High-Performance Photo-Modulated Thin-Film Transistor Based on Quantum dots/Reduced Graphene Oxide Fragment-Decorated ZnO Nanowires
Corresponding Author: Zichen Zhang
Nano-Micro Letters,
Vol. 8 No. 3 (2016), Article Number: 247-253
Abstract
In this paper, a photo-modulated transistor based on the thin-film transistor structure was fabricated on the flexible substrate by spin-coating and magnetron sputtering. A novel hybrid material that composed of CdSe quantum dots and reduced graphene oxide (RGO) fragment-decorated ZnO nanowires was synthesized to overcome the narrow optical sensitive waveband and enhance the photo-responsivity. Due to the enrichment of the interface and heterostructure by RGO fragments being utilized, the photo-responsivity of the transistor was improved to 2000 A W−1 and the photo-sensitive wavelength was extended from ultraviolet to visible. In addition, a positive back-gate voltage was employed to reduce the Schottky barrier width of RGO fragments and ZnO nanowires. As a result, the amount of carriers was increased by 10 folds via the modulation of back-gate voltage. With these inherent properties, such as integrated circuit capability and wide optical sensitive waveband, the transistor will manifest great potential in the future applications in photodetectors.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.H. Wu, K.M. Chang, S.H. Huang, I.C. Deng, C.J. Wu, W.H. Chiang, C.C. Chang, Characteristics of IGZO TFT prepared by atmospheric pressure plasma jet using PE-ALD Al2O3 gate dielectric. IEEE Electron Device Lett. 33(4), 552–554 (2012). doi:10.1109/LED.2012.2185774
- S. Jeon, S.E. Ahn, I. Song, C.J. Kim, U.I. Chung, E. Lee, I. Yoo, A. Nathan, S. Lee, J. Robertson, K. Kim, Gated three-terminal device architecture to eliminate persistent photoconductivity in oxide semiconductor photosensor arrays. Nat. Mater. 11(4), 301–305 (2012). doi:10.1038/nmat3256
- E. Fortunato, P. Barquinha, R. Martins, Oxide semiconductor thin-film transistors: a review of recent advances. Adv. Mater. 24(22), 2945–2986 (2012). doi:10.1002/adma.201103228
- K. Ghaffarzadeh, A. Nathan, J. Robertson, S. Kim, S. Jeon, C. Kim, U.I. Chung, J.-H. Lee, Persistent photoconductivity in Hf-In-Zn-O thin film transistors. Appl. Phys. Lett. 97, 143510 (2010). doi:10.1063/1.3496029
- K. Ghaffarzadeh, A. Nathan, J. Robertson, S. Kim, S. Jeon, C. Kim, U.I. Chung, J.-H. Lee, Instability in threshold voltage and subthreshold behavior in Hf-In-Zn-O thin film transistors induced by bias-and light-stress. Appl. Phys. Lett. 97, 113504 (2010). doi:10.1063/1.3480547
- Y.K. Su, S.M. Peng, L.W. Ji, C.Z. Wu, W.B. Cheng, C.H. Liu, Ultraviolet ZnO nanorod photosensors. Langmuir 26(1), 603–606 (2010). doi:10.1021/la902171j
- Z. Dai, L. Wei, D. Xu, Y. Zhang, Ultraviolet photoresponse of ZnO nanowire thin-film transistors. Phys. E 44(10), 1999–2004 (2012). doi:10.1016/j.physe.2012.05.033
- E.S. Ates, S. Kucukyildiz, H.E. Unalan, Zinc oxide nanowire photodetectors with single-walled carbon nanotube thin-film electrodes. ACS Appl. Mater. Interfaces 4(10), 5142–5146 (2012). doi:10.1021/am301402y
- A.J. Nozik, Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots. Ann. Rev. Phys. Chem. 52, 193–231 (2001). doi:10.1146/annurev.physchem.52.1.193
