MXene-Derived Defect-Rich TiO2@rGO as High-Rate Anodes for Full Na Ion Batteries and Capacitors
Corresponding Author: Dianxue Cao
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 128
Abstract
Sodium ion batteries and capacitors have demonstrated their potential applications for next-generation low-cost energy storage devices. These devices's rate ability is determined by the fast sodium ion storage behavior in electrode materials. Herein, a defective TiO2@reduced graphene oxide (M-TiO2@rGO) self-supporting foam electrode is constructed via a facile MXene decomposition and graphene oxide self-assembling process. The employment of the MXene parent phase exhibits distinctive advantages, enabling defect engineering, nanoengineering, and fluorine-doped metal oxides. As a result, the M-TiO2@rGO electrode shows a pseudocapacitance-dominated hybrid sodium storage mechanism. The pseudocapacitance-dominated process leads to high capacity, remarkable rate ability, and superior cycling performance. Significantly, an M-TiO2@rGO//Na3V2(PO4)3 sodium full cell and an M-TiO2@rGO//HPAC sodium ion capacitor are fabricated to demonstrate the promising application of M-TiO2@rGO. The sodium ion battery presents a capacity of 177.1 mAh g−1 at 500 mA g−1 and capacity retention of 74% after 200 cycles. The sodium ion capacitor delivers a maximum energy density of 101.2 Wh kg−1 and a maximum power density of 10,103.7 W kg−1. At 1.0 A g−1, it displays an energy retention of 84.7% after 10,000 cycles.
Highlights:
1 A freestanding MXene-derived defect-rich TiO2@reduced graphene oxides (M-TiO2@rGO) foam electrode was fabricated.
2 M-TiO2@rGO presents fast Na+ storage kinetics due to capacitive contribution.
3 M-TiO2@rGO foam electrode displays a capacity retention of 90.7% after 5000 cycles.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
- M. Park, J. Ryu, W. Wang, J. Cho, Material design and engineering of next-generation flow-battery technologies. Nat. Rev. Mater. 2(1), 16080 (2017). https://doi.org/10.1038/natrevmats.2016.80
- C. Vaalma, D. Buchholz, M. Weil, S. Passerini, A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 3(4), 18013 (2018). https://doi.org/10.1038/natrevmats.2018.13
- S. Li, Z. Zhao, C. Li, Z. Liu, D. Li, SnS2@C hollow nanospheres with robust structural stability as high-performance anodes for sodium ion batteries. Nano-Micro Lett. 11(1), 14 (2019). https://doi.org/10.1007/s40820-019-0243-7
- Y. Jiang, X. Zhou, D. Li, X. Cheng, F. Liu, Y. Yu, Highly reversible Na storage in Na3V2(PO4)3 by optimizing nanostructure and rational surface engineering. Adv. Energy Mater. 8(16), 1800068 (2018). https://doi.org/10.1002/aenm.201800068
- J. Zhao, X. Yang, Y. Yao, Y. Gao, Y. Sui et al., Moving to aqueous binder: a valid approach to achieving high-rate capability and long-term durability for sodium-ion battery. Adv. Sci. 5(4), 1700768 (2018). https://doi.org/10.1002/advs.201700768
- Z. Le, F. Liu, P. Nie, X. Li, X. Liu et al., Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2–graphene nanocomposite enables high-performance sodium-ion capacitors. ACS Nano 11(3), 2952–2960 (2017). https://doi.org/10.1021/acsnano.6b08332
- Z. Xia, H. Sun, X. He, Z. Sun, C. Lu, In situ construction of CoSe2@vertical-oriented graphene arrays as self-supporting electrodes for sodium-ion capacitors and electrocatalytic oxygen evolution. Nano Energy 60, 385–393 (2019). https://doi.org/10.1016/j.nanoen.2019.03.052
