A Novel Strategy of In Situ Trimerization of Cyano Groups Between the Ti3C2Tx (MXene) Interlayers for High-Energy and High-Power Sodium-Ion Capacitors
Corresponding Author: Xigao Jian
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 135
Abstract
2D MXenes are attractive for energy storage applications because of their high electronic conductivity. However, it is still highly challenging for improving the sluggish sodium (Na)-ion transport kinetics within the MXenes interlayers. Herein, a novel nitrogen-doped Ti3C2Tx MXene was synthesized by introducing the in situ polymeric sodium dicyanamide (Na-dca) to tune the complex terminations and then utilized as intercalation-type pseudocapacitive anode of Na-ion capacitors (NICs). The Na-dca can intercalate into the interlayers of Ti3C2Tx nanosheets and simultaneously form sodium tricyanomelaminate (Na3TCM) by the catalyst-free trimerization. The as-prepared Ti3C2Tx/Na3TCM exhibits a high N-doping of 5.6 at.% in the form of strong Ti–N bonding and stabilized triazine ring structure. Consequently, coupling Ti3C2Tx/Na3TCM anode with different mass of activated carbon cathodes, the asymmetric MXene//carbon NICs are assembled. It is able to deliver high energy density (97.6 Wh kg−1), high power output (16.5 kW kg−1), and excellent cycling stability (≈ 82.6% capacitance retention after 8000 cycles).
Highlights:
1 A novel N-doped strategy of C2N3− in situ trimerization between the 2D MXene interlayers was first proposed.
2 The ultra-fast pseudocapacitive behavior of Ti3C2Tx/Na3TCM anode was managed and verified.
3 The as-fabricated sodium-ion capacitor delivers excellent electrochemical performance by anode/cathode mass matching.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Armand, J.-M. Tarascon, Building better batteries. Nature 451, 652–657 (2008). https://doi.org/10.1038/451652a
- J. Sun, H.-W. Lee, M. Pasta, H. Yuan, G. Zheng, Y. Sun, Y. Li, Y. Cui, A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotechnol. 10, 980–U184 (2015). https://doi.org/10.1038/NNANO.2015.194
- W. Shao, F. Hu, C. Song, J. Wang, C. Liu, Z. Weng, X. Jian, Hierarchical N/S co-doped carbon anodes fabricated through a facile ionothermal polymerization for high-performance sodium ion batteries. J. Mater. Chem. A 7, 6363–6373 (2019). https://doi.org/10.1039/c8ta11921j
- Z.-L. Xu, S. Yao, J. Cui, L. Zhou, J.-K. Kim, Atomic scale, amorphous FeOx/carbon nanofiber anodes for Li-ion and Na-ion batteries. Energy Storage Mater. 8, 10–19 (2017). https://doi.org/10.1016/j.ensm.2017.03.010
- J. Ding, H. Wang, Z. Li, K. Cui, D. Karpuzov, X. Tan, A. Kohandehghan, D. Mitlin, Peanut shell hybrid sodium ion capacitor with extreme energy-power rivals lithium ion capacitors. Energy Environ. Sci. 8, 941–955 (2015). https://doi.org/10.1039/c4ee02986k
- J. Yang, X. Zhou, D. Wu, X. Zhao, Z. Zhou, S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries. Adv. Mater. 29, 1604108 (2017). https://doi.org/10.1002/adma.201604108
- J. Ding, W. Hu, E. Paek, D. Mitlin, Review of hybrid ion capacitors: from aqueous to lithium to sodium. Chem. Rev. 118, 6457–6498 (2018). https://doi.org/10.1021/acs.chemrev.8b00116
- J. Luo, C. Fang, C. Jin, H. Yuan, O. Sheng et al., Tunable pseudocapacitance storage of MXene by cation pillaring for high performance sodium ion capacitors. J. Mater. Chem. A 6, 7794–7806 (2018). https://doi.org/10.1039/c8ta02068j
- C. Zhang, L. McKeon, M.P. Kremer, S.-H. Park, O. Ronan et al., Additive-free MXene inks and direct printing of micro-supercapacitors. Nat. Commun. 10, 1795 (2019). https://doi.org/10.1038/s41467-019-09398-1
- M. Boota, B. Anasori, C. Voigt, M.-Q. Zhao, M.W. Barsoum, Y. Gogotsi, Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Adv. Mater. 28, 1517–1522 (2016). https://doi.org/10.1002/adma.201504705
- M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary article: MXenes—a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014). https://doi.org/10.1002/adma.201304138
