Investigation on the Formation Mechanism of Double-Layer Vertically Aligned Carbon Nanotube Arrays via Single-Step Chemical Vapour Deposition
Corresponding Author: Yingying Zhang
Nano-Micro Letters,
Vol. 9 No. 1 (2017), Article Number: 12
Abstract
The mechanism for the formation of double-layer vertically aligned carbon nanotube arrays (VACNTs) through single-step CVD growth is investigated. The evolution of the structures and defect concentration of the VACNTs are tracked by scanning electron microscopy (SEM) and Raman spectroscopy. During the growth, the catalyst particles are stayed constantly on the substrate. The precipitation of the second CNT layer happens at around 30 min as proved by SEM. During the growth of the first layer, catalyst nanoparticles are deactivated with the accumulation of amorphous carbon coatings on their surfaces, which leads to the termination of the growth of the first layer CNTs. Then, the catalyst particles are reactivated by the hydrogen in the gas flow, leading to the precipitation of the second CNT layer. The growth of the second CNT layer lifts the amorphous carbon coatings on catalyst particles and substrates. The release of mechanical energy by CNTs provides big enough energy to lift up amorphous carbon flakes on catalyst particles and substrates which finally stay at the interfaces of the two layers simulated by finite element analysis. This study sheds light on the termination mechanism of CNTs during CVD process.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991). doi:10.1038/354056a0
- K. Jensen, J. Weldon, H. Garcia, A. Zettl, Nanotube radio. Nano Lett. 7(11), 3508–3511 (2007). doi:10.1021/nl0721113
- L. Meng, C. Fu, Q. Lu, Advanced technology for functionalization of carbon nanotubes. Prog. Nat. Sci.USA 19(7), 801–810 (2009). doi:10.1016/j.pnsc.2008.08.011
- Z. Li, G. Fan, Z. Tan, Z. Li, Q. Guo, D. Xiong, D. Zhang, A versatile method for uniform dispersion of nanocarbons in metal matrix based on electrostatic interactions. Nano-Micro Lett. 8(1), 54–60 (2016). doi:10.1007/s40820-015-0061-5
- S.J. Tans, A.R.M. Verschueren, C. Dekker, Room-temperature transistor based on a single carbon nanotube. Nature 393, 49–52 (1998). doi:10.1038/29954
- B.Q. Wei, R. Vajtai, P.M. Ajayan, Reliability and current carrying capacity of carbon nanotubes. Appl. Phys. Lett. 79(8), 1172–1174 (2001). doi:10.1063/1.1396632
- S. Zhang, L. Tong, Y. Hu, L. Kang, J. Zhang, Diameter-specific growth of semiconducting SWNT arrays using uniform Mo2C solid catalyst. J. Am. Chem. Soc. 137(28), 8904–8907 (2015). doi:10.1021/jacs.5b05384
- H.H. Xie, R.F. Zhang, Y.Y. Zhang, W.L. Zhang, M.Q. Jian, C.Y. Wang, Q. Wang, F. Wei, Graphene/graphite sheets assisted growth of high-areal-density horizontally aligned carbon nanotubes. Chem. Comm. 50, 11158–11161 (2014). doi:10.1039/C4CC04434G
- Y. Hu, L. Kang, Q. Zhao, H. Zhong, S. Zhang et al., Growth of high-density horizontally aligned SWNT arrays using Trojan catalysts. Nat. Commun. 6, 6099 (2015). doi:10.1038/ncomms7099
- H.H. Xie, R.F. Zhang, Y.Y. Zhang, P. Li, Y.G. Jin, F. Wei, Growth of high-density parallel arrays of ultralong carbon nanotubes with catalysts pinned by silica nanospheres. Carbon 52, 535–540 (2013). doi:10.1016/j.carbon.2012.10.006
