Facile Approach to Synthesize Gold Nanorod@Polyacrylic Acid/Calcium Phosphate Yolk–Shell Nanoparticles for Dual-Mode Imaging and pH/NIR-Responsive Drug Delivery
Corresponding Author: Chungang Wang
Nano-Micro Letters,
Vol. 10 No. 1 (2018), Article Number: 7
Abstract
A facile strategy to fabricate gold nanorod@polyacrylic acid/calcium phosphate (AuNR@PAA/CaP) yolk–shell nanoparticles (NPs) composed with a PAA/CaP shell and an AuNR yolk is reported. The as-obtained AuNR@PAA/CaP yolk–shell NPs possess ultrahigh doxorubicin (DOX) loading capability (1 mg DOX/mg NPs), superior photothermal conversion property (26%) and pH/near-infrared (NIR) dual-responsive drug delivery performance. The released DOX continuously increased due to the damage of the CaP shell at low pH values. When the DOX-loaded AuNR@PAA/CaP yolk–shell NPs were exposed to NIR irradiation, a burst-like drug release occurs owing to the heat produced by the AuNRs. Furthermore, AuNR@PAA/CaP yolk–shell NPs are successfully employed for synergic dual-mode X-ray computed tomography/photoacoustic imaging and chemo-photothermal cancer therapy. Therefore, this work brings new insights for the synthesis of multifunctional nanomaterials and extends theranostic applications.
Highlights:
1 We report a facile strategy to fabricate gold nanorod@polyacrylic acid/calcium phosphate (AuNR@PAA/CaP) yolk–shell nanoparticles.
2 The as-obtained AuNR@PAA/CaP yolk–shell nanoparticles (NPs) possess ultrahigh doxorubicin (DOX) loading capability (1 mg DOX/mg NPs), superior photothermal conversion property (26%) and pH/near-infrared (NIR) dual-responsive drug delivery performance, which were employed for synergic dual-mode X-ray computed tomography (CT)/photoacoustic (PA) imaging and chemo-photothermal cancer therapy.
3 This work brings new insights for the synthesis of multifunctional nanomaterials and extends theranostic applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Q. Chen, Z. Liu, Albumin carriers for cancer theranostics: a conventional platform with new promise. Adv. Mater. 28(47), 10557–10566 (2016). doi:10.1002/adma.201600038
- L. Li, L.Y. Zhang, T.T. Wang, X.T. Wu, H. Ren, C.G. Wang, Z.M. Su, Facile and scalable synthesis of novel spherical Au nanocluster assemblies@polyacrylic acid/calcium phosphate nanoparticles for dual-modal imaging-guided cancer chemotherapy. Small 11(26), 3162–3173 (2015). doi:10.1002/smll.201403517
- Z.J. Zhang, J. Wang, C.Y. Chen, Near-infrared light-mediated nanoplatforms for cancer thermo-chemotherapy and optical imaging. Adv. Mater. 25(28), 3869–3880 (2013). doi:10.1002/adma.201301890
- X. Ding, J.H. Liu, J.Q. Li, F. Wang, Y.H. Wang, S.Y. Song, H.J. Zhang, Polydopamine coated manganese oxide nanoparticles with ultrahigh relaxivity as nanotheranostic agents for magnetic resonance imaging guided synergetic chemo-/photothermal therapy. Chem. Sci. 7(11), 6695–6700 (2016). doi:10.1039/C6SC01320A
- S. Panesar, S. Neethirajan, Microfluidics: rapid diagnosis for breast cancer. Nano-Micro Lett. 8(3), 204–220 (2016). doi:10.1002/adfm.201403885