- Z. Ling, C.E. Ren, M.-Q. Zhao, J. Yang, J.M. Giammarco, J. Qiu, M.W. Barsoum, Y. Gogotsi, Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. USA 111, 16676–16681 (2014). https://doi.org/10.1073/pnas.1414215111
- M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, Y. Gogotsi, Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29, 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
- B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
- P. Srimuk, F. Kaasik, B. Kruner, A. Tolosa, S. Fleischmann et al., MXene as a novel intercalation-type pseudocapacitive cathode and anode for capacitive deionization. J. Mater. Chem. A 4, 18265–18271 (2016). https://doi.org/10.1039/c6ta07833h
- Q. Tang, Z. Zhou, P. Shen, Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J. Am. Chem. Soc. 134, 16909–16916 (2012). https://doi.org/10.1021/ja308463r
- M. Lu, H. Li, W. Han, J. Chen, W. Shi et al., 2D titanium carbide (MXene) electrodes with lower-F surface for high-performance lithium–ion batteries. J. Energy Chem. 31, 148–153 (2019). https://doi.org/10.1016/j.jechem.2018.05.017
- Y. Tang, J. Zhu, W. Wu, C. Yang, W. Lv, F. Wang, Synthesis of nitrogen-doped two-dimensional Ti3C2 with enhanced electrochemical performance. J. Electrochem. Soc. 164, A923–A929 (2017). https://doi.org/10.1149/2.0041706jes
- F. Hu, T. Zhang, J. Wang, C. Liu, S. Li, S. Hu, X. Jian, Simple fabrication of high-efficiency N, O, F, P-containing electrodes through host–guest doping for high-performance supercapacitors. ACS Sustain. Chem. Eng. 6, 15764–15772 (2018). https://doi.org/10.1021/acssuschemeng.8b04331
- Y. Yoon, M. Lee, S.K. Kim, G. Bae, W. Song et al., A strategy for synthesis of carbon nitride induced chemically doped 2D MXene for high-performance supercapacitor electrodes. Adv. Energy Mater. 8, 1703173 (2018). https://doi.org/10.1002/aenm.201703173
- B. Jürgens, E. Irran, J. Schneider, W. Schnick, Trimerization of NaC2N3 to Na3C6N9 in the solid: Ab initio crystal structure determination of two polymorphs of NaC2N3 and of Na3C6N9 from X-ray powder diffractometry. Inorg. Chem. 39, 665–670 (2000). https://doi.org/10.1021/ic991044f
- A.P. Purdy, E. Houser, C.F. George, Lithium dicyanamide, its reactions with cyanuric chloride, and the crystal structures of LiN(CN)2(MeCN)2 and LiCN(C5H5N)2. Polyhedron 16, 3671–3679 (1997). https://doi.org/10.1016/S0277-5387(97)00097-1
- S.R. Batten, P. Jensen, B. Moubaraki, K.S. Murray, R. Robson, Structure and molecular magnetism of the rutile-related compounds M(dca)2, M = CoII, NiII, CuII, dca = dicyanamide, N(CN)2–. Chem. Commun. (1998). https://doi.org/10.1039/a707264c
- D. Xu, D. Chao, H. Wang, Y. Gong, R. Wang, B. He, X. Hu, H.J. Fan, Flexible quasi-solid-state sodium-ion capacitors developed using 2D metal–organic-framework array as reactor. Adv. Energy Mater. 8, 1702769 (2018). https://doi.org/10.1002/aenm.201702769
- Z. Mao, R. Wang, B. He, Y. Gong, H. Wang, Large-area, uniform, aligned arrays of Na3(VO)2(PO4)2F on carbon nanofiber for quasi-solid-state sodium-ion hybrid capacitors. Small 15, 1902466 (2019). https://doi.org/10.1002/smll.201902466
- G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- G. Henkelman, B.P. Uberuaga, H. Jonsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000). https://doi.org/10.1063/1.1329672
- N. Kurra, M. Alhabeb, K. Maleski, C.-H. Wang, H.N. Alshareef, Y. Gogotsi, Bistacked titanium carbide (MXene) anodes for hybrid sodium ion capacitors. ACS Energy Lett. 3, 2094–2100 (2018). https://doi.org/10.1021/acsenergylett.8b01062
- M.-Q. Zhao, X. Xie, C.E. Ren, T. Makaryan, B. Anasori, G. Wang, Y. Gogotsi, Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv. Mater. 29, 1702410 (2017). https://doi.org/10.1002/adma.201702410
