Non-Invasive Brain-Computer Interfaces: Converging Frontiers in Neural Signal Decoding and Flexible Bioelectronics Integration
Corresponding Author: Linwei Yu
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 193
Abstract
The development of non-invasive brain-computer interfaces (BCIs) relies on multidisciplinary integration across neuroscience, artificial intelligence, flexible electronics, and systems engineering. Recent advances in deep learning have significantly improved the accuracy and robustness of neural signal decoding. Parallel progress in electrode design—particularly through the use of flexible and stretchable materials like nanostructured conductors and novel fabrication strategies—has enhanced wearability and operational stability. Nevertheless, key challenges persist, including individual variability, biocompatibility limitations, and susceptibility to interference in complex environments. Further validation and optimization are needed to address gaps in generalization capability, long-term reliability, and real-world operational robustness. This review systematically examines the representative progress in neural decoding algorithms and flexible bioelectronic platforms over the past decade, highlighting key design principles, material innovations, and integration strategies that are poised to advance non-invasive BCI capabilities. It also discusses the importance of multimodal data fusion, hardware-software co-optimization, and closed-loop control strategies. Furthermore, the review discusses the application potential and associated engineering challenges of this technology in clinical rehabilitation and industrial translation, aiming to provide a reference for advancing non-invasive BCIs toward practical and scalable deployment.
Highlights:
1 The latest advancements in neural signal decoding and the integration of flexible bioelectronics for non-invasive brain-computer interfaces are reviewed.
2 Multimodal data fusion, hardware-software co-optimization, and closed-loop control strategies are critical for enhancing the robustness, adaptability, and real-time performance of brain-computer interface (BCI) systems.
3 The robust real-world deployment of BCIs requires breakthroughs in cross-subject generalization, environmental adaptability, and system reproducibility.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.J. McFarland, J.R. Wolpaw, Brain-computer interfaces for communication and control. Commun. ACM 54(5), 60–66 (2011). https://doi.org/10.1145/1941487.1941506
- J.R. Wolpaw, N. Birbaumer, D.J. McFarland, G. Pfurtscheller, T.M. Vaughan, Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767–791 (2002). https://doi.org/10.1016/S1388-2457(02)00057-3
- U. Chaudhary, N. Birbaumer, A. Ramos-Murguialday, Brain-computer interfaces for communication and rehabilitation. Nat. Rev. Neurol. 12(9), 513–525 (2016). https://doi.org/10.1038/nrneurol.2016.113
- E.F. Chang, Brain-computer interfaces for restoring communication. N. Engl. J. Med. 391(7), 654–657 (2024). https://doi.org/10.1056/nejme2407363
- J.J. Daly, J.R. Wolpaw, Brain-computer interfaces in neurological rehabilitation. Lancet Neurol. 7(11), 1032–1043 (2008). https://doi.org/10.1016/S1474-4422(08)70223-0
- Y. Wang, W. Gao, S. Yang, Q. Chen, C. Ye et al., Humanoid intelligent display platform for audiovisual interaction and sound identification. Nano-Micro Lett. 15(1), 221 (2023). https://doi.org/10.1007/s40820-023-01199-y
- S. Chen, M. Chen, X. Wang, X. Liu, B. Liu et al., Brain–computer interfaces in 2023–2024. Brain-X 3(1), e70024 (2025). https://doi.org/10.1002/brx2.70024
- N.S. Card, M. Wairagkar, C. Iacobacci, X. Hou, T. Singer-Clark et al., An accurate and rapidly calibrating speech neuroprosthesis. N. Engl. J. Med. 391(7), 609–618 (2024). https://doi.org/10.1056/nejmoa2314132
- Z. Wang, N. Shi, Y. Zhang, N. Zheng, H. Li et al., Conformal in-ear bioelectronics for visual and auditory brain-computer interfaces. Nat. Commun. 14(1), 4213 (2023). https://doi.org/10.1038/s41467-023-39814-6
- M. Mahmood, D. Mzurikwao, Y.-S. Kim, Y. Lee, S. Mishra et al., Fully portable and wireless universal brain-machine interfaces enabled by flexible scalp electronics and deep learning algorithm. Nat. Mach. Intell. 1(9), 412–422 (2019). https://doi.org/10.1038/s42256-019-0091-7
- H. Gao, L. Luo, M. Pi, Z. Li, Q. Li et al., EEG-based volitional control of prosthetic legs for walking in different terrains. IEEE Trans. Autom. Sci. Eng. 18(2), 530–540 (2021). https://doi.org/10.1109/TASE.2019.2956110
- S.L. Metzger, J.R. Liu, D.A. Moses, M.E. Dougherty, M.P. Seaton et al., Generalizable spelling using a speech neuroprosthesis in an individual with severe limb and vocal paralysis. Nat. Commun. 13(1), 6510 (2022). https://doi.org/10.1038/s41467-022-33611-3
- A.L. Benabid, T. Costecalde, A. Eliseyev, G. Charvet, A. Verney et al., An exoskeleton controlled by an epidural wireless brain-machine interface in a tetraplegic patient: a proof-of-concept demonstration. Lancet Neurol. 18(12), 1112–1122 (2019). https://doi.org/10.1016/S1474-4422(19)30321-7
- F. Li, J. Gallego, N.N. Tirko, J. Greaser, D. Bashe et al., Low-intensity pulsed ultrasound stimulation (LIPUS) modulates microglial activation following intracortical microelectrode implantation. Nat. Commun. 15(1), 5512 (2024). https://doi.org/10.1038/s41467-024-49709-9
- D.V. Lam, A. Javadekar, N. Patil, M. Yu, L. Li et al., Platelets and hemostatic proteins are co-localized with chronic neuroinflammation surrounding implanted intracortical microelectrodes. Acta Biomater. 166, 278–290 (2023). https://doi.org/10.1016/j.actbio.2023.05.004
- L. Du, H. Hao, Y. Ding, A. Gabros, T.C.E. Mier et al., An implantable, wireless, battery-free system for tactile pressure sensing. Microsyst. Nanoeng. 9, 130 (2023). https://doi.org/10.1038/s41378-023-00602-3
- E.C. Gordon, A.K. Seth, Ethical considerations for the use of brain-computer interfaces for cognitive enhancement. PLoS Biol. 22(10), e3002899 (2024). https://doi.org/10.1371/journal.pbio.3002899
- N. Rose, The Human Brain Project: social and ethical challenges. Neuron 82(6), 1212–1215 (2014). https://doi.org/10.1016/j.neuron.2014.06.001
- M.-M. Poo, China’s new ethical guidelines for the use of brain-computer interfaces. Natl. Sci. Rev. 11(4), nwae154 (2024). https://doi.org/10.1093/nsr/nwae154
- Y. Liu, Z. Zhao, M. Xu, H. Yu, Y. Zhu et al., Decoding and synthesizing tonal language speech from brain activity. Sci. Adv. 9(23), eadh0478 (2023). https://doi.org/10.1126/sciadv.adh0478
- L. Liu, B. Xi, Y. Luo, Y. Liu, P. Huang et al., Intraoperative and spatiotemporal mapping of acute inflammation response during neuroelectrode implantation. Matter 8(11), 102262 (2025). https://doi.org/10.1016/j.matt.2025.102262
- X. Gu, Z. Cao, A. Jolfaei, P. Xu, D. Wu et al., EEG-based brain-computer interfaces (BCIs): a survey of recent studies on signal sensing technologies and computational intelligence approaches and their applications. IEEE/ACM Trans. Comput. Biol. Bioinform. 18(5), 1645–1666 (2021). https://doi.org/10.1109/TCBB.2021.3052811
- E. Perez-Valero, M.A. Lopez-Gordo, C. Morillas, F. Pelayo, M.A. Vaquero-Blasco, A review of automated techniques for assisting the early detection of Alzheimer’s disease with a focus on EEG. J. Alzheimers Dis. 80(4), 1363–1376 (2021). https://doi.org/10.3233/JAD-201455
- Z. Gao, X. Wang, Y. Yang, Y. Li, K. Ma et al., A channel-fused dense convolutional network for EEG-based emotion recognition. IEEE Trans. Cogn. Dev. Syst. 13(4), 945–954 (2021). https://doi.org/10.1109/TCDS.2020.2976112
- Z.-Z. Ma, J.-J. Wu, Z. Cao, X.-Y. Hua, M.-X. Zheng et al., Motor imagery-based brain-computer interface rehabilitation programs enhance upper extremity performance and cortical activation in stroke patients. J. Neuroeng. Rehabil. 21(1), 91 (2024). https://doi.org/10.1186/s12984-024-01387-w
- A. Biasiucci, R. Leeb, I. Iturrate, S. Perdikis, A. Al-Khodairy et al., Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke. Nat. Commun. 9(1), 2421 (2018). https://doi.org/10.1038/s41467-018-04673-z
- E.W. Sellers, D.B. Ryan, C.K. Hauser, Noninvasive brain-computer interface enables communication after brainstem stroke. Sci. Transl. Med. 6(257), 257re7 (2014). https://doi.org/10.1126/scitranslmed.3007801
- R. Kaveh, C. Schwendeman, L. Pu, A.C. Arias, R. Muller, Wireless ear EEG to monitor drowsiness. Nat. Commun. 15, 6520 (2024). https://doi.org/10.1038/s41467-024-48682-7
- H. Si-Mohammed, J. Petit, C. Jeunet, F. Argelaguet, F. Spindler et al., Towards BCI-based interfaces for augmented reality: feasibility, design and evaluation. IEEE Trans. Vis. Comput. Graph. 26(3), 1608–1621 (2020). https://doi.org/10.1109/TVCG.2018.2873737
- C.-T. Lin, T.N. Do, Direct-sense brain-computer interfaces and wearable computers. IEEE Trans. Syst. Man Cybern. Syst. 51(1), 298–312 (2021). https://doi.org/10.1109/TSMC.2020.3041382
- N. Kaongoen, M. Yu, S. Jo, Two-factor authentication system using P300 response to a sequence of human photographs. IEEE Trans. Syst. Man Cybern. Syst. 50(3), 1178–1185 (2020). https://doi.org/10.1109/TSMC.2017.2756673
- H. Xue, D. Wang, M. Jin, H. Gao, X. Wang et al., Hydrogel electrodes with conductive and substrate-adhesive layers for noninvasive long-term EEG acquisition. Microsyst. Nanoeng. 9, 79 (2023). https://doi.org/10.1038/s41378-023-00524-0
- Z. Zhang, G. Chen, S. Yang, Ensemble support vector recurrent neural network for brain signal detection. IEEE Trans. Neural Netw. Learn. Syst. 33(11), 6856–6866 (2022). https://doi.org/10.1109/TNNLS.2021.3083710
- P. Sawangjai, M. Trakulruangroj, C. Boonnag, M. Piriyajitakonkij, R.K. Tripathy et al., Eeganet: removal of ocular artifacts from the EEG signal using generative adversarial networks. IEEE J. Biomed. Health Inform. 26(10), 4913–4924 (2022). https://doi.org/10.1109/JBHI.2021.3131104
- X. Shi, H. Wang, B. Li, Y. Qin, C. Peng et al., Fusion analysis of EEG-fNIRS multimodal brain signals: a multitask classification algorithm incorporating spatial-temporal convolution and dual attention mechanisms. IEEE Trans. Instrum. Meas. 74, 2506312 (2025). https://doi.org/10.1109/TIM.2025.3538086
- S.B. Borgheai, J. McLinden, A.H. Zisk, S.I. Hosni, R.J. Deligani et al., Enhancing communication for people in late-stage ALS using an fNIRS-based BCI system. IEEE Trans. Neural Syst. Rehabil. Eng. 28(5), 1198–1207 (2020). https://doi.org/10.1109/TNSRE.2020.2980772
- J. Tang, A. LeBel, S. Jain, A.G. Huth, Semantic reconstruction of continuous language from non-invasive brain recordings. Nat. Neurosci. 26(5), 858–866 (2023). https://doi.org/10.1038/s41593-023-01304-9
- D.S. Kluger, C. Forster, O. Abbasi, N. Chalas, A. Villringer et al., Modulatory dynamics of periodic and aperiodic activity in respiration-brain coupling. Nat. Commun. 14(1), 4699 (2023). https://doi.org/10.1038/s41467-023-40250-9
- R. Zhang, S. Feng, N. Hu, S. Low, M. Li et al., Hybrid brain-computer interface controlled soft robotic glove for stroke rehabilitation. IEEE J. Biomed. Health Inform. 28(7), 4194–4203 (2024). https://doi.org/10.1109/JBHI.2024.3392412
- Y. Zhang, C.S. Nam, G. Zhou, J. Jin, X. Wang et al., Temporally constrained sparse group spatial patterns for motor imagery BCI. IEEE Trans. Cybern. 49(9), 3322–3332 (2019). https://doi.org/10.1109/TCYB.2018.2841847
- Z. Tang, X. Wang, J. Wu, Y. Ping, X. Guo et al., A BCI painting system using a hybrid control approach based on SSVEP and P300. Comput. Biol. Med. 150, 106118 (2022). https://doi.org/10.1016/j.compbiomed.2022.106118
- H. Cecotti, A. Graser, Convolutional neural networks for P300 detection with application to brain-computer interfaces. IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 433–445 (2011). https://doi.org/10.1109/TPAMI.2010.125
- X. Tang, H. Shen, S. Zhao, N. Li, J. Liu, Flexible brain-computer interfaces. Nat. Electron. 6(2), 109–118 (2023). https://doi.org/10.1038/s41928-022-00913-9
- M.A. Schwemmer, N.D. Skomrock, P.B. Sederberg, J.E. Ting, G. Sharma et al., Meeting brain-computer interface user performance expectations using a deep neural network decoding framework. Nat. Med. 24(11), 1669–1676 (2018). https://doi.org/10.1038/s41591-018-0171-y