- A.B. Reddy, B. Manjula, T. Jayaramudu, E.R. Sadiku, P.A. Babu, S.P. Selvam, 5-Fluorouracil loaded chitosan-PVA/Na + MMT nanocomposite films for drug release and antimicrobial activity. Nano-Micro Lett. 8(3), 260–269 (2016). doi:10.1007/s40820-016-0086-410
- J.S. Lee, W.L. Murphy, Functionalizing calcium phosphate biomaterials with antibacterial silver particles. Adv. Mater. 25(8), 1173–1179 (2013). doi:10.1002/adma.201203370
- X. Li, X.P. Wang, Y. Sogo, T. Ohno, K. Onuma, A. Ito, Mesoporous silica-calcium phosphate-tuberculin purified protein derivative composites as an effective adjuvant for cancer immunotherapy. Adv. Healthc. Mater. 2(6), 863–871 (2013). doi:10.1002/adhm.201200149
- P. Shi, K.G. Qu, J.S. Wang, M. Li, J.S. Ren, X.G. Qu, pH-responsive NIR enhanced drug release from gold nanocages possesses high potency against cancer cells. Chem. Commun. 48(61), 7640–7642 (2012). doi:10.1039/c2cc33543c
- C.Y. Wang, L.Y. Zhang, S.N. Li, M.J. Zhang, T.T. Wang, L. Li, C.G. Wang, Z.M. Su, A designed synthesis of multifunctional Fe3O4@carbon/zinc phosphate nanoparticles for simultaneous imaging and synergic chemo-photothermal cancer therapy. J. Mater. Chem. B 4(35), 5809–5813 (2016). doi:10.1039/C6TB01669C
- M. Nakamura, A. Oyane, Physicochemical fabrication of calcium phosphate-based thin layers and nanospheres using laser processing in solutions. J. Mater. Chem. B 4(38), 6289–6301 (2016). doi:10.1039/C6TB01362G
- W.M. Li, S.Y. Chen, D.M. Liu, In situ doxorubicin-CaP shell formation on amphiphilic gelatin-iron oxide core as a multifunctional drug delivery system with improved cytocompatibility, pH-responsive drug release and MR imaging. Acta Biomater. 9(2), 5360–5368 (2013). doi:10.1016/j.actbio.2012.09.023
- X.J. Chen, M.J. Zhang, S.N. Li, L. Li, L.Y. Zhang, T.T. Wang, M. Yu, Z.C. Mou, C.G. Wang, Facile synthesis of polypyrrole@metal-organic framework core–shell nanocomposites for dual-mode imaging and synergistic chemo-photothermal therapy of cancer cells. J. Mater. Chem. B 5, 1772–1778 (2017). doi:10.1039/C6TB03218D
- M.M. Sun, F. Liu, Y.K. Zhu, W.S. Wang, J. Hu et al., Salt-induced aggregation of gold nanoparticles for photoacoustic imaging and photothermal therapy of cancer. Nanoscale 8(8), 4452–4457 (2016). doi:10.1039/C6NR00056H
- P. Huang, P.F. Rong, J. Lin, W.W. Li, X.F. Yan et al., Triphase interface synthesis of plasmonic gold bellflowers as near-infrared light mediated acoustic and thermal theranostics. J. Am. Chem. Soc. 136(23), 8307–8313 (2014). doi:10.1021/ja503115n
- A. Li, X. Li, X.J. Yu, W. Li, R.Y. Zhao, X. An, D.X. Cui, X.Y. Chen, W.W. Li, Synergistic thermoradiotherapy based on PEGylated Cu3BiS3 ternary semiconductor nanorods with strong absorption in the second near-infrared window. Biomaterials 112, 164–175 (2017). doi:10.1016/j.biomaterials.2016.10.024
- L. Guo, G.L. Niu, X.L. Zheng, J.C. Ge, W.M. Liu, Q.Y. Jia, P.P. Zhang, H.Y. Zhang, P.F. Wang, Single near-infrared emissive polymer nanoparticles as versatile phototheranostics. Adv. Sci. (2017). doi:10.1002/advs.201700085