- L. Hao, J. Ning, B. Luo, B. Wang, Y. Zhang et al., Structural evolution of 2D microporous covalent triazine-based framework toward the study of high-performance supercapacitors. J. Am. Chem. Soc. 137, 219–225 (2015). https://doi.org/10.1021/ja508693y
- F. Hu, J. Wang, S. Hu, L. Li, W. Shao et al., Engineered fabrication of hierarchical frameworks with tuned pore structure and N, O-co-doping for high-performance supercapacitors. ACS Appl. Mater. Interfaces 9, 31940–31949 (2017). https://doi.org/10.1021/acsami.7b09801
- S. Huang, Z. Li, B. Wang, J. Zhang, Z. Peng, R. Qi, J. Wang, Y. Zhao, N-doping and defective nanographitic domain coupled hard carbon nanoshells for high performance lithium/sodium storage. Adv. Funct. Mater. 28, 1706294 (2018). https://doi.org/10.1002/adfm.201706294
- D.-G. Wang, H. Wang, Y. Lin, G. Yu, M. Song, W. Zhong, G.C. Kuang, Synthesis and morphology evolution of ultrahigh content nitrogen-doped, micropore-dominated carbon materials as high-performance supercapacitors. Chemsuschem 11, 3932–3940 (2018). https://doi.org/10.1002/cssc.201801892
- X. Huang, J. Tang, B. Luo, R. Knibbe, T. Lin et al., Sandwich-like ultrathin TiS2 nanosheets confined within N, S codoped porous carbon as an effective polysulfide promoter in lithium-sulfur batteries. Adv. Energy Mater. 9, 1901872 (2019). https://doi.org/10.1002/aenm.201901872
- X. Wu, Z. Wang, M. Yu, L. Xiu, J. Qiu, Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability. Adv. Mater. 29, 1607017 (2017). https://doi.org/10.1002/adma.201607017
- G. Du, M. Tao, W. Gao, Y. Zhang, R. Zhan, S. Bao, M. Xu, Preparation of MoS2/Ti3C2Tx composite as anode material with enhanced sodium/lithium storage performance. Inorg. Chem. Front. 6, 117–125 (2019). https://doi.org/10.1039/c8qi01081a
- J. Luo, X. Tao, J. Zhang, Y. Xia, H. Huang et al., Sn4+ ion decorated highly conductive Ti3C2 MXene: promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano 10, 2491–2499 (2016). https://doi.org/10.1021/acsnano.5b07333
- W. Bao, L. Liu, C. Wang, S. Choi, D. Wang, G. Wang, Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium–sulfur batteries. Adv. Energy Mater. 8, 1702485 (2018). https://doi.org/10.1002/aenm.201702485
- C. Yang, Y. Tang, Y. Tian, Y. Luo, M.F.U. Din, X. Yin, W. Que, Flexible nitrogen-doped 2D titanium carbides (MXene) films constructed by an ex situ solvothermal method with extraordinary volumetric capacitance. Adv. Energy Mater. 8, 1802087 (2018). https://doi.org/10.1002/aenm.201802087
- J. Luo, J. Zheng, J. Nai, C. Jin, H. Yuan et al., Atomic sulfur covalently engineered interlayers of Ti3C2 MXene for ultra-fast sodium-ion storage by enhanced pseudocapacitance. Adv. Funct. Mater. 29, 1808107 (2019). https://doi.org/10.1002/adfm.201808107
- X. Guo, W. Zhang, J. Zhang, D. Zhou, X. Tang et al., Boosting sodium storage in two-dimensional phosphorene/Ti3C2Tx MXene nanoarchitectures with stable fluorinated interphase. ACS Nano 14, 3651–3659 (2020). https://doi.org/10.1002/aenm.201702485
- X. Chen, Y. Zhu, M. Zhang, J. Sui, W. Peng et al., N-Butyllithium-treated Ti3C2Tx MXene with excellent pseudocapacitor performance. ACS Nano 13, 9449–9456 (2019). https://doi.org/10.1021/acsnano.9b04301
- S. Sun, Z. Xie, Y. Yan, S. Wu, Hybrid energy storage mechanisms for sulfur-decorated Ti3C2 MXene anode material for high-rate and long-life sodium-ion batteries. Chem. Eng. J. 366, 460–467 (2019). https://doi.org/10.1016/j.cej.2019.01.185
- N. Sun, Q. Zhu, B. Anasori, P. Zhang, H. Liu, Y. Gogotsi, B. Xu, MXene-bonded flexible hard carbon film as anode for stable Na/K-ion storage. Adv. Funct. Mater. 29, 1906282 (2019). https://doi.org/10.1002/adfm.201906282
- G. Jiang, N. Zheng, X. Chen, G. Ding, Y. Li, F. Sun, Y. Li, In-situ decoration of MOF-derived carbon on nitrogen-doped ultrathin MXene nanosheets to multifunctionalize separators for stable Li-S batteries. Chem. Eng. J. 373, 1309–1318 (2019). https://doi.org/10.1016/j.cej.2019.05.119
