A Facile Synthesis of ZnCo2O4 Nanocluster Particles and the Performance as Anode Materials for Lithium Ion Batteries
Corresponding Author: Brett L. Lucht
Nano-Micro Letters,
Vol. 9 No. 2 (2017), Article Number: 20
Abstract
ZnCo2O4 nanocluster particles (NCPs) were prepared through a designed hydrothermal method, with the assistance of a surfactant, sodium dodecyl benzene sulfonate. The crystalline structure and surface morphology of ZnCo2O4 were investigated by XRD, XPS, SEM, TEM, and BET analyses. The results of SEM and TEM suggest a clear nanocluster particle structure of cubic ZnCo2O4 (~100 nm in diameter), which consists of aggregated primary nanoparticles (~10 nm in diameter), is achieved. The electrochemical behavior of synthesized ZnCo2O4 NCPs was investigated by galvanostatic discharge/charge measurements and cyclic voltammetry. The ZnCo2O4 NCPs exhibit a high reversible capacity of 700 mAh g−1 over 100 cycles under a current density of 100 mA g−1 with an excellent coulombic efficiency of 98.9% and a considerable cycling stability. This work demonstrates a facile technique designed to synthesize ZnCo2O4 NCPs which show great potential as anode materials for lithium ion batteries.
Highlights:
1 ZnCo2O4 nanocluster particles (NCPs) were prepared through a hydrothermal method with the assistance of sodium dodecyl benzene sulfonate (SDBS).
2 The ZnCo2O4 NCPs exhibit excellent rate performance. The initial lithiation-specific capacity of ZnCo2O4 NCPs with a current density of 100 mA g−1 reached 1110 mAh g−1 with a coulombic efficiency of 84.7 %, and a high delithiation capacity of 700 mAh g−1 was achieved over 100 cycles.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.V. Reddy, G.V. Subba Rao, B.V. Chowdari, Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113(7), 5364–5457 (2013). doi:10.1021/cr3001884
- D. Zhao, Y. Wang, Y. Zhang, High-performance Li-ion batteries and supercapacitors base on 1-D nanomaterials in prospect. Nano-Micro Lett. 3(1), 62–71 (2011). doi:10.3786/nml.v3i1.p62-71
- Y. Pan, Y. Zhang, X. Wei, C. Yuan, J. Yin, D. Cao, G. Wang, MgFe2O4 nanoparticles as anode materials for lithium-ion batteries. Electrochim. Acta 109, 89–94 (2013). doi:10.1016/j.electacta.2013.07.026
- Y. Xiao, X. Li, J. Zai, K. Wang, Y. Gong, B. Li, Q. Han, X. Qian, CoFe2O4-graphene nanocomposites synthesized through an ultrasonic method with enhanced performances as anode materials for Li-ion batteries. Nano-Micro Lett. 6(4), 307–315 (2014). doi:10.1007/s40820-014-0003-7
- M.V. Reddy, C. Yu, F. Jiahuan, K.P. Loh, B.V.R. Chowdari, Molten salt synthesis and energy storage studies on CuCo2O4 and CuO·Co3O4. RSC Adv. 2(25), 9619–9625 (2012). doi:10.1039/c2ra21033a
- M.V. Reddy, C.Y. Quan, K.W. Teo, L.J. Ho, B.V.R. Chowdari, Mixed oxides, (Ni1−x Zn x )Fe2O4 (x = 0, 0.25, 0.5, 0.75, 1): molten salt synthesis, characterization and its lithium-storage performance for lithium ion batteries. J. Phys. Chem. C 119(9), 4709–4718 (2015). doi:10.1021/jp5121178