- S.Y. Shi, Y.J. Liu, Y. Chen, Z.H. Zhang, Y.S. Ding, Z.Q. Wu, J. Yin, L.M. Nie, Versatile pH-response micelles with high cell-penetrating helical diblock copolymers for photoacoustic imaging guided synergistic chemo-photothermal therapy. Theranostics 6(12), 2170–2182 (2016). doi:10.7150/thno.16633
- Y.Y. Li, C.H. Jiang, D.W. Zhang, Y. Wang, X.Y. Ren, K.L. Ai, X.S. Chen, L.H. Ru, Targeted polydopamine nanoparticles enable photoacoustic imaging guided chemo-photothermal synergistic therapy of tumor. Acta Biomater. 47, 124–134 (2017). doi:10.1016/j.actbio.2016.10.010
- W.W. Li, P.F. Rong, K. Yang, P. Huang, K. Sun, X.Y. Chen, Semimetal nanomaterials of antimony as highly efficient agent for photoacoustic imaging and photothermal therapy. Biomaterials 45, 18–26 (2015). doi:10.1016/j.biomaterials.2014.12.037
- J. Liu, P.Y. Wang, X. Zhang, L.M. Wang, D.L. Wang et al., Rapid degradation and high renal clearance of Cu3BiS3 nanodots for efficient cancer diagnosis and photothermal therapy in vivo. ACS Nano 10(4), 4587–4598 (2016). doi:10.1021/acsnano.6b00745
- S. Duan, Y.J. Yang, C.L. Zhang, N.N. Zhao, F.J. Xu, NIR-responsive polycationic gatekeeper-cloaked hetero-nanoparticles for multimodal imaging-guided triple-combination therapy of cancer. Small 13(9), 1603133–1603142 (2017). doi:10.1002/smll.201603133
- J.B. Qin, Z.Y. Peng, B. Li, K.C. Ye, Y.X. Zhang et al., Gold nanorods as a theranostic platform for in vitro and in vivo imaging and photothermal therapy of inflammatory macrophages. Nanoscale 7(33), 13991–14001 (2015). doi:10.1039/C5NR02521D
- F. Gao, L.Y. Bai, S.Y. Liu, R.C. Zhang, J.T. Zhang, X.H. Feng, Y.J. Zheng, Y.L. Zhao, Rationally encapsulated gold nanorods improving both linear and nonlinear photoacoustic imaging contrast in vivo. Nanoscale 9, 79–86 (2017). doi:10.1039/C6NR07528B
- J.B. Song, X.Y. Yang, O. Jacobson, P. Huang, X.L. Sun et al., Ultrasmall gold nanorod vesicles with enhanced tumor accumulation and fast excretion from the body for cancer therapy. Adv. Mater. 27(33), 4910–4917 (2015). doi:10.1002/adma.201502486
- G.F. Luo, W.H. Chen, Q. Lei, W.X. Qiu, Y.X. Liu, Y.J. Cheng, X.Z. Zhang, A triple-collaborative strategy for high-performance tumor therapy by multifunctional mesoporous silica-coated gold nanorods. Adv. Funct. Mater. 26(24), 4339–4350 (2016). doi:10.1002/adfm.201505175
- A. Khanal, C. Ullum, C.W. Kimbrough, N.C. Garbett, J.A. Burlison et al., Tumor targeted mesoporous silica-coated gold nanorods facilitate detection of pancreatic tumors using multispectral optoacoustic tomography. Nano Res. 8(12), 3864–3877 (2015). doi:10.1007/s12274-015-0886-8
- J.V. Jokerst, A.J. Cole, D.S.D. Van, S.S. Gambhir, Gold nanorods for ovarian cancer detection with photoacoustic imaging and resection guidance via Raman imaging in living mice. ACS Nano 6(11), 10366–10377 (2012). doi:10.1021/nn304347g
- P. Huang, L. Bao, C. Zhang, J. Lin, T. Luo et al., Folic acid-conjugated silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy. Biomaterials 32(36), 9796–9809 (2011). doi:10.1016/j.biomaterials.2011.08.086