- S. Sapra, D.D. Sarma, Evolution of the electronic structure with size in II-VI semiconductor nanocrystals. Phys. Rev. B 69(12), 125304 (2004). doi:10.1103/PhysRevB.69.125304
- X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose et al., Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709), 538–544 (2005). doi:10.1126/science.1104274
- S. Kaniyankandy, S. Rawalekar, S. Verma, D.K. Palit, H.N. Ghosh, Charge carrier dynamics in thiol capped CdTe quantum dots. Phys. Chem. Chem. Phys. 12(16), 4210–4216 (2010). doi:10.1039/b921130f
- S.A. McDonald, G. Konstantatos, S.G. Zhang, P.W. Cyr, E.J.D. Klem, L. Levina, E.H. Sargent, Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 4(2), 138–142 (2005). doi:10.1038/nmat1299
- Y. Bu, Z. Chen, Effect of hydrogen treatment on the photoelectrochemical properties of quantum dots sensitized ZnO nanorod array. J. Power Sources 272, 647–653 (2014). doi:10.1016/j.jpowsour.2014.08.127
- H. Kim, K. Yong, Highly efficient photoelectrochemical hydrogen generation using a quantum dot coupled hierarchical ZnO nanowires array. ACS Appl. Mater. Interfaces 5(24), 13258–13264 (2013). doi:10.1021/am404259y
- Q. Bao, K.P. Loh, Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 6(5), 3677–3694 (2012). doi:10.1021/nn300989g
- F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics. Nat. Photonics 4(9), 611–622 (2010). doi:10.1038/nphoton.2010.186
- T.J. Echtermeyer, L. Britnell, P.K. Jasnos, A. Lombardo, R.V. Gorbachev, A.N. Grigorenko, A.K. Geim, A.C. Ferrari, K.S. Novoselov, Strong plasmonic enhancement of photovoltage in graphene. Nat. Commun. 2, 458 (2011). doi:10.1038/ncomms1464
- S. Kaniyankandy, S. Rawalekar, H.N. Ghosh, Ultrafast charge transfer dynamics in photoexcited CdTe quantum dot decorated on graphene. J. Phys. Chem. C 116(30), 16271–16275 (2012). doi:10.1021/jp303712y
- J. Li, L. Niu, Z. Zheng, F. Yan, Photosensitive graphene transistors. Adv. Mater. 26(31), 5239–5273 (2014). doi:10.1002/adma.201400349
- S.-H. Cheng, T.-M. Weng, M.-L. Lu, W.-C. Tan, J.-Y. Chen, Y.-F. Chen, All carbon-based photodetectors: An eminent integration of graphite quantum dots and two dimensional graphene. Sci. Rep. 3, 2694 (2013). doi:10.1038/srep02694
- L.-H. Zeng, M.-Z. Wang, H. Hu, B. Nie, Y.-Q. Yu et al., Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector. ACS Appl. Mater. Interfaces 5(19), 9362–9366 (2013). doi:10.1021/am4026505
- M. Zhu, X. Li, Y. Guo, X. Li, P. Sun et al., Vertical junction photodetectors based on reduced graphene oxide/silicon Schottky diodes. Nanoscale 6(9), 4909–4914 (2014). doi:10.1039/c4nr00056k
- X. Liu, X. Ji, M. Liu, N. Liu, Z. Tao, Q. Dai, L. Wei, C. Li, X. Zhang, B. Wang, High-performance Ge quantum dot decorated graphene/zinc-oxide heterostructure infrared photodetector. ACS Appl. Mater. Interfaces 7(4), 2452–2458 (2015). doi:10.1021/am5072173
- L. Cai, S. Zhang, J. Miao, Q. Wei, C. Wang, Capacitance-voltage characteristics of thin-film transistors fabricated with solution-processed semiconducting carbon nanotube networks. Nanoscale Res. Lett. 10, 291 (2015). doi:10.1186/s11671-015-0999-8
- L.G. Cancado, A. Jorio, E.H. Martins Ferreira, F. Stavale, C.A. Achete et al., Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 11(8), 3190–3196 (2011). doi:10.1021/nl201432g