- B. Yang, J. Chen, S. Lei, R. Guo, H. Li, S. Shi, X. Yan, Spontaneous growth of 3D framework carbon from sodium citrate for high energy- and power-density and long-life sodium-ion hybrid capacitors. Adv. Energy Mater. 8, 1702409 (2018). https://doi.org/10.1002/aenm.201702409
- X. Jin, H. Huang, A. Wu, S. Gao, M. Lei, J. Zhao, X. Gao, G. Cao, Inverse capacity growth and pocket effect in SnS2 semi-filled carbon nanotube anode. ACS Nano 12, 8037–8047 (2018). https://doi.org/10.1002/aenm.201702485
- Y.-P. Zhu, Y. Lei, F. Ming, E. Abou-Hamad, A.-H. Emwas, M.N. Hedhili, H.N. Alshareef, Heterostructured MXene and g-C3N4 for high-rate lithium intercalation. Nano Energy 65, 104030 (2019). https://doi.org/10.1016/j.nanoen.2019.104030
- S. Li, J. Qiu, C. Lai, M. Ling, H. Zhao, S. Zhang, Surface capacitive contributions: towards high rate anode materials for sodium ion batteries. Nano Energy 12, 224–230 (2015). https://doi.org/10.1016/j.nanoen.2014.12.032
- Y. Ma, Q. Guo, M. Yang, Y. Wang, T. Chen et al., Highly doped graphene with multi-dopants for high-capacity and ultrastable sodium-ion batteries. Energy Storage Mater. 13, 134–141 (2018). https://doi.org/10.1016/j.ensm.2018.01.005
- X. Wang, S. Kajiyama, H. Linuma, E. Hosono, S. Oro, I. Moriguchi, M. Okubo, A. Yamada, Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors. Nat. Commun. 6, 6544 (2015). https://doi.org/10.1038/ncomms7544
- S.-M. Bak, R. Qiao, W. Yang, S. Lee, X. Yu et al., Na-ion intercalation and charge storage mechanism in 2D vanadium carbide. Adv. Energy Mater. 7, 1700959 (2017). https://doi.org/10.1002/aenm.201700959
- J. Dahn, G.M. Ehrlich, T. Reddy, in Linden’s Handbook of Batteries, ed. by T. B. Reddy, 4th ed., (McGraw-Hill, New York, 2011).
- X. Guo, X. Xie, S. Choi, Y. Zhao, H. Liu, C. Wang, S. Chang, G. Wang, Sb2O3/MXene(Ti3C2Tx) hybrid anode materials with enhanced performance for sodium-ion batteries. J. Mater. Chem. A 5, 12445–12452 (2017). https://doi.org/10.1039/c7ta02689g
- T. Brezesinski, J. Wang, S.H. Tolbert, B. Dunn, Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 9, 146–151 (2010). https://doi.org/10.1038/NMAT2612
- F. Yu, Z. Liu, R. Zhou, D. Tan, H. Wang, F. Wang, Pseudocapacitance contribution in boron-doped graphite sheets for anion storage enables high-performance sodium-ion capacitors. Mater. Horiz. 5, 529–535 (2018). https://doi.org/10.1039/c8mh00156a
- H. Wang, D. Mitlin, J. Ding, Z. Li, K. Cui, Excellent energy-power characteristics from a hybrid sodium ion capacitor based on identical carbon nanosheets in both electrodes. J Mater. Chem. A 4, 5149–5158 (2016). https://doi.org/10.1039/c6ta01392a
- H. Wang, C. Zhu, D. Chao, Q. Yan, H.J. Fan, Nonaqueous hybrid lithium-ion and sodium-ion capacitors. Adv. Mater. 29, 1702093 (2017). https://doi.org/10.1002/adma.201702093
- J. Come, M. Naguib, P. Rozier, M.W. Barsoum, Y. Gogotsi, P.-L. Taberna, M. Morcrette, P. Simon, A non-aqueous asymmetric cell with a Ti2C-based two-dimensional negative electrode. J. Electrochem. Soc. 159, A1368–A1373 (2012). https://doi.org/10.1149/2.003208jes
- P. Yu, G. Cao, S. Yi, X. Zhang, C. Li, X. Sun, K. Wang, Y. Ma, Binder-free 2D titanium carbide (MXene)/carbon nanotube composites for high-performance lithium-ion capacitors. Nanoscale 10, 5906–5913 (2018). https://doi.org/10.1039/c8nr00380g
- J. Luo, W. Zhang, H. Yuan, C. Jin, L. Zhang et al., Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors. ACS Nano 11, 2459–2469 (2017). https://doi.org/10.1021/acsnano.6b07668
- H. Wang, Y. Zhang, H. Ang, Y. Zhang, H.T. Tan et al., A high-energy lithium-ion capacitor by integration of a 3D interconnected titanium carbide nanoparticle chain anode with a pyridine-derived porous nitrogen-doped carbon cathode. Adv. Funct. Mater. 26, 3082–3093 (2016). https://doi.org/10.1002/adfm.201505240
- A. Byeon, A.M. Glushenkov, B. Anasori, P. Urbankowski, J. Li et al., Lithium-ion capacitors with 2D Nb2CTx (MXene)-carbon nanotube electrodes. J. Power Sources 326, 686–694 (2016). https://doi.org/10.1016/j.jpowsour.2016.03.066