- Y.E. Zhu, L. Yang, J. Sheng, Y. Chen, H. Gu, J. Wei, Z. Zhou, Fast sodium storage in TiO2@CNT@C nanorods for high-performance Na-ion capacitors. Adv. Energy Mater. 7(22), 1701222 (2017). https://doi.org/10.1002/aenm.201701222
- Y. Sun, S. Guo, H. Zhou, Exploration of advanced electrode materials for rechargeable sodium-ion batteries. Adv. Energy Mater. 9, 1800212 (2018). https://doi.org/10.1002/aenm.201800212
- F. Wu, C. Zhao, S. Chen, Y. Lu, Y. Hou, Y.S. Hu, J. Maier, Y. Yan, Multi-electron reaction materials for sodium-based batteries. Mater. Today 21(9), 960–973 (2018). https://doi.org/10.1016/j.mattod.2018.03.004
- C. Peng, H. Chen, G. Zhong, W. Tang, Y. Xiang et al., Capacity fading induced by phase conversion hysteresis within alloying phosphorus anode. Nano Energy 58, 560–567 (2019). https://doi.org/10.1016/j.nanoen.2019.01.035
- P. Bai, Y. He, P. Xiong, X. Zhao, K. Xu, Y. Xu, Long cycle life and high rate sodium-ion chemistry for hard carbon anodes. Energy Storage Mater. 13, 274–282 (2018). https://doi.org/10.1016/j.ensm.2018.02.002
- S. Guo, Q. Li, P. Liu, M. Chen, H. Zhou, Environmentally stable interface of layered oxide cathodes for sodium-ion batteries. Nat. Commun. 8(1), 135 (2017). https://doi.org/10.1038/s41467-017-00157-8
- Y. Fang, R. Hu, B. Liu, Y. Zhang, K. Zhu et al., Mxene-derived TiO2/reduced graphene oxide composite with an enhanced capacitive capacity for Li-ion and K-ion batteries. J. Mater. Chem. A 7(10), 5363–5372 (2019). https://doi.org/10.1039/C8TA12069B
- L. Sang, L. Lei, C. Burda, Electrochemical fabrication of rGO-embedded Ag–TiO2 nanoring/nanotube arrays for plasmonic solar water splitting. Nano-Micro Lett. 11(1), 97 (2019). https://doi.org/10.1007/s40820-019-0329-2
- Q. Gan, H. He, Y. Zhu, Z. Wang, N. Qin, S. Gu, Z. Li, W. Luo, Z. Lu, Defect-assisted selective surface phosphorus doping to enhance rate capability of titanium dioxide for sodium ion batteries. ACS Nano 13(8), 9247–9258 (2019). https://doi.org/10.1021/acsnano.9b03766
- C. Li, T. Wang, Z.J. Zhao, W. Yang, J.F. Li et al., Promoted fixation of molecular nitrogen with surface oxygen vacancies on plasmon-enhanced TiO2 photoelectrodes. Angew. Chem. Int. Ed. 57(19), 5278–5282 (2018). https://doi.org/10.1002/anie.201713229
- Y. Zhang, Z. Ding, C.W. Foster, C.E. Banks, X. Qiu, X. Ji, Oxygen vacancies evoked blue TiO2 (B) nanobelts with efficiency enhancement in sodium storage behaviors. Adv. Funct. Mater. 27(27), 1700856 (2017). https://doi.org/10.1002/adfm.201700856
- L. Huang, X. Zhou, R. Xue, P. Xu, S. Wang et al., Low-temperature growing anatase TiO2/SnO2 multi-dimensional heterojunctions at MXene conductive network for high-efficient perovskite solar cells. Nano-Micro Lett. 12(1), 44 (2020). https://doi.org/10.1007/s40820-020-0379-5
- W. Zhang, L. Cai, S. Cao, L. Qiao, Y. Zeng et al., Electrode materials: interfacial lattice-strain-driven generation of oxygen vacancies in an aerobic-annealed TiO2 (B) electrode. Adv. Mater. 31(52), 1970367 (2019). https://doi.org/10.1002/adma.201970367
- B. Li, B. Xi, Z. Feng, Y. Lin, J. Liu, J. Feng, Y. Qian, S. Xiong, Hierarchical porous nanosheets constructed by graphene-coated, interconnected TiO2 nanoparticles for ultrafast sodium storage. Adv. Mater. 30(10), 1705788 (2018). https://doi.org/10.1002/adma.201705788
