2020). https://doi.org/10.1016/j.actaastro.2020.01.031
NASA. Space-sugar with electrochemical energy technology. NASA CO2 Conversion Challenge. 2018. https://www.co2conversionchallenge.org/#winners/1. 11 November 2024
S. Cestellos-Blanco, S. Louisia, M.B. Ross, Y. Li, N.E. Soland et al., Toward abiotic sugar synthesis from CO2 electrolysis. Joule 6(10), 2304–2323 (2022). https://doi.org/10.1016/j.joule.2022.08.007
K. Brinkert, M.H. Richter, Ö. Akay, J. Liedtke, M. Giersig et al., Efficient solar hydrogen generation in microgravity environment. Nat. Commun. 9(1), 2527 (2018). https://doi.org/10.1038/s41467-018-04844-y
A. Meurisse, B. Lomax, Á. Selmeci, M. Conti, R. Lindner et al., Lower temperature electrochemical reduction of lunar regolith simulants in molten salts. Planet. Space Sci. 211, 105408 (2022). https://doi.org/10.1016/j.pss.2021.105408
G. Liu, Y. Zhong, Z. Liu, G. Wang, F. Gao et al., Solar-driven sugar production directly from CO2 via a customizable electrocatalytic-biocatalytic flow system. Nat. Commun. 15(1), 2636 (2024). https://doi.org/10.1038/s41467-024-46954-w
S. Stahl-Rommel, D. Li, M. Sung, R. Li, A. Vijayakumar et al., A crispr-based assay for the study of eukaryotic DNA repair onboard the International Space Station. PLoS ONE 16(6), e0253403 (2021). https://doi.org/10.1371/journal.pone.0253403
H. Lee, J. Diao, Y. Tian, R. Guleria, E. Lee et al., Developing an alternative medium for in-space biomanufacturing. Nat. Commun. 16(1), 728 (2025). https://doi.org/10.1038/s41467-025-56088-2
R. Berni, C.C. Leclercq, P. Roux, J.-F. Hausman, J. Renaut et al., A molecular study of Italian ryegrass grown on Martian regolith simulant. Sci. Total. Environ. 854, 158774 (2023). https://doi.org/10.1016/j.scitotenv.2022.158774
A.G. Caporale, M. Amato, L.G. Duri, R. Bochicchio, S. De Pascale et al., Can lunar and Martian soils support food plant production? effects of horse/swine monogastric manure fertilisation on regolith simulants enzymatic activity, nutrient bioavailability, and lettuce growth. Plants 11(23), 3345 (2022). https://doi.org/10.3390/plants11233345
K. Chinnannan, P. Somagattu, H. Yammanuru, P. Nimmakayala, M. Chakrabarti et al., Effects of Mars global simulant (MGS-1) on growth and physiology of sweet potato: a space model plant. Plants 13(1), 55 (2023). https://doi.org/10.3390/plants13010055
R. Gonçalves, G.W.W. Wamelink, P. van der Putten, J.B. Evers, Intercropping on Mars: a promising system to optimise fresh food production in future Martian colonies. PLoS ONE 19(5), e0302149 (2024). https://doi.org/10.1371/journal.pone.0302149
L.E. Fackrell, S. Humphrey, R. Loureiro, A.G. Palmer, J. Long-Fox, Overview and recommendations for research on plants and microbes in regolith-based agriculture. NPJ Sustain. Agric. 2, 15 (2024). https://doi.org/10.1038/s44264-024-00013-5
A.E. Jakus, K.D. Koube, N.R. Geisendorfer, R.N. Shah, Robust and elastic lunar and Martian structures from 3d-printed regolith inks. Sci. Rep. 7, 44931 (2017). https://doi.org/10.1038/srep44931
H. Zhao, J. Zhu, S. Yuan, S. Li, W. Zhang, Development of lunar regolith-based composite for in situ 3D printing via high-pressure extrusion system. Front. Mech. Eng. 18(2), 29 (2023). https://doi.org/10.1007/s11465-022-0745-8
T. Tafsirojjaman, S.T. Smith, M.A. Hossain, Development of regolith-resin-composite (RRC) material for lunar construction. Acta Astronaut. 228, 652–663 (2025). https://doi.org/10.1016/j.actaastro.2024.10.064
X.-F. Pan, B. Wu, H.-L. Gao, S.-M. Chen, Y. Zhu et al., Double-layer nacre-inspired polyimide-Mica nanocomposite films with excellent mechanical stability for LEO environmental conditions. Adv. Mater. 34(2), 2105299 (2022). https://doi.org/10.1002/adma.202105299
L. Pernigoni, U. Lafont, A.M. Grande, Self-healing polymers for space: a study on autonomous repair performance and response to space radiation. Acta Astronaut. 210, 627–634 (2023). https://doi.org/10.1016/j.actaastro.2023.05.032
