Low-Temperature Aging Provides 22% Efficient Bromine-Free and Passivation Layer-Free Planar Perovskite Solar Cells
Corresponding Author: Chun‑Chao Chen
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 84
Abstract
Previous reports of formamidinium/methylamine (FAMA)-mixed halide perovskite solar cells have focused mainly on controlling the morphology of the perovskite film and its interface—for example, through the inclusion of bromine and surface passivation. In this paper, we describe a new processing pathway for the growth of a high-quality bromine-free FAMAPbI3 halide perovskites via the control of intermediate phase. Through low-temperature aging growth (LTAG) of a freshly deposited perovskite film, α-phase perovskites can be seeded in the intermediate phase and, at the same time, prevent beta-phase perovskite to nucleate. After postannealing, large grain-size perovskites with significantly reduced PbI2 presence on the surface can be obtained, thereby eliminating the need of additional surface passivation step. Our pristine LTAG-treated solar cells could provide PCEs of greater than 22% without elaborate use of bromine or an additional passivation layer. More importantly, when using this LTAG process, the growth of the pure alpha-phase FAMAPbI3 was highly reproducible.
Article Highlights:
1 By low-temperature aging, superior bromine-free FA1–xMAxPbI3 perovskite film is realized.
2 By suppressing lead iodide on the surface of perovskite, no further passivation step or layer is needed. The efficiency of planar perovskite solar cells is improved to 22.41% with robust reproducibility.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
- National Renewable Energy Laboratory, Best Research-cell Efficiency Chart. (2020). https://www.nrel.gov/pv/cell-efficiency.html. Accessed 3 Jan 2020.
- M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu et al., Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354(6309), 206–209 (2016). https://doi.org/10.1126/science.aah5557
- M. Saliba, T. Matsui, J.Y. Seo, K. Domanski, J.P. Correa-Baena et al., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9(6), 1989–1997 (2016). https://doi.org/10.1039/C5EE03874J
- T. Singh, T. Miyasaka, Stabilizing the efficiency beyond 20% with a mixed cation perovskite solar cell fabricated in ambient air under controlled humidity. Adv. Energy Mater. 8(3), 1700677 (2018). https://doi.org/10.1002/aenm.201700677
- T. Bu, L. Wu, X. Liu, X. Yang, P. Zhou et al., Synergic interface optimization with green solvent engineering in mixed perovskite solar cells. Adv. Energy Mater. 7(20), 1700576 (2017). https://doi.org/10.1002/aenm.201700576
- M. Kim, G.-H. Kim, T.K. Lee, I.W. Choi, H.W. Choi et al., Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 3, 1–14 (2019). https://doi.org/10.1016/j.joule.2019.06.014
- Y. Zhao, H. Tan, H. Yuan, Z. Yang, J.Z. Fan et al., Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells. Nat. Commun. 9(1), 1607 (2018). https://doi.org/10.1038/s41467-018-04029-7
- G. Yang, H. Zhang, G. Li, G. Fang, Stabilizer-assisted growth of formamdinium-based perovskites for highly efficient and stable planar solar cells with over 22% efficiency. Nano Energy 63, 103835 (2019). https://doi.org/10.1016/j.nanoen.2019.06.031
- Q. Jiang, L. Zhang, H. Wang, X. Yang, J. Meng, Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy 2, 16177 (2016). https://doi.org/10.1038/nenergy.2016.177
- H. Tan, A. Jain, O. Voznyy, X. Lan, F.P. García de Arquer, J.Z. Fan et al., Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355(6326), 722–726 (2017). https://doi.org/10.1126/science.aai9081