- R. Wang, S. Wang, Y. Zhang, D. Jin, X. Tao, L. Zhang, Graphene-coupled Ti3C2 MXenes-derived TiO2 mesostructure: promising sodium-ion capacitor anode with fast ion storage and long-term cycling. J. Mater. Chem. A 6(3), 1017–1027 (2018). https://doi.org/10.1039/C7TA09153B
- X. Zhang, J. Li, J. Li, L. Han, T. Lu, X. Zhang, G. Zhu, L. Pan, 3D TiO2@nitrogen-doped carbon/Fe7S8 composite derived from polypyrrole-encapsulated alkalized MXene as anode material for high-performance lithium-ion batteries. Chem. Eng. J. 385, 123394 (2020). https://doi.org/10.1016/j.cej.2019.123394
- P. Nakhanivej, X. Yu, S.K. Park, S. Kim, J.-Y. Hong et al., Revealing molecular-level surface redox sites of controllably oxidized black phosphorus nanosheets. Nat. Mater. 18(2), 156–162 (2019). https://doi.org/10.1038/s41563-018-0230-2
- X. Yu, S. Yun, J.S. Yeon, P. Bhattacharya, L. Wang, S.W. Lee, X. Hu, H.S. Park, Emergent pseudocapacitance of 2D nanomaterials. Adv. Energy Mater. 8(13), 1702930 (2018). https://doi.org/10.1002/aenm.201702930
- Y. Fang, Y. Zhang, K. Zhu, R. Lian, Y. Gao et al., Lithiophilic three-dimensional porous Ti3C2Tx–rGO membrane as a stable scaffold for safe alkali metal (Li or Na) anodes. ACS Nano 13(12), 14319–14328 (2019). https://doi.org/10.1021/acsnano.9b07729
- H. He, Q. Gan, H. Wang, G.-L. Xu, X. Zhang et al., Structure-dependent performance of TiO2/C as anode material for Na-ion batteries. Nano Energy 44, 217–227 (2018). https://doi.org/10.1016/j.nanoen.2017.11.077
- Y. Xing, S. Wang, B. Fang, G. Song, D.P. Wilkinson, S. Zhang, N-doped hollow urchin-like anatase TiO2@C composite as a novel anode for Li-ion batteries. J. Power Sources 385, 10–17 (2018). https://doi.org/10.1016/j.jpowsour.2018.02.077
- Y. Zhu, L. Peng, Z. Fang, C. Yan, X. Zhang, G. Yu, Structural engineering of 2D nanomaterials for energy storage and catalysis. Adv. Mater. 30(15), 1706347 (2018). https://doi.org/10.1002/adma.201706347
- A. Naldoni, M. Allieta, S. Santangelo, M. Marelli, F. Fabbri et al., Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J. Am. Chem. Soc. 134(18), 7600–7603 (2012). https://doi.org/10.1021/ja3012676
- Q. Wu, J.P. Zheng, M. Hendrickson, E.J. Plichta, Dry process for fabricating low cost and high performance electrode for energy storage devices. MRS Adv. 4(15), 857–863 (2019). https://doi.org/10.1557/adv.2019.29
- S. Wang, Q. Wang, W. Zeng, M. Wang, L. Ruan, Y. Ma, A new free-standing aqueous zinc-ion capacitor based on MnO2–CNTs cathode and MXene anode. Nano-Micro Lett. 11(1), 70 (2019). https://doi.org/10.1007/s40820-019-0301-1
- Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22(35), 3906–3924 (2010). https://doi.org/10.1002/adma.201001068
- L. Yin, Y. Chen, X. Zhao, B. Hou, B. Cao, 3-Dimensional hierarchical porous activated carbon derived from coconut fibers with high-rate performance for symmetric supercapacitors. Mater. Design 111, 44–50 (2016). https://doi.org/10.1016/j.matdes.2016.08.070
- Z.W. Seh, K.D. Fredrickson, B. Anasori, J. Kibsgaard, A.L. Strickler et al., Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett. 1(3), 589–594 (2016). https://doi.org/10.1021/acsenergylett.6b00247
- H. He, Q. Zhang, H. Wang, H. Zhang, J. Li, Z. Peng, Y. Tang, M. Shao, Defect-rich TiO2-δ nanocrystals confined in a mooncake-shaped porous carbon matrix as an advanced Na ion battery anode. J. Power Sources 354, 179–188 (2017). https://doi.org/10.1016/j.jpowsour.2017.04.035
- H. Xu, X. Yin, X. Li, M. Li, S. Liang, L. Zhang, L. Cheng, Lightweight Ti2CTx MXene/poly (vinyl alcohol) composite foams for electromagnetic wave shielding with absorption dominated feature. ACS Appl. Mater. Interfaces 11, 10198–10207 (2019). https://doi.org/10.1021/acsami.8b21671