S.L. Taylor, A.E. Jakus, K.D. Koube, A.J. Ibeh, N.R. Geisendorfer et al., Sintering of micro-trusses created by extrusion-3D-printing of lunar regolith inks. Acta Astronaut. 143, 1–8 (2018). https://doi.org/10.1016/j.actaastro.2017.11.005
R. Rainwater, A. Mukherjee, The legume-rhizobia symbiosis can be supported on Mars soil simulants. PLoS ONE 16(12), e0259957 (2021). https://doi.org/10.1371/journal.pone.0259957
L.G. Duri, I. Romano, P. Adamo, Y. Rouphael, A. Pannico et al., From earth to space: how bacterial consortia and green compost improve lettuce growth on lunar and Martian simulants. Biol. Fertil. Soils 61(7), 1145–1164 (2025). https://doi.org/10.1007/s00374-025-01923-3
I. N. Laboratory. Benefits of space research. ISS National Laboratory Center for The Advancement of Science in Space (2020). https://issnationallab.org/research-and-science/space-research-overview/benefits-of-space-research/. 11 December 2024
S. Antony Jose, J. Jackson, J. Foster, T. Silva, E. Markham et al., In-space manufacturing: technologies, challenges, and future horizons. J. Manuf. Mater. Process. 9(3), 84 (2025). https://doi.org/10.3390/jmmp9030084
R.A. Salido, H.N. Zhao, D. McDonald, H. Mannochio-Russo, S. Zuffa et al., The international space station has a unique and extreme microbial and chemical environment driven by use patterns. Cell 188(7), 2022-2041.e23 (2025). https://doi.org/10.1016/j.cell.2025.01.039
CellAgri. Aleph farms brings cell-based steak to outer space. CellAgri. 2019. https://www.cell.ag/blog/aleph-farms-brings-cell-based-steak-to-outer-space. 11 December 2024
M.M. Bomgardner, Cultured meat grows in space, attracts funds. American Chemical Society. 2019. https://cen.acs.org/business/start-ups/Cultured-meat-grows-space-attracts/97/i41. 11 December 2024
G. Zhang, X. Zhao, X. Li, G. Du, J. Zhou et al., Challenges and possibilities for bio-manufacturing cultured meat. Trends Food Sci. Technol. 97, 443–450 (2020). https://doi.org/10.1016/j.tifs.2020.01.026
T. Yu, Y.J. Zhou, M. Huang, Q. Liu, R. Pereira et al., Reprogramming yeast metabolism from alcoholic fermentation to lipogenesis. Cell 174(6), 1549-1558.e14 (2018). https://doi.org/10.1016/j.cell.2018.07.013
G. Figliozzi, A fresh take: Nasa bionutrients for future artemis missions. NASA. 2022. https://www.nasa.gov/image-/fresh-take-nasa-bionutrients-future-artemis-missions/. 26 December 2024
S. Ng, M. Kurisawa, Integrating biomaterials and food biopolymers for cultured meat production. Acta Biomater. 124, 108–129 (2021). https://doi.org/10.1016/j.actbio.2021.01.017
M.J. Post, S. Levenberg, D.L. Kaplan, N. Genovese, J. Fu et al., Scientific, sustainability and regulatory challenges of cultured meat. Nat. Food 1(7), 403–415 (2020). https://doi.org/10.1038/s43016-020-0112-z
P. Santhoshkumar, A. Negi, J.A. Moses, 3D printing for space food applications: advancements, challenges, and prospects. Life Sci. Space Res. 40, 158–165 (2024). https://doi.org/10.1016/j.lssr.2023.08.002
T. Prater, N. Werkheiser, F. Ledbetter, D. Timucin, K. Wheeler et al., 3D printing in zero G technology demonstration mission: complete experimental results and summary of related material modeling efforts. Int. J. Adv. Manuf. Technol. 101(1–4), 391–417 (2019). https://doi.org/10.1007/s00170-018-2827-7
J. Sun, Z. Peng, L. Yan, J.Y.H. Fuh, G.S. Hong, 3D food printing: an innovative way of mass customization in food fabrication. Int. J. Bioprinting 1(1), 27 (2015). https://doi.org/10.18063/ijb.2015.01.006
E.N. Grossi, J.A. Hogan, M. Flynn, The utilization of urine processing for the advancement of life support technologies. Ames Research Center. 2014. https://ntrs.nasa.gov/citations/20140013280. 11 November 2024
L.M. Steinberg, R.E. Kronyak, C.H. House, Coupling of anaerobic waste treatment to produce protein- and lipid-rich bacterial biomass. Life Sci. Space Res. 15, 32–42 (2017). https://doi.org/10.1016/j.lssr.2017.07.006
H. Liu, Z. Yao, Y. Fu, J. Feng, Review of research into bioregenerative life support system(s) which can support humans living in space. Life Sci. Space Res. 31, 113–120 (2021). https://doi.org/10.1016/j.lssr.2021.09.003
