Computational Study of Ternary Devices: Stable, Low-Cost, and Efficient Planar Perovskite Solar Cells
Corresponding Author: Meicheng Li
Nano-Micro Letters,
Vol. 10 No. 3 (2018), Article Number: 51
Abstract
Although perovskite solar cells with power conversion efficiencies (PCEs) more than 22% have been realized with expensive organic charge-transporting materials, their stability and high cost remain to be addressed. In this work, the perovskite configuration of MAPbX (MA = CH3NH3, X = I3, Br3, or I2Br) integrated with stable and low-cost Cu:NiO x hole-transporting material, ZnO electron-transporting material, and Al counter electrode was modeled as a planar PSC and studied theoretically. A solar cell simulation program (wxAMPS), which served as an update of the popular solar cell simulation tool (AMPS: Analysis of Microelectronic and Photonic Structures), was used. The study yielded a detailed understanding of the role of each component in the solar cell and its effect on the photovoltaic parameters as a whole. The bandgap of active materials and operating temperature of the modeled solar cell were shown to influence the solar cell performance in a significant way. Further, the simulation results reveal a strong dependence of photovoltaic parameters on the thickness and defect density of the light-absorbing layers. Under moderate simulation conditions, the MAPbBr3 and MAPbI2Br cells recorded the highest PCEs of 20.58 and 19.08%, respectively, while MAPbI3 cell gave a value of 16.14%.
Highlights:
1 Simulation study of perovskite solar cells with p–i–n structure in the configuration Cu:NiOx /MAPbX/ZnO/Al.
2 Solar cells with MAPbI2Br photoactive layers exhibit best conversion efficiency and show promise of high thermal stability.
3 Simulation results provide a better understanding of the defect density and thickness of the active perovskite layer.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
- D. Song, P. Cui, T. Wang, D. Wei, M. Li et al., Managing carrier lifetime and doping property of lead halide perovskite by postannealing processes for highly efficient perovskite solar cells. J. Phys. Chem. C 119(40), 22812–22819 (2015). https://doi.org/10.1021/acs.jpcc.5b06859
- H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012). https://doi.org/10.1038/srep00591
- M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107), 643–647 (2012). https://doi.org/10.1126/science.1228604
- J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Gratzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458), 316–319 (2013). https://doi.org/10.1038/nature12340
- M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467), 395–398 (2013). https://doi.org/10.1038/nature12509
- N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S.I. Seok, Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13(9), 897–903 (2014). https://doi.org/10.1038/nmat4014
- N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, Compositional engineering of perovskite materials for high-performance solar cells. Nature 517(7535), 476–480 (2015). https://doi.org/10.1038/nature14133
- W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348(6240), 1234–1237 (2015). https://doi.org/10.1126/science.aaa9272
- M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Solar cell efficiency tables (version 46). Prog. Photovolt: Res. Appl. 23, 805–812 (2015). https://doi.org/10.1002/pip.2637
- F. Zhang, B. Yang, X. Mao, R. Yang, L. Jiang et al., Perovskite CH3NH3PbI3−xBr x single crystals with charge-carrier lifetimes exceeding 260 μs. ACS Appl. Mater. Interfaces 9(17), 14827–14832 (2017). https://doi.org/10.1021/acsami.7b01696
- D.P. McMeekin, G. Sadoughi, W. Rehman, G.E. Eperon, M. Saliba et al., A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351(6269), 151–155 (2016). https://doi.org/10.1126/science.aad5845
- N. Pellet, P. Gao, G. Gregori, T.Y. Yang, M.K. Nazeeruddin, J. Maier, M. Gratzel, Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. Angew. Chem. Int. Ed. 53(12), 3151–3157 (2014). https://doi.org/10.1002/anie.201309361
- A.M. Elseman, A.E. Shalan, M.M. Rashad, A.M. Hassan, Experimental and simulation study for impact of different halides on the performance of planar perovskite solar cells. Mater. Sci. Semicond. Process. 66, 176–185 (2017). https://doi.org/10.1016/j.mssp.2017.04.022