- M.W. Mathis, A. Perez Rotondo, E.F. Chang, A.S. Tolias, A. Mathis, Decoding the brain: from neural representations to mechanistic models. Cell 187(21), 5814–5832 (2024). https://doi.org/10.1016/j.cell.2024.08.051
- Y. Wang, M. Han, L. Jing, Q. Jia, S. Lv et al., Enhanced neural activity detection with microelectrode arrays modified by drug-loaded calcium alginate/chitosan hydrogel. Biosens. Bioelectron. 267, 116837 (2025). https://doi.org/10.1016/j.bios.2024.116837
- M. Sun, W. Cui, S. Yu, H. Han, B. Hu et al., A dual-branch dynamic graph convolution based adaptive TransFormer feature fusion network for EEG emotion recognition. IEEE Trans. Affect. Comput. 13(4), 2218–2228 (2022). https://doi.org/10.1109/TAFFC.2022.3199075
- C. Li, Z. Zhang, X. Zhang, G. Huang, Y. Liu et al., EEG-based emotion recognition via transformer neural architecture search. IEEE Trans. Ind. Inform. 19(4), 6016–6025 (2023). https://doi.org/10.1109/TII.2022.3170422
- S.M. Shafiul Hasan, M.R. Siddiquee, J.S. Marquez, O. Bai, Enhancement of movement intention detection using EEG signals responsive to emotional music stimulus. IEEE Trans. Affect. Comput. 13(3), 1637–1650 (2022). https://doi.org/10.1109/TAFFC.2020.3025004
- C. Wang, H. Yan, W. Huang, W. Sheng, Y. Wang et al., Neural encoding with unsupervised spiking convolutional neural network. Commun. Biol. 6, 880 (2023). https://doi.org/10.1038/s42003-023-05257-4
- K. Kasahara, C.S. DaSalla, M. Honda, T. Hanakawa, Basal ganglia-cortical connectivity underlies self-regulation of brain oscillations in humans. Commun. Biol. 5(1), 712 (2022). https://doi.org/10.1038/s42003-022-03665-6
- T. Rohe, A.-C. Ehlis, U. Noppeney, The neural dynamics of hierarchical Bayesian causal inference in multisensory perception. Nat. Commun. 10, 1907 (2019). https://doi.org/10.1038/s41467-019-09664-2
- X. Lin, X. Zhang, J. Chen, J. Liu, Material selection and device design of scalable flexible brain-computer interfaces: a balance between electrical and mechanical performance. Adv. Mater. 37(26), 2413938 (2025). https://doi.org/10.1002/adma.202413938
- J. Wang, T. Wang, H. Liu, K. Wang, K. Moses et al., Flexible electrodes for brain-computer interface system. Adv. Mater. 35(47), 2211012 (2023). https://doi.org/10.1002/adma.202211012
- S. Lin, J. Jiang, K. Huang, L. Li, X. He et al., Advanced electrode technologies for noninvasive brain-computer interfaces. ACS Nano 17(24), 24487–24513 (2023). https://doi.org/10.1021/acsnano.3c06781
- G. Balakrishnan, J. Song, C. Mou, C.J. Bettinger, Recent progress in materials chemistry to advance flexible bioelectronics in medicine. Adv. Mater. 34(10), 2106787 (2022). https://doi.org/10.1002/adma.202106787
- D. Li, T.-R. Cui, J.-H. Liu, W.-C. Shao, X. Liu et al., Motion-unrestricted dynamic electrocardiogram system utilizing imperceptible electronics. Nat. Commun. 16(1), 3259 (2025). https://doi.org/10.1038/s41467-025-58390-5
- O. Gul, M. Song, C.-Y. Gu, J. Ahn, K. Lee et al., Bioinspired interfacial engineering for highly stretchable electronics. Nat. Commun. 16, 1337 (2025). https://doi.org/10.1038/s41467-025-56502-9
- H. Cho, I. Lee, J. Jang, J.-H. Kim, H. Lee et al., Real-time finger motion recognition using skin-conformable electronics. Nat. Electron. 6(8), 619–629 (2023). https://doi.org/10.1038/s41928-023-01012-z
- P. Li, W. Sun, J. Li, J.-P. Chen, X. Wang et al., N-type semiconducting hydrogel. Science 384(6695), 557–563 (2024). https://doi.org/10.1126/science.adj4397
- W. Zhang, J. Liu, W. Song, J. Shan, H. Guan et al., Chemical passivation and grain-boundary manipulation via in situ cross-linking strategy for scalable flexible perovskite solar cells. Sci. Adv. 11(5), eadr2290 (2025). https://doi.org/10.1126/sciadv.adr2290
- E.O. Polat, G. Mercier, I. Nikitskiy, E. Puma, T. Galan et al., Flexible graphene photodetectors for wearable fitness monitoring. Sci. Adv. 5(9), eaaw7846 (2019). https://doi.org/10.1126/sciadv.aaw7846
- S. Wang, J. Liu, X. Song, H. Xu, Y. Gu et al., Artificial intelligence empowers solid-state batteries for material screening and performance evaluation. Nano-Micro Lett. 17(1), 287 (2025). https://doi.org/10.1007/s40820-025-01797-y
- L.L. Zhang, X. Zhao, M.D. Stoller, Y. Zhu, H. Ji et al., Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett. 12(4), 1806–1812 (2012). https://doi.org/10.1021/nl203903z
- M.D. Ho, Y. Ling, L.W. Yap, Y. Wang, D. Dong et al., Percolating network of ultrathin gold nanowires and silver nanowires toward “invisible” wearable sensors for detecting emotional expression and apexcardiogram. Adv. Funct. Mater. 27(25), 1700845 (2017). https://doi.org/10.1002/adfm.201700845
- C. Xu, Y. Wang, J. Zhang, J. Wan, Z. Xiang et al., Three-dimensional micro strain gauges as flexible, modular tactile sensors for versatile integration with micro- and macroelectronics. Sci. Adv. 10(34), eadp6094 (2024). https://doi.org/10.1126/sciadv.adp6094
- Z. Pu, X. Zhang, H. Yu, J. Tu, H. Chen et al., A thermal activated and differential self-calibrated flexible epidermal biomicrofluidic device for wearable accurate blood glucose monitoring. Sci. Adv. 7(5), eabd0199 (2021). https://doi.org/10.1126/sciadv.abd0199
- Y. Lee, J. Kim, H. Joo, M.S. Raj, R. Ghaffari et al., Wearable sensing systems with mechanically soft assemblies of nanoscale materials. Adv. Mater. Technol. 2(9), 1700053 (2017). https://doi.org/10.1002/admt.201700053
- H.-R. Lim, Y. Lee, K.A. Jones, Y.-T. Kwon, S. Kwon et al., All-in-one, wireless, fully flexible sodium sensor system with integrated Au/CNT/Au nanocomposites. Sens. Actuat. B Chem. 331, 129416 (2021). https://doi.org/10.1016/j.snb.2020.129416
- H. Wang, W. Wang, J.J. Kim, C. Wang, Y. Wang et al., An optical-based multipoint 3-axis pressure sensor with a flexible thin-film form. Sci. Adv. 9(36), eadi2445 (2023). https://doi.org/10.1126/sciadv.adi2445
- M. Herber, E.H. Hill, Optically-directed bubble printing of MXenes on flexible substrates toward MXene-enabled wearable electronics and strain sensors. Nano Lett. 25(18), 7258–7265 (2025). https://doi.org/10.1021/acs.nanolett.4c06355
- C. Yang, H. Wang, G. Zhou, H. Zhao, W. Hou et al., A multimodal perception-enabled flexible memristor with combined sensing-storage-memory functions for enhanced artificial injury recognition. Small 20(45), 2402588 (2024). https://doi.org/10.1002/smll.202402588
- Y. Zhao, S. Zhao, X. Pang, A. Zhang, C. Li et al., Biomimetic wafer-scale alignment of tellurium nanowires for high-mobility flexible and stretchable electronics. Sci. Adv. 10(14), eadm9322 (2024). https://doi.org/10.1126/sciadv.adm9322
- J. Zhang, T. Sun, Y. Chen, L. Liu, H. Zhao et al., Nanowires in flexible sensors: structure is becoming a key in controlling the sensing performance. Adv. Mater. Technol. 7(12), 2200163 (2022). https://doi.org/10.1002/admt.202200163
- Z. Zhang, Y. Wang, T. Cai, B. Wu, B. Hu et al., Recent progress on flexible silicon nanomembranes for advanced electronics and optoelectronics. Adv. Funct. Mater. 35(35), 2502191 (2025). https://doi.org/10.1002/adfm.202502191
- Y. Chen, Y. Zhang, Z. Liang, Y. Cao, Z. Han et al., Flexible inorganic bioelectronics. npj Flex. Electron. 4, 2 (2020). https://doi.org/10.1038/s41528-020-0065-1
- J. Wang, Q. Zhou, A. Wang, Z. Zhu, K. Moses et al., Sponge inspired flexible, antibacterial aerogel electrode with long-term high-quality electrophysiological signal recording for human-machine interface. Adv. Funct. Mater. 34(23), 2309704 (2024). https://doi.org/10.1002/adfm.202309704
- S. Wu, H. Kan, J. Gao, W. Yue, C. Zhang et al., Convolutional neural networks-motivated high-performance multi-functional electronic skin for intelligent human-computer interaction. Nano Energy 122, 109313 (2024). https://doi.org/10.1016/j.nanoen.2024.109313
- J. Huang, S. Yang, X. Tang, L. Yang, W. Chen et al., Flexible, transparent, and wafer-scale artificial synapse array based on TiOx/Ti3C2Tx film for neuromorphic computing. Adv. Mater. 35(33), e2303737 (2023). https://doi.org/10.1002/adma.202303737
- C. Yiu, Y. Liu, W. Park, J. Li, X. Huang et al., Skin-interfaced multimodal sensing and tactile feedback system as enhanced human-machine interface for closed-loop drone control. Sci. Adv. 11(13), eadt6041 (2025). https://doi.org/10.1126/sciadv.adt6041
- C. Vidaurre, B. Blankertz, Towards a cure for BCI illiteracy. Brain Topogr. 23(2), 194–198 (2010). https://doi.org/10.1007/s10548-009-0121-6
- C. Rubinos, S.B. Kwon, M. Megjhani, K. Terilli, B. Wong et al., Predicting shunt dependency from the effect of cerebrospinal fluid drainage on ventricular size. Neurocrit. Care 37(3), 670–677 (2022). https://doi.org/10.1007/s12028-022-01538-8
- D. Hagemann, J. Hewig, C. Walter, E. Naumann, Skull thickness and magnitude of EEG alpha activity. Clin. Neurophysiol. 119(6), 1271–1280 (2008). https://doi.org/10.1016/j.clinph.2008.02.010
- M.U. Ali, A. Zafar, K.D. Kallu, H. Masood, M.M.N. Mannan et al., Correlation-filter-based channel and feature selection framework for hybrid EEG-fNIRS BCI applications. IEEE J. Biomed. Health Inform. 28(6), 3361–3370 (2024). https://doi.org/10.1109/JBHI.2023.3294586
- D. Kollias, S. Zafeiriou, Exploiting multi-CNN features in CNN-RNN based dimensional emotion recognition on the OMG in-the-wild dataset. IEEE Trans. Affect. Comput. 12(3), 595–606 (2021). https://doi.org/10.1109/TAFFC.2020.3014171
- C. Li, Z. Zhang, R. Song, J. Cheng, Y. Liu et al., EEG-based emotion recognition via neural architecture search. IEEE Trans. Affect. Comput. 14(2), 957–968 (2023). https://doi.org/10.1109/TAFFC.2021.3130387
- B.J. Edelman, S. Zhang, G. Schalk, P. Brunner, G. Müller-Putz et al., Non-invasive brain-computer interfaces: state of the art and trends. IEEE Rev. Biomed. Eng. 18, 26–49 (2025). https://doi.org/10.1109/RBME.2024.3449790
- X. Gao, Y. Wang, X. Chen, B. Liu, S. Gao, Brain-computer interface: a brain-in-the-loop communication system. Proc. IEEE 113(5), 478–511 (2025). https://doi.org/10.1109/JPROC.2025.3600389
- Y. Lu, L. Bi, H. Li, Model predictive-based shared control for brain-controlled driving. IEEE Trans. Intell. Transp. Syst. 21(2), 630–640 (2020). https://doi.org/10.1109/TITS.2019.2897356
- E.A. Aydin, O.F. Bay, I. Guler, P300-based asynchronous brain computer interface for environmental control system. IEEE J. Biomed. Health Inform. 22(3), 653–663 (2018). https://doi.org/10.1109/JBHI.2017.2690801
- G. Ganesh, K. Nakamura, S. Saetia, A.M. Tobar, E. Yoshida et al., Utilizing sensory prediction errors for movement intention decoding: a new methodology. Sci. Adv. 4(5), eaaq0183 (2018). https://doi.org/10.1126/sciadv.aaq0183
- H. Wang, Y. Qi, L. Yao, Y. Wang, D. Farina et al., A human-machine joint learning framework to boost endogenous BCI training. IEEE Trans. Neural Netw. Learn. Syst. 35(12), 17534–17548 (2024). https://doi.org/10.1109/TNNLS.2023.3305621
- B.-Y. Tsai, S.V.S. Diddi, L.-W. Ko, S.-J. Wang, C.-Y. Chang et al., Development of an adaptive artifact subspace reconstruction based on hebbian/anti-hebbian learning networks for enhancing BCI performance. IEEE Trans. Neural Netw. Learn. Syst. 35(1), 348–361 (2024). https://doi.org/10.1109/TNNLS.2022.3174528
- A. Rakshit, A. Konar, A.K. Nagar, A hybrid brain-computer interface for closed-loop position control of a robot arm. IEEE/CAA J. Autom. Sin. 7(5), 1344–1360 (2020). https://doi.org/10.1109/JAS.2020.1003336
- S. Pancholi, A. Giri, A. Jain, L. Kumar, S. Roy, Source aware deep learning framework for hand kinematic reconstruction using EEG signal. IEEE Trans. Cybern. 53(7), 4094–4106 (2023). https://doi.org/10.1109/TCYB.2022.3166604
- C. Ju, C. Guan, Graph neural networks on SPD manifolds for motor imagery classification: a perspective from the time-frequency analysis. IEEE Trans. Neural Netw. Learn. Syst. 35(12), 17701–17715 (2024). https://doi.org/10.1109/TNNLS.2023.3307470
- C. Ju, C. Guan, Tensor-CSPNet: a novel geometric deep learning framework for motor imagery classification. IEEE Trans. Neural Netw. Learn. Syst. 34(12), 10955–10969 (2023). https://doi.org/10.1109/TNNLS.2022.3172108
- P. Li, C. Wang, M. Li, X. Xuan, B. Zhou et al., Flexible silver/carbon nanotube-graphene oxide-polydimethylsiloxane electrode patch for electroencephalography language. Adv. Intell. Syst. 5(8), 2300018 (2023). https://doi.org/10.1002/aisy.202300018