P. Clauwaert, M. Muys, A. Alloul, J. De Paepe, A. Luther et al., Nitrogen cycling in bioregenerative life support systems: challenges for waste refinery and food production processes. Prog. Aerosp. Sci. 91, 87–98 (2017). https://doi.org/10.1016/j.paerosci.2017.04.002
A. Lloyd, Station science 101: Plant research. NASA. 2023. https://www.nasa.gov/missions/station/ways-the-international-space-station-helps-us-study-plant-growth-in-space. 11 December 2024
L. Yang, H. Li, T. Liu, Y. Zhong, C. Ji et al., Microalgae biotechnology as an attempt for bioregenerative life support systems: problems and prospects. J. Chem. Technol. Biotechnol. 94(10), 3039–3048 (2019). https://doi.org/10.1002/jctb.6159
X. Xie, A. Jaleel, J. Zhan, M. Ren, Microalgae: towards human health from urban areas to space missions. Front. Plant Sci. 15, 1419157 (2024). https://doi.org/10.3389/fpls.2024.1419157
W. Wu, J. Shen, H. Kong, Y. Yang, E. Ren et al., Energy system and resource utilization in space: a state-of-the-art review. The Innovation Energy 1(2), 100029 (2024). https://doi.org/10.59717/j.xinn-energy.2024.100029
H. Helisch, J. Keppler, G. Detrell, S. Belz, R. Ewald et al., High density long-term cultivation of Chlorella vulgaris SAG 211–12 in a novel microgravity-capable membrane raceway photobioreactor for future bioregenerative life support in space. Life Sci. Space Res. 24, 91–107 (2020). https://doi.org/10.1016/j.lssr.2019.08.001
A. McPherson, L.J. DeLucas, Microgravity protein crystallization. NPJ Microgravity 1, 15010 (2015). https://doi.org/10.1038/npjmgrav.2015.10
L. Hall, A flexible, personalized, on-demand astropharmacy. NASA. 2023. https://www.nasa.gov/general/a-flexible-personalized-on-demand-astropharmacy/. 13 January 2025
M. L. Gaskill. Creating new and better drugs with protein crystal growth experiments. NASA. 2023. https://www.nasa.gov/missions/station/iss-research/creating-new-and-better-drugs-with-protein-crystal-growth-experiments/. 20 August 2025
S. Mathea, M. Baptista, P. Reichert, A. Spinale, S. Knapp, Crystallizing the parkinson’s disease protein lrrk2 under microgravity conditions. bioRxiv. 259655 (2018). https://doi.org/10.1101/259655
S. Carney, What is lrrk2’s role in parkinson’s disease ISS National Laboratory. 2018. https://issnationallab.org/iss360/going-beyond-earths-limitations-to-understand-parkinsons-disease. 27 December 2024
S. Onofri, R. Moeller, D. Billi, M. Balsamo, A. Becker et al., Synthetic biology for space exploration. NPJ Microgravity 11, 41 (2025). https://doi.org/10.1038/s41526-025-00488-7
J. Zhang, W. Yang, S. Hu, Y. Lin, G. Fang et al., Volcanic history of the Imbrium basin: a close-up view from the lunar rover Yutu. Proc. Natl. Acad. Sci. U. S. A. 112(17), 5342–5347 (2015). https://doi.org/10.1073/pnas.1503082112
M. Isachenkov, S. Chugunov, I. Akhatov, I. Shishkovsky, Regolith-based additive manufacturing for sustainable development of lunar infrastructure–an overview. Acta Astronaut. 180, 650–678 (2021). https://doi.org/10.1016/j.actaastro.2021.01.005
R.N. Grugel, H. Toutanji, Sulfur “concrete” for lunar applications–Sublimation concerns. Adv. Space Res. 41(1), 103–112 (2008). https://doi.org/10.1016/j.asr.2007.08.018
K.-T. Wang, P.N. Lemougna, Q. Tang, W. Li, X.-M. Cui, Lunar regolith can allow the synthesis of cement materials with near-zero water consumption. Gondwana Res. 44, 1–6 (2017). https://doi.org/10.1016/j.gr.2016.11.001
J. Lee, K.Y. Ann, T.S. Lee, B.B. Mitikie, Bottom-up heating method for producing polyethylene lunar concrete in lunar environment. Adv. Space Res. 62(1), 164–173 (2018). https://doi.org/10.1016/j.asr.2018.03.039
H.A. Toutanji, S. Evans, R.N. Grugel, Performance of lunar sulfur concrete in lunar environments. Constr. Build. Mater. 29, 444–448 (2012). https://doi.org/10.1016/j.conbuildmat.2011.10.041
S. Iranfar, M.M. Karbala, M.H. Shahsavari, V. Vandeginste, Prioritization of habitat construction materials on Mars based on multi-criteria decision-making. J. Build. Eng. 66, 105864 (2023). https://doi.org/10.1016/j.jobe.2023.105864