- Z. Zhang, X. Yue, D. Wei, M. Li, P. Fu, B. Xie, D. Song, Y. Li, DMSO-based PbI2 precursor with PbCl2 additive for highly efficient perovskite solar cells fabricated at low temperature. RSC Adv. 5(127), 104606–104611 (2015). https://doi.org/10.1039/C5RA25160E
- J.A. Christians, R.C.M. Fung, P.V. Kamat, An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. J. Am. Chem. Soc. 136(2), 758–764 (2014). https://doi.org/10.1021/ja411014k
- J. You, L. Meng, T.B. Song, T.F. Guo, Y.M. Yang et al., Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 11(1), 75–81 (2016). https://doi.org/10.1038/nnano.2015.230
- D. Wei, J. Ji, D. Song, M. Li, P. Cui et al., A TiO2 embedded structure for perovskite solar cells with anomalous grain growth and effective electron extraction. J. Mater. Chem. A 5(4), 1406–1414 (2017). https://doi.org/10.1039/C6TA10418E
- S. Seo, I.J. Park, M. Kim, S. Lee, C. Bae, H.S. Jung, N.G. Park, J.Y. Kim, H. Shin, An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic–inorganic hybrid perovskite solar cells. Nanoscale 8(22), 11403–11412 (2016). https://doi.org/10.1039/C6NR01601D
- L. Hu, J. Peng, W. Wang, Z. Xia, J. Yuan et al., Sequential deposition of CH3NH3PbI3 on planar NiO film for efficient planar perovskite solar cells. ACS Photonics 1(7), 547–553 (2014). https://doi.org/10.1021/ph5000067
- H.-T. Lien, D.P. Wong, N.-H. Tsao, C.-I. Huang, C. Su, K.-H. Chen, L.-C. Chen, Effect of copper oxide oxidation state on the polymer-based solar cell buffer layers. ACS Appl. Mater. Interfaces 6(24), 22445–22450 (2014). https://doi.org/10.1021/am5064469
- X. Du, Y. Wang, Z.G. Xia, H. Zhou, Perovskite CH3NH3PbI3 heterojunction solar cells via ultrasonic spray deposition. Appl. Mech. Mater. 748, 39–43 (2015). https://doi.org/10.4028/www.scientific.net/AMM.748.39
- M.-K. Son, L. Steier, M. Schreier, M.T. Mayer, J. Luo, M. Grätzel, A copper nickel mixed oxide hole selective layer for Au-free transparent cuprous oxide photocathodes. Energy Environ. Sci. 10(4), 912–918 (2017). https://doi.org/10.1039/C6EE03613A
- Sajid, A.M. Elseman, J. Ji, S. Dou, H. Huang, P. Cui, D. Wei, M. Li, Novel hole transport layer of nickel oxide composite with carbon for high-performance perovskite solar cells. Chin. Phys. B 27(1), 017305 (2018). https://doi.org/10.1088/1674-1056/27/1/017305
- J.W. Jung, C.-C. Chueh, A.K.Y. Jen, A low-temperature, solution-processable, Cu-doped nickel oxide hole-transporting layer via the combustion method for high-performance thin-film perovskite solar cells. Adv. Mater. 27(47), 7874–7880 (2015). https://doi.org/10.1002/adma.201503298
- S. Yue, K. Liu, R. Xu, M. Li, M. Azam et al., Efficacious engineering on charge extraction for realizing highly efficient perovskite solar cells. Energy Environ. Sci. 10(12), 2570–2578 (2017). https://doi.org/10.1039/C7EE02685D
- J.H. Kim, P.W. Liang, S.T. Williams, N. Cho, C.C. Chueh, M.S. Glaz, D.S. Ginger, A.K. Jen, High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer. Adv. Mater. 27(4), 695–701 (2015). https://doi.org/10.1002/adma.201404189
- D. Liu, T.L. Kelly, Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photonics 8(2), 133–138 (2014). https://doi.org/10.1038/nphoton.2013.342
- G.E. Eperon, V.M. Burlakov, P. Docampo, A. Goriely, H.J. Snaith, Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater. 24(1), 151–157 (2014). https://doi.org/10.1002/adfm.201302090
- F. Liu, J. Zhu, J. Wei, Y. Li, M. Lv, S. Yang, B. Zhang, J. Yao, S. Dai, Numerical simulation: toward the design of high-efficiency planar perovskite solar cells. Appl. Phys. Lett. 104(25), 253508 (2014). https://doi.org/10.1063/1.4885367
- K. Sato, S. Kim, S. Komuro, X. Zhao, Characteristics of Cu-doped amorphous NiO thin films formed by RF magnetron sputtering. Jpn. J. Appl. Phys. 55(6S1), 06GJ10 (2016). https://doi.org/10.7567/JJAP.55.06GJ10
- N. Hernández-Como, A. Morales-Acevedo, Simulation of hetero-junction silicon solar cells with AMPS-1D. Sol. Energy Mater. Sol. Cells 94(1), 62–67 (2010). https://doi.org/10.1016/j.solmat.2009.05.021
- I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 89(11), 5815–5875 (2001). https://doi.org/10.1063/1.1368156