- Y. Zhao, Y. Zhao, R. Shi, B. Wang, G.I. Waterhouse, L.Z. Wu, C.H. Tung, T. Zhang, Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm. Adv. Mater. 31(16), 1806482 (2019). https://doi.org/10.1002/adma.201806482
- Y. Yang, K. Ye, D. Cao, P. Gao, M. Qiu, L. Liu, P. Yang, Efficient charge separation from F-selective etching and doping of anatase–TiO2 {001} for enhanced photocatalytic hydrogen production. ACS Appl. Mater. Interfaces 10(23), 19633–19638 (2018). https://doi.org/10.1021/acsami.8b02804
- L. Hüttenhofer, F. Eckmann, A. Lauri, J. Cambiasso, E. Pensa et al., Anapole excitations in oxygen vacancy-rich TiO2−x nanoresonators: tuning the absorption for photocatalysis in the visible. ACS Nano 14, 2456–2464 (2020). https://doi.org/10.1021/acsnano.9b09987
- H. Ren, R. Yu, J. Qi, L. Zhang, Q. Jin, D. Wang, Hollow multishelled heterostructured anatase/TiO2 (B) with superior rate capability and cycling performance. Adv. Mater. 31(10), 1805754 (2019). https://doi.org/10.1002/adma.201805754
- N.A. Kumar, R.R. Gaddam, S.R. Varanasi, D. Yang, S.K. Bhatia, X. Zhao, Sodium ion storage in reduced graphene oxide. Electrochim. Acta 214, 319–325 (2016). https://doi.org/10.1016/j.electacta.2016.08.058
- B. Ahmed, D.H. Anjum, M.N. Hedhili, Y. Gogotsi, H.N. Alshareef, H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes. Nanoscale 8(14), 7580–7587 (2016). https://doi.org/10.1039/C6NR00002A
- C. Chen, Y. Wen, X. Hu, X. Ji, M. Yan et al., Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat. Commun. 6, 6929 (2015). https://doi.org/10.1038/ncomms7929
- J.A. Khan, C. Han, N.S. Shah, H.M. Khan, M.N. Nadagouda et al., Ultraviolet–visible light–sensitive high surface area phosphorous–fluorine–co-doped TiO2 nanoparticles for the degradation of atrazine in water. Environ. Eng. Sci. 31(7), 435–446 (2014). https://doi.org/10.1089/ees.2013.0486
- D. Yang, Q. Zhao, L. Huang, B. Xu, N.A. Kumar, X.S. Zhao, Encapsulation of NiCo2O4 in nitrogen-doped reduced graphene oxide for sodium ion capacitors. J. Mater. Chem. A 6(29), 14146–14154 (2018). https://doi.org/10.1039/C8TA03411G
- D. Yan, C. Yu, D. Li, X. Zhang, J. Li, T. Lu, L. Pan, Improved sodium-ion storage performance of TiO2 nanotubes by Ni2+ doping. J. Mater. Chem. A 4(28), 11077–11085 (2016). https://doi.org/10.1039/C6TA04906K
- L. Wang, G. Yang, J. Wang, S. Wang, C. Wang, S. Peng, W. Yan, S. Ramakrishna, In situ fabrication of branched TiO2/C nanofibers as binder-free and free-standing anodes for high-performance sodium-ion batteries. Small 15, 1901584 (2019). https://doi.org/10.1002/smll.201901584
- G. Xu, L. Yang, Z. Li, X. Wei, P.K. Chu, Protein-assisted assembly of mesoporous nanocrystals and carbon nanotubes for self-supporting high-performance sodium electrodes. J. Mater. Chem. A 5(6), 2749–2758 (2017). https://doi.org/10.1039/C6TA09673E
- G. Xu, Y. Tian, X. Wei, L. Yang, P.K. Chu, Free-standing electrodes composed of carbon-coated Li4Ti5O12 nanosheets and reduced graphene oxide for advanced sodium ion batteries. J. Power Sources 337, 180–188 (2017). https://doi.org/10.1016/j.jpowsour.2016.10.088
- V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.-L. Taberna, S.H. Tolbert, H.D. Abruña, P. Simon, B. Dunn, High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12(6), 518 (2013). https://doi.org/10.1038/nmat3601