- H.H. Xie, R.F. Zhang, Y.Y. Zhang, Z. Yin, M.Q. Jian, F. Wei, Preloading catalysts in the reactor for repeated growth of horizontally aligned carbon nanotube arrays. Carbon 98, 157–161 (2016). doi:10.1016/j.carbon.2015.11.001
- R.F. Zhang, H.H. Xie, Y.Y. Zhang, Q. Zhang, Y.G. Jin, P. Li, W.Z. Qian, F. Wei, The reason for the low density of horizontally aligned ultralong carbon nanotube arrays. Carbon 52, 232–238 (2013). doi:10.1016/j.carbon.2012.09.025
- S. Zhang, Y. Hu, J. Wu, D. Liu, L. Kang, Q. Zhao, J. Zhang, Selective scission of C-O and C-C bonds in ethanol using bimetal catalysts for the preferential growth of semiconducting SWNT arrays. J. Am. Chem. Soc. 137(3), 1012–1015 (2015). doi:10.1021/ja510845j
- Y. Hu, Y. Chen, P. Li, J. Zhang, Sorting out semiconducting single-walled carbon nanotube arrays by washing off metallic tubes using SDS aqueous solution. Small 9(8), 1306–1311 (2013). doi:10.1002/smll.201202940
- M. Volder, S. Tawfick, R. Baughman, A. Hart, Carbon nanotubes: present and future commercial applications. Science 339(6119), 535–539 (2016). doi:10.1126/science.1222453
- Y.B. Chen, Y.Y. Zhang, Y. Hu, L.X. Kang, S.C. Zhang et al., State of art of single-walled carbon nanotube synthesis on surfaces. Adv. Mater. 26(34), 5898–5922 (2014). doi:10.1002/adma.201400431
- X. Cai, R.V. Hansen, L. Zhang, B. Li, C.K. Poh et al., Binary metal sulfides and polypyrrole on vertically aligned carbon nanotube arrays/carbon fiber paper as high-performance electrodes. J. Mater. Chem. A 3, 22043–22052 (2015). doi:10.1039/C5TA05961E
- Y. Zhang, L. Stan, P. Xu, H.-L. Wang, S.K. Doorn, H. Htoon, Y. Zhu, Q. Jia, A double-layered carbon nanotube array with super-hydrophobicity. Carbon 47(14), 3332–3336 (2009). doi:10.1016/j.carbon.2009.07.056
- S. Trivedi, K. Alameh, Effect of vertically aligned carbon nanotube density on the water flux and salt rejection in desalination membranes. Trivedi and Alameh SpringerPlus 5, 1158 (2016). doi:10.1186/s40064-016-2783-3
- G. Zou, H. Luo, S. Baily, Y. Zhang, N.F. Haberkorn et al., Highly aligned carbon nanotube forests coated by superconducting NbC. Nat. Commun. 2, 428 (2011). doi:10.1038/ncomms1438
- X.J. Wang, L.P. Wang, O.S. Adewuyi, B.A. Cola, Z.M. Zhang, Highly specular carbon nanotube absorbers. Appl. Phys. Lett. 97, 163116 (2010). doi:10.1063/1.3502597
- T. Souier, C. Maragliano, M. Stefancich, M. Chiesa, How to achieve high electrical conductivity in aligned carbon nanotube polymer composites. Carbon 64, 150–157 (2013). doi:10.1016/j.carbon.2013.07.047
- W. Lin, R. Zhang, K.S. Moon, C.P. Wong, Molecular phonon couplers at carbon nanotube/substrate interface to enhance interfacial thermal transport. Carbon 48(1), 107–113 (2010). doi:10.1016/j.carbon.2009.08.033
- Y. Gogotsi, (2016) Nanotubes and Nanofibers. CRC Press
- Y. Zhang, C.J. Sheehan, J.Y. Zhai, G.F. Zou, H.M. Luo, J. Xiong, Y.T. Zhu, Q.X. Jia, Polymer-embedded carbon nanotube ribbons for stretchable conductors. Adv. Mater. 22(28), 3027–3031 (2010). doi:10.1002/adma.200904426
- A. Cao, P.L. Dickrell, G.W. Sawyer, M.N. Ghasemi-Nejhad, P.M. Ajayan, Super-compressive foamlike carbon nanotube films. Science 310(5752), 1307–1310 (2015). doi:10.1126/science.1118957