- N.K. Noel, S.D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera et al., Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7(9), 3061–3068 (2014). https://doi.org/10.1039/C4EE01076K
- C. Wehrenfennig, M. Liu, H.J. Snaith, M.B. Johnston, L.M. Herz, Charge-carrier dynamics in vapour-deposited films of the organolead halide perovskite CH3NH3PbI3−xCl x . Energy Environ. Sci. 7(7), 2269–2275 (2014). https://doi.org/10.1039/C4EE01358A
- Y. Wang, Y. Liu, H. Zhou, Z. Xia, Simulation of perovskite solar cells with inorganic hole transporting materials, in 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC) (2015). https://doi.org/10.1109/PVSC.2015.7355717
- Y. Wang, Z. Xia, Y. Liu, H. Zhou, Uniform perovskite photovoltaic thin films via ultrasonic spray assisted deposition method, in 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC) (2015). https://doi.org/10.1109/PVSC.2015.7355719
- J. Cuiffi, T. Benanti, W.J. Nam, S. Fonash, Modeling of bulk and bilayer organic heterojunction solar cells. Appl. Phys. Lett. 96(14), 143307 (2010). https://doi.org/10.1063/1.3383232
- T. Wang, J. Chen, G. Wu, M. Li, Optimal design of efficient hole transporting layer free planar perovskite solar cell. Sci. Chin. Mater. 59(9), 703–709 (2016). https://doi.org/10.1007/s40843-016-5108-4
- K.W. Kemp, A.J. Labelle, S.M. Thon, A.H. Ip, I.J. Kramer, S. Hoogland, E.H. Sargent, Interface recombination in depleted heterojunction photovoltaics based on colloidal quantum dots. Adv. Energy Mater. 3(7), 917–922 (2013). https://doi.org/10.1002/aenm.201201083
- T. Wang, J. Chen, G. Wu, D. Song, M. Li, Designing novel thin film polycrystalline solar cells for high efficiency: sandwich CIGS and heterojunction perovskite. J. Semicond. 38(1), 014005 (2017). https://doi.org/10.1088/1674-4926/38/1/014005
- P. Liao, X. Zhao, G. Li, Y. Shen, M. Wang, A new method for fitting current–voltage curves of planar heterojunction perovskite solar cells. Nano-Micro Lett. 10(1), 5 (2018). https://doi.org/10.1007/s40820-017-0159-z
- A.E. Shalan, A. Mourtada Elseman, M. Rasly, M.M. Moharam, M. Lira-Cantu, M.M. Rashad, Concordantly fabricated heterojunction ZnO–TiO2 nanocomposite electrodes via a co-precipitation method for efficient stable quasi-solid-state dye-sensitized solar cells. RSC Adv. 5(125), 103095–103104 (2015). https://doi.org/10.1039/c5ra21822e
- D. Song, D. Wei, P. Cui, M. Li, Z. Duan et al., Dual function interfacial layer for highly efficient and stable lead halide perovskite solar cells. J. Mater. Chem. A 4(16), 6091–6097 (2016). https://doi.org/10.1039/C6TA00577B
- H.S. Kim, I. Mora-Sero, V. Gonzalez-Pedro, F. Fabregat-Santiago, E.J. Juarez-Perez, N.G. Park, J. Bisquert, Mechanism of carrier accumulation in perovskite thin-absorber solar cells. Nat. Commun. 4, 2242 (2013). https://doi.org/10.1038/ncomms3242
- M.-C. Kim, B.J. Kim, D.-Y. Son, N.-G. Park, H.S. Jung, M. Choi, Observation of enhanced hole extraction in Br concentration gradient perovskite materials. Nano Lett. 16(9), 5756–5763 (2016). https://doi.org/10.1021/acs.nanolett.6b02473
- A.A. Boussettine, Y. Belhadji, A. Benmansour, Modeling of tandem solar cell a-Si/a-SiGe using AMPS-1D program. Energy Proc. 18, 693–700 (2012). https://doi.org/10.1016/j.egypro.2012.05.084
- J. He, H. Windstorm, A. Hagfeldt, S.-E. Lindquist, Dye-sensitized nanostructured tandem cell-first demonstrated cell with a dye-sensitized photocathode. Sol. Energy Mater. Sol. Cells 62(3), 265–273 (2000). https://doi.org/10.1016/S0927-0248(99)00168-3
- S. Ryu, J.H. Noh, N.J. Jeon, Y.C. Kim, W.S. Yang, J. Seo, S.I. Seok, Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor. Energy Environ. Sci. 7(8), 2614–2618 (2014). https://doi.org/10.1039/C4EE00762J
- B. Suarez, V. Gonzalez-Pedro, T.S. Ripolles, R.S. Sanchez, L. Otero, I. Mora-Sero, Recombination study of combined halides (Cl, Br, I) perovskite solar cells. J. Phys. Chem. Lett. 5(10), 1628–1635 (2014). https://doi.org/10.1021/jz5006797
- C. Wehrenfennig, G.E. Eperon, M.B. Johnston, H.J. Snaith, L.M. Herz, High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26(10), 1584–1589 (2014). https://doi.org/10.1002/adma.201305172