- E. Yin, T. Zeyl, R. Saab, D. Hu, Z. Zhou et al., An auditory-tactile visual saccade-independent P300 brain-computer interface. Int. J. Neural Syst. 26(1), 1650001 (2016). https://doi.org/10.1142/S0129065716500015
- X.-A. Fan, L. Bi, T. Teng, H. Ding, Y. Liu, A brain-computer interface-based vehicle destination selection system using P300 and SSVEP signals. IEEE Trans. Intell. Transp. Syst. 16(1), 274–283 (2015). https://doi.org/10.1109/TITS.2014.2330000
- M.-H. Lee, O.-Y. Kwon, Y.-J. Kim, H.-K. Kim, Y.-E. Lee et al., EEG dataset and OpenBMI toolbox for three BCI paradigms: an investigation into BCI illiteracy. Gigascience 8(5), giz002 (2019). https://doi.org/10.1093/gigascience/giz002
- S. Mirjalili, A. Duarte, Using machine learning to simultaneously quantify multiple cognitive components of episodic memory. Nat. Commun. 16(1), 2856 (2025). https://doi.org/10.1038/s41467-025-58265-9
- P.A. Kragel, M.C. Reddan, K.S. LaBar, T.D. Wager, Emotion schemas are embedded in the human visual system. Sci. Adv. 5(7), eaaw4358 (2019). https://doi.org/10.1126/sciadv.aaw4358
- R.M. Cichy, A. Oliva, A M/EEG-fMRI fusion primer: resolving human brain responses in space and time. Neuron 107(5), 772–781 (2020). https://doi.org/10.1016/j.neuron.2020.07.001
- X. Ru, K. He, B. Lyu, D. Li, W. Xu et al., Multimodal neuroimaging with optically pumped magnetometers: a simultaneous MEG-EEG-fNIRS acquisition system. Neuroimage 259, 119420 (2022). https://doi.org/10.1016/j.neuroimage.2022.119420
- C.-H. Han, K.-R. Müller, H.-J. Hwang, Enhanced performance of a brain switch by simultaneous use of EEG and NIRS data for asynchronous brain-computer interface. IEEE Trans. Neural Syst. Rehabil. Eng. 28(10), 2102–2112 (2020). https://doi.org/10.1109/TNSRE.2020.3017167
- Y.-C. Jiang, R. Ma, S. Qi, S. Ge, Z. Sun et al., Characterization of bimanual cyclical tasks from single-trial EEG-fNIRS measurements. IEEE Trans. Neural Syst. Rehabil. Eng. 30, 146–156 (2022). https://doi.org/10.1109/TNSRE.2022.3144216
- M.A. Pisauro, E. Fouragnan, C. Retzler, M.G. Philiastides, Neural correlates of evidence accumulation during value-based decisions revealed via simultaneous EEG-fMRI. Nat. Commun. 8, 15808 (2017). https://doi.org/10.1038/ncomms15808
- D. Ji, Y. Huang, Z. Chen, X. Zhou, J. Wang et al., Enhanced spatial division multiple access BCI performance via incorporating MEG with EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 33, 1202–1211 (2025). https://doi.org/10.1109/TNSRE.2025.3550653
- M. Klumpp, L. Embray, F. Heimburg, A.L. Alves Dias, J. Simon et al., Syntalos: a software for precise synchronization of simultaneous multi-modal data acquisition and closed-loop interventions. Nat. Commun. 16(1), 708 (2025). https://doi.org/10.1038/s41467-025-56081-9
- W. Li, C. Gao, Z. Li, Y. Diao, J. Li et al., BrainFusion: a low-code, reproducible, and deployable software framework for multimodal brain-computer interface and brain-body interaction research. Adv. Sci. 12(32), e17408 (2025). https://doi.org/10.1002/advs.202417408
- G. Castrillon, N. Sollmann, K. Kurcyus, A. Razi, S.M. Krieg et al., The physiological effects of noninvasive brain stimulation fundamentally differ across the human cortex. Sci. Adv. 6(5), eaay2739 (2020). https://doi.org/10.1126/sciadv.aay2739
- P. Georgieva, N. Bouaynaya, F. Silva, L. Mihaylova, L.C. Jain, A beamformer-p filter framework for localization of correlated EEG sources. IEEE J. Biomed. Health Inform. 20(3), 880–892 (2016). https://doi.org/10.1109/JBHI.2015.2413752
- S. Iwama, M. Takemi, R. Eguchi, R. Hirose, M. Morishige et al., Two common issues in synchronized multimodal recordings with EEG: jitter and latency. Neurosci. Res. 203, 1–7 (2024). https://doi.org/10.1016/j.neures.2023.12.003
- E. Boto, Z.A. Seedat, N. Holmes, J. Leggett, R.M. Hill et al., Wearable neuroimaging: combining and contrasting magnetoencephalography and electroencephalography. Neuroimage 201, 116099 (2019). https://doi.org/10.1016/j.neuroimage.2019.116099
- L. Qiu, W. Feng, L. Zhong, X. Song, Z. Ying et al., Mutual information learning-based end-to-end fusion network for hybrid EEG-fNIRS brain-computer interface. IEEE Trans. Instrum. Meas. 74, 6510113 (2025). https://doi.org/10.1109/TIM.2025.3604929
- N.J. Sexton, B.C. Love, Reassessing hierarchical correspondences between brain and deep networks through direct interface. Sci. Adv. 8(28), eabm2219 (2022). https://doi.org/10.1126/sciadv.abm2219
- G.B. Kshirsagar, N.D. Londhe, DS-P3SNet: an efficient classification approach for Devanagari script-based P300 speller using compact channelwise convolution and knowledge distillation. IEEE Trans. Syst. Man Cybern. Syst. 52(12), 7431–7443 (2022). https://doi.org/10.1109/TSMC.2022.3156861
- Y. Ding, N. Robinson, C. Tong, Q. Zeng, C. Guan, LGGNet: learning from local-global-graph representations for brain-computer interface. IEEE Trans. Neural Netw. Learn. Syst. 35(7), 9773–9786 (2024). https://doi.org/10.1109/TNNLS.2023.3236635
- E. Jeon, W. Ko, J.S. Yoon, H.-I. Suk, Mutual information-driven subject-invariant and class-relevant deep representation learning in BCI. IEEE Trans. Neural Netw. Learn. Syst. 34(2), 739–749 (2023). https://doi.org/10.1109/TNNLS.2021.3100583
- D. Forenzo, H. Zhu, B. He, A continuous pursuit dataset for online deep learning-based EEG brain-computer interface. Sci. Data 11(1), 1256 (2024). https://doi.org/10.1038/s41597-024-04090-6
- Y. Li, L. Fan, H. Shen, D. Hu, HR-SNN: an end-to-end spiking neural network for four-class classification motor imagery brain–computer interface. IEEE Trans. Cogn. Dev. Syst. 16(6), 1955–1968 (2024). https://doi.org/10.1109/TCDS.2024.3395443
- C. Li, Z. Gu, A Riemannian convolutional neural network for EEG-based motor imagery decoding. Neurocomputing 639, 130206 (2025). https://doi.org/10.1016/j.neucom.2025.130206
- S. Huang, Q. Wei, A deep learning model combining convolutional neural networks and a selective kernel mechanism for SSVEP-Based BCIs. Comput. Biol. Med. 196, 110691 (2025). https://doi.org/10.1016/j.compbiomed.2025.110691
- F. Fahimi, S. Dosen, K.K. Ang, N. Mrachacz-Kersting, C. Guan, Generative adversarial networks-based data augmentation for brain-computer interface. IEEE Trans. Neural Netw. Learn. Syst. 32(9), 4039–4051 (2021). https://doi.org/10.1109/TNNLS.2020.3016666
- J. Zhang, J. Fang, S. Liu, D. Liu, H. Wu et al., Toward cross-brain-computer interface: a prototype-supervised adversarial transfer learning approach with multiple sources. IEEE Trans. Instrum. Meas. 73, 2528113 (2024). https://doi.org/10.1109/TIM.2024.3451593
- A. Momeni, B. Rahmani, M. Malléjac, P. Del Hougne, R. Fleury, Backpropagation-free training of deep physical neural networks. Science 382(6676), 1297–1303 (2023). https://doi.org/10.1126/science.adi8474
- B. Yuen, X. Dong, T. Lu, A 3D ray traced biological neural network learning model. Nat. Commun. 15(1), 4693 (2024). https://doi.org/10.1038/s41467-024-48747-7
- W. Fang, Y. Chen, J. Ding, Z. Yu, T. Masquelier et al., SpikingJelly: an open-source machine learning infrastructure platform for spike-based intelligence. Sci. Adv. 9(40), eadi1480 (2023). https://doi.org/10.1126/sciadv.adi1480
- T. Zhang, X. Cheng, S. Jia, M.-M. Poo, Y. Zeng et al., Self-backpropagation of synaptic modifications elevates the efficiency of spiking and artificial neural networks. Sci. Adv. 7(43), eabh0146 (2021). https://doi.org/10.1126/sciadv.abh0146
- G. Amiri, V. Shalchyan, Decoding muscle activity via CNN-LSTM from 3D spatiotemporal EEG. Comput. Methods Progr. Biomed. 271, 108983 (2025). https://doi.org/10.1016/j.cmpb.2025.108983
- Z. Khademi, F. Ebrahimi, H.M. Kordy, A transfer learning-based CNN and LSTM hybrid deep learning model to classify motor imagery EEG signals. Comput. Biol. Med. 143, 105288 (2022). https://doi.org/10.1016/j.compbiomed.2022.105288
- Z. An, F. Wang, Y. Wen, F. Hu, S. Han, A real-time CNN–BiLSTM-based classifier for patient-centered AR-SSVEP active rehabilitation exoskeleton system. Expert Syst. Appl. 255, 124706 (2024). https://doi.org/10.1016/j.eswa.2024.124706
- J.-H. Jeong, J.-H. Cho, B.-H. Lee, S.-W. Lee, Real-time deep neurolinguistic learning enhances noninvasive neural language decoding for brain–machine interaction. IEEE Trans. Cybern. 53(12), 7469–7482 (2023). https://doi.org/10.1109/TCYB.2022.3211694
- M. Jiao, S. Yang, X. Xian, N. Fotedar, F. Liu, Multi-modal electrophysiological source imaging with attention neural networks based on deep fusion of EEG and MEG. IEEE Trans. Neural Syst. Rehabil. Eng. 32, 2492–2502 (2024). https://doi.org/10.1109/TNSRE.2024.3424669
- D. Lahat, T. Adali, C. Jutten, Multimodal data fusion: an overview of methods, challenges, and prospects. Proc. IEEE 103(9), 1449–1477 (2015). https://doi.org/10.1109/JPROC.2015.2460697
- H. Sun, H. Tian, Y. Hu, Y. Cui, X. Chen et al., Bio-plausible multimodal learning with emerging neuromorphic devices. Adv. Sci. 11(45), 2406242 (2024). https://doi.org/10.1002/advs.202406242
- J. Wang, L. Yao, Y. Wang, Enhanced online continuous brain-control by deep learning-based EEG decoding. IEEE Trans. Neural Syst. Rehabil. Eng. 33, 2834–2846 (2025). https://doi.org/10.1109/TNSRE.2025.3591254
- K. Bhadra, A.-L. Giraud, S. Marchesotti, Learning to operate an imagined speech Brain-Computer Interface involves the spatial and frequency tuning of neural activity. Commun. Biol. 8(1), 271 (2025). https://doi.org/10.1038/s42003-025-07464-7
- I. Batzianoulis, F. Iwane, S. Wei, C.G.P.R. Correia, R. Chavarriaga et al., Customizing skills for assistive robotic manipulators, an inverse reinforcement learning approach with error-related potentials. Commun. Biol. 4(1), 1406 (2021). https://doi.org/10.1038/s42003-021-02891-8
- X. Deng, Z.L. Yu, C. Lin, Z. Gu, Y. Li, Self-adaptive shared control with brain state evaluation network for human-wheelchair cooperation. J. Neural Eng. 17(4), 045005 (2020). https://doi.org/10.1088/1741-2552/ab937e
- Y. Zhou, T. Yu, W. Gao, W. Huang, Z. Lu et al., Shared three-dimensional robotic arm control based on asynchronous BCI and computer vision. IEEE Trans. Neural Syst. Rehabil. Eng. 31, 3163–3175 (2023). https://doi.org/10.1109/TNSRE.2023.3299350
- L. Hu, J. Zhu, S. Chen, Y. Zhou, Z. Song et al., A wearable asynchronous brain-computer interface based on EEG-EOG signals with fewer channels. IEEE Trans. Biomed. Eng. 71(2), 504–513 (2024). https://doi.org/10.1109/TBME.2023.3308371
- F. Aloise, P. Aricò, F. Schettini, S. Salinari, D. Mattia et al., Asynchronous gaze-independent event-related potential-based brain-computer interface. Artif. Intell. Med. 59(2), 61–69 (2013). https://doi.org/10.1016/j.artmed.2013.07.006
- G.R. Muller-Putz, G. Pfurtscheller, Control of an electrical prosthesis with an SSVEP-based BCI. IEEE Trans. Biomed. Eng. 55(1), 361–364 (2008). https://doi.org/10.1109/TBME.2007.897815
- R.E. Alcaide-Aguirre, S.A. Warschausky, D. Brown, A. Aref, J.E. Huggins, Asynchronous brain-computer interface for cognitive assessment in people with cerebral palsy. J. Neural Eng. 14(6), 066001 (2017). https://doi.org/10.1088/1741-2552/aa7fc4
- X. Zhang, W. Hou, Y. Wang, N. Jiang, Low-latency asynchronous BCI by detecting the motion onset VEP induced by the action observation stimulus in senior. IEEE Trans. Instrum. Meas. 72, 2528610 (2023). https://doi.org/10.1109/TIM.2023.3320759
- Z. Liu, J. Mei, J. Tang, M. Xu, B. Gao et al., A memristor-based adaptive neuromorphic decoder for brain-computer interfaces. Nat. Electron. 8(4), 362–372 (2025). https://doi.org/10.1038/s41928-025-01340-2
- J.Y. Lee, S. Lee, A. Mishra, X. Yan, B. McMahan et al., Brain-computer interface control with artificial intelligence copilots. Nat. Mach. Intell. 7(9), 1510–1523 (2025). https://doi.org/10.1038/s42256-025-01090-y
- Y. Ding, C. Udompanyawit, Y. Zhang, B. He, EEG-based brain-computer interface enables real-time robotic hand control at individual finger level. Nat. Commun. 16(1), 5401 (2025). https://doi.org/10.1038/s41467-025-61064-x
- Y. Dong, W. An, Z. Wang, D. Zhang, An artificial intelligence-assisted flexible and wearable mechanoluminescent strain sensor system. Nano-Micro Lett. 17(1), 62 (2024). https://doi.org/10.1007/s40820-024-01572-5