- Y. Zhang, G.F. Zou, S.K. Doorn, H. Htoon, L. Stan et al., Tailoring the morphology of carbon nanotube arrays: from spinnable forests to undulating foams. ACS Nano 3(8), 2157–2162 (2009). doi:10.1021/nn9003988
- F. Du, Q. Dai, L. Dai, Q. Zhang, T. Reitz, L. Elston, Vertically-Aligned Carbon Nanotubes for Electrochemical Energy Conversion and Storage (Springer International Publishing, Switzerland, 2016), pp. 253–270. doi:10.1007/978-3-319-32023-6_7
- M. Pinault, V. Pichot, H. Khodja, P. Launois, C. Reynaud, M. Mayne-L’Hermite, Evidence of sequential lift in growth of aligned multiwalled carbon nanotube multilayers. Nano Lett. 5(12), 2394–2398 (2005). doi:10.1021/nl051472k
- X. Li, A. Cao, Y.J. Jung, R. Vaitai, P.M. Ajayan, Bottom-up growth of carbon nanotube multilayers: unprecedented growth. Nano Lett. 5(10), 1997–2000 (2005). doi:10.1021/nl051486q
- J.D. Beard, K.E. Evans, O.R. Ghita, Fabrication of three dimensional layered vertically aligned carbon nanotube structures and their potential applications. RSC Adv. 5(126), 100458–100466 (2015). doi:10.1039/C5RA18048A
- C.M. McCarter, R.F. Rachards, S.D. Mesarovic, C.D. Richards, D.F. Bahr, D. McClain, J. Jiao, Mechanical compliance of photolithographically defined vertically aligned carbon nanotube turf. J. Mater. Sci. 41(23), 7872–7878 (2006). doi:10.1007/s10853-006-0870-5
- M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Raman spectroscopy of carbon nanotubes. Phys. Rep. 409(2), 47–99 (2005). doi:10.1016/j.physrep.2004.10.006
- E.F. Kukovitsky, S.G. L’vov, N.A. Sainov, VLS-growth of carbon nanotubes from the vapor. Chem. Phys. Lett. 317(1), 65–70 (2000). doi:10.1016/S0009-2614(99)01299-3
- K. Jiang, C. Feng, K. Liu, A Vapor-Liquid-Solid model for chemical vapor deposition growth of carbon nanotube. J. Nanosci. Nanotechn. 7(4–5), 1494–1504 (2007). doi:10.1166/jnn.2007.332
- A. Yasuda, N. Kawase, W. Mizutani, Carbon-nanotube formation mechanism based on in situ TEM observations. J. Phys. Chem. B 106(51), 13294–13298 (2002). doi:10.1021/jp020977l
- Y. Homma, Y. Kobayashi, T. Ogono, D. Takagi, R. Ito et al., Role of transition metal catalysts in single-walled carbon nanotube growth in chemical vapor deposition. J. Phys. Chem. B 107(44), 12161–12164 (2003). doi:10.1021/jp0353845
- Q. Li, X. Zhang, R.F. Depaula, L. Zheng, Y. Zhao et al., Sustained growth of ultralong carbon nanotube arrays for fiber spinning. Adv. Mater. 18(23), 3160–3163 (2006). doi:10.1002/adma.200601344
- R. Xiang, Z. Yang, Q. Zhang, G. Luo, W. Qian et al., Growth deceleration of vertically-aligned carbon nanotube arrays: catalyst deactivation or feedstock diffusion controlled. J. Phys. Chem. C 112(13), 4892–4896 (2008). doi:10.1021/jp710730x
- D.N. Futaba, K. Hata, T. Yamada, K. Mizuno, M. Yumura, S. Iijima, Kinetics of water-assisted single-walled carbon nanotube synthesis revealed by a time-evolution analysis. Phys. Rev. Lett. 95(5), 056104 (2005). doi:10.1103/PhysRevLett.95.056104
- E.R. Meshot, A.J. Hart, Abrupt self-termination of vertically aligned carbon nanotube growth. Appl. Phys. Lett. 92(11), 113107 (2008). doi:10.1063/1.2889497