- M. Singh, A. Ng, Z. Ren, H. Hu, H.-C. Lin, C.-W. Chu, G. Li, Facile synthesis of composite tin oxide nanostructures for high-performance planar perovskite solar cells. Nano Energy 60, 275–284 (2019). https://doi.org/10.1016/j.nanoen.2019.03.044
- S. Bai, P. Da, C. Li, Z. Wang, Z. Yuan et al., Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 571(7764), 245–250 (2019). https://doi.org/10.1038/s41586-019-1357-2
- M.I. Saidaminov, J. Kim, A. Jain, R. Quintero-Bermudez, H. Tan et al., Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nat. Energy 3(8), 648–654 (2018). https://doi.org/10.1038/s41560-018-0192-2
- D. Bi, X. Li, J.V. Milić, D.J. Kubicki, N. Pellet, J. Luo et al., Multifunctional molecular modulators for perovskite solar cells with over 20% efficiency and high operational stability. Nat. Commun. 9(1), 4482 (2018). https://doi.org/10.1038/s41467-018-06709-w
- L. Chao, Y. Xia, B. Li, G. Xing, Y. Chen, W. Huang, Room-temperature molten salt for facile fabrication of efficient and stable perovskite solar cells in ambient air. Chem 5(4), 995–1006 (2019). https://doi.org/10.1016/j.chempr.2019.02.025
- J.J. Yoo, S. Wieghold, M.C. Sponseller, M.R. Chua, S.N. Bertram et al., An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss. Energy Environ. Sci. 12(7), 2192–2199 (2019). https://doi.org/10.1039/C9EE00751B
- S. Yang, J. Dai, Z. Yu, Y. Shao, Y. Zhou, X. Xiao, X.C. Zeng, J. Huang, Tailoring passivation molecular structures for extremely small open-circuit voltage loss in perovskite solar cells. J. Am. Chem. Soc. 141(14), 5781–5787 (2019). https://doi.org/10.1021/jacs.8b13091
- Y. Zhang, G. Grancini, Z. Fei, E. Shirzadi, X. Liu et al., Auto-passivation of crystal defects in hybrid imidazolium/methylammonium lead iodide films by fumigation with methylamine affords high efficiency perovskite solar cells. Nano Energy 58, 105–111 (2019). https://doi.org/10.1016/j.nanoen.2019.01.027
- S. Pang, H. Hu, J. Zhang, S. Lv, Y. Yu et al., NH2CH═NH2PbI3: an alternative organolead iodide perovskite sensitizer for mesoscopic solar cells. Chem. Mater. 26(3), 1485–1491 (2014). https://doi.org/10.1021/cm404006p
- G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, H.J. Snaith, Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7(3), 982–988 (2014). https://doi.org/10.1039/C3EE43822H
- Q. Han, S.-H. Bae, P. Sun, Y.-T. Hsieh, Y. Yang et al., Single crystal formamidinium lead iodide (FAPbI3): insight into the structural, optical, and electrical properties. Adv. Mater. 28(11), 2253–2258 (2016). https://doi.org/10.1002/adma.201505002
- S.-H. Turren-Cruz, A. Hagfeldt, M. Saliba, Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture. Science 362(6413), 449–453 (2018). https://doi.org/10.1126/science.aat3583
- D. Bi, C. Yi, J. Luo, J.-D. Décoppet, F. Zhang et al., Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy 1, 16142 (2016). https://doi.org/10.1038/nenergy.2016.142
- X. Zheng, B. Chen, J. Dai, Y. Fang, Y. Bai et al., Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy 2, 17102 (2017). https://doi.org/10.1038/nenergy.2017.102
- W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348(6240), 1234–1237 (2015). https://doi.org/10.1126/science.aaa9272
- W.S. Yang, B.-W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim et al., Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 356(6345), 1376–1379 (2017). https://doi.org/10.1126/science.aan2301
- J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013). https://doi.org/10.1038/nature12340