- J. Wu, Y. Liu, Y.X. Tang, S.J. Wang, C.Y. Wang et al., Synergistic chemo-photothermal therapy of breast cancer by mesenchymal stem cell-encapsulated yolk–shell GNR@HPMO-PTX nanospheres. ACS Appl. Mater. Interfaces. 8(28), 17927–17935 (2016). doi:10.1021/acsami.6b05677
- Y.F. Zhu, J.L. Shi, W.H. Shen, X.P. Dong, J.W. Feng, M.L. Ruan, Y.S. Li, Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core–shell structure. Angew. Chem. Int. Ed. 44(42), 5083–5087 (2015). doi:10.1002/anie.200501500
- J. Gao, G. Liang, B. Zhang, Y. Kuang, X. Zhang, B. Xu, FePt@CoS2 yolk–shell nanocrystals as a potent agent to kill HeLa cells. J. Am. Chem. Soc. 129(5), 1428–1433 (2007). doi:10.1021/ja067785e
- J. Kim, H.S. Kim, N. Lee, T. Kim, H. Kim, T. Yu, I.C. Song, W.K. Moon, T. Hyeon, Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew. Chem. Int. Ed. 47(44), 8438–8441 (2008). doi:10.1002/anie.200802469
- H. Wu, G. Liu, S. Zhang, J. Shi, L. Zhang, Y. Chen, F. Chen, H. Chen, Biocompatibility, MR imaging and targeted drug delivery of a rattle-type magnetic mesoporous silica nanosphere system conjugated with PEG and cancer-cell-specific ligands. J. Mater. Chem. 21(9), 3037–3045 (2011). doi:10.1039/c0jm02863k
- J. Liu, S.Z. Qiao, S.B. Hartono, G.Q. Lu, Monodisperse yolk–shell nanoparticles with a hierarchical porous structure for delivery vehicles and nanoreactors. Angew. Chem. Int. Ed. 49(29), 4981–4985 (2010). doi:10.1002/anie.201001252
- S.X. Li, J.Z. Zheng, D.J. Chen, Y.J. Wu, W.X. Zhang, F.Y. Zheng, J. Cao, H.R. Ma, Y.L. Liu, Yolk–shell hybrid nanoparticles with magnetic and pH-sensitive properties for controlled anticancer drug delivery. Nanoscale 5(23), 11718–11724 (2013). doi:10.1039/c3nr04032a
- L. Zhao, J. Peng, Q. Huang, C. Li, M. Chen, Y. Sun, Q. Lin, L. Zhu, F. Li, Near-infrared photoregulated drug release in living tumor tissue via yolk–shell upconversion nanocages. Adv. Funct. Mater. 24(3), 363–371 (2014). doi:10.1002/adfm.201302133
- H. Wu, G.Y. Zheng, N. Liu, T.J. Carney, Y. Yang, Y. Cui, Engineering empty space between Si nanoparticles for lithium-ion battery anodes. Nano Lett. 12(2), 904–909 (2012). doi:10.1021/nl203967r
- C. Guan, X.H. Wang, Q. Zhang, Z.X. Fan, H. Zhang, H.J. Fan, Highly stable and reversible lithium storage in SnO2 nanowires surface coated with a uniform hollow shell by atomic layer deposition. Nano Lett. 14(8), 4852–4858 (2014). doi:10.1021/nl502192p
- Z.Y. Cai, L. Xu, M.Y. Yan, C.H. Han, L. He et al., Manganese oxide/carbon yolk–shell nanorod anodes for high capacity lithium batteries. Nano Lett. 15(1), 738–744 (2015). doi:10.1021/nl504427d
- Q.Y. Li, F. Wang, L.Q. Sun, Z. Jiang, T. Ye et al., Design and synthesis of Cu@CuS yolk–shell structures with enhanced photocatalytic activity. Nano-Micro Lett. 9, 35 (2017). doi:10.1007/s40820-017-0135-7
- X.J. Yang, X. Liu, Z. Liu, F. Pu, J.S. Ren, X.G. Qu, Near-infrared light-triggered, targeted drug delivery to cancer cells by aptamer gated nanovehicles. Adv. Mater. 24(21), 2890–2895 (2012). doi:10.1002/adma.201104797