- D. Bi, L. Yang, G. Boschloo, A. Hagfeldt, E.M. Johansson, Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells. J. Phys. Chem. Lett. 4(9), 1532–1536 (2013). https://doi.org/10.1021/jz400638x
- W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang et al., Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350(6263), 944–948 (2015). https://doi.org/10.1126/science.aad1015
- W. Chen, F.Z. Liu, X.Y. Feng, A.B. Djurišić, W.K. Chan, Z.B. He, Cesium doped NiO x as an efficient hole extraction layer for inverted planar perovskite solar cells. Adv. Energy Mater. 7(19), 1700722 (2017). https://doi.org/10.1002/aenm.201700722
- J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13(4), 1764–1769 (2013). https://doi.org/10.1021/nl400349b
- E. Edri, S. Kirmayer, D. Cahen, G. Hodes, High open-circuit voltage solar cells based on organic–inorganic lead bromide perovskite. J. Phys. Chem. Lett. 4(6), 897–902 (2013). https://doi.org/10.1021/jz400348q
- W.-J. Yin, T. Shi, Y. Yan, Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104(6), 063903 (2014). https://doi.org/10.1063/1.4864778
- P. Cui, P. Fu, D. Wei, M. Li, D. Song et al., Reduced surface defects of organometallic perovskite by thermal annealing for highly efficient perovskite solar cells. RSC Adv. 5(92), 75622–75629 (2015). https://doi.org/10.1039/C5RA16669A
- T.C. Sum, N. Mathews, Advancements in perovskite solar cells: photophysics behind the photovoltaics. Energy Environ. Sci. 7(8), 2518–2534 (2014). https://doi.org/10.1039/C4EE00673A
- D. Liu, M.K. Gangishetty, T.L. Kelly, Effect of CH3NH3PbI3 thickness on device efficiency in planar heterojunction perovskite solar cells. J. Mater. Chem. A 2(46), 19873–19881 (2014). https://doi.org/10.1039/C4TA02637C
- W.A. Laban, L. Etgar, Depleted hole conductor-free lead halide iodide heterojunction solar cells. Energy Environ. Sci. 6(11), 3249–3253 (2013). https://doi.org/10.1039/c3ee42282h
- G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Grätzel, S. Mhaisalkar, T.C. Sum, Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342(6156), 344–347 (2013). https://doi.org/10.1126/science.1243167
- P. Cui, D. Wei, J. Ji, D. Song, Y. Li et al., Highly efficient electron-selective layer free perovskite solar cells by constructing effective p–n-heterojunction. Solar RRL 1(2), 1600027 (2017). https://doi.org/10.1002/solr.201600027
- D. Song, J. Ji, Y. Li, G. Li, M. Li et al., Degradation of organometallic perovskite solar cells induced by trap states. Appl. Phys. Lett. 108(9), 093901 (2016). https://doi.org/10.1063/1.4943019
- H. Luo, X. Lin, X. Hou, L. Pan, S. Huang, X. Chen, Efficient and air-stable planar perovskite solar cells formed on graphene-oxide-modified PEDOT:PSS hole transport layer. Nano-Micro Lett. 9(4), 39 (2017). https://doi.org/10.1007/s40820-017-0140-x
- L. Etgar, P. Gao, Z. Xue, Q. Peng, A.K. Chandiran, B. Liu, M.K. Nazeeruddin, M. Grätzel, Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 134(42), 17396–17399 (2012). https://doi.org/10.1021/ja307789s
- C. Zhang, Y. Luo, X. Chen, Y. Chen, Z. Sun, S. Huang, Effective improvement of the photovoltaic performance of carbon-based perovskite solar cells by additional solvents. Nano-Micro Lett. 8(4), 347–357 (2016). https://doi.org/10.1007/s40820-016-0094-4
- S.R. Raga, E.M. Barea, F. Fabregat-Santiago, Analysis of the origin of open circuit voltage in dye solar cells. J. Phys. Chem. Lett. 3(12), 1629–1634 (2012). https://doi.org/10.1021/jz3005464
- B. Shin, O. Gunawan, Y. Zhu, N.A. Bojarczuk, S.J. Chey, S. Guha, Thin film solar cell with 8.4% power conversion efficiency using an earth abundant Cu2ZnSnS4 absorber. Prog. Photovolt. 21(1), 72–76 (2013). https://doi.org/10.1002/pip.1174
- Y. Hou, W. Chen, D. Baran, T. Stubhan, N.A. Luechinger et al., Overcoming the interface losses in planar heterojunction perovskite-based solar cells. Adv. Mater. 28(25), 5112–5120 (2016). https://doi.org/10.1002/adma.201504168
- Z. Liu, B. Sun, X. Liu, J. Han, H. Ye, T. Shi, Z. Tang, G. Liao, Efficient carbon-based CsPbBr3 inorganic perovskite solar cells by using Cu-phthalocyanine as hole transport material. Nano-Micro Lett. 10(2), 34 (2018). https://doi.org/10.1007/s40820-018-0187-3