- Z. Xu, M. Wu, Z. Chen, C. Chen, J. Yang, T. Feng, E. Paek, D. Mitlin, Direct structure-performance comparison of all-carbon potassium and sodium ion capacitors. Adv. Sci. 6, 1802272 (2019). https://doi.org/10.1002/advs.201802272
References
M. Armand, J.-M. Tarascon, Building better batteries. Nature 451, 652–657 (2008). https://doi.org/10.1038/451652a
J. Sun, H.-W. Lee, M. Pasta, H. Yuan, G. Zheng, Y. Sun, Y. Li, Y. Cui, A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotechnol. 10, 980–U184 (2015). https://doi.org/10.1038/NNANO.2015.194
W. Shao, F. Hu, C. Song, J. Wang, C. Liu, Z. Weng, X. Jian, Hierarchical N/S co-doped carbon anodes fabricated through a facile ionothermal polymerization for high-performance sodium ion batteries. J. Mater. Chem. A 7, 6363–6373 (2019). https://doi.org/10.1039/c8ta11921j
Z.-L. Xu, S. Yao, J. Cui, L. Zhou, J.-K. Kim, Atomic scale, amorphous FeOx/carbon nanofiber anodes for Li-ion and Na-ion batteries. Energy Storage Mater. 8, 10–19 (2017). https://doi.org/10.1016/j.ensm.2017.03.010
J. Ding, H. Wang, Z. Li, K. Cui, D. Karpuzov, X. Tan, A. Kohandehghan, D. Mitlin, Peanut shell hybrid sodium ion capacitor with extreme energy-power rivals lithium ion capacitors. Energy Environ. Sci. 8, 941–955 (2015). https://doi.org/10.1039/c4ee02986k
J. Yang, X. Zhou, D. Wu, X. Zhao, Z. Zhou, S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries. Adv. Mater. 29, 1604108 (2017). https://doi.org/10.1002/adma.201604108
J. Ding, W. Hu, E. Paek, D. Mitlin, Review of hybrid ion capacitors: from aqueous to lithium to sodium. Chem. Rev. 118, 6457–6498 (2018). https://doi.org/10.1021/acs.chemrev.8b00116
J. Luo, C. Fang, C. Jin, H. Yuan, O. Sheng et al., Tunable pseudocapacitance storage of MXene by cation pillaring for high performance sodium ion capacitors. J. Mater. Chem. A 6, 7794–7806 (2018). https://doi.org/10.1039/c8ta02068j
C. Zhang, L. McKeon, M.P. Kremer, S.-H. Park, O. Ronan et al., Additive-free MXene inks and direct printing of micro-supercapacitors. Nat. Commun. 10, 1795 (2019). https://doi.org/10.1038/s41467-019-09398-1
M. Boota, B. Anasori, C. Voigt, M.-Q. Zhao, M.W. Barsoum, Y. Gogotsi, Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Adv. Mater. 28, 1517–1522 (2016). https://doi.org/10.1002/adma.201504705
M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary article: MXenes—a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014). https://doi.org/10.1002/adma.201304138
Z. Ling, C.E. Ren, M.-Q. Zhao, J. Yang, J.M. Giammarco, J. Qiu, M.W. Barsoum, Y. Gogotsi, Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. USA 111, 16676–16681 (2014). https://doi.org/10.1073/pnas.1414215111
M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, Y. Gogotsi, Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29, 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
P. Srimuk, F. Kaasik, B. Kruner, A. Tolosa, S. Fleischmann et al., MXene as a novel intercalation-type pseudocapacitive cathode and anode for capacitive deionization. J. Mater. Chem. A 4, 18265–18271 (2016). https://doi.org/10.1039/c6ta07833h
Q. Tang, Z. Zhou, P. Shen, Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J. Am. Chem. Soc. 134, 16909–16916 (2012). https://doi.org/10.1021/ja308463r
M. Lu, H. Li, W. Han, J. Chen, W. Shi et al., 2D titanium carbide (MXene) electrodes with lower-F surface for high-performance lithium–ion batteries. J. Energy Chem. 31, 148–153 (2019). https://doi.org/10.1016/j.jechem.2018.05.017
Y. Tang, J. Zhu, W. Wu, C. Yang, W. Lv, F. Wang, Synthesis of nitrogen-doped two-dimensional Ti3C2 with enhanced electrochemical performance. J. Electrochem. Soc. 164, A923–A929 (2017). https://doi.org/10.1149/2.0041706jes
F. Hu, T. Zhang, J. Wang, C. Liu, S. Li, S. Hu, X. Jian, Simple fabrication of high-efficiency N, O, F, P-containing electrodes through host–guest doping for high-performance supercapacitors. ACS Sustain. Chem. Eng. 6, 15764–15772 (2018). https://doi.org/10.1021/acssuschemeng.8b04331