- J. Zuloaga, E. Prodan, P. Nordlander, Quantum plasmonics: optical properties and tunability of metallic nanorods. ACS Nano 4(9), 5269–5276 (2010). doi:10.1021/nn101589n
- G.A. Morrill, H.R. Kaback, E. Robbins, Effect of calcium on intracellular sodium and potassium concentrations in plant and animal cells. Nature 204(4959), 641–642 (1964). doi:10.1038/204641a0
- J. Michaelis, C. Hettich, J. Mlynek, V. Sandoghdar, Optical microscopy using a single-molecule light source. Nature 405(6784), 325–328 (2000). doi:10.1038/35012545
- T. Kim, N. Lee, D.R. Arifin, I. Shats, M. Janowski, P. Walczak, T. Hyeon, J.W.M. Bulte, In vivo micro-CT imaging of human mesenchymal stem cells labeled with gold-poly-l-Lysine nanocomplexes. Adv. Funct. Mater. 27(3), 1604213–1604220 (2016). doi:10.1002/adfm.201604213
- X. Li, C. Wang, H. Tan, L.L. Cheng, G.B. Liu et al., Gold nanoparticles-based SPECT/CT imaging probe targeting for vulnerable atherosclerosis plaques original research article. Biomaterials 108, 71–80 (2016). doi:10.1016/j.biomaterials.2016.08.048
References
Q. Chen, Z. Liu, Albumin carriers for cancer theranostics: a conventional platform with new promise. Adv. Mater. 28(47), 10557–10566 (2016). doi:10.1002/adma.201600038
L. Li, L.Y. Zhang, T.T. Wang, X.T. Wu, H. Ren, C.G. Wang, Z.M. Su, Facile and scalable synthesis of novel spherical Au nanocluster assemblies@polyacrylic acid/calcium phosphate nanoparticles for dual-modal imaging-guided cancer chemotherapy. Small 11(26), 3162–3173 (2015). doi:10.1002/smll.201403517
Z.J. Zhang, J. Wang, C.Y. Chen, Near-infrared light-mediated nanoplatforms for cancer thermo-chemotherapy and optical imaging. Adv. Mater. 25(28), 3869–3880 (2013). doi:10.1002/adma.201301890
X. Ding, J.H. Liu, J.Q. Li, F. Wang, Y.H. Wang, S.Y. Song, H.J. Zhang, Polydopamine coated manganese oxide nanoparticles with ultrahigh relaxivity as nanotheranostic agents for magnetic resonance imaging guided synergetic chemo-/photothermal therapy. Chem. Sci. 7(11), 6695–6700 (2016). doi:10.1039/C6SC01320A
S. Panesar, S. Neethirajan, Microfluidics: rapid diagnosis for breast cancer. Nano-Micro Lett. 8(3), 204–220 (2016). doi:10.1002/adfm.201403885
A.B. Reddy, B. Manjula, T. Jayaramudu, E.R. Sadiku, P.A. Babu, S.P. Selvam, 5-Fluorouracil loaded chitosan-PVA/Na + MMT nanocomposite films for drug release and antimicrobial activity. Nano-Micro Lett. 8(3), 260–269 (2016). doi:10.1007/s40820-016-0086-410
J.S. Lee, W.L. Murphy, Functionalizing calcium phosphate biomaterials with antibacterial silver particles. Adv. Mater. 25(8), 1173–1179 (2013). doi:10.1002/adma.201203370
X. Li, X.P. Wang, Y. Sogo, T. Ohno, K. Onuma, A. Ito, Mesoporous silica-calcium phosphate-tuberculin purified protein derivative composites as an effective adjuvant for cancer immunotherapy. Adv. Healthc. Mater. 2(6), 863–871 (2013). doi:10.1002/adhm.201200149
P. Shi, K.G. Qu, J.S. Wang, M. Li, J.S. Ren, X.G. Qu, pH-responsive NIR enhanced drug release from gold nanocages possesses high potency against cancer cells. Chem. Commun. 48(61), 7640–7642 (2012). doi:10.1039/c2cc33543c