J. Mullerova, Proceedings of spie-the international society for optical engineering: Introduction. SPIE. 2010. https://www.researchgate.net/publication/296432173_Proceedings_of_SPIE_-_The_International_Society_for_Optical_Engineering_Introduction. 11 January 2025
A. Goulas, J.G.P. Binner, R.A. Harris, R.J. Friel, Assessing extraterrestrial regolith material simulants for in situ resource utilisation based 3D printing. Appl. Mater. Today 6, 54–61 (2017). https://doi.org/10.1016/j.apmt.2016.11.004
R. Wang, G. Qiao, G. Song, Additive manufacturing by laser powder bed fusion and thermal post-treatment of the lunar-regolith-based glass-ceramics for in situ resource utilization. Constr. B uild. Mater. 392, 132051 (2023). https://doi.org/10.1016/j.conbuildmat.2023.132051
V. Srivastava, S. Lim, M. Anand, Microwave processing of lunar soil for supporting longer-term surface exploration on the Moon. Space Policy 37, 92–96 (2016). https://doi.org/10.1016/j.spacepol.2016.07.005
M. Fateri, A. Gebhardt, Process parameters development of selective laser melting of lunar regolith for on-site manufacturing applications. Int. J. Appl. Ceram. Technol. 12(1), 46–52 (2015). https://doi.org/10.1111/ijac.12326
M. Liu, W. Tang, W. Duan, S. Li, R. Dou et al., Digital light processing of lunar regolith structures with high mechanical properties. Ceram. Int. 45(5), 5829–5836 (2019). https://doi.org/10.1016/j.ceramint.2018.12.049
B.A. Aguiar, A. Nisar, T. Thomas, C. Zhang, A. Agarwal, In-situ resource utilization of lunar Highlands regolith via additive manufacturing using digital light processing. Ceram. Int. 49(11), 17283–17295 (2023). https://doi.org/10.1016/j.ceramint.2023.02.095
G. Cesaretti, E. Dini, X. De Kestelier, V. Colla, L. Pambaguian, Building components for an outpost on the Lunar soil by means of a novel 3D printing technology. Acta Astronaut. 93, 430–450 (2014). https://doi.org/10.1016/j.actaastro.2013.07.034
L.A. Haskin, R.O. Colson, D.J. Lindstrom, R.H. Lewis, K.W. Semkow, Electrolytic smelting of lunar rock for oxygen, iron, and silicon. NASA. 1992. https://ntrs.nasa.gov/citations/19930004791. 11 November 2024
L.L. Barton, F.A. Tomei-Torres, H. Xu, T. Zocco, Nanops formed by microbial metabolism of metals and minerals. In: Nanomicrobiology, pp. 145–176. Springer New York (2014). https://doi.org/10.1007/978-1-4939-1667-2_7
R.P. Mueller, I. I. Townsend. Lunar regolith simulant feed system for a hydrogen reduction reactor system. NASA. 2009. https://ntrs.nasa.gov/api/citations/20110011479/downloads/20110011479.pdf. 11 December 2024
K.D. Burgess, B.A. Cymes, R.M. Stroud, Hydrogen-bearing vesicles in space weathered lunar calcium-phosphates. Commun. Earth Environ. 4, 414 (2023). https://doi.org/10.1038/s43247-023-01060-5
B.A. Cymes, K.D. Burgess, R.M. Stroud, Helium reservoirs in iron nanops on the lunar surface. Commun. Earth Environ. 5, 189 (2024). https://doi.org/10.1038/s43247-024-01349-z
L. Yang, C. Zhang, X. Yu, Y. Yao, Z. Li et al., Extraterrestrial artificial photosynthetic materials for in situ resource utilization. Natl. Sci. Rev. 8(8), 104 (2021). https://doi.org/10.1093/nsr/nwab104
F.J. Guerrero-Gonzalez, P. Zabel, System analysis of an ISRU production plant: extraction of metals and oxygen from lunar regolith. Acta Astronaut. 203, 187–201 (2023). https://doi.org/10.1016/j.actaastro.2022.11.050
L. Schlüter, A. Cowley, Review of techniques for in-situ oxygen extraction on the Moon. Planet. Space Sci. 181, 104753 (2020). https://doi.org/10.1016/j.pss.2019.104753
M. Shamsuddin, Reduction of oxides and reduction smelting. In: Physical Chemistry of Metallurgical Processes, Second Edition, Springer International Publishing (2021). pp. 149–203. https://doi.org/10.1007/978-3-030-58069-8_5
S. Tembhurne, F. Nandjou, S. Haussener, A thermally synergistic photo-electrochemical hydrogen generator operating under concentrated solar irradiation. Nat. Energy 4(5), 399–407 (2019). https://doi.org/10.1038/s41560-019-0373-7
S. Rohde, H. Wiltsche, A. Cowley, B. Gollas, Dissolution and electrolysis of lunar regolith in ionic liquids. Planet. Space Sci. 219, 105534 (2022). https://doi.org/10.1016/j.pss.2022.105534