- M.V. Reddy, M. Rajesh, S. Adams, B.V.R. Chowdari, Effect of initial reactants and reaction temperature on molten salt synthesis of CuCo2O4 and its sustainable energy storage properties. ACS Sustain. Chem. Eng. 4(6), 3076–3086 (2016). doi:10.1021/acssuschemeng.6b00047
- M.V. Reddy, Y. Xu, V. Rajarajan, T. Ouyang, B.V.R. Chowdari, Template free facile molten synthesis and energy storage studies on MCo2O4 (M=Mg, Mn) as anode for li-ion batteries. ACS Sustain. Chem. Eng. 3(12), 3035–3042 (2015). doi:10.1021/acssuschemeng.5b00439
- D. Darbar, M.V. Reddy, S. Sundarrajan, R. Pattabiraman, S. Ramakrishna, B.V.R. Chowdari, Anodic electrochemical performances of MgCo2O4 synthesized by oxalate decomposition method and electrospinning technique for Li-ion battery application. Mater. Res. Bull. 73, 369–376 (2016). doi:10.1016/j.materresbull.2015.09.025
- P. Peshev, A. Toshev, G. Gyurov, Preparation of high-dispersity MCo2O4 (M=Mg, Ni, Zn) spinels by thermal dissociation of coprecipitated oxalates. Mater. Res. Bull. 24(1), 33–40 (1989). doi:10.1016/0025-5408(89)90005-6
- C.T. Cherian, M.V. Reddy, G.V.S. Rao, C.H. Sow, B.V.R. Chowdari, Li-cycling properties of nano-crystalline (Ni1−x Zn x )Fe2O4 (0 ≤ x ≤ 1). J. Solid State Electrochem. 16(5), 1823–1832 (2012). doi:10.1007/s10008-012-1662-2
- Y. Sharma, N. Sharma, G.V.S. Rao, B.V.R. Chowdari, Lithium recycling behaviour of nano-phase-CuCo2O4 as anode for lithium-ion batteries. J. Power Sources 173(1), 495–501 (2007). doi:10.1016/j.jpowsour.2007.06.022
- H. Zhao, L. Liu, X. Xiao, Z. Hu, S. Han, Y. Liu, D. Chen, X. Liu, The effects of Co doping on the crystal structure and electrochemical performance of Mg(Mn2−x Co x )O4 negative materials for lithium ion battery. Solid State Sci. 39, 23–28 (2015). doi:10.1016/j.solidstatesciences.2014.11.006
- M.V. Reddy, K.Y.H. Kenrick, T.Y. Wei, G.Y. Chong, G.H. Leong, B.V.R. Chowdari, Nano-ZnCo2O4 material preparation by molten salt method and its electrochemical properties for lithium batteries. J. Electrochem. Soc. 158(12), A1423 (2011). doi:10.1149/2.089112jes
- S. Hao, B. Zhang, S. Ball, M. Copley, Z. Xu, M. Srinivasan, K. Zhou, S. Mhaisalkar, Y. Huang, Synthesis of multimodal porous ZnCo2O4 and its electrochemical properties as an anode material for lithium ion batteries. J. Power Sources 294, 112–119 (2015). doi:10.1016/j.jpowsour.2015.06.048
- L. Huang, G.H. Waller, Y. Ding, D. Chen, D. Ding, P. Xi, Z.L. Wang, M. Liu, Controllable interior structure of ZnCo2O4 microspheres for high-performance lithium-ion batteries. Nano Energy 11, 64–70 (2015). doi:10.1016/j.nanoen.2014.09.027
- R. Zhao, Q. Li, C. Wang, L. Yin, Highly ordered mesoporous spinel ZnCo2O4 as a high-performance anode material for lithium-ion batteries. Electrochim. Acta 197, 58–67 (2016). doi:10.1016/j.electacta.2016.03.047
- D. Wang, X. Qi, H. Gao, J. Yu, Y. Zhao, G. Zhou, G. Li, Fabricating hierarchical porous ZnCo2O4 microspheres as high-performance anode material for lithium-ion batteries. Mater. Lett. 164, 93–96 (2016). doi:10.1016/j.matlet.2015.10.126