- S. Huang, B. Zhang, Z. Shao, L. He, Q. Zhang et al., Ultraminiaturized stretchable strain sensors based on single silicon nanowires for imperceptible electronic skins. Nano Lett. 20(4), 2478–2485 (2020). https://doi.org/10.1021/acs.nanolett.9b05217
- Z. Liu, J. Xu, D. Chen, G. Shen, Flexible electronics based on inorganic nanowires. Chem. Soc. Rev. 44(1), 161–192 (2015). https://doi.org/10.1039/c4cs00116h
- Y. Guo, K. Li, W. Yue, N.-Y. Kim, Y. Li et al., A rapid adaptation approach for dynamic air-writing recognition using wearable wristbands with self-supervised contrastive learning. Nano-Micro Lett. 17(1), 41 (2024). https://doi.org/10.1007/s40820-024-01545-8
- B. Wen, J.E. Sader, J.J. Boland, Mechanical properties of ZnO nanowires. Phys. Rev. Lett. 101(17), 175502 (2008). https://doi.org/10.1103/physrevlett.101.175502
- W. Liu, N. Liu, J. Sun, P.-C. Hsu, Y. Li et al., Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett. 15(4), 2740–2745 (2015). https://doi.org/10.1021/acs.nanolett.5b00600
- J.W. Borchert, U. Zschieschang, F. Letzkus, M. Giorgio, R.T. Weitz et al., Flexible low-voltage high-frequency organic thin-film transistors. Sci. Adv. 6(21), eaaz5156 (2020). https://doi.org/10.1126/sciadv.aaz5156
- H. An, T. Habib, S. Shah, H. Gao, M. Radovic et al., Surface-agnostic highly stretchable and bendable conductive MXene multilayers. Sci. Adv. 4(3), eaaq0118 (2018). https://doi.org/10.1126/sciadv.aaq0118
- Z. Ren, S. Deng, J. Shao, Y. Si, C. Zhou et al., Ultrahigh-power-density flexible piezoelectric energy harvester based on freestanding ferroelectric oxide thin films. Nat. Commun. 16, 3192 (2025). https://doi.org/10.1038/s41467-025-58386-1
- D. Ma, M. Ji, H. Yi, Q. Wang, F. Fan et al., Pushing the thinness limit of silver films for flexible optoelectronic devices via ion-beam thinning-back process. Nat. Commun. 15(1), 2248 (2024). https://doi.org/10.1038/s41467-024-46467-6
- X. Wang, G. Bai, J. Liang, Q. Xie, Z. Chen et al., Gustatory interface for operative assessment and taste decoding in patients with tongue cancer. Nat. Commun. 15(1), 8967 (2024). https://doi.org/10.1038/s41467-024-53379-y
- D. Kim, W.K. Jung, S. Lee, Single-crystalline-level properties of ultrathin SrRuO3 flexible membranes with wide and clean surface. NPJ Flex. Electron. 6, 24 (2022). https://doi.org/10.1038/s41528-022-00155-x
- J. Jin, Z. Zhu, Y. Ming, Y. Zhou, J. Shang et al., Spontaneous bifacial capping of perovskite film for efficient and mechanically stable flexible solar cell. Nat. Commun. 16(1), 90 (2025). https://doi.org/10.1038/s41467-024-55652-6
- B. Sun, R. Xu, X. Han, J. Xu, W. Hong et al., Ultra-high temperature tolerant flexible transparent electrode with embedded silver nanowires bundle micromesh for electrical heater. NPJ Flex. Electron. 6, 48 (2022). https://doi.org/10.1038/s41528-022-00182-8
- J. Liu, C. Jiang, Q. Yu, Y. Ni, C. Yu et al., Multidimensional free shape-morphing flexible neuromorphic devices with regulation at arbitrary points. Nat. Commun. 16(1), 756 (2025). https://doi.org/10.1038/s41467-024-55670-4
- K.L. Zhou, C.B. Han, C.F. Li, J. Jiu, Y. Yang et al., Highly stable transparent conductive electrodes based on silver-platinum alloy-walled hollow nanowires for optoelectronic devices. ACS Appl. Mater. Interfaces 10(42), 36128–36135 (2018). https://doi.org/10.1021/acsami.8b12238
- D. Kim, J. Kwon, J. Jung, K. Kim, H. Lee et al., A transparent and flexible capacitive-force touch pad from high-aspect-ratio copper nanowires with enhanced oxidation resistance for applications in wearable electronics. Small Meth. 2(7), 1800077 (2018). https://doi.org/10.1002/smtd.201800077
- L. Li, S. Zhao, W. Ran, Z. Li, Y. Yan et al., Dual sensing signal decoupling based on tellurium anisotropy for VR interaction and neuro-reflex system application. Nat. Commun. 13(1), 5975 (2022). https://doi.org/10.1038/s41467-022-33716-9
- X. Karagiorgis, N.M. Nair, S. Sandhu, A.S. Dahiya, P.J. Skabara et al., Fully degradable, transparent, and flexible photodetectors using ZnO nanowires and PEDOT: PSS based nanofibres. NPJ Flex. Electron. 9(1), 22 (2025). https://doi.org/10.1038/s41528-025-00385-9
- X. Li, S. Xing, Y. Li, G. Wang, X. Gao et al., Colloidal synthesis of sub-1-nm PbSe nanowires via cation exchange for high-performance near-infrared self-powered photoelectrochemical-type photodetectors. Adv. Sci. 12(26), 2501993 (2025). https://doi.org/10.1002/advs.202501993
- S. Wang, X. Song, J. Xu, J. Wang, L. Yu, Flexible silicon for high-performance photovoltaics, photodetectors and bio-interfaced electronics. Mater. Horiz. 12(4), 1106–1132 (2025). https://doi.org/10.1039/d4mh01466a
- S. Zhang, T. Zhang, Z. Liu, J. Wang, J. Xu et al., Flexible and robust 3D a-SiGe radial junction near-infrared photodetectors for rapid sphygmic signal monitoring. Adv. Funct. Mater. 32(2), 2107040 (2022). https://doi.org/10.1002/adfm.202107040
- H. Ma, J. Xu, K. Chen, L. Yu, Synergetic effect in rolling GaIn alloy droplets enables ultralow temperature growth of silicon nanowires at 70 °C on plastics. Nanoscale 12(16), 8949–8957 (2020). https://doi.org/10.1039/d0nr01283a
- X. Song, Y. Gu, S. Wang, J. Wang, L. Yu, Nanowire-based flexible sensors for wearable electronics, brain-computer interfaces, and artificial skins. Electron 3(2), e77 (2025). https://doi.org/10.1002/elt2.77
- X. Song, L. Wu, Y. Liang, Z. Liu, J. Wang et al., High-performance transparent silicon nanowire thin film transistors integrated on glass substrates via a room temperature solution passivation. Adv. Electron. Mater. 9(4), 2201236 (2023). https://doi.org/10.1002/aelm.202201236
- Z. Xue, M. Sun, T. Dong, Z. Tang, Y. Zhao et al., Deterministic line-shape programming of silicon nanowires for extremely stretchable springs and electronics. Nano Lett. 17(12), 7638–7646 (2017). https://doi.org/10.1021/acs.nanolett.7b03658
- J. Yan, Y. Zhang, Z. Liu, J. Wang, J. Xu et al., Ultracompact single-nanowire-morphed grippers driven by vectorial Lorentz forces for dexterous robotic manipulations. Nat. Commun. 14(1), 3786 (2023). https://doi.org/10.1038/s41467-023-39524-z
- R. Yuan, W. Qian, Z. Liu, J. Wang, J. Xu et al., Designable integration of silicide nanowire springs as ultra-compact and stretchable electronic interconnections. Small 18(6), 2104690 (2022). https://doi.org/10.1002/smll.202104690
- L. Wu, Z. Hu, L. Liang, R. Hu, J. Wang et al., Step-necking growth of silicon nanowire channels for high performance field effect transistors. Nat. Commun. 16(1), 965 (2025). https://doi.org/10.1038/s41467-025-56376-x
- H. Ma, R. Yuan, J. Wang, Y. Shi, J. Xu et al., Cylindrical line-feeding growth of free-standing silicon nanohelices as elastic springs and resonators. Nano Lett. 20(7), 5072–5080 (2020). https://doi.org/10.1021/acs.nanolett.0c01265
- H. Hu, S. Wang, S. Wang, G. Liu, T. Cao et al., Aligned silver nanowires enabled highly stretchable and transparent electrodes with unusual conductive property. Adv. Funct. Mater. 29(33), 1902922 (2019). https://doi.org/10.1002/adfm.201902922
- B. Hwang, H.-A.-S. Shin, T. Kim, Y.-C. Joo, S.M. Han, Highly reliable Ag nanowire flexible transparent electrode with mechanically welded junctions. Small 10(16), 3397–3404 (2014). https://doi.org/10.1002/smll.201303906
- V.R. Feig, H. Tran, M. Lee, Z. Bao, Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue. Nat. Commun. 9(1), 2740 (2018). https://doi.org/10.1038/s41467-018-05222-4
- H. He, L. Zhang, X. Guan, H. Cheng, X. Liu et al., Biocompatible conductive polymers with high conductivity and high stretchability. ACS Appl. Mater. Interfaces 11(29), 26185–26193 (2019). https://doi.org/10.1021/acsami.9b07325
- J. Zhou, H. Liu, Y. Sun, C. Wang, K. Chen, Self-healing titanium dioxide nanocapsules-graphene/multi-branched polyurethane hybrid flexible film with multifunctional properties toward wearable electronics. Adv. Funct. Mater. 31(29), 2011133 (2021). https://doi.org/10.1002/adfm.202011133
- M. Tavakoli, M.H. Malakooti, H. Paisana, Y. Ohm, D. Green Marques et al., EGaIn-assisted room-temperature sintering of silver nanops for stretchable, inkjet-printed, thin-film electronics. Adv. Mater. 30(29), 1801852 (2018). https://doi.org/10.1002/adma.201801852
- S.-H. Sunwoo, S.I. Han, D. Jung, M. Kim, S. Nam et al., Stretchable low-impedance conductor with Ag-Au-Pt core-shell-shell nanowires and in situ formed Pt nanops for wearable and implantable device. ACS Nano 17(8), 7550–7561 (2023). https://doi.org/10.1021/acsnano.2c12659
- Y. Hong, J. Wang, J. Li, Z. Xu, X. Yang et al., Enhancing non-invasive brain stimulation with non-invasively delivered nanops for improving stroke recovery. Mater. Today Chem. 26, 101104 (2022). https://doi.org/10.1016/j.mtchem.2022.101104
- Q. Han, C. Zhang, T. Guo, Y. Tian, W. Song et al., Hydrogel nanoarchitectonics of a flexible and self-adhesive electrode for long-term wireless electroencephalogram recording and high-accuracy sustained attention evaluation. Adv. Mater. 35(12), 2209606 (2023). https://doi.org/10.1002/adma.202209606
- K. Liu, B. Ouyang, X. Guo, Y. Guo, Y. Liu, Advances in flexible organic field-effect transistors and their applications for flexible electronics. NPJ Flex. Electron. 6, 1 (2022). https://doi.org/10.1038/s41528-022-00133-3
- Y. Li, Y. Gu, J. Teng, S. Zheng, Y. Pang et al., Advancing EEG-based brain-computer interface technology via PEDOT: PSS electrodes. Matter 7(9), 2859–2895 (2024). https://doi.org/10.1016/j.matt.2024.05.023
- X. Song, T. Zhang, L. Wu, R. Hu, W. Qian et al., Highly stretchable high-performance silicon nanowire field effect transistors integrated on elastomer substrates. Adv. Sci. 9(9), 2105623 (2022). https://doi.org/10.1002/advs.202105623
- X. Song, Y. Gu, S. Wang, J. Fan, J. An et al., Scalable integration of high sensitivity strain sensors based on silicon nanowire spring array directly grown on flexible polyimide films. Nano Lett. 25(6), 2290–2297 (2025). https://doi.org/10.1021/acs.nanolett.4c05553
- C. Shi, J. Jiang, C. Li, C. Chen, W. Jian et al., Precision-induced localized molten liquid metal stamps for damage-free transfer printing of ultrathin membranes and 3D objects. Nat. Commun. 15, 8839 (2024). https://doi.org/10.1038/s41467-024-53184-7
- Y. Park, C.K. Franz, H. Ryu, H. Luan, K.Y. Cotton et al., Three-dimensional, multifunctional neural interfaces for cortical spheroids and engineered assembloids. Sci. Adv. 7(12), eabf9153 (2021). https://doi.org/10.1126/sciadv.abf9153
- L.M. Ferrari, U. Ismailov, J.-M. Badier, F. Greco, E. Ismailova, Conducting polymer tattoo electrodes in clinical electro- and magneto-encephalography. NPJ Flex. Electron. 4, 4 (2020). https://doi.org/10.1038/s41528-020-0067-z
- W. Wang, H. Zhou, Z. Xu, Z. Li, L. Zhang et al., Flexible conformally bioadhesive MXene hydrogel electronics for machine learning-facilitated human-interactive sensing. Adv. Mater. 36(31), 2401035 (2024). https://doi.org/10.1002/adma.202401035
- N. Driscoll, B. Erickson, B.B. Murphy, A.G. Richardson, G. Robbins et al., MXene-infused bioelectronic interfaces for multiscale electrophysiology and stimulation. Sci. Transl. Med. 13(612), eabf8629 (2021). https://doi.org/10.1126/scitranslmed.abf8629
- S. Lin, J. Liu, W. Li, D. Wang, Y. Huang et al., A flexible, robust, and gel-free electroencephalogram electrode for noninvasive brain-computer interfaces. Nano Lett. 19(10), 6853–6861 (2019). https://doi.org/10.1021/acs.nanolett.9b02019
- G. Yang, K. Zhu, W. Guo, D. Wu, X. Quan et al., Adhesive and hydrophobic bilayer hydrogel enabled on-skin biosensors for high-fidelity classification of human emotion. Adv. Funct. Mater. 32(29), 2200457 (2022). https://doi.org/10.1002/adfm.202200457
- M. Mahmood, N. Kim, M. Mahmood, H. Kim, H. Kim et al., VR-enabled portable brain-computer interfaces via wireless soft bioelectronics. Biosens. Bioelectron. 210, 114333 (2022). https://doi.org/10.1016/j.bios.2022.114333
- C. Brunner, R. Scherer, B. Graimann, G. Supp, G. Pfurtscheller, Online control of a brain-computer interface using phase synchronization. IEEE Trans. Biomed. Eng. 53(12), 2501–2506 (2006). https://doi.org/10.1109/TBME.2006.881775
- X. He, M. Wu, H. Li, S. Liu, B. Liu et al., Real-time regulation of room temperature based on individual thermal sensation using an online brain-computer interface. Indoor Air 32(9), e13106 (2022). https://doi.org/10.1111/ina.13106