H.M. Sargeant, S.J. Barber, M. Anand, F.A.J. Abernethy, S. Sheridan et al., Hydrogen reduction of lunar samples in a static system for a water production demonstration on the Moon. Planet. Space Sci. 205, 105287 (2021). https://doi.org/10.1016/j.pss.2021.105287
S. Trigwell, J. Captain, K. Weis, J. Quinn, Electrostatic beneficiation of lunar regolith: applications in in situ resource utilization. J. Aerosp. Eng. 26(1), 30–36 (2013). https://doi.org/10.1061/(asce)as.1943-5525.0000226
S.S. Schreiner, L. Sibille, J.A. Dominguez, J.A. Hoffman, A parametric sizing model for molten regolith electrolysis reactors to produce oxygen on the Moon. Adv. Space Res. 57(7), 1585–1603 (2016). https://doi.org/10.1016/j.asr.2016.01.006
Development of a Molten Regolith Electrolysis Reactor Model for Lunar In-Situ Resource Utilizatio Reston, Virginia: AIAA
A. Ellery, Supplementing closed ecological life support systems with in situ resources on the Moon. Life 11(8), 770 (2021). https://doi.org/10.3390/life11080770
S. Li, P.G. Lucey, R.E. Milliken, P.O. Hayne, E. Fisher et al., Direct evidence of surface exposed water ice in the lunar polar regions. Proc. Natl. Acad. Sci. U. S. A. 115(36), 8907–8912 (2018). https://doi.org/10.1073/pnas.1802345115
A. Colaprete, P. Schultz, J. Heldmann, D. Wooden, M. Shirley et al., Detection of water in the LCROSS ejecta plume. Science 330(6003), 463–468 (2010). https://doi.org/10.1126/science.1186986
H. Song, J. Zhang, D. Ni, Y. Sun, Y. Zheng et al., Investigation on in situ water ice recovery considering energy efficiency at the lunar south pole. Appl. Energy 298, 117136 (2021). https://doi.org/10.1016/j.apenergy.2021.117136
G.F. Sowers, C.B. Dreyer, Ice mining in lunar permanently shadowed regions. New Space 7(4), 235–244 (2019). https://doi.org/10.1089/space.2019.0002
J.D. Cole, S. Lim, H.M. Sargeant, S. Sheridan, M. Anand et al., Water extraction from icy lunar simulants using low power microwave heating. Acta Astronaut. 209, 95–103 (2023). https://doi.org/10.1016/j.actaastro.2023.04.035
G. Chi, Z. Zhang, J. Tang, S. Jiang, Z. Lu et al., Quantitative sampling and thermal extraction of the lunar regolith for lunar volatile exploration: method and validation. Acta Astronaut. 220, 274–282 (2024). https://doi.org/10.1016/j.actaastro.2024.04.029
K. Zacny, P. Chu, G. Paulsen, A. Avanesyan, J. Craft et al., Mobile in-situ water extractor (miswe) for mars, moon, and asteroids in situ resource utilization. American Institute of Aeronautics and Astronautics. 2012. https://www.semanticscholar.org/paper/Mobile-In-Situ-Water-Extractor-%28MISWE%29-for-Mars%2C-In-Zacny-Chu/0d3bb5b8a4a4084800db4689e30890527d4b514a. 11 December 2024
L. He, C. Wang, G. Zhang, Y. Pang, W. Yao, A novel auger-based system for extraterrestrial in situ water resource extraction. Icarus 367, 114552 (2021). https://doi.org/10.1016/j.icarus.2021.114552
Y. Liu, C. Wang, Y. Pang, Q. Wang, Z. Zhao et al., Water extraction from icy lunar regolith by drilling-based thermal method in a pilot-scale unit. Acta Astronaut. 202, 386–399 (2023). https://doi.org/10.1016/j.actaastro.2022.11.002
A. Hindupur, N. Ball, H. Kagawa, A. Kostakis, J. Levri et al., Bionutrients-1: On-demand production of nutrients in space. NASA. 2019. https://ntrs.nasa.gov/citations/20190033398. 11 November 2024
E. Kanervo, K. Lehto, K. Ståhle, H. Lehto, P. Mäenpää, Characterization of growth and photosynthesis of Synechocystis sp. PCC 6803 cultures under reduced atmospheric pressures and enhanced CO2 levels. Int. J. Astrobiol. 4(1), 97–100 (2005). https://doi.org/10.1017/s1473550405002466
A.J. Berliner, J.M. Hilzinger, A.J. Abel, M.J. McNulty, G. Makrygiorgos et al., Towards a biomanufactory on Mars. Front. Astron. Space Sci. 8, 711550 (2021). https://doi.org/10.3389/fspas.2021.711550
P. Kasiviswanathan, E.D. Swanner, L.J. Halverson, P. Vijayapalani, Farming on Mars: treatment of basaltic regolith soil and briny water simulants sustains plant growth. PLoS ONE 17(8), e0272209 (2022). https://doi.org/10.1371/journal.pone.0272209