- L.F. Que, F.D. Yu, X.L. Sui, L. Zhao, J.G. Zhou, D.-M. Gu, Z.-B. Wang, Thermal-induced interlayer defect engineering toward super high-performance sodium ion capacitors. Nano Energy 59, 17–25 (2019). https://doi.org/10.1016/j.nanoen.2019.02.030
- R. Yan, E. Josef, H. Huang, K. Leus, M. Niederberger et al., Understanding the charge storage mechanism to achieve high capacity and fast ion storage in sodium-ion capacitor anodes by using electrospun nitrogen-doped carbon fibers. Adv. Funct. Mater. 29, 1902858 (2019). https://doi.org/10.1002/adfm.201902858
- J. Luo, F. Cong, C. Jin, H. Yuan, O. Sheng et al., Tunable pseudocapacitance storage of MXene by cation pillaring for high-performance sodium ion capacitors. J. Mater. Chem. A 6(17), 7794–7806 (2018). https://doi.org/10.1039/C8TA02068J
- N.A. Kumar, J.-B. Baek, Doped graphene supercapacitors. Nanotechnology 26(49), 492001 (2015). https://doi.org/10.1088/0957-4484/26/49/492001
References
B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
M. Park, J. Ryu, W. Wang, J. Cho, Material design and engineering of next-generation flow-battery technologies. Nat. Rev. Mater. 2(1), 16080 (2017). https://doi.org/10.1038/natrevmats.2016.80
C. Vaalma, D. Buchholz, M. Weil, S. Passerini, A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 3(4), 18013 (2018). https://doi.org/10.1038/natrevmats.2018.13
S. Li, Z. Zhao, C. Li, Z. Liu, D. Li, SnS2@C hollow nanospheres with robust structural stability as high-performance anodes for sodium ion batteries. Nano-Micro Lett. 11(1), 14 (2019). https://doi.org/10.1007/s40820-019-0243-7
Y. Jiang, X. Zhou, D. Li, X. Cheng, F. Liu, Y. Yu, Highly reversible Na storage in Na3V2(PO4)3 by optimizing nanostructure and rational surface engineering. Adv. Energy Mater. 8(16), 1800068 (2018). https://doi.org/10.1002/aenm.201800068
J. Zhao, X. Yang, Y. Yao, Y. Gao, Y. Sui et al., Moving to aqueous binder: a valid approach to achieving high-rate capability and long-term durability for sodium-ion battery. Adv. Sci. 5(4), 1700768 (2018). https://doi.org/10.1002/advs.201700768
Z. Le, F. Liu, P. Nie, X. Li, X. Liu et al., Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2–graphene nanocomposite enables high-performance sodium-ion capacitors. ACS Nano 11(3), 2952–2960 (2017). https://doi.org/10.1021/acsnano.6b08332
Z. Xia, H. Sun, X. He, Z. Sun, C. Lu, In situ construction of CoSe2@vertical-oriented graphene arrays as self-supporting electrodes for sodium-ion capacitors and electrocatalytic oxygen evolution. Nano Energy 60, 385–393 (2019). https://doi.org/10.1016/j.nanoen.2019.03.052
Y.E. Zhu, L. Yang, J. Sheng, Y. Chen, H. Gu, J. Wei, Z. Zhou, Fast sodium storage in TiO2@CNT@C nanorods for high-performance Na-ion capacitors. Adv. Energy Mater. 7(22), 1701222 (2017). https://doi.org/10.1002/aenm.201701222
Y. Sun, S. Guo, H. Zhou, Exploration of advanced electrode materials for rechargeable sodium-ion batteries. Adv. Energy Mater. 9, 1800212 (2018). https://doi.org/10.1002/aenm.201800212
F. Wu, C. Zhao, S. Chen, Y. Lu, Y. Hou, Y.S. Hu, J. Maier, Y. Yan, Multi-electron reaction materials for sodium-based batteries. Mater. Today 21(9), 960–973 (2018). https://doi.org/10.1016/j.mattod.2018.03.004
C. Peng, H. Chen, G. Zhong, W. Tang, Y. Xiang et al., Capacity fading induced by phase conversion hysteresis within alloying phosphorus anode. Nano Energy 58, 560–567 (2019). https://doi.org/10.1016/j.nanoen.2019.01.035