- C. Serrano-Amenos, P. Heydari, C.Y. Liu, A.H. Do, Z. Nenadic, Power budget of a skull unit in a fully-implantable brain-computer interface: bio-heat model. IEEE Trans. Neural Syst. Rehabil. Eng. 31, 4029–4039 (2023). https://doi.org/10.1109/TNSRE.2023.3323916
- T.S. Ibrahim, D. Abraham, R.L. Rennaker, Electromagnetic power absorption and temperature changes due to brain machine interface operation. Ann. Biomed. Eng. 35(5), 825–834 (2007). https://doi.org/10.1007/s10439-007-9264-3
- S.L. Bernal, A.H. Celdrán, G.M. Pérez, M.T. Barros, S. Balasubramaniam, Security in brain-computer interfaces: state-of-the-art, opportunities, and future challenges. ACM Comput. Surv. 54(1), 1–35 (2022). https://doi.org/10.1145/3427376
- T. Schroder, R. Sirbu, S. Park, J. Morley, S. Street et al., Cyber risks to next-gen brain-computer interfaces: analysis and recommendations. Neuroethics 18(2), 34 (2025). https://doi.org/10.1007/s12152-025-09607-3
- F. Brocal, Brain-computer interfaces in safety and security fields: risks and applications. Saf. Sci. 160, 106051 (2023). https://doi.org/10.1016/j.ssci.2022.106051
- G.R. Muller-Putz, R. Scherer, C. Neuper, G. Pfurtscheller, Steady-state somatosensory evoked potentials: suitable brain signals for brain-computer interfaces? IEEE Trans. Neural Syst. Rehabil. Eng. 14(1), 30–37 (2006). https://doi.org/10.1109/TNSRE.2005.863842
References
D.J. McFarland, J.R. Wolpaw, Brain-computer interfaces for communication and control. Commun. ACM 54(5), 60–66 (2011). https://doi.org/10.1145/1941487.1941506
J.R. Wolpaw, N. Birbaumer, D.J. McFarland, G. Pfurtscheller, T.M. Vaughan, Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767–791 (2002). https://doi.org/10.1016/S1388-2457(02)00057-3
U. Chaudhary, N. Birbaumer, A. Ramos-Murguialday, Brain-computer interfaces for communication and rehabilitation. Nat. Rev. Neurol. 12(9), 513–525 (2016). https://doi.org/10.1038/nrneurol.2016.113
E.F. Chang, Brain-computer interfaces for restoring communication. N. Engl. J. Med. 391(7), 654–657 (2024). https://doi.org/10.1056/nejme2407363
J.J. Daly, J.R. Wolpaw, Brain-computer interfaces in neurological rehabilitation. Lancet Neurol. 7(11), 1032–1043 (2008). https://doi.org/10.1016/S1474-4422(08)70223-0
Y. Wang, W. Gao, S. Yang, Q. Chen, C. Ye et al., Humanoid intelligent display platform for audiovisual interaction and sound identification. Nano-Micro Lett. 15(1), 221 (2023). https://doi.org/10.1007/s40820-023-01199-y
S. Chen, M. Chen, X. Wang, X. Liu, B. Liu et al., Brain–computer interfaces in 2023–2024. Brain-X 3(1), e70024 (2025). https://doi.org/10.1002/brx2.70024
N.S. Card, M. Wairagkar, C. Iacobacci, X. Hou, T. Singer-Clark et al., An accurate and rapidly calibrating speech neuroprosthesis. N. Engl. J. Med. 391(7), 609–618 (2024). https://doi.org/10.1056/nejmoa2314132
Z. Wang, N. Shi, Y. Zhang, N. Zheng, H. Li et al., Conformal in-ear bioelectronics for visual and auditory brain-computer interfaces. Nat. Commun. 14(1), 4213 (2023). https://doi.org/10.1038/s41467-023-39814-6
M. Mahmood, D. Mzurikwao, Y.-S. Kim, Y. Lee, S. Mishra et al., Fully portable and wireless universal brain-machine interfaces enabled by flexible scalp electronics and deep learning algorithm. Nat. Mach. Intell. 1(9), 412–422 (2019). https://doi.org/10.1038/s42256-019-0091-7
H. Gao, L. Luo, M. Pi, Z. Li, Q. Li et al., EEG-based volitional control of prosthetic legs for walking in different terrains. IEEE Trans. Autom. Sci. Eng. 18(2), 530–540 (2021). https://doi.org/10.1109/TASE.2019.2956110
S.L. Metzger, J.R. Liu, D.A. Moses, M.E. Dougherty, M.P. Seaton et al., Generalizable spelling using a speech neuroprosthesis in an individual with severe limb and vocal paralysis. Nat. Commun. 13(1), 6510 (2022). https://doi.org/10.1038/s41467-022-33611-3
A.L. Benabid, T. Costecalde, A. Eliseyev, G. Charvet, A. Verney et al., An exoskeleton controlled by an epidural wireless brain-machine interface in a tetraplegic patient: a proof-of-concept demonstration. Lancet Neurol. 18(12), 1112–1122 (2019). https://doi.org/10.1016/S1474-4422(19)30321-7
F. Li, J. Gallego, N.N. Tirko, J. Greaser, D. Bashe et al., Low-intensity pulsed ultrasound stimulation (LIPUS) modulates microglial activation following intracortical microelectrode implantation. Nat. Commun. 15(1), 5512 (2024). https://doi.org/10.1038/s41467-024-49709-9
D.V. Lam, A. Javadekar, N. Patil, M. Yu, L. Li et al., Platelets and hemostatic proteins are co-localized with chronic neuroinflammation surrounding implanted intracortical microelectrodes. Acta Biomater. 166, 278–290 (2023). https://doi.org/10.1016/j.actbio.2023.05.004
L. Du, H. Hao, Y. Ding, A. Gabros, T.C.E. Mier et al., An implantable, wireless, battery-free system for tactile pressure sensing. Microsyst. Nanoeng. 9, 130 (2023). https://doi.org/10.1038/s41378-023-00602-3
E.C. Gordon, A.K. Seth, Ethical considerations for the use of brain-computer interfaces for cognitive enhancement. PLoS Biol. 22(10), e3002899 (2024). https://doi.org/10.1371/journal.pbio.3002899
N. Rose, The Human Brain Project: social and ethical challenges. Neuron 82(6), 1212–1215 (2014). https://doi.org/10.1016/j.neuron.2014.06.001
M.-M. Poo, China’s new ethical guidelines for the use of brain-computer interfaces. Natl. Sci. Rev. 11(4), nwae154 (2024). https://doi.org/10.1093/nsr/nwae154
Y. Liu, Z. Zhao, M. Xu, H. Yu, Y. Zhu et al., Decoding and synthesizing tonal language speech from brain activity. Sci. Adv. 9(23), eadh0478 (2023). https://doi.org/10.1126/sciadv.adh0478
L. Liu, B. Xi, Y. Luo, Y. Liu, P. Huang et al., Intraoperative and spatiotemporal mapping of acute inflammation response during neuroelectrode implantation. Matter 8(11), 102262 (2025). https://doi.org/10.1016/j.matt.2025.102262
X. Gu, Z. Cao, A. Jolfaei, P. Xu, D. Wu et al., EEG-based brain-computer interfaces (BCIs): a survey of recent studies on signal sensing technologies and computational intelligence approaches and their applications. IEEE/ACM Trans. Comput. Biol. Bioinform. 18(5), 1645–1666 (2021). https://doi.org/10.1109/TCBB.2021.3052811
E. Perez-Valero, M.A. Lopez-Gordo, C. Morillas, F. Pelayo, M.A. Vaquero-Blasco, A review of automated techniques for assisting the early detection of Alzheimer’s disease with a focus on EEG. J. Alzheimers Dis. 80(4), 1363–1376 (2021). https://doi.org/10.3233/JAD-201455
Z. Gao, X. Wang, Y. Yang, Y. Li, K. Ma et al., A channel-fused dense convolutional network for EEG-based emotion recognition. IEEE Trans. Cogn. Dev. Syst. 13(4), 945–954 (2021). https://doi.org/10.1109/TCDS.2020.2976112
Z.-Z. Ma, J.-J. Wu, Z. Cao, X.-Y. Hua, M.-X. Zheng et al., Motor imagery-based brain-computer interface rehabilitation programs enhance upper extremity performance and cortical activation in stroke patients. J. Neuroeng. Rehabil. 21(1), 91 (2024). https://doi.org/10.1186/s12984-024-01387-w
A. Biasiucci, R. Leeb, I. Iturrate, S. Perdikis, A. Al-Khodairy et al., Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke. Nat. Commun. 9(1), 2421 (2018). https://doi.org/10.1038/s41467-018-04673-z
E.W. Sellers, D.B. Ryan, C.K. Hauser, Noninvasive brain-computer interface enables communication after brainstem stroke. Sci. Transl. Med. 6(257), 257re7 (2014). https://doi.org/10.1126/scitranslmed.3007801
R. Kaveh, C. Schwendeman, L. Pu, A.C. Arias, R. Muller, Wireless ear EEG to monitor drowsiness. Nat. Commun. 15, 6520 (2024). https://doi.org/10.1038/s41467-024-48682-7
H. Si-Mohammed, J. Petit, C. Jeunet, F. Argelaguet, F. Spindler et al., Towards BCI-based interfaces for augmented reality: feasibility, design and evaluation. IEEE Trans. Vis. Comput. Graph. 26(3), 1608–1621 (2020). https://doi.org/10.1109/TVCG.2018.2873737
C.-T. Lin, T.N. Do, Direct-sense brain-computer interfaces and wearable computers. IEEE Trans. Syst. Man Cybern. Syst. 51(1), 298–312 (2021). https://doi.org/10.1109/TSMC.2020.3041382
N. Kaongoen, M. Yu, S. Jo, Two-factor authentication system using P300 response to a sequence of human photographs. IEEE Trans. Syst. Man Cybern. Syst. 50(3), 1178–1185 (2020). https://doi.org/10.1109/TSMC.2017.2756673
H. Xue, D. Wang, M. Jin, H. Gao, X. Wang et al., Hydrogel electrodes with conductive and substrate-adhesive layers for noninvasive long-term EEG acquisition. Microsyst. Nanoeng. 9, 79 (2023). https://doi.org/10.1038/s41378-023-00524-0
Z. Zhang, G. Chen, S. Yang, Ensemble support vector recurrent neural network for brain signal detection. IEEE Trans. Neural Netw. Learn. Syst. 33(11), 6856–6866 (2022). https://doi.org/10.1109/TNNLS.2021.3083710
P. Sawangjai, M. Trakulruangroj, C. Boonnag, M. Piriyajitakonkij, R.K. Tripathy et al., Eeganet: removal of ocular artifacts from the EEG signal using generative adversarial networks. IEEE J. Biomed. Health Inform. 26(10), 4913–4924 (2022). https://doi.org/10.1109/JBHI.2021.3131104
X. Shi, H. Wang, B. Li, Y. Qin, C. Peng et al., Fusion analysis of EEG-fNIRS multimodal brain signals: a multitask classification algorithm incorporating spatial-temporal convolution and dual attention mechanisms. IEEE Trans. Instrum. Meas. 74, 2506312 (2025). https://doi.org/10.1109/TIM.2025.3538086
S.B. Borgheai, J. McLinden, A.H. Zisk, S.I. Hosni, R.J. Deligani et al., Enhancing communication for people in late-stage ALS using an fNIRS-based BCI system. IEEE Trans. Neural Syst. Rehabil. Eng. 28(5), 1198–1207 (2020). https://doi.org/10.1109/TNSRE.2020.2980772
J. Tang, A. LeBel, S. Jain, A.G. Huth, Semantic reconstruction of continuous language from non-invasive brain recordings. Nat. Neurosci. 26(5), 858–866 (2023). https://doi.org/10.1038/s41593-023-01304-9
D.S. Kluger, C. Forster, O. Abbasi, N. Chalas, A. Villringer et al., Modulatory dynamics of periodic and aperiodic activity in respiration-brain coupling. Nat. Commun. 14(1), 4699 (2023). https://doi.org/10.1038/s41467-023-40250-9
R. Zhang, S. Feng, N. Hu, S. Low, M. Li et al., Hybrid brain-computer interface controlled soft robotic glove for stroke rehabilitation. IEEE J. Biomed. Health Inform. 28(7), 4194–4203 (2024). https://doi.org/10.1109/JBHI.2024.3392412
Y. Zhang, C.S. Nam, G. Zhou, J. Jin, X. Wang et al., Temporally constrained sparse group spatial patterns for motor imagery BCI. IEEE Trans. Cybern. 49(9), 3322–3332 (2019). https://doi.org/10.1109/TCYB.2018.2841847
Z. Tang, X. Wang, J. Wu, Y. Ping, X. Guo et al., A BCI painting system using a hybrid control approach based on SSVEP and P300. Comput. Biol. Med. 150, 106118 (2022). https://doi.org/10.1016/j.compbiomed.2022.106118
H. Cecotti, A. Graser, Convolutional neural networks for P300 detection with application to brain-computer interfaces. IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 433–445 (2011). https://doi.org/10.1109/TPAMI.2010.125
X. Tang, H. Shen, S. Zhao, N. Li, J. Liu, Flexible brain-computer interfaces. Nat. Electron. 6(2), 109–118 (2023). https://doi.org/10.1038/s41928-022-00913-9
M.A. Schwemmer, N.D. Skomrock, P.B. Sederberg, J.E. Ting, G. Sharma et al., Meeting brain-computer interface user performance expectations using a deep neural network decoding framework. Nat. Med. 24(11), 1669–1676 (2018). https://doi.org/10.1038/s41591-018-0171-y
M.W. Mathis, A. Perez Rotondo, E.F. Chang, A.S. Tolias, A. Mathis, Decoding the brain: from neural representations to mechanistic models. Cell 187(21), 5814–5832 (2024). https://doi.org/10.1016/j.cell.2024.08.051
Y. Wang, M. Han, L. Jing, Q. Jia, S. Lv et al., Enhanced neural activity detection with microelectrode arrays modified by drug-loaded calcium alginate/chitosan hydrogel. Biosens. Bioelectron. 267, 116837 (2025). https://doi.org/10.1016/j.bios.2024.116837
M. Sun, W. Cui, S. Yu, H. Han, B. Hu et al., A dual-branch dynamic graph convolution based adaptive TransFormer feature fusion network for EEG emotion recognition. IEEE Trans. Affect. Comput. 13(4), 2218–2228 (2022). https://doi.org/10.1109/TAFFC.2022.3199075
C. Li, Z. Zhang, X. Zhang, G. Huang, Y. Liu et al., EEG-based emotion recognition via transformer neural architecture search. IEEE Trans. Ind. Inform. 19(4), 6016–6025 (2023). https://doi.org/10.1109/TII.2022.3170422
S.M. Shafiul Hasan, M.R. Siddiquee, J.S. Marquez, O. Bai, Enhancement of movement intention detection using EEG signals responsive to emotional music stimulus. IEEE Trans. Affect. Comput. 13(3), 1637–1650 (2022). https://doi.org/10.1109/TAFFC.2020.3025004