L.J. Mapstone, M.N. Leite, S. Purton, I.A. Crawford, L. Dartnell, Cyanobacteria and microalgae in supporting human habitation on Mars. Biotechnol. Adv. 59, 107946 (2022). https://doi.org/10.1016/j.biotechadv.2022.107946
P. Agarwal, R. Soni, P. Kaur, A. Madan, R. Mishra et al., Cyanobacteria as a promising alternative for sustainable environment: synthesis of biofuel and biodegradable plastics. Front. Microbiol. 13, 939347 (2022). https://doi.org/10.3389/fmicb.2022.939347
C. Verseux, M. Baqué, K. Lehto, J.P. de Vera, L.J. Rothschild et al., Sustainable life support on Mars–the potential roles of cyanobacteria. Int. J. Astrobiol. 15(1), 65–92 (2016). https://doi.org/10.1017/s147355041500021x
K.B. Möllers, D. Cannella, H. Jørgensen, N.-U. Frigaard, Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation. Biotechnol. Biofuels 7, 64 (2014). https://doi.org/10.1186/1754-6834-7-64
S. Aikawa, A. Joseph, R. Yamada, Y. Izumi, T. Yamagishi et al., Direct conversion of Spirulina to ethanol without pretreatment or enzymatic hydrolysis processes. Energy Environ. Sci. 6(6), 1844 (2013). https://doi.org/10.1039/c3ee40305j
B. Kading, J. Straub, Utilizing in situ resources and 3D printing structures for a manned Mars mission. Acta Astronaut. 107, 317–326 (2015). https://doi.org/10.1016/j.actaastro.2014.11.036
R. Hedayati, V. Stulova, 3D printing of habitats on Mars: effects of low temperature and pressure. Materials 16(14), 5175 (2023). https://doi.org/10.3390/ma16145175
K. Short, D. Buren. Printable spacecraft: Flexible electronic platforms for nasa missions. Phase one. NASA. 2012. https://ntrs.nasa.gov/citations/20160009486. 13 December 2024
A. Devieneni, C. A. Vélez, D. Benjamin, J. Hollenbeck. Cost-effective additive manufacturing in space: Helios technology challenge guide. 2013. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20130001751.pdf
S. Benvenuti, F. Ceccanti, X. De Kestelier, Living on the moon: topological optimization of a 3D-printed lunar shelter. Nexus Netw. J. 15(2), 285–302 (2013). https://doi.org/10.1007/s00004-013-0155-7
J.Y. Wong, A.C. Pfahnl, 3D printed surgical instruments evaluated by a simulated crew of a Mars mission. Aerosp. Med. Hum. Perform. 87(9), 806–810 (2016). https://doi.org/10.3357/amhp.4281.2016
NASA. Combination 3d printer will recycle plastic in space. NASA. 2018. https://www.nasa.gov/image-/combination-3d-printer-will-recycle-plastic-space. 11 December 2024
R. Dikshit, N. Gupta, A. Dey, K. Viswanathan, A. Kumar, Microbial induced calcite precipitation can consolidate Martian and lunar regolith simulants. PLoS ONE 17(4), e0266415 (2022). https://doi.org/10.1371/journal.pone.0266415
S. Cestellos-Blanco, S. Friedline, K.B. Sander, A.J. Abel, J.M. Kim et al., Production of PHB from CO2-derived acetate with minimal processing assessed for space biomanufacturing. Front. Microbiol. 12, 700010 (2021). https://doi.org/10.3389/fmicb.2021.700010
L. Garcia-Gonzalez, M.S.I. Mozumder, M. Dubreuil, E.I.P. Volcke, H. De Wever, Sustainable autotrophic production of polyhydroxybutyrate (PHB) from CO2 using a two-stage cultivation system. Catal. Today 257, 237–245 (2015). https://doi.org/10.1016/j.cattod.2014.05.025
E. Touloupakis, E.G. Poloniataki, D.F. Ghanotakis, P. Carlozzi, Production of biohydrogen and/or poly-β-hydroxybutyrate by Rhodopseudomonas sp. using various carbon sources as substrate. Appl. Biochem. Biotechnol. 193(1), 307–318 (2021). https://doi.org/10.1007/s12010-020-03428-1
H. Brandl, E.J. Knee Jr., R.C. Fuller, R.A. Gross, R.W. Lenz, Ability of the phototrophic bacterium Rhodospirillum rubrum to produce various poly (beta-hydroxyalkanoates): potential sources for biodegradable polyesters. Int. J. Biol. Macromol. 11(1), 49–55 (1989). https://doi.org/10.1016/0141-8130(89)90040-8
R.M.M. Abed, S. Dobretsov, K. Sudesh, Applications of cyanobacteria in biotechnology. J. Appl. Microbiol. 106(1), 1–12 (2009). https://doi.org/10.1111/j.1365-2672.2008.03918.x