P. Bai, Y. He, P. Xiong, X. Zhao, K. Xu, Y. Xu, Long cycle life and high rate sodium-ion chemistry for hard carbon anodes. Energy Storage Mater. 13, 274–282 (2018). https://doi.org/10.1016/j.ensm.2018.02.002
S. Guo, Q. Li, P. Liu, M. Chen, H. Zhou, Environmentally stable interface of layered oxide cathodes for sodium-ion batteries. Nat. Commun. 8(1), 135 (2017). https://doi.org/10.1038/s41467-017-00157-8
Y. Fang, R. Hu, B. Liu, Y. Zhang, K. Zhu et al., Mxene-derived TiO2/reduced graphene oxide composite with an enhanced capacitive capacity for Li-ion and K-ion batteries. J. Mater. Chem. A 7(10), 5363–5372 (2019). https://doi.org/10.1039/C8TA12069B
L. Sang, L. Lei, C. Burda, Electrochemical fabrication of rGO-embedded Ag–TiO2 nanoring/nanotube arrays for plasmonic solar water splitting. Nano-Micro Lett. 11(1), 97 (2019). https://doi.org/10.1007/s40820-019-0329-2
Q. Gan, H. He, Y. Zhu, Z. Wang, N. Qin, S. Gu, Z. Li, W. Luo, Z. Lu, Defect-assisted selective surface phosphorus doping to enhance rate capability of titanium dioxide for sodium ion batteries. ACS Nano 13(8), 9247–9258 (2019). https://doi.org/10.1021/acsnano.9b03766
C. Li, T. Wang, Z.J. Zhao, W. Yang, J.F. Li et al., Promoted fixation of molecular nitrogen with surface oxygen vacancies on plasmon-enhanced TiO2 photoelectrodes. Angew. Chem. Int. Ed. 57(19), 5278–5282 (2018). https://doi.org/10.1002/anie.201713229
Y. Zhang, Z. Ding, C.W. Foster, C.E. Banks, X. Qiu, X. Ji, Oxygen vacancies evoked blue TiO2 (B) nanobelts with efficiency enhancement in sodium storage behaviors. Adv. Funct. Mater. 27(27), 1700856 (2017). https://doi.org/10.1002/adfm.201700856
L. Huang, X. Zhou, R. Xue, P. Xu, S. Wang et al., Low-temperature growing anatase TiO2/SnO2 multi-dimensional heterojunctions at MXene conductive network for high-efficient perovskite solar cells. Nano-Micro Lett. 12(1), 44 (2020). https://doi.org/10.1007/s40820-020-0379-5
W. Zhang, L. Cai, S. Cao, L. Qiao, Y. Zeng et al., Electrode materials: interfacial lattice-strain-driven generation of oxygen vacancies in an aerobic-annealed TiO2 (B) electrode. Adv. Mater. 31(52), 1970367 (2019). https://doi.org/10.1002/adma.201970367
B. Li, B. Xi, Z. Feng, Y. Lin, J. Liu, J. Feng, Y. Qian, S. Xiong, Hierarchical porous nanosheets constructed by graphene-coated, interconnected TiO2 nanoparticles for ultrafast sodium storage. Adv. Mater. 30(10), 1705788 (2018). https://doi.org/10.1002/adma.201705788
R. Wang, S. Wang, Y. Zhang, D. Jin, X. Tao, L. Zhang, Graphene-coupled Ti3C2 MXenes-derived TiO2 mesostructure: promising sodium-ion capacitor anode with fast ion storage and long-term cycling. J. Mater. Chem. A 6(3), 1017–1027 (2018). https://doi.org/10.1039/C7TA09153B
X. Zhang, J. Li, J. Li, L. Han, T. Lu, X. Zhang, G. Zhu, L. Pan, 3D TiO2@nitrogen-doped carbon/Fe7S8 composite derived from polypyrrole-encapsulated alkalized MXene as anode material for high-performance lithium-ion batteries. Chem. Eng. J. 385, 123394 (2020). https://doi.org/10.1016/j.cej.2019.123394
P. Nakhanivej, X. Yu, S.K. Park, S. Kim, J.-Y. Hong et al., Revealing molecular-level surface redox sites of controllably oxidized black phosphorus nanosheets. Nat. Mater. 18(2), 156–162 (2019). https://doi.org/10.1038/s41563-018-0230-2
X. Yu, S. Yun, J.S. Yeon, P. Bhattacharya, L. Wang, S.W. Lee, X. Hu, H.S. Park, Emergent pseudocapacitance of 2D nanomaterials. Adv. Energy Mater. 8(13), 1702930 (2018). https://doi.org/10.1002/aenm.201702930