C. Wang, H. Yan, W. Huang, W. Sheng, Y. Wang et al., Neural encoding with unsupervised spiking convolutional neural network. Commun. Biol. 6, 880 (2023). https://doi.org/10.1038/s42003-023-05257-4
K. Kasahara, C.S. DaSalla, M. Honda, T. Hanakawa, Basal ganglia-cortical connectivity underlies self-regulation of brain oscillations in humans. Commun. Biol. 5(1), 712 (2022). https://doi.org/10.1038/s42003-022-03665-6
T. Rohe, A.-C. Ehlis, U. Noppeney, The neural dynamics of hierarchical Bayesian causal inference in multisensory perception. Nat. Commun. 10, 1907 (2019). https://doi.org/10.1038/s41467-019-09664-2
X. Lin, X. Zhang, J. Chen, J. Liu, Material selection and device design of scalable flexible brain-computer interfaces: a balance between electrical and mechanical performance. Adv. Mater. 37(26), 2413938 (2025). https://doi.org/10.1002/adma.202413938
J. Wang, T. Wang, H. Liu, K. Wang, K. Moses et al., Flexible electrodes for brain-computer interface system. Adv. Mater. 35(47), 2211012 (2023). https://doi.org/10.1002/adma.202211012
S. Lin, J. Jiang, K. Huang, L. Li, X. He et al., Advanced electrode technologies for noninvasive brain-computer interfaces. ACS Nano 17(24), 24487–24513 (2023). https://doi.org/10.1021/acsnano.3c06781
G. Balakrishnan, J. Song, C. Mou, C.J. Bettinger, Recent progress in materials chemistry to advance flexible bioelectronics in medicine. Adv. Mater. 34(10), 2106787 (2022). https://doi.org/10.1002/adma.202106787
D. Li, T.-R. Cui, J.-H. Liu, W.-C. Shao, X. Liu et al., Motion-unrestricted dynamic electrocardiogram system utilizing imperceptible electronics. Nat. Commun. 16(1), 3259 (2025). https://doi.org/10.1038/s41467-025-58390-5
O. Gul, M. Song, C.-Y. Gu, J. Ahn, K. Lee et al., Bioinspired interfacial engineering for highly stretchable electronics. Nat. Commun. 16, 1337 (2025). https://doi.org/10.1038/s41467-025-56502-9
H. Cho, I. Lee, J. Jang, J.-H. Kim, H. Lee et al., Real-time finger motion recognition using skin-conformable electronics. Nat. Electron. 6(8), 619–629 (2023). https://doi.org/10.1038/s41928-023-01012-z
P. Li, W. Sun, J. Li, J.-P. Chen, X. Wang et al., N-type semiconducting hydrogel. Science 384(6695), 557–563 (2024). https://doi.org/10.1126/science.adj4397
W. Zhang, J. Liu, W. Song, J. Shan, H. Guan et al., Chemical passivation and grain-boundary manipulation via in situ cross-linking strategy for scalable flexible perovskite solar cells. Sci. Adv. 11(5), eadr2290 (2025). https://doi.org/10.1126/sciadv.adr2290
E.O. Polat, G. Mercier, I. Nikitskiy, E. Puma, T. Galan et al., Flexible graphene photodetectors for wearable fitness monitoring. Sci. Adv. 5(9), eaaw7846 (2019). https://doi.org/10.1126/sciadv.aaw7846
S. Wang, J. Liu, X. Song, H. Xu, Y. Gu et al., Artificial intelligence empowers solid-state batteries for material screening and performance evaluation. Nano-Micro Lett. 17(1), 287 (2025). https://doi.org/10.1007/s40820-025-01797-y
L.L. Zhang, X. Zhao, M.D. Stoller, Y. Zhu, H. Ji et al., Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett. 12(4), 1806–1812 (2012). https://doi.org/10.1021/nl203903z
M.D. Ho, Y. Ling, L.W. Yap, Y. Wang, D. Dong et al., Percolating network of ultrathin gold nanowires and silver nanowires toward “invisible” wearable sensors for detecting emotional expression and apexcardiogram. Adv. Funct. Mater. 27(25), 1700845 (2017). https://doi.org/10.1002/adfm.201700845
C. Xu, Y. Wang, J. Zhang, J. Wan, Z. Xiang et al., Three-dimensional micro strain gauges as flexible, modular tactile sensors for versatile integration with micro- and macroelectronics. Sci. Adv. 10(34), eadp6094 (2024). https://doi.org/10.1126/sciadv.adp6094
Z. Pu, X. Zhang, H. Yu, J. Tu, H. Chen et al., A thermal activated and differential self-calibrated flexible epidermal biomicrofluidic device for wearable accurate blood glucose monitoring. Sci. Adv. 7(5), eabd0199 (2021). https://doi.org/10.1126/sciadv.abd0199
Y. Lee, J. Kim, H. Joo, M.S. Raj, R. Ghaffari et al., Wearable sensing systems with mechanically soft assemblies of nanoscale materials. Adv. Mater. Technol. 2(9), 1700053 (2017). https://doi.org/10.1002/admt.201700053
H.-R. Lim, Y. Lee, K.A. Jones, Y.-T. Kwon, S. Kwon et al., All-in-one, wireless, fully flexible sodium sensor system with integrated Au/CNT/Au nanocomposites. Sens. Actuat. B Chem. 331, 129416 (2021). https://doi.org/10.1016/j.snb.2020.129416
H. Wang, W. Wang, J.J. Kim, C. Wang, Y. Wang et al., An optical-based multipoint 3-axis pressure sensor with a flexible thin-film form. Sci. Adv. 9(36), eadi2445 (2023). https://doi.org/10.1126/sciadv.adi2445
M. Herber, E.H. Hill, Optically-directed bubble printing of MXenes on flexible substrates toward MXene-enabled wearable electronics and strain sensors. Nano Lett. 25(18), 7258–7265 (2025). https://doi.org/10.1021/acs.nanolett.4c06355
C. Yang, H. Wang, G. Zhou, H. Zhao, W. Hou et al., A multimodal perception-enabled flexible memristor with combined sensing-storage-memory functions for enhanced artificial injury recognition. Small 20(45), 2402588 (2024). https://doi.org/10.1002/smll.202402588
Y. Zhao, S. Zhao, X. Pang, A. Zhang, C. Li et al., Biomimetic wafer-scale alignment of tellurium nanowires for high-mobility flexible and stretchable electronics. Sci. Adv. 10(14), eadm9322 (2024). https://doi.org/10.1126/sciadv.adm9322
J. Zhang, T. Sun, Y. Chen, L. Liu, H. Zhao et al., Nanowires in flexible sensors: structure is becoming a key in controlling the sensing performance. Adv. Mater. Technol. 7(12), 2200163 (2022). https://doi.org/10.1002/admt.202200163
Z. Zhang, Y. Wang, T. Cai, B. Wu, B. Hu et al., Recent progress on flexible silicon nanomembranes for advanced electronics and optoelectronics. Adv. Funct. Mater. 35(35), 2502191 (2025). https://doi.org/10.1002/adfm.202502191
Y. Chen, Y. Zhang, Z. Liang, Y. Cao, Z. Han et al., Flexible inorganic bioelectronics. npj Flex. Electron. 4, 2 (2020). https://doi.org/10.1038/s41528-020-0065-1
J. Wang, Q. Zhou, A. Wang, Z. Zhu, K. Moses et al., Sponge inspired flexible, antibacterial aerogel electrode with long-term high-quality electrophysiological signal recording for human-machine interface. Adv. Funct. Mater. 34(23), 2309704 (2024). https://doi.org/10.1002/adfm.202309704
S. Wu, H. Kan, J. Gao, W. Yue, C. Zhang et al., Convolutional neural networks-motivated high-performance multi-functional electronic skin for intelligent human-computer interaction. Nano Energy 122, 109313 (2024). https://doi.org/10.1016/j.nanoen.2024.109313
J. Huang, S. Yang, X. Tang, L. Yang, W. Chen et al., Flexible, transparent, and wafer-scale artificial synapse array based on TiOx/Ti3C2Tx film for neuromorphic computing. Adv. Mater. 35(33), e2303737 (2023). https://doi.org/10.1002/adma.202303737
C. Yiu, Y. Liu, W. Park, J. Li, X. Huang et al., Skin-interfaced multimodal sensing and tactile feedback system as enhanced human-machine interface for closed-loop drone control. Sci. Adv. 11(13), eadt6041 (2025). https://doi.org/10.1126/sciadv.adt6041
C. Vidaurre, B. Blankertz, Towards a cure for BCI illiteracy. Brain Topogr. 23(2), 194–198 (2010). https://doi.org/10.1007/s10548-009-0121-6
C. Rubinos, S.B. Kwon, M. Megjhani, K. Terilli, B. Wong et al., Predicting shunt dependency from the effect of cerebrospinal fluid drainage on ventricular size. Neurocrit. Care 37(3), 670–677 (2022). https://doi.org/10.1007/s12028-022-01538-8
D. Hagemann, J. Hewig, C. Walter, E. Naumann, Skull thickness and magnitude of EEG alpha activity. Clin. Neurophysiol. 119(6), 1271–1280 (2008). https://doi.org/10.1016/j.clinph.2008.02.010
M.U. Ali, A. Zafar, K.D. Kallu, H. Masood, M.M.N. Mannan et al., Correlation-filter-based channel and feature selection framework for hybrid EEG-fNIRS BCI applications. IEEE J. Biomed. Health Inform. 28(6), 3361–3370 (2024). https://doi.org/10.1109/JBHI.2023.3294586
D. Kollias, S. Zafeiriou, Exploiting multi-CNN features in CNN-RNN based dimensional emotion recognition on the OMG in-the-wild dataset. IEEE Trans. Affect. Comput. 12(3), 595–606 (2021). https://doi.org/10.1109/TAFFC.2020.3014171
C. Li, Z. Zhang, R. Song, J. Cheng, Y. Liu et al., EEG-based emotion recognition via neural architecture search. IEEE Trans. Affect. Comput. 14(2), 957–968 (2023). https://doi.org/10.1109/TAFFC.2021.3130387
B.J. Edelman, S. Zhang, G. Schalk, P. Brunner, G. Müller-Putz et al., Non-invasive brain-computer interfaces: state of the art and trends. IEEE Rev. Biomed. Eng. 18, 26–49 (2025). https://doi.org/10.1109/RBME.2024.3449790
X. Gao, Y. Wang, X. Chen, B. Liu, S. Gao, Brain-computer interface: a brain-in-the-loop communication system. Proc. IEEE 113(5), 478–511 (2025). https://doi.org/10.1109/JPROC.2025.3600389
Y. Lu, L. Bi, H. Li, Model predictive-based shared control for brain-controlled driving. IEEE Trans. Intell. Transp. Syst. 21(2), 630–640 (2020). https://doi.org/10.1109/TITS.2019.2897356
E.A. Aydin, O.F. Bay, I. Guler, P300-based asynchronous brain computer interface for environmental control system. IEEE J. Biomed. Health Inform. 22(3), 653–663 (2018). https://doi.org/10.1109/JBHI.2017.2690801
G. Ganesh, K. Nakamura, S. Saetia, A.M. Tobar, E. Yoshida et al., Utilizing sensory prediction errors for movement intention decoding: a new methodology. Sci. Adv. 4(5), eaaq0183 (2018). https://doi.org/10.1126/sciadv.aaq0183
H. Wang, Y. Qi, L. Yao, Y. Wang, D. Farina et al., A human-machine joint learning framework to boost endogenous BCI training. IEEE Trans. Neural Netw. Learn. Syst. 35(12), 17534–17548 (2024). https://doi.org/10.1109/TNNLS.2023.3305621
B.-Y. Tsai, S.V.S. Diddi, L.-W. Ko, S.-J. Wang, C.-Y. Chang et al., Development of an adaptive artifact subspace reconstruction based on hebbian/anti-hebbian learning networks for enhancing BCI performance. IEEE Trans. Neural Netw. Learn. Syst. 35(1), 348–361 (2024). https://doi.org/10.1109/TNNLS.2022.3174528
A. Rakshit, A. Konar, A.K. Nagar, A hybrid brain-computer interface for closed-loop position control of a robot arm. IEEE/CAA J. Autom. Sin. 7(5), 1344–1360 (2020). https://doi.org/10.1109/JAS.2020.1003336
S. Pancholi, A. Giri, A. Jain, L. Kumar, S. Roy, Source aware deep learning framework for hand kinematic reconstruction using EEG signal. IEEE Trans. Cybern. 53(7), 4094–4106 (2023). https://doi.org/10.1109/TCYB.2022.3166604
C. Ju, C. Guan, Graph neural networks on SPD manifolds for motor imagery classification: a perspective from the time-frequency analysis. IEEE Trans. Neural Netw. Learn. Syst. 35(12), 17701–17715 (2024). https://doi.org/10.1109/TNNLS.2023.3307470
C. Ju, C. Guan, Tensor-CSPNet: a novel geometric deep learning framework for motor imagery classification. IEEE Trans. Neural Netw. Learn. Syst. 34(12), 10955–10969 (2023). https://doi.org/10.1109/TNNLS.2022.3172108
P. Li, C. Wang, M. Li, X. Xuan, B. Zhou et al., Flexible silver/carbon nanotube-graphene oxide-polydimethylsiloxane electrode patch for electroencephalography language. Adv. Intell. Syst. 5(8), 2300018 (2023). https://doi.org/10.1002/aisy.202300018
E. Yin, T. Zeyl, R. Saab, D. Hu, Z. Zhou et al., An auditory-tactile visual saccade-independent P300 brain-computer interface. Int. J. Neural Syst. 26(1), 1650001 (2016). https://doi.org/10.1142/S0129065716500015
X.-A. Fan, L. Bi, T. Teng, H. Ding, Y. Liu, A brain-computer interface-based vehicle destination selection system using P300 and SSVEP signals. IEEE Trans. Intell. Transp. Syst. 16(1), 274–283 (2015). https://doi.org/10.1109/TITS.2014.2330000
M.-H. Lee, O.-Y. Kwon, Y.-J. Kim, H.-K. Kim, Y.-E. Lee et al., EEG dataset and OpenBMI toolbox for three BCI paradigms: an investigation into BCI illiteracy. Gigascience 8(5), giz002 (2019). https://doi.org/10.1093/gigascience/giz002
S. Mirjalili, A. Duarte, Using machine learning to simultaneously quantify multiple cognitive components of episodic memory. Nat. Commun. 16(1), 2856 (2025). https://doi.org/10.1038/s41467-025-58265-9
P.A. Kragel, M.C. Reddan, K.S. LaBar, T.D. Wager, Emotion schemas are embedded in the human visual system. Sci. Adv. 5(7), eaaw4358 (2019). https://doi.org/10.1126/sciadv.aaw4358
R.M. Cichy, A. Oliva, A M/EEG-fMRI fusion primer: resolving human brain responses in space and time. Neuron 107(5), 772–781 (2020). https://doi.org/10.1016/j.neuron.2020.07.001