- Z. Zhang, D. Wei, B. Xie, X. Yue, M. Li, D. Song, Y. Li, High reproducibility of perovskite solar cells via a complete spin-coating sequential solution deposition process. Sol. Energy 122, 97–103 (2015). https://doi.org/10.1016/j.solener.2015.08.028
- Z. Zhang, M. Li, W. Liu, X. Yue, P. Cui, D. Wei, CH3NH3PbI3 converted from reactive magnetron sputtered PbO for large area perovskite solar cells. Sol. Energy Mater. Sol. Cells 163, 250–254 (2017). https://doi.org/10.1016/j.solmat.2017.01.034
- S. Albrecht, M. Saliba, J.-P. Correa-Baena, K. Jäger, L. Korte, A. Hagfeldt, M. Grätzel, B. Rech, Towards optical optimization of planar monolithic perovskite/silicon-heterojunction tandem solar cells. J. Opt. 18(6), 064012 (2016). https://doi.org/10.1088/2040-8978/18/6/064012
- A.M. Elseman, A.E. Shalan, S. Sajid, M.M. Rashad, A.M. Hassan, M. Li, Copper substituted lead perovskites materials constructed with different halides for working (CH3NH3)2CuX4 based perovskite solar cells from experimental and theoretical view. ACS Appl. Mater. Interfaces. 10(14), 11699–11707 (2018). https://doi.org/10.1021/acsami.8b00495
References
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
D. Song, P. Cui, T. Wang, D. Wei, M. Li et al., Managing carrier lifetime and doping property of lead halide perovskite by postannealing processes for highly efficient perovskite solar cells. J. Phys. Chem. C 119(40), 22812–22819 (2015). https://doi.org/10.1021/acs.jpcc.5b06859
H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012). https://doi.org/10.1038/srep00591
M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107), 643–647 (2012). https://doi.org/10.1126/science.1228604
J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Gratzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458), 316–319 (2013). https://doi.org/10.1038/nature12340
M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467), 395–398 (2013). https://doi.org/10.1038/nature12509
N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S.I. Seok, Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13(9), 897–903 (2014). https://doi.org/10.1038/nmat4014
N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, Compositional engineering of perovskite materials for high-performance solar cells. Nature 517(7535), 476–480 (2015). https://doi.org/10.1038/nature14133
W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348(6240), 1234–1237 (2015). https://doi.org/10.1126/science.aaa9272
M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Solar cell efficiency tables (version 46). Prog. Photovolt: Res. Appl. 23, 805–812 (2015). https://doi.org/10.1002/pip.2637
F. Zhang, B. Yang, X. Mao, R. Yang, L. Jiang et al., Perovskite CH3NH3PbI3−xBr x single crystals with charge-carrier lifetimes exceeding 260 μs. ACS Appl. Mater. Interfaces 9(17), 14827–14832 (2017). https://doi.org/10.1021/acsami.7b01696
D.P. McMeekin, G. Sadoughi, W. Rehman, G.E. Eperon, M. Saliba et al., A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351(6269), 151–155 (2016). https://doi.org/10.1126/science.aad5845
N. Pellet, P. Gao, G. Gregori, T.Y. Yang, M.K. Nazeeruddin, J. Maier, M. Gratzel, Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. Angew. Chem. Int. Ed. 53(12), 3151–3157 (2014). https://doi.org/10.1002/anie.201309361
A.M. Elseman, A.E. Shalan, M.M. Rashad, A.M. Hassan, Experimental and simulation study for impact of different halides on the performance of planar perovskite solar cells. Mater. Sci. Semicond. Process. 66, 176–185 (2017). https://doi.org/10.1016/j.mssp.2017.04.022
Z. Zhang, X. Yue, D. Wei, M. Li, P. Fu, B. Xie, D. Song, Y. Li, DMSO-based PbI2 precursor with PbCl2 additive for highly efficient perovskite solar cells fabricated at low temperature. RSC Adv. 5(127), 104606–104611 (2015). https://doi.org/10.1039/C5RA25160E
J.A. Christians, R.C.M. Fung, P.V. Kamat, An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. J. Am. Chem. Soc. 136(2), 758–764 (2014). https://doi.org/10.1021/ja411014k
J. You, L. Meng, T.B. Song, T.F. Guo, Y.M. Yang et al., Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 11(1), 75–81 (2016). https://doi.org/10.1038/nnano.2015.230
D. Wei, J. Ji, D. Song, M. Li, P. Cui et al., A TiO2 embedded structure for perovskite solar cells with anomalous grain growth and effective electron extraction. J. Mater. Chem. A 5(4), 1406–1414 (2017). https://doi.org/10.1039/C6TA10418E