Y. Yoon, M. Lee, S.K. Kim, G. Bae, W. Song et al., A strategy for synthesis of carbon nitride induced chemically doped 2D MXene for high-performance supercapacitor electrodes. Adv. Energy Mater. 8, 1703173 (2018). https://doi.org/10.1002/aenm.201703173
B. Jürgens, E. Irran, J. Schneider, W. Schnick, Trimerization of NaC2N3 to Na3C6N9 in the solid: Ab initio crystal structure determination of two polymorphs of NaC2N3 and of Na3C6N9 from X-ray powder diffractometry. Inorg. Chem. 39, 665–670 (2000). https://doi.org/10.1021/ic991044f
A.P. Purdy, E. Houser, C.F. George, Lithium dicyanamide, its reactions with cyanuric chloride, and the crystal structures of LiN(CN)2(MeCN)2 and LiCN(C5H5N)2. Polyhedron 16, 3671–3679 (1997). https://doi.org/10.1016/S0277-5387(97)00097-1
S.R. Batten, P. Jensen, B. Moubaraki, K.S. Murray, R. Robson, Structure and molecular magnetism of the rutile-related compounds M(dca)2, M = CoII, NiII, CuII, dca = dicyanamide, N(CN)2–. Chem. Commun. (1998). https://doi.org/10.1039/a707264c
D. Xu, D. Chao, H. Wang, Y. Gong, R. Wang, B. He, X. Hu, H.J. Fan, Flexible quasi-solid-state sodium-ion capacitors developed using 2D metal–organic-framework array as reactor. Adv. Energy Mater. 8, 1702769 (2018). https://doi.org/10.1002/aenm.201702769
Z. Mao, R. Wang, B. He, Y. Gong, H. Wang, Large-area, uniform, aligned arrays of Na3(VO)2(PO4)2F on carbon nanofiber for quasi-solid-state sodium-ion hybrid capacitors. Small 15, 1902466 (2019). https://doi.org/10.1002/smll.201902466
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
G. Henkelman, B.P. Uberuaga, H. Jonsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000). https://doi.org/10.1063/1.1329672
N. Kurra, M. Alhabeb, K. Maleski, C.-H. Wang, H.N. Alshareef, Y. Gogotsi, Bistacked titanium carbide (MXene) anodes for hybrid sodium ion capacitors. ACS Energy Lett. 3, 2094–2100 (2018). https://doi.org/10.1021/acsenergylett.8b01062
M.-Q. Zhao, X. Xie, C.E. Ren, T. Makaryan, B. Anasori, G. Wang, Y. Gogotsi, Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv. Mater. 29, 1702410 (2017). https://doi.org/10.1002/adma.201702410
L. Hao, J. Ning, B. Luo, B. Wang, Y. Zhang et al., Structural evolution of 2D microporous covalent triazine-based framework toward the study of high-performance supercapacitors. J. Am. Chem. Soc. 137, 219–225 (2015). https://doi.org/10.1021/ja508693y
F. Hu, J. Wang, S. Hu, L. Li, W. Shao et al., Engineered fabrication of hierarchical frameworks with tuned pore structure and N, O-co-doping for high-performance supercapacitors. ACS Appl. Mater. Interfaces 9, 31940–31949 (2017). https://doi.org/10.1021/acsami.7b09801
S. Huang, Z. Li, B. Wang, J. Zhang, Z. Peng, R. Qi, J. Wang, Y. Zhao, N-doping and defective nanographitic domain coupled hard carbon nanoshells for high performance lithium/sodium storage. Adv. Funct. Mater. 28, 1706294 (2018). https://doi.org/10.1002/adfm.201706294
D.-G. Wang, H. Wang, Y. Lin, G. Yu, M. Song, W. Zhong, G.C. Kuang, Synthesis and morphology evolution of ultrahigh content nitrogen-doped, micropore-dominated carbon materials as high-performance supercapacitors. Chemsuschem 11, 3932–3940 (2018). https://doi.org/10.1002/cssc.201801892
X. Huang, J. Tang, B. Luo, R. Knibbe, T. Lin et al., Sandwich-like ultrathin TiS2 nanosheets confined within N, S codoped porous carbon as an effective polysulfide promoter in lithium-sulfur batteries. Adv. Energy Mater. 9, 1901872 (2019). https://doi.org/10.1002/aenm.201901872
X. Wu, Z. Wang, M. Yu, L. Xiu, J. Qiu, Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability. Adv. Mater. 29, 1607017 (2017). https://doi.org/10.1002/adma.201607017
G. Du, M. Tao, W. Gao, Y. Zhang, R. Zhan, S. Bao, M. Xu, Preparation of MoS2/Ti3C2Tx composite as anode material with enhanced sodium/lithium storage performance. Inorg. Chem. Front. 6, 117–125 (2019). https://doi.org/10.1039/c8qi01081a