X. Ru, K. He, B. Lyu, D. Li, W. Xu et al., Multimodal neuroimaging with optically pumped magnetometers: a simultaneous MEG-EEG-fNIRS acquisition system. Neuroimage 259, 119420 (2022). https://doi.org/10.1016/j.neuroimage.2022.119420
C.-H. Han, K.-R. Müller, H.-J. Hwang, Enhanced performance of a brain switch by simultaneous use of EEG and NIRS data for asynchronous brain-computer interface. IEEE Trans. Neural Syst. Rehabil. Eng. 28(10), 2102–2112 (2020). https://doi.org/10.1109/TNSRE.2020.3017167
Y.-C. Jiang, R. Ma, S. Qi, S. Ge, Z. Sun et al., Characterization of bimanual cyclical tasks from single-trial EEG-fNIRS measurements. IEEE Trans. Neural Syst. Rehabil. Eng. 30, 146–156 (2022). https://doi.org/10.1109/TNSRE.2022.3144216
M.A. Pisauro, E. Fouragnan, C. Retzler, M.G. Philiastides, Neural correlates of evidence accumulation during value-based decisions revealed via simultaneous EEG-fMRI. Nat. Commun. 8, 15808 (2017). https://doi.org/10.1038/ncomms15808
D. Ji, Y. Huang, Z. Chen, X. Zhou, J. Wang et al., Enhanced spatial division multiple access BCI performance via incorporating MEG with EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 33, 1202–1211 (2025). https://doi.org/10.1109/TNSRE.2025.3550653
M. Klumpp, L. Embray, F. Heimburg, A.L. Alves Dias, J. Simon et al., Syntalos: a software for precise synchronization of simultaneous multi-modal data acquisition and closed-loop interventions. Nat. Commun. 16(1), 708 (2025). https://doi.org/10.1038/s41467-025-56081-9
W. Li, C. Gao, Z. Li, Y. Diao, J. Li et al., BrainFusion: a low-code, reproducible, and deployable software framework for multimodal brain-computer interface and brain-body interaction research. Adv. Sci. 12(32), e17408 (2025). https://doi.org/10.1002/advs.202417408
G. Castrillon, N. Sollmann, K. Kurcyus, A. Razi, S.M. Krieg et al., The physiological effects of noninvasive brain stimulation fundamentally differ across the human cortex. Sci. Adv. 6(5), eaay2739 (2020). https://doi.org/10.1126/sciadv.aay2739
P. Georgieva, N. Bouaynaya, F. Silva, L. Mihaylova, L.C. Jain, A beamformer-p filter framework for localization of correlated EEG sources. IEEE J. Biomed. Health Inform. 20(3), 880–892 (2016). https://doi.org/10.1109/JBHI.2015.2413752
S. Iwama, M. Takemi, R. Eguchi, R. Hirose, M. Morishige et al., Two common issues in synchronized multimodal recordings with EEG: jitter and latency. Neurosci. Res. 203, 1–7 (2024). https://doi.org/10.1016/j.neures.2023.12.003
E. Boto, Z.A. Seedat, N. Holmes, J. Leggett, R.M. Hill et al., Wearable neuroimaging: combining and contrasting magnetoencephalography and electroencephalography. Neuroimage 201, 116099 (2019). https://doi.org/10.1016/j.neuroimage.2019.116099
L. Qiu, W. Feng, L. Zhong, X. Song, Z. Ying et al., Mutual information learning-based end-to-end fusion network for hybrid EEG-fNIRS brain-computer interface. IEEE Trans. Instrum. Meas. 74, 6510113 (2025). https://doi.org/10.1109/TIM.2025.3604929
N.J. Sexton, B.C. Love, Reassessing hierarchical correspondences between brain and deep networks through direct interface. Sci. Adv. 8(28), eabm2219 (2022). https://doi.org/10.1126/sciadv.abm2219
G.B. Kshirsagar, N.D. Londhe, DS-P3SNet: an efficient classification approach for Devanagari script-based P300 speller using compact channelwise convolution and knowledge distillation. IEEE Trans. Syst. Man Cybern. Syst. 52(12), 7431–7443 (2022). https://doi.org/10.1109/TSMC.2022.3156861
Y. Ding, N. Robinson, C. Tong, Q. Zeng, C. Guan, LGGNet: learning from local-global-graph representations for brain-computer interface. IEEE Trans. Neural Netw. Learn. Syst. 35(7), 9773–9786 (2024). https://doi.org/10.1109/TNNLS.2023.3236635
E. Jeon, W. Ko, J.S. Yoon, H.-I. Suk, Mutual information-driven subject-invariant and class-relevant deep representation learning in BCI. IEEE Trans. Neural Netw. Learn. Syst. 34(2), 739–749 (2023). https://doi.org/10.1109/TNNLS.2021.3100583
D. Forenzo, H. Zhu, B. He, A continuous pursuit dataset for online deep learning-based EEG brain-computer interface. Sci. Data 11(1), 1256 (2024). https://doi.org/10.1038/s41597-024-04090-6
Y. Li, L. Fan, H. Shen, D. Hu, HR-SNN: an end-to-end spiking neural network for four-class classification motor imagery brain–computer interface. IEEE Trans. Cogn. Dev. Syst. 16(6), 1955–1968 (2024). https://doi.org/10.1109/TCDS.2024.3395443
C. Li, Z. Gu, A Riemannian convolutional neural network for EEG-based motor imagery decoding. Neurocomputing 639, 130206 (2025). https://doi.org/10.1016/j.neucom.2025.130206
S. Huang, Q. Wei, A deep learning model combining convolutional neural networks and a selective kernel mechanism for SSVEP-Based BCIs. Comput. Biol. Med. 196, 110691 (2025). https://doi.org/10.1016/j.compbiomed.2025.110691
F. Fahimi, S. Dosen, K.K. Ang, N. Mrachacz-Kersting, C. Guan, Generative adversarial networks-based data augmentation for brain-computer interface. IEEE Trans. Neural Netw. Learn. Syst. 32(9), 4039–4051 (2021). https://doi.org/10.1109/TNNLS.2020.3016666
J. Zhang, J. Fang, S. Liu, D. Liu, H. Wu et al., Toward cross-brain-computer interface: a prototype-supervised adversarial transfer learning approach with multiple sources. IEEE Trans. Instrum. Meas. 73, 2528113 (2024). https://doi.org/10.1109/TIM.2024.3451593
A. Momeni, B. Rahmani, M. Malléjac, P. Del Hougne, R. Fleury, Backpropagation-free training of deep physical neural networks. Science 382(6676), 1297–1303 (2023). https://doi.org/10.1126/science.adi8474
B. Yuen, X. Dong, T. Lu, A 3D ray traced biological neural network learning model. Nat. Commun. 15(1), 4693 (2024). https://doi.org/10.1038/s41467-024-48747-7
W. Fang, Y. Chen, J. Ding, Z. Yu, T. Masquelier et al., SpikingJelly: an open-source machine learning infrastructure platform for spike-based intelligence. Sci. Adv. 9(40), eadi1480 (2023). https://doi.org/10.1126/sciadv.adi1480
T. Zhang, X. Cheng, S. Jia, M.-M. Poo, Y. Zeng et al., Self-backpropagation of synaptic modifications elevates the efficiency of spiking and artificial neural networks. Sci. Adv. 7(43), eabh0146 (2021). https://doi.org/10.1126/sciadv.abh0146
G. Amiri, V. Shalchyan, Decoding muscle activity via CNN-LSTM from 3D spatiotemporal EEG. Comput. Methods Progr. Biomed. 271, 108983 (2025). https://doi.org/10.1016/j.cmpb.2025.108983
Z. Khademi, F. Ebrahimi, H.M. Kordy, A transfer learning-based CNN and LSTM hybrid deep learning model to classify motor imagery EEG signals. Comput. Biol. Med. 143, 105288 (2022). https://doi.org/10.1016/j.compbiomed.2022.105288
Z. An, F. Wang, Y. Wen, F. Hu, S. Han, A real-time CNN–BiLSTM-based classifier for patient-centered AR-SSVEP active rehabilitation exoskeleton system. Expert Syst. Appl. 255, 124706 (2024). https://doi.org/10.1016/j.eswa.2024.124706
J.-H. Jeong, J.-H. Cho, B.-H. Lee, S.-W. Lee, Real-time deep neurolinguistic learning enhances noninvasive neural language decoding for brain–machine interaction. IEEE Trans. Cybern. 53(12), 7469–7482 (2023). https://doi.org/10.1109/TCYB.2022.3211694
M. Jiao, S. Yang, X. Xian, N. Fotedar, F. Liu, Multi-modal electrophysiological source imaging with attention neural networks based on deep fusion of EEG and MEG. IEEE Trans. Neural Syst. Rehabil. Eng. 32, 2492–2502 (2024). https://doi.org/10.1109/TNSRE.2024.3424669
D. Lahat, T. Adali, C. Jutten, Multimodal data fusion: an overview of methods, challenges, and prospects. Proc. IEEE 103(9), 1449–1477 (2015). https://doi.org/10.1109/JPROC.2015.2460697
H. Sun, H. Tian, Y. Hu, Y. Cui, X. Chen et al., Bio-plausible multimodal learning with emerging neuromorphic devices. Adv. Sci. 11(45), 2406242 (2024). https://doi.org/10.1002/advs.202406242
J. Wang, L. Yao, Y. Wang, Enhanced online continuous brain-control by deep learning-based EEG decoding. IEEE Trans. Neural Syst. Rehabil. Eng. 33, 2834–2846 (2025). https://doi.org/10.1109/TNSRE.2025.3591254
K. Bhadra, A.-L. Giraud, S. Marchesotti, Learning to operate an imagined speech Brain-Computer Interface involves the spatial and frequency tuning of neural activity. Commun. Biol. 8(1), 271 (2025). https://doi.org/10.1038/s42003-025-07464-7
I. Batzianoulis, F. Iwane, S. Wei, C.G.P.R. Correia, R. Chavarriaga et al., Customizing skills for assistive robotic manipulators, an inverse reinforcement learning approach with error-related potentials. Commun. Biol. 4(1), 1406 (2021). https://doi.org/10.1038/s42003-021-02891-8
X. Deng, Z.L. Yu, C. Lin, Z. Gu, Y. Li, Self-adaptive shared control with brain state evaluation network for human-wheelchair cooperation. J. Neural Eng. 17(4), 045005 (2020). https://doi.org/10.1088/1741-2552/ab937e
Y. Zhou, T. Yu, W. Gao, W. Huang, Z. Lu et al., Shared three-dimensional robotic arm control based on asynchronous BCI and computer vision. IEEE Trans. Neural Syst. Rehabil. Eng. 31, 3163–3175 (2023). https://doi.org/10.1109/TNSRE.2023.3299350
L. Hu, J. Zhu, S. Chen, Y. Zhou, Z. Song et al., A wearable asynchronous brain-computer interface based on EEG-EOG signals with fewer channels. IEEE Trans. Biomed. Eng. 71(2), 504–513 (2024). https://doi.org/10.1109/TBME.2023.3308371
F. Aloise, P. Aricò, F. Schettini, S. Salinari, D. Mattia et al., Asynchronous gaze-independent event-related potential-based brain-computer interface. Artif. Intell. Med. 59(2), 61–69 (2013). https://doi.org/10.1016/j.artmed.2013.07.006
G.R. Muller-Putz, G. Pfurtscheller, Control of an electrical prosthesis with an SSVEP-based BCI. IEEE Trans. Biomed. Eng. 55(1), 361–364 (2008). https://doi.org/10.1109/TBME.2007.897815
R.E. Alcaide-Aguirre, S.A. Warschausky, D. Brown, A. Aref, J.E. Huggins, Asynchronous brain-computer interface for cognitive assessment in people with cerebral palsy. J. Neural Eng. 14(6), 066001 (2017). https://doi.org/10.1088/1741-2552/aa7fc4
X. Zhang, W. Hou, Y. Wang, N. Jiang, Low-latency asynchronous BCI by detecting the motion onset VEP induced by the action observation stimulus in senior. IEEE Trans. Instrum. Meas. 72, 2528610 (2023). https://doi.org/10.1109/TIM.2023.3320759
Z. Liu, J. Mei, J. Tang, M. Xu, B. Gao et al., A memristor-based adaptive neuromorphic decoder for brain-computer interfaces. Nat. Electron. 8(4), 362–372 (2025). https://doi.org/10.1038/s41928-025-01340-2
J.Y. Lee, S. Lee, A. Mishra, X. Yan, B. McMahan et al., Brain-computer interface control with artificial intelligence copilots. Nat. Mach. Intell. 7(9), 1510–1523 (2025). https://doi.org/10.1038/s42256-025-01090-y
Y. Ding, C. Udompanyawit, Y. Zhang, B. He, EEG-based brain-computer interface enables real-time robotic hand control at individual finger level. Nat. Commun. 16(1), 5401 (2025). https://doi.org/10.1038/s41467-025-61064-x
Y. Dong, W. An, Z. Wang, D. Zhang, An artificial intelligence-assisted flexible and wearable mechanoluminescent strain sensor system. Nano-Micro Lett. 17(1), 62 (2024). https://doi.org/10.1007/s40820-024-01572-5
S. Huang, B. Zhang, Z. Shao, L. He, Q. Zhang et al., Ultraminiaturized stretchable strain sensors based on single silicon nanowires for imperceptible electronic skins. Nano Lett. 20(4), 2478–2485 (2020). https://doi.org/10.1021/acs.nanolett.9b05217
Z. Liu, J. Xu, D. Chen, G. Shen, Flexible electronics based on inorganic nanowires. Chem. Soc. Rev. 44(1), 161–192 (2015). https://doi.org/10.1039/c4cs00116h
Y. Guo, K. Li, W. Yue, N.-Y. Kim, Y. Li et al., A rapid adaptation approach for dynamic air-writing recognition using wearable wristbands with self-supervised contrastive learning. Nano-Micro Lett. 17(1), 41 (2024). https://doi.org/10.1007/s40820-024-01545-8
B. Wen, J.E. Sader, J.J. Boland, Mechanical properties of ZnO nanowires. Phys. Rev. Lett. 101(17), 175502 (2008). https://doi.org/10.1103/physrevlett.101.175502
W. Liu, N. Liu, J. Sun, P.-C. Hsu, Y. Li et al., Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett. 15(4), 2740–2745 (2015). https://doi.org/10.1021/acs.nanolett.5b00600
J.W. Borchert, U. Zschieschang, F. Letzkus, M. Giorgio, R.T. Weitz et al., Flexible low-voltage high-frequency organic thin-film transistors. Sci. Adv. 6(21), eaaz5156 (2020). https://doi.org/10.1126/sciadv.aaz5156
H. An, T. Habib, S. Shah, H. Gao, M. Radovic et al., Surface-agnostic highly stretchable and bendable conductive MXene multilayers. Sci. Adv. 4(3), eaaq0118 (2018). https://doi.org/10.1126/sciadv.aaq0118