S. Seo, I.J. Park, M. Kim, S. Lee, C. Bae, H.S. Jung, N.G. Park, J.Y. Kim, H. Shin, An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic–inorganic hybrid perovskite solar cells. Nanoscale 8(22), 11403–11412 (2016). https://doi.org/10.1039/C6NR01601D
L. Hu, J. Peng, W. Wang, Z. Xia, J. Yuan et al., Sequential deposition of CH3NH3PbI3 on planar NiO film for efficient planar perovskite solar cells. ACS Photonics 1(7), 547–553 (2014). https://doi.org/10.1021/ph5000067
H.-T. Lien, D.P. Wong, N.-H. Tsao, C.-I. Huang, C. Su, K.-H. Chen, L.-C. Chen, Effect of copper oxide oxidation state on the polymer-based solar cell buffer layers. ACS Appl. Mater. Interfaces 6(24), 22445–22450 (2014). https://doi.org/10.1021/am5064469
X. Du, Y. Wang, Z.G. Xia, H. Zhou, Perovskite CH3NH3PbI3 heterojunction solar cells via ultrasonic spray deposition. Appl. Mech. Mater. 748, 39–43 (2015). https://doi.org/10.4028/www.scientific.net/AMM.748.39
M.-K. Son, L. Steier, M. Schreier, M.T. Mayer, J. Luo, M. Grätzel, A copper nickel mixed oxide hole selective layer for Au-free transparent cuprous oxide photocathodes. Energy Environ. Sci. 10(4), 912–918 (2017). https://doi.org/10.1039/C6EE03613A
Sajid, A.M. Elseman, J. Ji, S. Dou, H. Huang, P. Cui, D. Wei, M. Li, Novel hole transport layer of nickel oxide composite with carbon for high-performance perovskite solar cells. Chin. Phys. B 27(1), 017305 (2018). https://doi.org/10.1088/1674-1056/27/1/017305
J.W. Jung, C.-C. Chueh, A.K.Y. Jen, A low-temperature, solution-processable, Cu-doped nickel oxide hole-transporting layer via the combustion method for high-performance thin-film perovskite solar cells. Adv. Mater. 27(47), 7874–7880 (2015). https://doi.org/10.1002/adma.201503298
S. Yue, K. Liu, R. Xu, M. Li, M. Azam et al., Efficacious engineering on charge extraction for realizing highly efficient perovskite solar cells. Energy Environ. Sci. 10(12), 2570–2578 (2017). https://doi.org/10.1039/C7EE02685D
J.H. Kim, P.W. Liang, S.T. Williams, N. Cho, C.C. Chueh, M.S. Glaz, D.S. Ginger, A.K. Jen, High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer. Adv. Mater. 27(4), 695–701 (2015). https://doi.org/10.1002/adma.201404189
D. Liu, T.L. Kelly, Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photonics 8(2), 133–138 (2014). https://doi.org/10.1038/nphoton.2013.342
G.E. Eperon, V.M. Burlakov, P. Docampo, A. Goriely, H.J. Snaith, Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater. 24(1), 151–157 (2014). https://doi.org/10.1002/adfm.201302090
F. Liu, J. Zhu, J. Wei, Y. Li, M. Lv, S. Yang, B. Zhang, J. Yao, S. Dai, Numerical simulation: toward the design of high-efficiency planar perovskite solar cells. Appl. Phys. Lett. 104(25), 253508 (2014). https://doi.org/10.1063/1.4885367
K. Sato, S. Kim, S. Komuro, X. Zhao, Characteristics of Cu-doped amorphous NiO thin films formed by RF magnetron sputtering. Jpn. J. Appl. Phys. 55(6S1), 06GJ10 (2016). https://doi.org/10.7567/JJAP.55.06GJ10
N. Hernández-Como, A. Morales-Acevedo, Simulation of hetero-junction silicon solar cells with AMPS-1D. Sol. Energy Mater. Sol. Cells 94(1), 62–67 (2010). https://doi.org/10.1016/j.solmat.2009.05.021
I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 89(11), 5815–5875 (2001). https://doi.org/10.1063/1.1368156
N.K. Noel, S.D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera et al., Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7(9), 3061–3068 (2014). https://doi.org/10.1039/C4EE01076K
C. Wehrenfennig, M. Liu, H.J. Snaith, M.B. Johnston, L.M. Herz, Charge-carrier dynamics in vapour-deposited films of the organolead halide perovskite CH3NH3PbI3−xCl x . Energy Environ. Sci. 7(7), 2269–2275 (2014). https://doi.org/10.1039/C4EE01358A
Y. Wang, Y. Liu, H. Zhou, Z. Xia, Simulation of perovskite solar cells with inorganic hole transporting materials, in 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC) (2015). https://doi.org/10.1109/PVSC.2015.7355717
Y. Wang, Z. Xia, Y. Liu, H. Zhou, Uniform perovskite photovoltaic thin films via ultrasonic spray assisted deposition method, in 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC) (2015). https://doi.org/10.1109/PVSC.2015.7355719