C.Y. Wang, L.Y. Zhang, S.N. Li, M.J. Zhang, T.T. Wang, L. Li, C.G. Wang, Z.M. Su, A designed synthesis of multifunctional Fe3O4@carbon/zinc phosphate nanoparticles for simultaneous imaging and synergic chemo-photothermal cancer therapy. J. Mater. Chem. B 4(35), 5809–5813 (2016). doi:10.1039/C6TB01669C
M. Nakamura, A. Oyane, Physicochemical fabrication of calcium phosphate-based thin layers and nanospheres using laser processing in solutions. J. Mater. Chem. B 4(38), 6289–6301 (2016). doi:10.1039/C6TB01362G
W.M. Li, S.Y. Chen, D.M. Liu, In situ doxorubicin-CaP shell formation on amphiphilic gelatin-iron oxide core as a multifunctional drug delivery system with improved cytocompatibility, pH-responsive drug release and MR imaging. Acta Biomater. 9(2), 5360–5368 (2013). doi:10.1016/j.actbio.2012.09.023
X.J. Chen, M.J. Zhang, S.N. Li, L. Li, L.Y. Zhang, T.T. Wang, M. Yu, Z.C. Mou, C.G. Wang, Facile synthesis of polypyrrole@metal-organic framework core–shell nanocomposites for dual-mode imaging and synergistic chemo-photothermal therapy of cancer cells. J. Mater. Chem. B 5, 1772–1778 (2017). doi:10.1039/C6TB03218D
M.M. Sun, F. Liu, Y.K. Zhu, W.S. Wang, J. Hu et al., Salt-induced aggregation of gold nanoparticles for photoacoustic imaging and photothermal therapy of cancer. Nanoscale 8(8), 4452–4457 (2016). doi:10.1039/C6NR00056H
P. Huang, P.F. Rong, J. Lin, W.W. Li, X.F. Yan et al., Triphase interface synthesis of plasmonic gold bellflowers as near-infrared light mediated acoustic and thermal theranostics. J. Am. Chem. Soc. 136(23), 8307–8313 (2014). doi:10.1021/ja503115n
A. Li, X. Li, X.J. Yu, W. Li, R.Y. Zhao, X. An, D.X. Cui, X.Y. Chen, W.W. Li, Synergistic thermoradiotherapy based on PEGylated Cu3BiS3 ternary semiconductor nanorods with strong absorption in the second near-infrared window. Biomaterials 112, 164–175 (2017). doi:10.1016/j.biomaterials.2016.10.024
L. Guo, G.L. Niu, X.L. Zheng, J.C. Ge, W.M. Liu, Q.Y. Jia, P.P. Zhang, H.Y. Zhang, P.F. Wang, Single near-infrared emissive polymer nanoparticles as versatile phototheranostics. Adv. Sci. (2017). doi:10.1002/advs.201700085
S.Y. Shi, Y.J. Liu, Y. Chen, Z.H. Zhang, Y.S. Ding, Z.Q. Wu, J. Yin, L.M. Nie, Versatile pH-response micelles with high cell-penetrating helical diblock copolymers for photoacoustic imaging guided synergistic chemo-photothermal therapy. Theranostics 6(12), 2170–2182 (2016). doi:10.7150/thno.16633
Y.Y. Li, C.H. Jiang, D.W. Zhang, Y. Wang, X.Y. Ren, K.L. Ai, X.S. Chen, L.H. Ru, Targeted polydopamine nanoparticles enable photoacoustic imaging guided chemo-photothermal synergistic therapy of tumor. Acta Biomater. 47, 124–134 (2017). doi:10.1016/j.actbio.2016.10.010
W.W. Li, P.F. Rong, K. Yang, P. Huang, K. Sun, X.Y. Chen, Semimetal nanomaterials of antimony as highly efficient agent for photoacoustic imaging and photothermal therapy. Biomaterials 45, 18–26 (2015). doi:10.1016/j.biomaterials.2014.12.037
J. Liu, P.Y. Wang, X. Zhang, L.M. Wang, D.L. Wang et al., Rapid degradation and high renal clearance of Cu3BiS3 nanodots for efficient cancer diagnosis and photothermal therapy in vivo. ACS Nano 10(4), 4587–4598 (2016). doi:10.1021/acsnano.6b00745