- A.A. Puretzky, C.M. Rouleau, I.N. Ivanov, D.B. Geohegan, Real-time imaging of vertically-aligned carbon nanotube array growth kinetics. Nanotechnology 19(5), 1721–1728 (2008). doi:10.1088/0957-4484/19/05/055605
- Z. Waqar, A.E. Denisov, T.N. Kompaniets, I.V. Makarenko, A.N. Titkov, A.S. Bhatti, Observations of local electron states on the edges of the circular pits on hydrogen-etched graphite surface by scanning tunneling spectroscopy. Appl. Surface Sci 161(3-4), 508–514 (2000). doi:10.1016/S0169-4332(00)00374-3
- Q. Zhang, W. Zhou, W. Qian, R. Xiang, J. Huang, D. Wang, F. Wei, Synchronous growth of vertically aligned carbon nanotubes with pristine stress in the heterogeneous catalysis process. J. Phys. Chem. C 111(40), 14638–14643 (2007). doi:10.1021/jp073218h
References
S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991). doi:10.1038/354056a0
K. Jensen, J. Weldon, H. Garcia, A. Zettl, Nanotube radio. Nano Lett. 7(11), 3508–3511 (2007). doi:10.1021/nl0721113
L. Meng, C. Fu, Q. Lu, Advanced technology for functionalization of carbon nanotubes. Prog. Nat. Sci.USA 19(7), 801–810 (2009). doi:10.1016/j.pnsc.2008.08.011
Z. Li, G. Fan, Z. Tan, Z. Li, Q. Guo, D. Xiong, D. Zhang, A versatile method for uniform dispersion of nanocarbons in metal matrix based on electrostatic interactions. Nano-Micro Lett. 8(1), 54–60 (2016). doi:10.1007/s40820-015-0061-5
S.J. Tans, A.R.M. Verschueren, C. Dekker, Room-temperature transistor based on a single carbon nanotube. Nature 393, 49–52 (1998). doi:10.1038/29954
B.Q. Wei, R. Vajtai, P.M. Ajayan, Reliability and current carrying capacity of carbon nanotubes. Appl. Phys. Lett. 79(8), 1172–1174 (2001). doi:10.1063/1.1396632
S. Zhang, L. Tong, Y. Hu, L. Kang, J. Zhang, Diameter-specific growth of semiconducting SWNT arrays using uniform Mo2C solid catalyst. J. Am. Chem. Soc. 137(28), 8904–8907 (2015). doi:10.1021/jacs.5b05384
H.H. Xie, R.F. Zhang, Y.Y. Zhang, W.L. Zhang, M.Q. Jian, C.Y. Wang, Q. Wang, F. Wei, Graphene/graphite sheets assisted growth of high-areal-density horizontally aligned carbon nanotubes. Chem. Comm. 50, 11158–11161 (2014). doi:10.1039/C4CC04434G
Y. Hu, L. Kang, Q. Zhao, H. Zhong, S. Zhang et al., Growth of high-density horizontally aligned SWNT arrays using Trojan catalysts. Nat. Commun. 6, 6099 (2015). doi:10.1038/ncomms7099
H.H. Xie, R.F. Zhang, Y.Y. Zhang, P. Li, Y.G. Jin, F. Wei, Growth of high-density parallel arrays of ultralong carbon nanotubes with catalysts pinned by silica nanospheres. Carbon 52, 535–540 (2013). doi:10.1016/j.carbon.2012.10.006
H.H. Xie, R.F. Zhang, Y.Y. Zhang, Z. Yin, M.Q. Jian, F. Wei, Preloading catalysts in the reactor for repeated growth of horizontally aligned carbon nanotube arrays. Carbon 98, 157–161 (2016). doi:10.1016/j.carbon.2015.11.001
R.F. Zhang, H.H. Xie, Y.Y. Zhang, Q. Zhang, Y.G. Jin, P. Li, W.Z. Qian, F. Wei, The reason for the low density of horizontally aligned ultralong carbon nanotube arrays. Carbon 52, 232–238 (2013). doi:10.1016/j.carbon.2012.09.025
S. Zhang, Y. Hu, J. Wu, D. Liu, L. Kang, Q. Zhao, J. Zhang, Selective scission of C-O and C-C bonds in ethanol using bimetal catalysts for the preferential growth of semiconducting SWNT arrays. J. Am. Chem. Soc. 137(3), 1012–1015 (2015). doi:10.1021/ja510845j