N. Hartono. Nasa’s oxygen-generating experiment moxie completes mars mission. NASA. 2023. https://www.nasa.gov/missions/mars-2020-perseverance/perseverance-rover/nasas-oxygen-generating-experiment-moxie-completes-mars-mission. 11 December 2024
M. Hecht, J. Hoffman, D. Rapp, J. McClean, J. SooHoo et al., Mars oxygen ISRU experiment (MOXIE). Space Sci. Rev. 217, 9 (2021). https://doi.org/10.1007/s11214-020-00782-8
V. Guerra, T. Silva, P. Ogloblina, M. Grofulović, L. Terraz et al., The case forin situresource utilisation for oxygen production on Mars by non-equilibrium plasmas. Plasma Sources Sci. Technol. 26(11), 11LT01 (2017). https://doi.org/10.1088/1361-6595/aa8dcc
V. Guerra, T. Silva, N. Pinhão, O. Guaitella, C. Guerra-Garcia et al., Plasmas for in situ resource utilization on Mars: fuels, life support, and agriculture. J. Appl. Phys. 132(7), 070902 (2022). https://doi.org/10.1063/5.0098011
S. Kelly, C. Verheyen, A. Cowley, A. Bogaerts, Producing oxygen and fertilizer with the Martian atmosphere by using microwave plasma. Chem 8(10), 2797–2816 (2022). https://doi.org/10.1016/j.chempr.2022.07.015
L.G. McKinney, T. Silva, V. Guerra, C. Guerra-Garcia, in A Numerical model for Plasma Reactor Design: Application to CO2 Conversion for Mars in-situ Resource Utilization
G. Sanders, In Situ Resource Utilization on Mars - Update from DRA 5.0 Study48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 04 January 2010 - 07 January 2010, Orlando, Florida. Reston, Virginia: AIAA, 2010: 799. https://doi.org/10.2514/6.2010-799
G.B. Sanders, A. Paz, L. Oryshchyn, K. Araghi, A. Muscatello et al., Mars ISRU for Production of Mission Critical Consumables - Options, Recent Studies, and Current State of the ArtAIAA SPACE 2015 Conference and Exposition. 31 Aug-2 Sep 2015, Pasadena, California. Reston, Virginia: AIAA, 2015: 4458. https://doi.org/10.2514/6.2015-4458
N.S. Kruyer, M.J. Realff, W. Sun, C.L. Genzale, P. Peralta-Yahya, Designing the bioproduction of Martian rocket propellant via a biotechnology-enabled in situ resource utilization strategy. Nat. Commun. 12, 6166 (2021). https://doi.org/10.1038/s41467-021-26393-7
G. Bhattacharyya, P. Oliveira, S.T. Krishnaji, D. Chen, M. Hinman et al., Large scale production of synthetic spider silk proteins in Escherichia coli. Protein Expr. Purif. 183, 105839 (2021). https://doi.org/10.1016/j.pep.2021.105839
R. Fan, K. Knuuttila, B. Schmuck, G. Greco, A. Rising et al., Sustainable spinning of artificial spider silk fibers with excellent toughness and inherent potential for functionalization. Adv. Funct. Mater. 35(15), 2410415 (2025). https://doi.org/10.1002/adfm.202410415
Z. Li, Y.-L. Zhu, W. Niu, X. Yang, Z. Jiang et al., Healable and recyclable elastomers with record-high mechanical robustness, unprecedented crack tolerance, and superhigh elastic restorability. Adv. Mater. 33(27), 2101498 (2021). https://doi.org/10.1002/adma.202101498
Y. Tsuda, T. Saiki, F. Terui, S. Nakazawa, M. Yoshikawa et al., Hayabusa2 mission status: landing, roving and cratering on asteroid Ryugu. Acta Astronaut. 171, 42–54 (2020). https://doi.org/10.1016/j.actaastro.2020.02.035
S. Watanabe, M. Hirabayashi, N. Hirata, N. Hirata, R. Noguchi et al., Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu-a spinning top-shaped rubble pile. Science 364(6437), 268–272 (2019). https://doi.org/10.1126/science.aav8032
S. Tachibana, H. Sawada, R. Okazaki, Y. Takano, K. Sakamoto et al., Pebbles and sand on asteroid (162173) Ryugu: in situ observation and ps returned to Earth. Science 375(6584), 1011–1016 (2022). https://doi.org/10.1126/science.abj8624
T.J. Colvin, K. Crane, B. Lal, Assessing the economics of asteroid-derived water for propellant. Acta Astronaut. 176, 298–305 (2020). https://doi.org/10.1016/j.actaastro.2020.05.029
K. Nagao, R. Okazaki, T. Nakamura, Y.N. Miura, T. Osawa et al., Irradiation history of Itokawa regolith material deduced from noble gases in the Hayabusa samples. Science 333(6046), 1128–1131 (2011). https://doi.org/10.1126/science.1207785