Z. Ren, S. Deng, J. Shao, Y. Si, C. Zhou et al., Ultrahigh-power-density flexible piezoelectric energy harvester based on freestanding ferroelectric oxide thin films. Nat. Commun. 16, 3192 (2025). https://doi.org/10.1038/s41467-025-58386-1
D. Ma, M. Ji, H. Yi, Q. Wang, F. Fan et al., Pushing the thinness limit of silver films for flexible optoelectronic devices via ion-beam thinning-back process. Nat. Commun. 15(1), 2248 (2024). https://doi.org/10.1038/s41467-024-46467-6
X. Wang, G. Bai, J. Liang, Q. Xie, Z. Chen et al., Gustatory interface for operative assessment and taste decoding in patients with tongue cancer. Nat. Commun. 15(1), 8967 (2024). https://doi.org/10.1038/s41467-024-53379-y
D. Kim, W.K. Jung, S. Lee, Single-crystalline-level properties of ultrathin SrRuO3 flexible membranes with wide and clean surface. NPJ Flex. Electron. 6, 24 (2022). https://doi.org/10.1038/s41528-022-00155-x
J. Jin, Z. Zhu, Y. Ming, Y. Zhou, J. Shang et al., Spontaneous bifacial capping of perovskite film for efficient and mechanically stable flexible solar cell. Nat. Commun. 16(1), 90 (2025). https://doi.org/10.1038/s41467-024-55652-6
B. Sun, R. Xu, X. Han, J. Xu, W. Hong et al., Ultra-high temperature tolerant flexible transparent electrode with embedded silver nanowires bundle micromesh for electrical heater. NPJ Flex. Electron. 6, 48 (2022). https://doi.org/10.1038/s41528-022-00182-8
J. Liu, C. Jiang, Q. Yu, Y. Ni, C. Yu et al., Multidimensional free shape-morphing flexible neuromorphic devices with regulation at arbitrary points. Nat. Commun. 16(1), 756 (2025). https://doi.org/10.1038/s41467-024-55670-4
K.L. Zhou, C.B. Han, C.F. Li, J. Jiu, Y. Yang et al., Highly stable transparent conductive electrodes based on silver-platinum alloy-walled hollow nanowires for optoelectronic devices. ACS Appl. Mater. Interfaces 10(42), 36128–36135 (2018). https://doi.org/10.1021/acsami.8b12238
D. Kim, J. Kwon, J. Jung, K. Kim, H. Lee et al., A transparent and flexible capacitive-force touch pad from high-aspect-ratio copper nanowires with enhanced oxidation resistance for applications in wearable electronics. Small Meth. 2(7), 1800077 (2018). https://doi.org/10.1002/smtd.201800077
L. Li, S. Zhao, W. Ran, Z. Li, Y. Yan et al., Dual sensing signal decoupling based on tellurium anisotropy for VR interaction and neuro-reflex system application. Nat. Commun. 13(1), 5975 (2022). https://doi.org/10.1038/s41467-022-33716-9
X. Karagiorgis, N.M. Nair, S. Sandhu, A.S. Dahiya, P.J. Skabara et al., Fully degradable, transparent, and flexible photodetectors using ZnO nanowires and PEDOT: PSS based nanofibres. NPJ Flex. Electron. 9(1), 22 (2025). https://doi.org/10.1038/s41528-025-00385-9
X. Li, S. Xing, Y. Li, G. Wang, X. Gao et al., Colloidal synthesis of sub-1-nm PbSe nanowires via cation exchange for high-performance near-infrared self-powered photoelectrochemical-type photodetectors. Adv. Sci. 12(26), 2501993 (2025). https://doi.org/10.1002/advs.202501993
S. Wang, X. Song, J. Xu, J. Wang, L. Yu, Flexible silicon for high-performance photovoltaics, photodetectors and bio-interfaced electronics. Mater. Horiz. 12(4), 1106–1132 (2025). https://doi.org/10.1039/d4mh01466a
S. Zhang, T. Zhang, Z. Liu, J. Wang, J. Xu et al., Flexible and robust 3D a-SiGe radial junction near-infrared photodetectors for rapid sphygmic signal monitoring. Adv. Funct. Mater. 32(2), 2107040 (2022). https://doi.org/10.1002/adfm.202107040
H. Ma, J. Xu, K. Chen, L. Yu, Synergetic effect in rolling GaIn alloy droplets enables ultralow temperature growth of silicon nanowires at 70 °C on plastics. Nanoscale 12(16), 8949–8957 (2020). https://doi.org/10.1039/d0nr01283a
X. Song, Y. Gu, S. Wang, J. Wang, L. Yu, Nanowire-based flexible sensors for wearable electronics, brain-computer interfaces, and artificial skins. Electron 3(2), e77 (2025). https://doi.org/10.1002/elt2.77
X. Song, L. Wu, Y. Liang, Z. Liu, J. Wang et al., High-performance transparent silicon nanowire thin film transistors integrated on glass substrates via a room temperature solution passivation. Adv. Electron. Mater. 9(4), 2201236 (2023). https://doi.org/10.1002/aelm.202201236
Z. Xue, M. Sun, T. Dong, Z. Tang, Y. Zhao et al., Deterministic line-shape programming of silicon nanowires for extremely stretchable springs and electronics. Nano Lett. 17(12), 7638–7646 (2017). https://doi.org/10.1021/acs.nanolett.7b03658
J. Yan, Y. Zhang, Z. Liu, J. Wang, J. Xu et al., Ultracompact single-nanowire-morphed grippers driven by vectorial Lorentz forces for dexterous robotic manipulations. Nat. Commun. 14(1), 3786 (2023). https://doi.org/10.1038/s41467-023-39524-z
R. Yuan, W. Qian, Z. Liu, J. Wang, J. Xu et al., Designable integration of silicide nanowire springs as ultra-compact and stretchable electronic interconnections. Small 18(6), 2104690 (2022). https://doi.org/10.1002/smll.202104690
L. Wu, Z. Hu, L. Liang, R. Hu, J. Wang et al., Step-necking growth of silicon nanowire channels for high performance field effect transistors. Nat. Commun. 16(1), 965 (2025). https://doi.org/10.1038/s41467-025-56376-x
H. Ma, R. Yuan, J. Wang, Y. Shi, J. Xu et al., Cylindrical line-feeding growth of free-standing silicon nanohelices as elastic springs and resonators. Nano Lett. 20(7), 5072–5080 (2020). https://doi.org/10.1021/acs.nanolett.0c01265
H. Hu, S. Wang, S. Wang, G. Liu, T. Cao et al., Aligned silver nanowires enabled highly stretchable and transparent electrodes with unusual conductive property. Adv. Funct. Mater. 29(33), 1902922 (2019). https://doi.org/10.1002/adfm.201902922
B. Hwang, H.-A.-S. Shin, T. Kim, Y.-C. Joo, S.M. Han, Highly reliable Ag nanowire flexible transparent electrode with mechanically welded junctions. Small 10(16), 3397–3404 (2014). https://doi.org/10.1002/smll.201303906
V.R. Feig, H. Tran, M. Lee, Z. Bao, Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue. Nat. Commun. 9(1), 2740 (2018). https://doi.org/10.1038/s41467-018-05222-4
H. He, L. Zhang, X. Guan, H. Cheng, X. Liu et al., Biocompatible conductive polymers with high conductivity and high stretchability. ACS Appl. Mater. Interfaces 11(29), 26185–26193 (2019). https://doi.org/10.1021/acsami.9b07325
J. Zhou, H. Liu, Y. Sun, C. Wang, K. Chen, Self-healing titanium dioxide nanocapsules-graphene/multi-branched polyurethane hybrid flexible film with multifunctional properties toward wearable electronics. Adv. Funct. Mater. 31(29), 2011133 (2021). https://doi.org/10.1002/adfm.202011133
M. Tavakoli, M.H. Malakooti, H. Paisana, Y. Ohm, D. Green Marques et al., EGaIn-assisted room-temperature sintering of silver nanops for stretchable, inkjet-printed, thin-film electronics. Adv. Mater. 30(29), 1801852 (2018). https://doi.org/10.1002/adma.201801852
S.-H. Sunwoo, S.I. Han, D. Jung, M. Kim, S. Nam et al., Stretchable low-impedance conductor with Ag-Au-Pt core-shell-shell nanowires and in situ formed Pt nanops for wearable and implantable device. ACS Nano 17(8), 7550–7561 (2023). https://doi.org/10.1021/acsnano.2c12659
Y. Hong, J. Wang, J. Li, Z. Xu, X. Yang et al., Enhancing non-invasive brain stimulation with non-invasively delivered nanops for improving stroke recovery. Mater. Today Chem. 26, 101104 (2022). https://doi.org/10.1016/j.mtchem.2022.101104
Q. Han, C. Zhang, T. Guo, Y. Tian, W. Song et al., Hydrogel nanoarchitectonics of a flexible and self-adhesive electrode for long-term wireless electroencephalogram recording and high-accuracy sustained attention evaluation. Adv. Mater. 35(12), 2209606 (2023). https://doi.org/10.1002/adma.202209606
K. Liu, B. Ouyang, X. Guo, Y. Guo, Y. Liu, Advances in flexible organic field-effect transistors and their applications for flexible electronics. NPJ Flex. Electron. 6, 1 (2022). https://doi.org/10.1038/s41528-022-00133-3
Y. Li, Y. Gu, J. Teng, S. Zheng, Y. Pang et al., Advancing EEG-based brain-computer interface technology via PEDOT: PSS electrodes. Matter 7(9), 2859–2895 (2024). https://doi.org/10.1016/j.matt.2024.05.023
X. Song, T. Zhang, L. Wu, R. Hu, W. Qian et al., Highly stretchable high-performance silicon nanowire field effect transistors integrated on elastomer substrates. Adv. Sci. 9(9), 2105623 (2022). https://doi.org/10.1002/advs.202105623
X. Song, Y. Gu, S. Wang, J. Fan, J. An et al., Scalable integration of high sensitivity strain sensors based on silicon nanowire spring array directly grown on flexible polyimide films. Nano Lett. 25(6), 2290–2297 (2025). https://doi.org/10.1021/acs.nanolett.4c05553
C. Shi, J. Jiang, C. Li, C. Chen, W. Jian et al., Precision-induced localized molten liquid metal stamps for damage-free transfer printing of ultrathin membranes and 3D objects. Nat. Commun. 15, 8839 (2024). https://doi.org/10.1038/s41467-024-53184-7
Y. Park, C.K. Franz, H. Ryu, H. Luan, K.Y. Cotton et al., Three-dimensional, multifunctional neural interfaces for cortical spheroids and engineered assembloids. Sci. Adv. 7(12), eabf9153 (2021). https://doi.org/10.1126/sciadv.abf9153
L.M. Ferrari, U. Ismailov, J.-M. Badier, F. Greco, E. Ismailova, Conducting polymer tattoo electrodes in clinical electro- and magneto-encephalography. NPJ Flex. Electron. 4, 4 (2020). https://doi.org/10.1038/s41528-020-0067-z
W. Wang, H. Zhou, Z. Xu, Z. Li, L. Zhang et al., Flexible conformally bioadhesive MXene hydrogel electronics for machine learning-facilitated human-interactive sensing. Adv. Mater. 36(31), 2401035 (2024). https://doi.org/10.1002/adma.202401035
N. Driscoll, B. Erickson, B.B. Murphy, A.G. Richardson, G. Robbins et al., MXene-infused bioelectronic interfaces for multiscale electrophysiology and stimulation. Sci. Transl. Med. 13(612), eabf8629 (2021). https://doi.org/10.1126/scitranslmed.abf8629
S. Lin, J. Liu, W. Li, D. Wang, Y. Huang et al., A flexible, robust, and gel-free electroencephalogram electrode for noninvasive brain-computer interfaces. Nano Lett. 19(10), 6853–6861 (2019). https://doi.org/10.1021/acs.nanolett.9b02019
G. Yang, K. Zhu, W. Guo, D. Wu, X. Quan et al., Adhesive and hydrophobic bilayer hydrogel enabled on-skin biosensors for high-fidelity classification of human emotion. Adv. Funct. Mater. 32(29), 2200457 (2022). https://doi.org/10.1002/adfm.202200457
M. Mahmood, N. Kim, M. Mahmood, H. Kim, H. Kim et al., VR-enabled portable brain-computer interfaces via wireless soft bioelectronics. Biosens. Bioelectron. 210, 114333 (2022). https://doi.org/10.1016/j.bios.2022.114333
C. Brunner, R. Scherer, B. Graimann, G. Supp, G. Pfurtscheller, Online control of a brain-computer interface using phase synchronization. IEEE Trans. Biomed. Eng. 53(12), 2501–2506 (2006). https://doi.org/10.1109/TBME.2006.881775
X. He, M. Wu, H. Li, S. Liu, B. Liu et al., Real-time regulation of room temperature based on individual thermal sensation using an online brain-computer interface. Indoor Air 32(9), e13106 (2022). https://doi.org/10.1111/ina.13106
C. Serrano-Amenos, P. Heydari, C.Y. Liu, A.H. Do, Z. Nenadic, Power budget of a skull unit in a fully-implantable brain-computer interface: bio-heat model. IEEE Trans. Neural Syst. Rehabil. Eng. 31, 4029–4039 (2023). https://doi.org/10.1109/TNSRE.2023.3323916
T.S. Ibrahim, D. Abraham, R.L. Rennaker, Electromagnetic power absorption and temperature changes due to brain machine interface operation. Ann. Biomed. Eng. 35(5), 825–834 (2007). https://doi.org/10.1007/s10439-007-9264-3
S.L. Bernal, A.H. Celdrán, G.M. Pérez, M.T. Barros, S. Balasubramaniam, Security in brain-computer interfaces: state-of-the-art, opportunities, and future challenges. ACM Comput. Surv. 54(1), 1–35 (2022). https://doi.org/10.1145/3427376
T. Schroder, R. Sirbu, S. Park, J. Morley, S. Street et al., Cyber risks to next-gen brain-computer interfaces: analysis and recommendations. Neuroethics 18(2), 34 (2025). https://doi.org/10.1007/s12152-025-09607-3
F. Brocal, Brain-computer interfaces in safety and security fields: risks and applications. Saf. Sci. 160, 106051 (2023). https://doi.org/10.1016/j.ssci.2022.106051
G.R. Muller-Putz, R. Scherer, C. Neuper, G. Pfurtscheller, Steady-state somatosensory evoked potentials: suitable brain signals for brain-computer interfaces? IEEE Trans. Neural Syst. Rehabil. Eng. 14(1), 30–37 (2006). https://doi.org/10.1109/TNSRE.2005.863842