- Y. Sharma, N. Sharma, G.V. Subba, Rao, B.V.R. Chowdari, Nanophase ZnCo2O4 as a high performance anode material for Li-ion batteries. Adv. Funct. Mater. 17(15), 2855–2861 (2007). doi:10.1002/adfm.200600997
- Y. Deng, Q. Zhang, S. Tang, L. Zhang, S. Deng, Z. Shi, G. Chen, One-pot synthesis of ZnFe2O4/C hollow spheres as superior anode materials for lithium ion batteries. Chem. Commun. 47(24), 6828–6830 (2011). doi:10.1039/c0cc05001f
- J.F. Marco, J.R. Gancedo, M. Gracia, J.L. Gautier, E. Ríos, F.J. Berry, Characterization of the nickel cobaltite, NiCo2O4, prepared by several methods: an XRD, XANES, EXAFS, and XPS study. J. Solid State Chem. 153(1), 74–81 (2000). doi:10.1006/jssc.2000.8749
- V.M. Jiménez, A. Fernández, J.P. Espinós, A.R. González-Elipe, The state of the oxygen at the surface of polycrystalline cobalt oxide. J. Electron Spectrosc. Relat. Phenom. 71(1), 61–71 (1995). doi:10.1016/0368-2048(94)02238-0
- T. Choudhury, S.O. Saied, J.L. Sullivan, A.M. Abbot, Reduction of oxides of iron, cobalt, titanium and niobium by low-energy ion bombardment. J. Phys. D 22(8), 1185 (1989). doi:10.1088/0022-3727/22/8/026
- X.L. Wen, Z. Chen, Z. Liu, X. Lin, Structural and magnetic characterization of ZnCo2O4 thin film prepared by pulsed laser deposition. Appl. Surf. Sci. 357(Part A), 1212–1216 (2015). doi:10.1016/j.apsusc.2015.09.152
- A. Kumar, O.D. Jayakumar, V.M. Naik, G.A. Nazri, R. Naik, Improved electrochemical properties of solvothermally synthesized Li2FeSiO4/C nanocomposites: a comparison between solvothermal and sol-gel methods. Solid State Ion 29, 15–20 (2016). doi:10.1016/j.ssi.2016.06.014
- X. Wang, Y. Liu, H. Arandiyan, H. Yang, L. Bai, J. Mujtaba, Q. Wang, S. Liu, H. Sun, Uniform Fe3O4 microflowers hierarchical structures assembled with porous nanoplates as superior anode materials for lithium-ion batteries. Appl. Surf. Sci. 389, 240–246 (2016). doi:10.1016/j.apsusc.2016.07.105
- Y. Zhang, J. Huang, Y. Ding, Porous Co3O4/CuO hollow polyhedral nanocages derived from metal-organic frameworks with heterojunctions as efficient photocatalytic water oxidation catalysts. Appl. Catal. B 198, 447–456 (2016). doi:10.1016/j.apcatb.2016.05.078
- S. Nilmoung, T. Sinprachim, I. Kotutha, P. Kidkhunthod, R. Yimnirun, S. Rujirawat, S. Maensiri, Electrospun carbon/CuFe2O4 composite nanofibers with improved electrochemical energy storage performance. J. Alloys Compd. 688, 1131–1140 (2016). doi:10.1016/j.jallcom.2016.06.251
- D. Narsimulu, B.N. Rao, M. Venkateswarlu, E.S. Srinadhu, N. Satyanarayana, Electrical and electrochemical studies of nanocrystalline mesoporous MgFe2O4 as anode material for lithium battery applications. Ceram. Int. 42(15), 16789–16797 (2016). doi:10.1016/j.ceramint.2016.07.168
- Y. Qin, M. Long, B. Tan, B. Zhou, RhB adsorption performance of magnetic adsorbent Fe3O4/RGO composite and its regeneration through a fenton-like reaction. Nano-Micro Lett. 6(2), 125–135 (2014). doi:10.1007/BF03353776