- H. Chang, Z. Sun, M. Saito, Q. Yuan, H. Zhang et al., Regulating infrared photoresponses in reduced graphene oxide phototransistors by defect and atomic structure control. ACS Nano 7(7), 6310–6320 (2013). doi:10.1021/nn4023679
- X.-W. Fu, Z.-M. Liao, Y.-B. Zhou, H.-C. Wu, Y.-Q. Bie, J. Xu, D.-P. Yu, Graphene/ZnO nanowire/graphene vertical structure based fast-response ultraviolet photodetector. Appl. Phys. Lett. 100, 223114 (2012). doi:10.1063/1.4724208
- T. Xin, A. Eric, L. Feng, L. Handong, M.W. Zhiming, Advances in MoS2-based field effect transistors (FETs). Nano-Micro Lett. 7(2), 203–218 (2015). doi:10.1007/s40820-015-0034-8
References
C.H. Wu, K.M. Chang, S.H. Huang, I.C. Deng, C.J. Wu, W.H. Chiang, C.C. Chang, Characteristics of IGZO TFT prepared by atmospheric pressure plasma jet using PE-ALD Al2O3 gate dielectric. IEEE Electron Device Lett. 33(4), 552–554 (2012). doi:10.1109/LED.2012.2185774
S. Jeon, S.E. Ahn, I. Song, C.J. Kim, U.I. Chung, E. Lee, I. Yoo, A. Nathan, S. Lee, J. Robertson, K. Kim, Gated three-terminal device architecture to eliminate persistent photoconductivity in oxide semiconductor photosensor arrays. Nat. Mater. 11(4), 301–305 (2012). doi:10.1038/nmat3256
E. Fortunato, P. Barquinha, R. Martins, Oxide semiconductor thin-film transistors: a review of recent advances. Adv. Mater. 24(22), 2945–2986 (2012). doi:10.1002/adma.201103228
K. Ghaffarzadeh, A. Nathan, J. Robertson, S. Kim, S. Jeon, C. Kim, U.I. Chung, J.-H. Lee, Persistent photoconductivity in Hf-In-Zn-O thin film transistors. Appl. Phys. Lett. 97, 143510 (2010). doi:10.1063/1.3496029
K. Ghaffarzadeh, A. Nathan, J. Robertson, S. Kim, S. Jeon, C. Kim, U.I. Chung, J.-H. Lee, Instability in threshold voltage and subthreshold behavior in Hf-In-Zn-O thin film transistors induced by bias-and light-stress. Appl. Phys. Lett. 97, 113504 (2010). doi:10.1063/1.3480547
Y.K. Su, S.M. Peng, L.W. Ji, C.Z. Wu, W.B. Cheng, C.H. Liu, Ultraviolet ZnO nanorod photosensors. Langmuir 26(1), 603–606 (2010). doi:10.1021/la902171j
Z. Dai, L. Wei, D. Xu, Y. Zhang, Ultraviolet photoresponse of ZnO nanowire thin-film transistors. Phys. E 44(10), 1999–2004 (2012). doi:10.1016/j.physe.2012.05.033
E.S. Ates, S. Kucukyildiz, H.E. Unalan, Zinc oxide nanowire photodetectors with single-walled carbon nanotube thin-film electrodes. ACS Appl. Mater. Interfaces 4(10), 5142–5146 (2012). doi:10.1021/am301402y
A.J. Nozik, Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots. Ann. Rev. Phys. Chem. 52, 193–231 (2001). doi:10.1146/annurev.physchem.52.1.193
S. Sapra, D.D. Sarma, Evolution of the electronic structure with size in II-VI semiconductor nanocrystals. Phys. Rev. B 69(12), 125304 (2004). doi:10.1103/PhysRevB.69.125304
X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose et al., Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709), 538–544 (2005). doi:10.1126/science.1104274
S. Kaniyankandy, S. Rawalekar, S. Verma, D.K. Palit, H.N. Ghosh, Charge carrier dynamics in thiol capped CdTe quantum dots. Phys. Chem. Chem. Phys. 12(16), 4210–4216 (2010). doi:10.1039/b921130f
S.A. McDonald, G. Konstantatos, S.G. Zhang, P.W. Cyr, E.J.D. Klem, L. Levina, E.H. Sargent, Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 4(2), 138–142 (2005). doi:10.1038/nmat1299