Y. Hu, Y. Chen, P. Li, J. Zhang, Sorting out semiconducting single-walled carbon nanotube arrays by washing off metallic tubes using SDS aqueous solution. Small 9(8), 1306–1311 (2013). doi:10.1002/smll.201202940
M. Volder, S. Tawfick, R. Baughman, A. Hart, Carbon nanotubes: present and future commercial applications. Science 339(6119), 535–539 (2016). doi:10.1126/science.1222453
Y.B. Chen, Y.Y. Zhang, Y. Hu, L.X. Kang, S.C. Zhang et al., State of art of single-walled carbon nanotube synthesis on surfaces. Adv. Mater. 26(34), 5898–5922 (2014). doi:10.1002/adma.201400431
X. Cai, R.V. Hansen, L. Zhang, B. Li, C.K. Poh et al., Binary metal sulfides and polypyrrole on vertically aligned carbon nanotube arrays/carbon fiber paper as high-performance electrodes. J. Mater. Chem. A 3, 22043–22052 (2015). doi:10.1039/C5TA05961E
Y. Zhang, L. Stan, P. Xu, H.-L. Wang, S.K. Doorn, H. Htoon, Y. Zhu, Q. Jia, A double-layered carbon nanotube array with super-hydrophobicity. Carbon 47(14), 3332–3336 (2009). doi:10.1016/j.carbon.2009.07.056
S. Trivedi, K. Alameh, Effect of vertically aligned carbon nanotube density on the water flux and salt rejection in desalination membranes. Trivedi and Alameh SpringerPlus 5, 1158 (2016). doi:10.1186/s40064-016-2783-3
G. Zou, H. Luo, S. Baily, Y. Zhang, N.F. Haberkorn et al., Highly aligned carbon nanotube forests coated by superconducting NbC. Nat. Commun. 2, 428 (2011). doi:10.1038/ncomms1438
X.J. Wang, L.P. Wang, O.S. Adewuyi, B.A. Cola, Z.M. Zhang, Highly specular carbon nanotube absorbers. Appl. Phys. Lett. 97, 163116 (2010). doi:10.1063/1.3502597
T. Souier, C. Maragliano, M. Stefancich, M. Chiesa, How to achieve high electrical conductivity in aligned carbon nanotube polymer composites. Carbon 64, 150–157 (2013). doi:10.1016/j.carbon.2013.07.047
W. Lin, R. Zhang, K.S. Moon, C.P. Wong, Molecular phonon couplers at carbon nanotube/substrate interface to enhance interfacial thermal transport. Carbon 48(1), 107–113 (2010). doi:10.1016/j.carbon.2009.08.033
Y. Gogotsi, (2016) Nanotubes and Nanofibers. CRC Press
Y. Zhang, C.J. Sheehan, J.Y. Zhai, G.F. Zou, H.M. Luo, J. Xiong, Y.T. Zhu, Q.X. Jia, Polymer-embedded carbon nanotube ribbons for stretchable conductors. Adv. Mater. 22(28), 3027–3031 (2010). doi:10.1002/adma.200904426
A. Cao, P.L. Dickrell, G.W. Sawyer, M.N. Ghasemi-Nejhad, P.M. Ajayan, Super-compressive foamlike carbon nanotube films. Science 310(5752), 1307–1310 (2015). doi:10.1126/science.1118957
Y. Zhang, G.F. Zou, S.K. Doorn, H. Htoon, L. Stan et al., Tailoring the morphology of carbon nanotube arrays: from spinnable forests to undulating foams. ACS Nano 3(8), 2157–2162 (2009). doi:10.1021/nn9003988
F. Du, Q. Dai, L. Dai, Q. Zhang, T. Reitz, L. Elston, Vertically-Aligned Carbon Nanotubes for Electrochemical Energy Conversion and Storage (Springer International Publishing, Switzerland, 2016), pp. 253–270. doi:10.1007/978-3-319-32023-6_7
M. Pinault, V. Pichot, H. Khodja, P. Launois, C. Reynaud, M. Mayne-L’Hermite, Evidence of sequential lift in growth of aligned multiwalled carbon nanotube multilayers. Nano Lett. 5(12), 2394–2398 (2005). doi:10.1021/nl051472k