Y. Fang, Y. Zhang, K. Zhu, R. Lian, Y. Gao et al., Lithiophilic three-dimensional porous Ti3C2Tx–rGO membrane as a stable scaffold for safe alkali metal (Li or Na) anodes. ACS Nano 13(12), 14319–14328 (2019). https://doi.org/10.1021/acsnano.9b07729
H. He, Q. Gan, H. Wang, G.-L. Xu, X. Zhang et al., Structure-dependent performance of TiO2/C as anode material for Na-ion batteries. Nano Energy 44, 217–227 (2018). https://doi.org/10.1016/j.nanoen.2017.11.077
Y. Xing, S. Wang, B. Fang, G. Song, D.P. Wilkinson, S. Zhang, N-doped hollow urchin-like anatase TiO2@C composite as a novel anode for Li-ion batteries. J. Power Sources 385, 10–17 (2018). https://doi.org/10.1016/j.jpowsour.2018.02.077
Y. Zhu, L. Peng, Z. Fang, C. Yan, X. Zhang, G. Yu, Structural engineering of 2D nanomaterials for energy storage and catalysis. Adv. Mater. 30(15), 1706347 (2018). https://doi.org/10.1002/adma.201706347
A. Naldoni, M. Allieta, S. Santangelo, M. Marelli, F. Fabbri et al., Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J. Am. Chem. Soc. 134(18), 7600–7603 (2012). https://doi.org/10.1021/ja3012676
Q. Wu, J.P. Zheng, M. Hendrickson, E.J. Plichta, Dry process for fabricating low cost and high performance electrode for energy storage devices. MRS Adv. 4(15), 857–863 (2019). https://doi.org/10.1557/adv.2019.29
S. Wang, Q. Wang, W. Zeng, M. Wang, L. Ruan, Y. Ma, A new free-standing aqueous zinc-ion capacitor based on MnO2–CNTs cathode and MXene anode. Nano-Micro Lett. 11(1), 70 (2019). https://doi.org/10.1007/s40820-019-0301-1
Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22(35), 3906–3924 (2010). https://doi.org/10.1002/adma.201001068
L. Yin, Y. Chen, X. Zhao, B. Hou, B. Cao, 3-Dimensional hierarchical porous activated carbon derived from coconut fibers with high-rate performance for symmetric supercapacitors. Mater. Design 111, 44–50 (2016). https://doi.org/10.1016/j.matdes.2016.08.070
Z.W. Seh, K.D. Fredrickson, B. Anasori, J. Kibsgaard, A.L. Strickler et al., Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett. 1(3), 589–594 (2016). https://doi.org/10.1021/acsenergylett.6b00247
H. He, Q. Zhang, H. Wang, H. Zhang, J. Li, Z. Peng, Y. Tang, M. Shao, Defect-rich TiO2-δ nanocrystals confined in a mooncake-shaped porous carbon matrix as an advanced Na ion battery anode. J. Power Sources 354, 179–188 (2017). https://doi.org/10.1016/j.jpowsour.2017.04.035
H. Xu, X. Yin, X. Li, M. Li, S. Liang, L. Zhang, L. Cheng, Lightweight Ti2CTx MXene/poly (vinyl alcohol) composite foams for electromagnetic wave shielding with absorption dominated feature. ACS Appl. Mater. Interfaces 11, 10198–10207 (2019). https://doi.org/10.1021/acsami.8b21671
Y. Zhao, Y. Zhao, R. Shi, B. Wang, G.I. Waterhouse, L.Z. Wu, C.H. Tung, T. Zhang, Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm. Adv. Mater. 31(16), 1806482 (2019). https://doi.org/10.1002/adma.201806482
Y. Yang, K. Ye, D. Cao, P. Gao, M. Qiu, L. Liu, P. Yang, Efficient charge separation from F-selective etching and doping of anatase–TiO2 {001} for enhanced photocatalytic hydrogen production. ACS Appl. Mater. Interfaces 10(23), 19633–19638 (2018). https://doi.org/10.1021/acsami.8b02804
L. Hüttenhofer, F. Eckmann, A. Lauri, J. Cambiasso, E. Pensa et al., Anapole excitations in oxygen vacancy-rich TiO2−x nanoresonators: tuning the absorption for photocatalysis in the visible. ACS Nano 14, 2456–2464 (2020). https://doi.org/10.1021/acsnano.9b09987