- Y. Pan, K. Ye, D. Cao, Y. Li, Y. Dong, T. Niu, W. Zeng, G. Wang, Nitrogen-doped graphene oxide/cupric oxide as an anode material for lithium ion batteries. RSC Adv. 4(110), 64756–64762 (2014). doi:10.1039/C4RA13336F
- C.T. Cherian, M. Zheng, M.V. Reddy, B.V. Chowdari, C.H. Sow, Zn2SnO4 nanowires versus nanoplates: electrochemical performance and morphological evolution during Li-cycling. ACS Appl. Mater. Inter. 5(13), 6054–6060 (2013). doi:10.1021/am400802j
- M.V. Reddy, G.V. Subba Rao, B.V.R. Chowdari, Nano-(V1/2Sb1/2Sn)O4: a high capacity, high rate anode material for Li-ion batteries. J. Mater. Chem. 21(27), 10003 (2011). doi:10.1039/c0jm04140h
- C. Xiao, N. Du, H. Zhang, D. Yang, Improved cyclic stability of Mg2Si by direct carbon coating as anode materials for lithium-ion batteries. J. Alloys Compd. 587, 807–811 (2014). doi:10.1016/j.jallcom.2013.10.115
- S. Xu, L. Lu, Q. Zhang, Q. Jiang, Z. Luo, S. Wang, G. Li, C. Feng, A facile synthesis of flower-like CuO as anode materials for lithium (sodium) ion battery applications. J. Nanosci. Nanotechnol. 16(7), 7655–7661 (2016). doi:10.1166/jnn.2016.11593
- H.W. Liu, H.F. Liu, Preparing micro/nano dumbbell-shaped CeO2 for high performance electrode materials. J. Alloys Compd. 681, 342–349 (2016). doi:10.1016/j.jallcom.2016.04.207
- X.-B. Zhong, H.-Y. Wang, Z.-Z. Yang, B. Jin, Q.-C. Jiang, Facile synthesis of mesoporous ZnCo2O4 coated with polypyrrole as an anode material for lithium-ion batteries. J. Power Sources 296, 298–304 (2015). doi:10.1016/j.jpowsour.2015.07.047
- M. Nie, D. Chalasani, D.P. Abraham, Y. Chen, A. Bose, B.L. Lucht, Lithium ion battery graphite solid electrolyte interphase revealed by microscopy and spectroscopy. J. Phys. Chem. C 117(3), 1257–1267 (2013). doi:10.1021/jp3118055
- J. Li, J. Wang, D. Wexler, D. Shi, J. Liang, H. Liu, S. Xiong, Y. Qian, Simple synthesis of yolk-shelled ZnCo2O4 microspheres towards enhancing the electrochemical performance of lithium-ion batteries in conjunction with a sodium carboxymethyl cellulose binder. J. Mater. Chem. A 1(48), 15292–15299 (2013). doi:10.1039/c3ta13787b
- W. Luo, X. Hu, Y. Sun, Y. Huang, Electrospun porous ZnCo2O4 nanotubes as a high-performance anode material for lithium-ion batteries. J. Mater. Chem. 22(18), 8916–8921 (2012). doi:10.1039/c2jm00094f
References
M.V. Reddy, G.V. Subba Rao, B.V. Chowdari, Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113(7), 5364–5457 (2013). doi:10.1021/cr3001884
D. Zhao, Y. Wang, Y. Zhang, High-performance Li-ion batteries and supercapacitors base on 1-D nanomaterials in prospect. Nano-Micro Lett. 3(1), 62–71 (2011). doi:10.3786/nml.v3i1.p62-71
Y. Pan, Y. Zhang, X. Wei, C. Yuan, J. Yin, D. Cao, G. Wang, MgFe2O4 nanoparticles as anode materials for lithium-ion batteries. Electrochim. Acta 109, 89–94 (2013). doi:10.1016/j.electacta.2013.07.026