Y. Bu, Z. Chen, Effect of hydrogen treatment on the photoelectrochemical properties of quantum dots sensitized ZnO nanorod array. J. Power Sources 272, 647–653 (2014). doi:10.1016/j.jpowsour.2014.08.127
H. Kim, K. Yong, Highly efficient photoelectrochemical hydrogen generation using a quantum dot coupled hierarchical ZnO nanowires array. ACS Appl. Mater. Interfaces 5(24), 13258–13264 (2013). doi:10.1021/am404259y
Q. Bao, K.P. Loh, Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 6(5), 3677–3694 (2012). doi:10.1021/nn300989g
F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics. Nat. Photonics 4(9), 611–622 (2010). doi:10.1038/nphoton.2010.186
T.J. Echtermeyer, L. Britnell, P.K. Jasnos, A. Lombardo, R.V. Gorbachev, A.N. Grigorenko, A.K. Geim, A.C. Ferrari, K.S. Novoselov, Strong plasmonic enhancement of photovoltage in graphene. Nat. Commun. 2, 458 (2011). doi:10.1038/ncomms1464
S. Kaniyankandy, S. Rawalekar, H.N. Ghosh, Ultrafast charge transfer dynamics in photoexcited CdTe quantum dot decorated on graphene. J. Phys. Chem. C 116(30), 16271–16275 (2012). doi:10.1021/jp303712y
J. Li, L. Niu, Z. Zheng, F. Yan, Photosensitive graphene transistors. Adv. Mater. 26(31), 5239–5273 (2014). doi:10.1002/adma.201400349
S.-H. Cheng, T.-M. Weng, M.-L. Lu, W.-C. Tan, J.-Y. Chen, Y.-F. Chen, All carbon-based photodetectors: An eminent integration of graphite quantum dots and two dimensional graphene. Sci. Rep. 3, 2694 (2013). doi:10.1038/srep02694
L.-H. Zeng, M.-Z. Wang, H. Hu, B. Nie, Y.-Q. Yu et al., Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector. ACS Appl. Mater. Interfaces 5(19), 9362–9366 (2013). doi:10.1021/am4026505
M. Zhu, X. Li, Y. Guo, X. Li, P. Sun et al., Vertical junction photodetectors based on reduced graphene oxide/silicon Schottky diodes. Nanoscale 6(9), 4909–4914 (2014). doi:10.1039/c4nr00056k
X. Liu, X. Ji, M. Liu, N. Liu, Z. Tao, Q. Dai, L. Wei, C. Li, X. Zhang, B. Wang, High-performance Ge quantum dot decorated graphene/zinc-oxide heterostructure infrared photodetector. ACS Appl. Mater. Interfaces 7(4), 2452–2458 (2015). doi:10.1021/am5072173
L. Cai, S. Zhang, J. Miao, Q. Wei, C. Wang, Capacitance-voltage characteristics of thin-film transistors fabricated with solution-processed semiconducting carbon nanotube networks. Nanoscale Res. Lett. 10, 291 (2015). doi:10.1186/s11671-015-0999-8
L.G. Cancado, A. Jorio, E.H. Martins Ferreira, F. Stavale, C.A. Achete et al., Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 11(8), 3190–3196 (2011). doi:10.1021/nl201432g
H. Chang, Z. Sun, M. Saito, Q. Yuan, H. Zhang et al., Regulating infrared photoresponses in reduced graphene oxide phototransistors by defect and atomic structure control. ACS Nano 7(7), 6310–6320 (2013). doi:10.1021/nn4023679
X.-W. Fu, Z.-M. Liao, Y.-B. Zhou, H.-C. Wu, Y.-Q. Bie, J. Xu, D.-P. Yu, Graphene/ZnO nanowire/graphene vertical structure based fast-response ultraviolet photodetector. Appl. Phys. Lett. 100, 223114 (2012). doi:10.1063/1.4724208
T. Xin, A. Eric, L. Feng, L. Handong, M.W. Zhiming, Advances in MoS2-based field effect transistors (FETs). Nano-Micro Lett. 7(2), 203–218 (2015). doi:10.1007/s40820-015-0034-8