J. Luo, X. Tao, J. Zhang, Y. Xia, H. Huang et al., Sn4+ ion decorated highly conductive Ti3C2 MXene: promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano 10, 2491–2499 (2016). https://doi.org/10.1021/acsnano.5b07333
W. Bao, L. Liu, C. Wang, S. Choi, D. Wang, G. Wang, Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium–sulfur batteries. Adv. Energy Mater. 8, 1702485 (2018). https://doi.org/10.1002/aenm.201702485
C. Yang, Y. Tang, Y. Tian, Y. Luo, M.F.U. Din, X. Yin, W. Que, Flexible nitrogen-doped 2D titanium carbides (MXene) films constructed by an ex situ solvothermal method with extraordinary volumetric capacitance. Adv. Energy Mater. 8, 1802087 (2018). https://doi.org/10.1002/aenm.201802087
J. Luo, J. Zheng, J. Nai, C. Jin, H. Yuan et al., Atomic sulfur covalently engineered interlayers of Ti3C2 MXene for ultra-fast sodium-ion storage by enhanced pseudocapacitance. Adv. Funct. Mater. 29, 1808107 (2019). https://doi.org/10.1002/adfm.201808107
X. Guo, W. Zhang, J. Zhang, D. Zhou, X. Tang et al., Boosting sodium storage in two-dimensional phosphorene/Ti3C2Tx MXene nanoarchitectures with stable fluorinated interphase. ACS Nano 14, 3651–3659 (2020). https://doi.org/10.1002/aenm.201702485
X. Chen, Y. Zhu, M. Zhang, J. Sui, W. Peng et al., N-Butyllithium-treated Ti3C2Tx MXene with excellent pseudocapacitor performance. ACS Nano 13, 9449–9456 (2019). https://doi.org/10.1021/acsnano.9b04301
S. Sun, Z. Xie, Y. Yan, S. Wu, Hybrid energy storage mechanisms for sulfur-decorated Ti3C2 MXene anode material for high-rate and long-life sodium-ion batteries. Chem. Eng. J. 366, 460–467 (2019). https://doi.org/10.1016/j.cej.2019.01.185
N. Sun, Q. Zhu, B. Anasori, P. Zhang, H. Liu, Y. Gogotsi, B. Xu, MXene-bonded flexible hard carbon film as anode for stable Na/K-ion storage. Adv. Funct. Mater. 29, 1906282 (2019). https://doi.org/10.1002/adfm.201906282
G. Jiang, N. Zheng, X. Chen, G. Ding, Y. Li, F. Sun, Y. Li, In-situ decoration of MOF-derived carbon on nitrogen-doped ultrathin MXene nanosheets to multifunctionalize separators for stable Li-S batteries. Chem. Eng. J. 373, 1309–1318 (2019). https://doi.org/10.1016/j.cej.2019.05.119
B. Yang, J. Chen, S. Lei, R. Guo, H. Li, S. Shi, X. Yan, Spontaneous growth of 3D framework carbon from sodium citrate for high energy- and power-density and long-life sodium-ion hybrid capacitors. Adv. Energy Mater. 8, 1702409 (2018). https://doi.org/10.1002/aenm.201702409
X. Jin, H. Huang, A. Wu, S. Gao, M. Lei, J. Zhao, X. Gao, G. Cao, Inverse capacity growth and pocket effect in SnS2 semi-filled carbon nanotube anode. ACS Nano 12, 8037–8047 (2018). https://doi.org/10.1002/aenm.201702485
Y.-P. Zhu, Y. Lei, F. Ming, E. Abou-Hamad, A.-H. Emwas, M.N. Hedhili, H.N. Alshareef, Heterostructured MXene and g-C3N4 for high-rate lithium intercalation. Nano Energy 65, 104030 (2019). https://doi.org/10.1016/j.nanoen.2019.104030
S. Li, J. Qiu, C. Lai, M. Ling, H. Zhao, S. Zhang, Surface capacitive contributions: towards high rate anode materials for sodium ion batteries. Nano Energy 12, 224–230 (2015). https://doi.org/10.1016/j.nanoen.2014.12.032
Y. Ma, Q. Guo, M. Yang, Y. Wang, T. Chen et al., Highly doped graphene with multi-dopants for high-capacity and ultrastable sodium-ion batteries. Energy Storage Mater. 13, 134–141 (2018). https://doi.org/10.1016/j.ensm.2018.01.005
X. Wang, S. Kajiyama, H. Linuma, E. Hosono, S. Oro, I. Moriguchi, M. Okubo, A. Yamada, Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors. Nat. Commun. 6, 6544 (2015). https://doi.org/10.1038/ncomms7544
S.-M. Bak, R. Qiao, W. Yang, S. Lee, X. Yu et al., Na-ion intercalation and charge storage mechanism in 2D vanadium carbide. Adv. Energy Mater. 7, 1700959 (2017). https://doi.org/10.1002/aenm.201700959
J. Dahn, G.M. Ehrlich, T. Reddy, in Linden’s Handbook of Batteries, ed. by T. B. Reddy, 4th ed., (McGraw-Hill, New York, 2011).