Y. Xiao, X. Li, J. Zai, K. Wang, Y. Gong, B. Li, Q. Han, X. Qian, CoFe2O4-graphene nanocomposites synthesized through an ultrasonic method with enhanced performances as anode materials for Li-ion batteries. Nano-Micro Lett. 6(4), 307–315 (2014). doi:10.1007/s40820-014-0003-7
M.V. Reddy, C. Yu, F. Jiahuan, K.P. Loh, B.V.R. Chowdari, Molten salt synthesis and energy storage studies on CuCo2O4 and CuO·Co3O4. RSC Adv. 2(25), 9619–9625 (2012). doi:10.1039/c2ra21033a
M.V. Reddy, C.Y. Quan, K.W. Teo, L.J. Ho, B.V.R. Chowdari, Mixed oxides, (Ni1−x Zn x )Fe2O4 (x = 0, 0.25, 0.5, 0.75, 1): molten salt synthesis, characterization and its lithium-storage performance for lithium ion batteries. J. Phys. Chem. C 119(9), 4709–4718 (2015). doi:10.1021/jp5121178
M.V. Reddy, M. Rajesh, S. Adams, B.V.R. Chowdari, Effect of initial reactants and reaction temperature on molten salt synthesis of CuCo2O4 and its sustainable energy storage properties. ACS Sustain. Chem. Eng. 4(6), 3076–3086 (2016). doi:10.1021/acssuschemeng.6b00047
M.V. Reddy, Y. Xu, V. Rajarajan, T. Ouyang, B.V.R. Chowdari, Template free facile molten synthesis and energy storage studies on MCo2O4 (M=Mg, Mn) as anode for li-ion batteries. ACS Sustain. Chem. Eng. 3(12), 3035–3042 (2015). doi:10.1021/acssuschemeng.5b00439
D. Darbar, M.V. Reddy, S. Sundarrajan, R. Pattabiraman, S. Ramakrishna, B.V.R. Chowdari, Anodic electrochemical performances of MgCo2O4 synthesized by oxalate decomposition method and electrospinning technique for Li-ion battery application. Mater. Res. Bull. 73, 369–376 (2016). doi:10.1016/j.materresbull.2015.09.025
P. Peshev, A. Toshev, G. Gyurov, Preparation of high-dispersity MCo2O4 (M=Mg, Ni, Zn) spinels by thermal dissociation of coprecipitated oxalates. Mater. Res. Bull. 24(1), 33–40 (1989). doi:10.1016/0025-5408(89)90005-6
C.T. Cherian, M.V. Reddy, G.V.S. Rao, C.H. Sow, B.V.R. Chowdari, Li-cycling properties of nano-crystalline (Ni1−x Zn x )Fe2O4 (0 ≤ x ≤ 1). J. Solid State Electrochem. 16(5), 1823–1832 (2012). doi:10.1007/s10008-012-1662-2
Y. Sharma, N. Sharma, G.V.S. Rao, B.V.R. Chowdari, Lithium recycling behaviour of nano-phase-CuCo2O4 as anode for lithium-ion batteries. J. Power Sources 173(1), 495–501 (2007). doi:10.1016/j.jpowsour.2007.06.022
H. Zhao, L. Liu, X. Xiao, Z. Hu, S. Han, Y. Liu, D. Chen, X. Liu, The effects of Co doping on the crystal structure and electrochemical performance of Mg(Mn2−x Co x )O4 negative materials for lithium ion battery. Solid State Sci. 39, 23–28 (2015). doi:10.1016/j.solidstatesciences.2014.11.006
M.V. Reddy, K.Y.H. Kenrick, T.Y. Wei, G.Y. Chong, G.H. Leong, B.V.R. Chowdari, Nano-ZnCo2O4 material preparation by molten salt method and its electrochemical properties for lithium batteries. J. Electrochem. Soc. 158(12), A1423 (2011). doi:10.1149/2.089112jes
S. Hao, B. Zhang, S. Ball, M. Copley, Z. Xu, M. Srinivasan, K. Zhou, S. Mhaisalkar, Y. Huang, Synthesis of multimodal porous ZnCo2O4 and its electrochemical properties as an anode material for lithium ion batteries. J. Power Sources 294, 112–119 (2015). doi:10.1016/j.jpowsour.2015.06.048