A. Fujiwara, J. Kawaguchi, D.K. Yeomans, M. Abe, T. Mukai et al., The rubble-pile asteroid Itokawa as observed by Hayabusa. Science 312(5778), 1330–1334 (2006). https://doi.org/10.1126/science.1125841
P.J. Schubert, Economical extraction of platinum from main belt asteroids. Adv. Space Res. 75(8), 6132–6139 (2025). https://doi.org/10.1016/j.asr.2025.02.035
Á. Romero-Calvo, Ö. Akay, H. Schaub, K. Brinkert, Magnetic phase separation in microgravity. NPJ Microgravity 8, 32 (2022). https://doi.org/10.1038/s41526-022-00212-9
S. Schwartz, J. Thangavelautham, E. Asphaug, A. Chandra, R. T. Nallapu, L. Vance. Investigating asteroid surface geophysics with an ultra-low-gravity centrifuge in low-earth orbit. ResearchGate. 2019. https://www.researchgate.net/publication/336348604_Investigating_Asteroid_Surface_Geophysics_with_an_Ultra-Low-Gravity_Centrifuge_in_Low-Earth_Orbit. 11 December 2024
L. Shekhtman, Osiris-rex NASA. 2023. https://science.nasa.gov/mission/osiris-rex. 13 January 2025
G.D. Team, Surprising phosphate finding in nasa’s osiris-rex asteroid sample. NASA. 2024. https://www.nasa.gov/missions/osiris-rex/surprising-phosphate-finding-in-nasas-osiris-rex-asteroid-sample/. 13 January 2025
R. Xie, N.J. Bennett, A.G. Dempster, Target evaluation for near earth asteroid long-term mining missions. Acta Astronaut. 181, 249–270 (2021). https://doi.org/10.1016/j.actaastro.2021.01.011
B. Dreyer Christopher, J. Sercel, L. Gertsch, A. Lampe, J. Canney Travis et al., in Optical Mining Subscale Testing. (2017), pp. 493–506
Ö. Akay, A. Bashkatov, E. Coy, K. Eckert, K.E. Einarsrud et al., Electrolysis in reduced gravitational environments: current research perspectives and future applications. npj Microgravity 8(1), 56 (2022). https://doi.org/10.1038/s41526-022-00239-y
M. Elvis, How many ore-bearing asteroids? Planet. Space Sci. 91, 20–26 (2014). https://doi.org/10.1016/j.pss.2013.11.008
J.P. Sanchez, C.R. McInnes, Assessment on the feasibility of future shepherding of asteroid resources. Acta Astronaut. 73, 49–66 (2012). https://doi.org/10.1016/j.actaastro.2011.12.010
J.A. Sanchez, C. Thomas, V. Reddy, N. Frere, S.S. Lindsay et al., A new method for deriving composition of S-type asteroids from noisy and incomplete near-infrared spectra. Astron. J. 159(4), 146 (2020). https://doi.org/10.3847/1538-3881/ab723f
C. Lewicki, A. Graps, M. Elvis, P. Metzger, A. Rivkin, Furthering asteroid resource utilization in the next decade though technology leadership. Bull. AAS 53(4), (2021). https://doi.org/10.3847/25c2cfeb.b39bbe37
J. D'Souza. Fungi could make soil from asteroids and homes on mars. Happyeconews. 2022. https://happyeconews.com/fungi-could-make-soil-from-asteroids-and-homes-on-mars/. 18 January 2025
J. Shevtsov. Seeding asteroids with fungi for space habitat soil. Space Settlement Progress. 2021. https://spacesettlementprogress.com/seeding-asteroids-with-fungi-for-space-habitat-soil/. 11 January 2025
L. Hall. Making soil for space habitats by seeding asteroids with fungi. NASA. 2021. https://www.nasa.gov/general/making-soil-for-space-habitats-by-seeding-asteroids-with-fungi/. 11 January 2025
J. Wang, E.S.W. Wong, J.C. Whitley, J. Li, J.M. Stringer et al., Ancient antimicrobial peptides kill antibiotic-resistant pathogens: Australian mammals provide new options. PLoS ONE 6(8), e24030 (2011). https://doi.org/10.1371/journal.pone.0024030
L. Towers. Pilot plant to turn co2 into algae for the aquaculture industry. The Fish Site. 2014. https://thefishsite.com/s/pilot-plant-to-turn-co2-into-algae-for-the-aquaculture-industry. 11 January 2025
C. Li, Agronomy in space–China’s crop breeding program. Space Policy 27(3), 157–164 (2011). https://doi.org/10.1016/j.spacepol.2011.06.001
Q. Ma, H. Zhou, X. Sui, C. Su, Y. Yu et al., Generation of new salt-tolerant wheat lines and transcriptomic exploration of the responsive genes to ethylene and salt stress. Plant Growth Regul. 94(1), 33–48 (2021). https://doi.org/10.1007/s10725-021-00694-9
P. O'Neill. Stanford university sends semiconductor investigation to the international space station. ISS National Laboratory. 2023. https://issnationallab.org/press-releases/spx28-