S. Duan, Y.J. Yang, C.L. Zhang, N.N. Zhao, F.J. Xu, NIR-responsive polycationic gatekeeper-cloaked hetero-nanoparticles for multimodal imaging-guided triple-combination therapy of cancer. Small 13(9), 1603133–1603142 (2017). doi:10.1002/smll.201603133
J.B. Qin, Z.Y. Peng, B. Li, K.C. Ye, Y.X. Zhang et al., Gold nanorods as a theranostic platform for in vitro and in vivo imaging and photothermal therapy of inflammatory macrophages. Nanoscale 7(33), 13991–14001 (2015). doi:10.1039/C5NR02521D
F. Gao, L.Y. Bai, S.Y. Liu, R.C. Zhang, J.T. Zhang, X.H. Feng, Y.J. Zheng, Y.L. Zhao, Rationally encapsulated gold nanorods improving both linear and nonlinear photoacoustic imaging contrast in vivo. Nanoscale 9, 79–86 (2017). doi:10.1039/C6NR07528B
J.B. Song, X.Y. Yang, O. Jacobson, P. Huang, X.L. Sun et al., Ultrasmall gold nanorod vesicles with enhanced tumor accumulation and fast excretion from the body for cancer therapy. Adv. Mater. 27(33), 4910–4917 (2015). doi:10.1002/adma.201502486
G.F. Luo, W.H. Chen, Q. Lei, W.X. Qiu, Y.X. Liu, Y.J. Cheng, X.Z. Zhang, A triple-collaborative strategy for high-performance tumor therapy by multifunctional mesoporous silica-coated gold nanorods. Adv. Funct. Mater. 26(24), 4339–4350 (2016). doi:10.1002/adfm.201505175
A. Khanal, C. Ullum, C.W. Kimbrough, N.C. Garbett, J.A. Burlison et al., Tumor targeted mesoporous silica-coated gold nanorods facilitate detection of pancreatic tumors using multispectral optoacoustic tomography. Nano Res. 8(12), 3864–3877 (2015). doi:10.1007/s12274-015-0886-8
J.V. Jokerst, A.J. Cole, D.S.D. Van, S.S. Gambhir, Gold nanorods for ovarian cancer detection with photoacoustic imaging and resection guidance via Raman imaging in living mice. ACS Nano 6(11), 10366–10377 (2012). doi:10.1021/nn304347g
P. Huang, L. Bao, C. Zhang, J. Lin, T. Luo et al., Folic acid-conjugated silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy. Biomaterials 32(36), 9796–9809 (2011). doi:10.1016/j.biomaterials.2011.08.086
J. Wu, Y. Liu, Y.X. Tang, S.J. Wang, C.Y. Wang et al., Synergistic chemo-photothermal therapy of breast cancer by mesenchymal stem cell-encapsulated yolk–shell GNR@HPMO-PTX nanospheres. ACS Appl. Mater. Interfaces. 8(28), 17927–17935 (2016). doi:10.1021/acsami.6b05677
Y.F. Zhu, J.L. Shi, W.H. Shen, X.P. Dong, J.W. Feng, M.L. Ruan, Y.S. Li, Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core–shell structure. Angew. Chem. Int. Ed. 44(42), 5083–5087 (2015). doi:10.1002/anie.200501500
J. Gao, G. Liang, B. Zhang, Y. Kuang, X. Zhang, B. Xu, FePt@CoS2 yolk–shell nanocrystals as a potent agent to kill HeLa cells. J. Am. Chem. Soc. 129(5), 1428–1433 (2007). doi:10.1021/ja067785e
J. Kim, H.S. Kim, N. Lee, T. Kim, H. Kim, T. Yu, I.C. Song, W.K. Moon, T. Hyeon, Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew. Chem. Int. Ed. 47(44), 8438–8441 (2008). doi:10.1002/anie.200802469