L. Huang, G.H. Waller, Y. Ding, D. Chen, D. Ding, P. Xi, Z.L. Wang, M. Liu, Controllable interior structure of ZnCo2O4 microspheres for high-performance lithium-ion batteries. Nano Energy 11, 64–70 (2015). doi:10.1016/j.nanoen.2014.09.027
R. Zhao, Q. Li, C. Wang, L. Yin, Highly ordered mesoporous spinel ZnCo2O4 as a high-performance anode material for lithium-ion batteries. Electrochim. Acta 197, 58–67 (2016). doi:10.1016/j.electacta.2016.03.047
D. Wang, X. Qi, H. Gao, J. Yu, Y. Zhao, G. Zhou, G. Li, Fabricating hierarchical porous ZnCo2O4 microspheres as high-performance anode material for lithium-ion batteries. Mater. Lett. 164, 93–96 (2016). doi:10.1016/j.matlet.2015.10.126
Y. Sharma, N. Sharma, G.V. Subba, Rao, B.V.R. Chowdari, Nanophase ZnCo2O4 as a high performance anode material for Li-ion batteries. Adv. Funct. Mater. 17(15), 2855–2861 (2007). doi:10.1002/adfm.200600997
Y. Deng, Q. Zhang, S. Tang, L. Zhang, S. Deng, Z. Shi, G. Chen, One-pot synthesis of ZnFe2O4/C hollow spheres as superior anode materials for lithium ion batteries. Chem. Commun. 47(24), 6828–6830 (2011). doi:10.1039/c0cc05001f
J.F. Marco, J.R. Gancedo, M. Gracia, J.L. Gautier, E. Ríos, F.J. Berry, Characterization of the nickel cobaltite, NiCo2O4, prepared by several methods: an XRD, XANES, EXAFS, and XPS study. J. Solid State Chem. 153(1), 74–81 (2000). doi:10.1006/jssc.2000.8749
V.M. Jiménez, A. Fernández, J.P. Espinós, A.R. González-Elipe, The state of the oxygen at the surface of polycrystalline cobalt oxide. J. Electron Spectrosc. Relat. Phenom. 71(1), 61–71 (1995). doi:10.1016/0368-2048(94)02238-0
T. Choudhury, S.O. Saied, J.L. Sullivan, A.M. Abbot, Reduction of oxides of iron, cobalt, titanium and niobium by low-energy ion bombardment. J. Phys. D 22(8), 1185 (1989). doi:10.1088/0022-3727/22/8/026
X.L. Wen, Z. Chen, Z. Liu, X. Lin, Structural and magnetic characterization of ZnCo2O4 thin film prepared by pulsed laser deposition. Appl. Surf. Sci. 357(Part A), 1212–1216 (2015). doi:10.1016/j.apsusc.2015.09.152
A. Kumar, O.D. Jayakumar, V.M. Naik, G.A. Nazri, R. Naik, Improved electrochemical properties of solvothermally synthesized Li2FeSiO4/C nanocomposites: a comparison between solvothermal and sol-gel methods. Solid State Ion 29, 15–20 (2016). doi:10.1016/j.ssi.2016.06.014
X. Wang, Y. Liu, H. Arandiyan, H. Yang, L. Bai, J. Mujtaba, Q. Wang, S. Liu, H. Sun, Uniform Fe3O4 microflowers hierarchical structures assembled with porous nanoplates as superior anode materials for lithium-ion batteries. Appl. Surf. Sci. 389, 240–246 (2016). doi:10.1016/j.apsusc.2016.07.105
Y. Zhang, J. Huang, Y. Ding, Porous Co3O4/CuO hollow polyhedral nanocages derived from metal-organic frameworks with heterojunctions as efficient photocatalytic water oxidation catalysts. Appl. Catal. B 198, 447–456 (2016). doi:10.1016/j.apcatb.2016.05.078