J. Cuiffi, T. Benanti, W.J. Nam, S. Fonash, Modeling of bulk and bilayer organic heterojunction solar cells. Appl. Phys. Lett. 96(14), 143307 (2010). https://doi.org/10.1063/1.3383232
T. Wang, J. Chen, G. Wu, M. Li, Optimal design of efficient hole transporting layer free planar perovskite solar cell. Sci. Chin. Mater. 59(9), 703–709 (2016). https://doi.org/10.1007/s40843-016-5108-4
K.W. Kemp, A.J. Labelle, S.M. Thon, A.H. Ip, I.J. Kramer, S. Hoogland, E.H. Sargent, Interface recombination in depleted heterojunction photovoltaics based on colloidal quantum dots. Adv. Energy Mater. 3(7), 917–922 (2013). https://doi.org/10.1002/aenm.201201083
T. Wang, J. Chen, G. Wu, D. Song, M. Li, Designing novel thin film polycrystalline solar cells for high efficiency: sandwich CIGS and heterojunction perovskite. J. Semicond. 38(1), 014005 (2017). https://doi.org/10.1088/1674-4926/38/1/014005
P. Liao, X. Zhao, G. Li, Y. Shen, M. Wang, A new method for fitting current–voltage curves of planar heterojunction perovskite solar cells. Nano-Micro Lett. 10(1), 5 (2018). https://doi.org/10.1007/s40820-017-0159-z
A.E. Shalan, A. Mourtada Elseman, M. Rasly, M.M. Moharam, M. Lira-Cantu, M.M. Rashad, Concordantly fabricated heterojunction ZnO–TiO2 nanocomposite electrodes via a co-precipitation method for efficient stable quasi-solid-state dye-sensitized solar cells. RSC Adv. 5(125), 103095–103104 (2015). https://doi.org/10.1039/c5ra21822e
D. Song, D. Wei, P. Cui, M. Li, Z. Duan et al., Dual function interfacial layer for highly efficient and stable lead halide perovskite solar cells. J. Mater. Chem. A 4(16), 6091–6097 (2016). https://doi.org/10.1039/C6TA00577B
H.S. Kim, I. Mora-Sero, V. Gonzalez-Pedro, F. Fabregat-Santiago, E.J. Juarez-Perez, N.G. Park, J. Bisquert, Mechanism of carrier accumulation in perovskite thin-absorber solar cells. Nat. Commun. 4, 2242 (2013). https://doi.org/10.1038/ncomms3242
M.-C. Kim, B.J. Kim, D.-Y. Son, N.-G. Park, H.S. Jung, M. Choi, Observation of enhanced hole extraction in Br concentration gradient perovskite materials. Nano Lett. 16(9), 5756–5763 (2016). https://doi.org/10.1021/acs.nanolett.6b02473
A.A. Boussettine, Y. Belhadji, A. Benmansour, Modeling of tandem solar cell a-Si/a-SiGe using AMPS-1D program. Energy Proc. 18, 693–700 (2012). https://doi.org/10.1016/j.egypro.2012.05.084
J. He, H. Windstorm, A. Hagfeldt, S.-E. Lindquist, Dye-sensitized nanostructured tandem cell-first demonstrated cell with a dye-sensitized photocathode. Sol. Energy Mater. Sol. Cells 62(3), 265–273 (2000). https://doi.org/10.1016/S0927-0248(99)00168-3
S. Ryu, J.H. Noh, N.J. Jeon, Y.C. Kim, W.S. Yang, J. Seo, S.I. Seok, Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor. Energy Environ. Sci. 7(8), 2614–2618 (2014). https://doi.org/10.1039/C4EE00762J
B. Suarez, V. Gonzalez-Pedro, T.S. Ripolles, R.S. Sanchez, L. Otero, I. Mora-Sero, Recombination study of combined halides (Cl, Br, I) perovskite solar cells. J. Phys. Chem. Lett. 5(10), 1628–1635 (2014). https://doi.org/10.1021/jz5006797
C. Wehrenfennig, G.E. Eperon, M.B. Johnston, H.J. Snaith, L.M. Herz, High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26(10), 1584–1589 (2014). https://doi.org/10.1002/adma.201305172
D. Bi, L. Yang, G. Boschloo, A. Hagfeldt, E.M. Johansson, Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells. J. Phys. Chem. Lett. 4(9), 1532–1536 (2013). https://doi.org/10.1021/jz400638x
W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang et al., Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350(6263), 944–948 (2015). https://doi.org/10.1126/science.aad1015
W. Chen, F.Z. Liu, X.Y. Feng, A.B. Djurišić, W.K. Chan, Z.B. He, Cesium doped NiO x as an efficient hole extraction layer for inverted planar perovskite solar cells. Adv. Energy Mater. 7(19), 1700722 (2017). https://doi.org/10.1002/aenm.201700722
J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13(4), 1764–1769 (2013). https://doi.org/10.1021/nl400349b
E. Edri, S. Kirmayer, D. Cahen, G. Hodes, High open-circuit voltage solar cells based on organic–inorganic lead bromide perovskite. J. Phys. Chem. Lett. 4(6), 897–902 (2013). https://doi.org/10.1021/jz400348q
W.-J. Yin, T. Shi, Y. Yan, Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104(6), 063903 (2014). https://doi.org/10.1063/1.4864778