X. Guo, X. Xie, S. Choi, Y. Zhao, H. Liu, C. Wang, S. Chang, G. Wang, Sb2O3/MXene(Ti3C2Tx) hybrid anode materials with enhanced performance for sodium-ion batteries. J. Mater. Chem. A 5, 12445–12452 (2017). https://doi.org/10.1039/c7ta02689g
T. Brezesinski, J. Wang, S.H. Tolbert, B. Dunn, Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 9, 146–151 (2010). https://doi.org/10.1038/NMAT2612
F. Yu, Z. Liu, R. Zhou, D. Tan, H. Wang, F. Wang, Pseudocapacitance contribution in boron-doped graphite sheets for anion storage enables high-performance sodium-ion capacitors. Mater. Horiz. 5, 529–535 (2018). https://doi.org/10.1039/c8mh00156a
H. Wang, D. Mitlin, J. Ding, Z. Li, K. Cui, Excellent energy-power characteristics from a hybrid sodium ion capacitor based on identical carbon nanosheets in both electrodes. J Mater. Chem. A 4, 5149–5158 (2016). https://doi.org/10.1039/c6ta01392a
H. Wang, C. Zhu, D. Chao, Q. Yan, H.J. Fan, Nonaqueous hybrid lithium-ion and sodium-ion capacitors. Adv. Mater. 29, 1702093 (2017). https://doi.org/10.1002/adma.201702093
J. Come, M. Naguib, P. Rozier, M.W. Barsoum, Y. Gogotsi, P.-L. Taberna, M. Morcrette, P. Simon, A non-aqueous asymmetric cell with a Ti2C-based two-dimensional negative electrode. J. Electrochem. Soc. 159, A1368–A1373 (2012). https://doi.org/10.1149/2.003208jes
P. Yu, G. Cao, S. Yi, X. Zhang, C. Li, X. Sun, K. Wang, Y. Ma, Binder-free 2D titanium carbide (MXene)/carbon nanotube composites for high-performance lithium-ion capacitors. Nanoscale 10, 5906–5913 (2018). https://doi.org/10.1039/c8nr00380g
J. Luo, W. Zhang, H. Yuan, C. Jin, L. Zhang et al., Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors. ACS Nano 11, 2459–2469 (2017). https://doi.org/10.1021/acsnano.6b07668
H. Wang, Y. Zhang, H. Ang, Y. Zhang, H.T. Tan et al., A high-energy lithium-ion capacitor by integration of a 3D interconnected titanium carbide nanoparticle chain anode with a pyridine-derived porous nitrogen-doped carbon cathode. Adv. Funct. Mater. 26, 3082–3093 (2016). https://doi.org/10.1002/adfm.201505240
A. Byeon, A.M. Glushenkov, B. Anasori, P. Urbankowski, J. Li et al., Lithium-ion capacitors with 2D Nb2CTx (MXene)-carbon nanotube electrodes. J. Power Sources 326, 686–694 (2016). https://doi.org/10.1016/j.jpowsour.2016.03.066
Z. Xu, M. Wu, Z. Chen, C. Chen, J. Yang, T. Feng, E. Paek, D. Mitlin, Direct structure-performance comparison of all-carbon potassium and sodium ion capacitors. Adv. Sci. 6, 1802272 (2019). https://doi.org/10.1002/advs.201802272