S. Nilmoung, T. Sinprachim, I. Kotutha, P. Kidkhunthod, R. Yimnirun, S. Rujirawat, S. Maensiri, Electrospun carbon/CuFe2O4 composite nanofibers with improved electrochemical energy storage performance. J. Alloys Compd. 688, 1131–1140 (2016). doi:10.1016/j.jallcom.2016.06.251
D. Narsimulu, B.N. Rao, M. Venkateswarlu, E.S. Srinadhu, N. Satyanarayana, Electrical and electrochemical studies of nanocrystalline mesoporous MgFe2O4 as anode material for lithium battery applications. Ceram. Int. 42(15), 16789–16797 (2016). doi:10.1016/j.ceramint.2016.07.168
Y. Qin, M. Long, B. Tan, B. Zhou, RhB adsorption performance of magnetic adsorbent Fe3O4/RGO composite and its regeneration through a fenton-like reaction. Nano-Micro Lett. 6(2), 125–135 (2014). doi:10.1007/BF03353776
Y. Pan, K. Ye, D. Cao, Y. Li, Y. Dong, T. Niu, W. Zeng, G. Wang, Nitrogen-doped graphene oxide/cupric oxide as an anode material for lithium ion batteries. RSC Adv. 4(110), 64756–64762 (2014). doi:10.1039/C4RA13336F
C.T. Cherian, M. Zheng, M.V. Reddy, B.V. Chowdari, C.H. Sow, Zn2SnO4 nanowires versus nanoplates: electrochemical performance and morphological evolution during Li-cycling. ACS Appl. Mater. Inter. 5(13), 6054–6060 (2013). doi:10.1021/am400802j
M.V. Reddy, G.V. Subba Rao, B.V.R. Chowdari, Nano-(V1/2Sb1/2Sn)O4: a high capacity, high rate anode material for Li-ion batteries. J. Mater. Chem. 21(27), 10003 (2011). doi:10.1039/c0jm04140h
C. Xiao, N. Du, H. Zhang, D. Yang, Improved cyclic stability of Mg2Si by direct carbon coating as anode materials for lithium-ion batteries. J. Alloys Compd. 587, 807–811 (2014). doi:10.1016/j.jallcom.2013.10.115
S. Xu, L. Lu, Q. Zhang, Q. Jiang, Z. Luo, S. Wang, G. Li, C. Feng, A facile synthesis of flower-like CuO as anode materials for lithium (sodium) ion battery applications. J. Nanosci. Nanotechnol. 16(7), 7655–7661 (2016). doi:10.1166/jnn.2016.11593
H.W. Liu, H.F. Liu, Preparing micro/nano dumbbell-shaped CeO2 for high performance electrode materials. J. Alloys Compd. 681, 342–349 (2016). doi:10.1016/j.jallcom.2016.04.207
X.-B. Zhong, H.-Y. Wang, Z.-Z. Yang, B. Jin, Q.-C. Jiang, Facile synthesis of mesoporous ZnCo2O4 coated with polypyrrole as an anode material for lithium-ion batteries. J. Power Sources 296, 298–304 (2015). doi:10.1016/j.jpowsour.2015.07.047
M. Nie, D. Chalasani, D.P. Abraham, Y. Chen, A. Bose, B.L. Lucht, Lithium ion battery graphite solid electrolyte interphase revealed by microscopy and spectroscopy. J. Phys. Chem. C 117(3), 1257–1267 (2013). doi:10.1021/jp3118055
J. Li, J. Wang, D. Wexler, D. Shi, J. Liang, H. Liu, S. Xiong, Y. Qian, Simple synthesis of yolk-shelled ZnCo2O4 microspheres towards enhancing the electrochemical performance of lithium-ion batteries in conjunction with a sodium carboxymethyl cellulose binder. J. Mater. Chem. A 1(48), 15292–15299 (2013). doi:10.1039/c3ta13787b
W. Luo, X. Hu, Y. Sun, Y. Huang, Electrospun porous ZnCo2O4 nanotubes as a high-performance anode material for lithium-ion batteries. J. Mater. Chem. 22(18), 8916–8921 (2012). doi:10.1039/c2jm00094f