P. Cui, P. Fu, D. Wei, M. Li, D. Song et al., Reduced surface defects of organometallic perovskite by thermal annealing for highly efficient perovskite solar cells. RSC Adv. 5(92), 75622–75629 (2015). https://doi.org/10.1039/C5RA16669A
T.C. Sum, N. Mathews, Advancements in perovskite solar cells: photophysics behind the photovoltaics. Energy Environ. Sci. 7(8), 2518–2534 (2014). https://doi.org/10.1039/C4EE00673A
D. Liu, M.K. Gangishetty, T.L. Kelly, Effect of CH3NH3PbI3 thickness on device efficiency in planar heterojunction perovskite solar cells. J. Mater. Chem. A 2(46), 19873–19881 (2014). https://doi.org/10.1039/C4TA02637C
W.A. Laban, L. Etgar, Depleted hole conductor-free lead halide iodide heterojunction solar cells. Energy Environ. Sci. 6(11), 3249–3253 (2013). https://doi.org/10.1039/c3ee42282h
G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Grätzel, S. Mhaisalkar, T.C. Sum, Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342(6156), 344–347 (2013). https://doi.org/10.1126/science.1243167
P. Cui, D. Wei, J. Ji, D. Song, Y. Li et al., Highly efficient electron-selective layer free perovskite solar cells by constructing effective p–n-heterojunction. Solar RRL 1(2), 1600027 (2017). https://doi.org/10.1002/solr.201600027
D. Song, J. Ji, Y. Li, G. Li, M. Li et al., Degradation of organometallic perovskite solar cells induced by trap states. Appl. Phys. Lett. 108(9), 093901 (2016). https://doi.org/10.1063/1.4943019
H. Luo, X. Lin, X. Hou, L. Pan, S. Huang, X. Chen, Efficient and air-stable planar perovskite solar cells formed on graphene-oxide-modified PEDOT:PSS hole transport layer. Nano-Micro Lett. 9(4), 39 (2017). https://doi.org/10.1007/s40820-017-0140-x
L. Etgar, P. Gao, Z. Xue, Q. Peng, A.K. Chandiran, B. Liu, M.K. Nazeeruddin, M. Grätzel, Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 134(42), 17396–17399 (2012). https://doi.org/10.1021/ja307789s
C. Zhang, Y. Luo, X. Chen, Y. Chen, Z. Sun, S. Huang, Effective improvement of the photovoltaic performance of carbon-based perovskite solar cells by additional solvents. Nano-Micro Lett. 8(4), 347–357 (2016). https://doi.org/10.1007/s40820-016-0094-4
S.R. Raga, E.M. Barea, F. Fabregat-Santiago, Analysis of the origin of open circuit voltage in dye solar cells. J. Phys. Chem. Lett. 3(12), 1629–1634 (2012). https://doi.org/10.1021/jz3005464
B. Shin, O. Gunawan, Y. Zhu, N.A. Bojarczuk, S.J. Chey, S. Guha, Thin film solar cell with 8.4% power conversion efficiency using an earth abundant Cu2ZnSnS4 absorber. Prog. Photovolt. 21(1), 72–76 (2013). https://doi.org/10.1002/pip.1174
Y. Hou, W. Chen, D. Baran, T. Stubhan, N.A. Luechinger et al., Overcoming the interface losses in planar heterojunction perovskite-based solar cells. Adv. Mater. 28(25), 5112–5120 (2016). https://doi.org/10.1002/adma.201504168
Z. Liu, B. Sun, X. Liu, J. Han, H. Ye, T. Shi, Z. Tang, G. Liao, Efficient carbon-based CsPbBr3 inorganic perovskite solar cells by using Cu-phthalocyanine as hole transport material. Nano-Micro Lett. 10(2), 34 (2018). https://doi.org/10.1007/s40820-018-0187-3
Z. Zhang, D. Wei, B. Xie, X. Yue, M. Li, D. Song, Y. Li, High reproducibility of perovskite solar cells via a complete spin-coating sequential solution deposition process. Sol. Energy 122, 97–103 (2015). https://doi.org/10.1016/j.solener.2015.08.028
Z. Zhang, M. Li, W. Liu, X. Yue, P. Cui, D. Wei, CH3NH3PbI3 converted from reactive magnetron sputtered PbO for large area perovskite solar cells. Sol. Energy Mater. Sol. Cells 163, 250–254 (2017). https://doi.org/10.1016/j.solmat.2017.01.034
S. Albrecht, M. Saliba, J.-P. Correa-Baena, K. Jäger, L. Korte, A. Hagfeldt, M. Grätzel, B. Rech, Towards optical optimization of planar monolithic perovskite/silicon-heterojunction tandem solar cells. J. Opt. 18(6), 064012 (2016). https://doi.org/10.1088/2040-8978/18/6/064012
A.M. Elseman, A.E. Shalan, S. Sajid, M.M. Rashad, A.M. Hassan, M. Li, Copper substituted lead perovskites materials constructed with different halides for working (CH3NH3)2CuX4 based perovskite solar cells from experimental and theoretical view. ACS Appl. Mater. Interfaces. 10(14), 11699–11707 (2018). https://doi.org/10.1021/acsami.8b00495