H. Wu, G. Liu, S. Zhang, J. Shi, L. Zhang, Y. Chen, F. Chen, H. Chen, Biocompatibility, MR imaging and targeted drug delivery of a rattle-type magnetic mesoporous silica nanosphere system conjugated with PEG and cancer-cell-specific ligands. J. Mater. Chem. 21(9), 3037–3045 (2011). doi:10.1039/c0jm02863k
J. Liu, S.Z. Qiao, S.B. Hartono, G.Q. Lu, Monodisperse yolk–shell nanoparticles with a hierarchical porous structure for delivery vehicles and nanoreactors. Angew. Chem. Int. Ed. 49(29), 4981–4985 (2010). doi:10.1002/anie.201001252
S.X. Li, J.Z. Zheng, D.J. Chen, Y.J. Wu, W.X. Zhang, F.Y. Zheng, J. Cao, H.R. Ma, Y.L. Liu, Yolk–shell hybrid nanoparticles with magnetic and pH-sensitive properties for controlled anticancer drug delivery. Nanoscale 5(23), 11718–11724 (2013). doi:10.1039/c3nr04032a
L. Zhao, J. Peng, Q. Huang, C. Li, M. Chen, Y. Sun, Q. Lin, L. Zhu, F. Li, Near-infrared photoregulated drug release in living tumor tissue via yolk–shell upconversion nanocages. Adv. Funct. Mater. 24(3), 363–371 (2014). doi:10.1002/adfm.201302133
H. Wu, G.Y. Zheng, N. Liu, T.J. Carney, Y. Yang, Y. Cui, Engineering empty space between Si nanoparticles for lithium-ion battery anodes. Nano Lett. 12(2), 904–909 (2012). doi:10.1021/nl203967r
C. Guan, X.H. Wang, Q. Zhang, Z.X. Fan, H. Zhang, H.J. Fan, Highly stable and reversible lithium storage in SnO2 nanowires surface coated with a uniform hollow shell by atomic layer deposition. Nano Lett. 14(8), 4852–4858 (2014). doi:10.1021/nl502192p
Z.Y. Cai, L. Xu, M.Y. Yan, C.H. Han, L. He et al., Manganese oxide/carbon yolk–shell nanorod anodes for high capacity lithium batteries. Nano Lett. 15(1), 738–744 (2015). doi:10.1021/nl504427d
Q.Y. Li, F. Wang, L.Q. Sun, Z. Jiang, T. Ye et al., Design and synthesis of Cu@CuS yolk–shell structures with enhanced photocatalytic activity. Nano-Micro Lett. 9, 35 (2017). doi:10.1007/s40820-017-0135-7
X.J. Yang, X. Liu, Z. Liu, F. Pu, J.S. Ren, X.G. Qu, Near-infrared light-triggered, targeted drug delivery to cancer cells by aptamer gated nanovehicles. Adv. Mater. 24(21), 2890–2895 (2012). doi:10.1002/adma.201104797
J. Zuloaga, E. Prodan, P. Nordlander, Quantum plasmonics: optical properties and tunability of metallic nanorods. ACS Nano 4(9), 5269–5276 (2010). doi:10.1021/nn101589n
G.A. Morrill, H.R. Kaback, E. Robbins, Effect of calcium on intracellular sodium and potassium concentrations in plant and animal cells. Nature 204(4959), 641–642 (1964). doi:10.1038/204641a0
J. Michaelis, C. Hettich, J. Mlynek, V. Sandoghdar, Optical microscopy using a single-molecule light source. Nature 405(6784), 325–328 (2000). doi:10.1038/35012545
T. Kim, N. Lee, D.R. Arifin, I. Shats, M. Janowski, P. Walczak, T. Hyeon, J.W.M. Bulte, In vivo micro-CT imaging of human mesenchymal stem cells labeled with gold-poly-l-Lysine nanocomplexes. Adv. Funct. Mater. 27(3), 1604213–1604220 (2016). doi:10.1002/adfm.201604213
X. Li, C. Wang, H. Tan, L.L. Cheng, G.B. Liu et al., Gold nanoparticles-based SPECT/CT imaging probe targeting for vulnerable atherosclerosis plaques original research article. Biomaterials 108, 71–80 (2016). doi:10.1016/j.biomaterials.2016.08.048