H. Ren, R. Yu, J. Qi, L. Zhang, Q. Jin, D. Wang, Hollow multishelled heterostructured anatase/TiO2 (B) with superior rate capability and cycling performance. Adv. Mater. 31(10), 1805754 (2019). https://doi.org/10.1002/adma.201805754
N.A. Kumar, R.R. Gaddam, S.R. Varanasi, D. Yang, S.K. Bhatia, X. Zhao, Sodium ion storage in reduced graphene oxide. Electrochim. Acta 214, 319–325 (2016). https://doi.org/10.1016/j.electacta.2016.08.058
B. Ahmed, D.H. Anjum, M.N. Hedhili, Y. Gogotsi, H.N. Alshareef, H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes. Nanoscale 8(14), 7580–7587 (2016). https://doi.org/10.1039/C6NR00002A
C. Chen, Y. Wen, X. Hu, X. Ji, M. Yan et al., Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat. Commun. 6, 6929 (2015). https://doi.org/10.1038/ncomms7929
J.A. Khan, C. Han, N.S. Shah, H.M. Khan, M.N. Nadagouda et al., Ultraviolet–visible light–sensitive high surface area phosphorous–fluorine–co-doped TiO2 nanoparticles for the degradation of atrazine in water. Environ. Eng. Sci. 31(7), 435–446 (2014). https://doi.org/10.1089/ees.2013.0486
D. Yang, Q. Zhao, L. Huang, B. Xu, N.A. Kumar, X.S. Zhao, Encapsulation of NiCo2O4 in nitrogen-doped reduced graphene oxide for sodium ion capacitors. J. Mater. Chem. A 6(29), 14146–14154 (2018). https://doi.org/10.1039/C8TA03411G
D. Yan, C. Yu, D. Li, X. Zhang, J. Li, T. Lu, L. Pan, Improved sodium-ion storage performance of TiO2 nanotubes by Ni2+ doping. J. Mater. Chem. A 4(28), 11077–11085 (2016). https://doi.org/10.1039/C6TA04906K
L. Wang, G. Yang, J. Wang, S. Wang, C. Wang, S. Peng, W. Yan, S. Ramakrishna, In situ fabrication of branched TiO2/C nanofibers as binder-free and free-standing anodes for high-performance sodium-ion batteries. Small 15, 1901584 (2019). https://doi.org/10.1002/smll.201901584
G. Xu, L. Yang, Z. Li, X. Wei, P.K. Chu, Protein-assisted assembly of mesoporous nanocrystals and carbon nanotubes for self-supporting high-performance sodium electrodes. J. Mater. Chem. A 5(6), 2749–2758 (2017). https://doi.org/10.1039/C6TA09673E
G. Xu, Y. Tian, X. Wei, L. Yang, P.K. Chu, Free-standing electrodes composed of carbon-coated Li4Ti5O12 nanosheets and reduced graphene oxide for advanced sodium ion batteries. J. Power Sources 337, 180–188 (2017). https://doi.org/10.1016/j.jpowsour.2016.10.088
V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.-L. Taberna, S.H. Tolbert, H.D. Abruña, P. Simon, B. Dunn, High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12(6), 518 (2013). https://doi.org/10.1038/nmat3601
L.F. Que, F.D. Yu, X.L. Sui, L. Zhao, J.G. Zhou, D.-M. Gu, Z.-B. Wang, Thermal-induced interlayer defect engineering toward super high-performance sodium ion capacitors. Nano Energy 59, 17–25 (2019). https://doi.org/10.1016/j.nanoen.2019.02.030
R. Yan, E. Josef, H. Huang, K. Leus, M. Niederberger et al., Understanding the charge storage mechanism to achieve high capacity and fast ion storage in sodium-ion capacitor anodes by using electrospun nitrogen-doped carbon fibers. Adv. Funct. Mater. 29, 1902858 (2019). https://doi.org/10.1002/adfm.201902858
J. Luo, F. Cong, C. Jin, H. Yuan, O. Sheng et al., Tunable pseudocapacitance storage of MXene by cation pillaring for high-performance sodium ion capacitors. J. Mater. Chem. A 6(17), 7794–7806 (2018). https://doi.org/10.1039/C8TA02068J
N.A. Kumar, J.-B. Baek, Doped graphene supercapacitors. Nanotechnology 26(49), 492001 (2015). https://doi.org/10.1088/0957-4484/26/49/492001