X. Li, A. Cao, Y.J. Jung, R. Vaitai, P.M. Ajayan, Bottom-up growth of carbon nanotube multilayers: unprecedented growth. Nano Lett. 5(10), 1997–2000 (2005). doi:10.1021/nl051486q
J.D. Beard, K.E. Evans, O.R. Ghita, Fabrication of three dimensional layered vertically aligned carbon nanotube structures and their potential applications. RSC Adv. 5(126), 100458–100466 (2015). doi:10.1039/C5RA18048A
C.M. McCarter, R.F. Rachards, S.D. Mesarovic, C.D. Richards, D.F. Bahr, D. McClain, J. Jiao, Mechanical compliance of photolithographically defined vertically aligned carbon nanotube turf. J. Mater. Sci. 41(23), 7872–7878 (2006). doi:10.1007/s10853-006-0870-5
M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Raman spectroscopy of carbon nanotubes. Phys. Rep. 409(2), 47–99 (2005). doi:10.1016/j.physrep.2004.10.006
E.F. Kukovitsky, S.G. L’vov, N.A. Sainov, VLS-growth of carbon nanotubes from the vapor. Chem. Phys. Lett. 317(1), 65–70 (2000). doi:10.1016/S0009-2614(99)01299-3
K. Jiang, C. Feng, K. Liu, A Vapor-Liquid-Solid model for chemical vapor deposition growth of carbon nanotube. J. Nanosci. Nanotechn. 7(4–5), 1494–1504 (2007). doi:10.1166/jnn.2007.332
A. Yasuda, N. Kawase, W. Mizutani, Carbon-nanotube formation mechanism based on in situ TEM observations. J. Phys. Chem. B 106(51), 13294–13298 (2002). doi:10.1021/jp020977l
Y. Homma, Y. Kobayashi, T. Ogono, D. Takagi, R. Ito et al., Role of transition metal catalysts in single-walled carbon nanotube growth in chemical vapor deposition. J. Phys. Chem. B 107(44), 12161–12164 (2003). doi:10.1021/jp0353845
Q. Li, X. Zhang, R.F. Depaula, L. Zheng, Y. Zhao et al., Sustained growth of ultralong carbon nanotube arrays for fiber spinning. Adv. Mater. 18(23), 3160–3163 (2006). doi:10.1002/adma.200601344
R. Xiang, Z. Yang, Q. Zhang, G. Luo, W. Qian et al., Growth deceleration of vertically-aligned carbon nanotube arrays: catalyst deactivation or feedstock diffusion controlled. J. Phys. Chem. C 112(13), 4892–4896 (2008). doi:10.1021/jp710730x
D.N. Futaba, K. Hata, T. Yamada, K. Mizuno, M. Yumura, S. Iijima, Kinetics of water-assisted single-walled carbon nanotube synthesis revealed by a time-evolution analysis. Phys. Rev. Lett. 95(5), 056104 (2005). doi:10.1103/PhysRevLett.95.056104
E.R. Meshot, A.J. Hart, Abrupt self-termination of vertically aligned carbon nanotube growth. Appl. Phys. Lett. 92(11), 113107 (2008). doi:10.1063/1.2889497
A.A. Puretzky, C.M. Rouleau, I.N. Ivanov, D.B. Geohegan, Real-time imaging of vertically-aligned carbon nanotube array growth kinetics. Nanotechnology 19(5), 1721–1728 (2008). doi:10.1088/0957-4484/19/05/055605
Z. Waqar, A.E. Denisov, T.N. Kompaniets, I.V. Makarenko, A.N. Titkov, A.S. Bhatti, Observations of local electron states on the edges of the circular pits on hydrogen-etched graphite surface by scanning tunneling spectroscopy. Appl. Surface Sci 161(3-4), 508–514 (2000). doi:10.1016/S0169-4332(00)00374-3
Q. Zhang, W. Zhou, W. Qian, R. Xiang, J. Huang, D. Wang, F. Wei, Synchronous growth of vertically aligned carbon nanotubes with pristine stress in the heterogeneous catalysis process. J. Phys. Chem. C 111(40), 14638–14643 (2007). doi:10.1021/jp073218h