- N. Ahn, D.-Y. Son, I.-H. Jang, S.M. Kang, M. Choi, N.-G. Park, Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(II) iodide. J. Am. Chem. Soc. 137(27), 8696–8699 (2015). https://doi.org/10.1021/jacs.5b04930
- Y. Chen, N. Li, L. Wang, L. Li, Z. Xu, H. Jiao et al., Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells. Nat. Commun. 10(1), 1112 (2019). https://doi.org/10.1038/s41467-019-09093-1
- Y. Zhao, Q. Li, W. Zhou, Y. Hou, Y. Zhao et al., Double-side-passivated perovskite solar cells with ultra-low potential loss. Solar RRL 3(2), 1800296 (2019). https://doi.org/10.1002/solr.201800296
- D. Bi, W. Tress, M.I. Dar, P. Gao, J. Luo, C. Renevier et al., Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci. Adv. 2(1), e1501170 (2016). https://doi.org/10.1126/sciadv.1501170
- Q. Jiang, Z. Chu, P. Wang, X. Yang, H. Liu et al., Planar-structure perovskite solar cells with efficiency beyond 21%. Adv. Mater. 29(46), 1703852 (2017). https://doi.org/10.1002/adma.201703852
- Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13(7), 460–466 (2019). https://doi.org/10.1038/s41566-019-0398-2
- S. Yang, S. Chen, E. Mosconi, Y. Fang, X. Xiao et al., Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science 365(6452), 473–478 (2019). https://doi.org/10.1126/science.aax3294
- B.-W. Park, S.I. Seok et al., Intrinsic instability of inorganic–organic hybrid halide perovskite materials. Adv. Mater. 31(20), 1805337 (2019). https://doi.org/10.1002/adma.201805337
- G.S. Shin, S.G. Kim, Y. Zhang, N.G. Park, A correlation between iodoplumbate and photovoltaic performance of perovskite solar cells observed by precursor solution aging. Small Methods (2019). https://doi.org/10.1002/smtd.201900398
- H. Zhou, Q. Chen, G. Li, S. Luo, T.-B. Song et al., Interface engineering of highly efficient perovskite solar cells. Science 345(6196), 542–546 (2014). https://doi.org/10.1126/science.1254050
- Q. Chen, H. Zhou, T.-B. Song, S. Luo, Z. Hong et al., Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett. 14(7), 4158–4163 (2014). https://doi.org/10.1021/nl501838y
- C. Roldán-Carmona, P. Gratia, I. Zimmermann, G. Grancini, P. Gao et al., High efficiency methylammonium lead triiodide perovskite solar cells: the relevance of non-stoichiometric precursors. Energy Environ. Sci. 8(12), 3550–3556 (2015). https://doi.org/10.1039/C5EE02555A
- Y.C. Kim, N.J. Jeon, J.H. Noh, W.S. Yang, J. Seo et al., Beneficial effects of PbI2 incorporated in organo-lead halide perovskite solar cells. Adv. Energy Mater. 6(4), 1502104 (2016). https://doi.org/10.1002/aenm.201502104
- L. Wang, C. McCleese, A. Kovalsky, Y. Zhao, C. Burda, Femtosecond time-resolved transient absorption spectroscopy of CH3NH3PbI3 perovskite films: evidence for passivation effect of PbI2. J. Am. Chem. Soc. 136(35), 12205–12208 (2014). https://doi.org/10.1021/ja504632z
- S. Li, H. Ren, Y. Yan, Boosting efficiency of planar heterojunction perovskite solar cells to 21.2% by a facile two-step deposition strategy. Appl. Surface Sci. 484, 1191–1197 (2019). https://doi.org/10.1016/j.apsusc.2019.04.129
- T.J. Jacobsson, J.-P. Correa-Baena, E.H. Anaraki, B. Philippe, S.D. Stranks et al., Unreacted PbI2 as a double-edged sword for enhancing the performance of perovskite solar cells. J. Am. Chem. Soc. 138(32), 10331–10343 (2016). https://doi.org/10.1021/jacs.6b06320
- F. Liu, Q. Dong, M.K. Wong, A.B. Djurišić, A. Ng et al., Is excess PbI2 beneficial for perovskite solar cell performance? Adv. Energy Mater. 6(7), 1502206 (2016). https://doi.org/10.1002/aenm.201502206
- D.H. Cao, C.C. Stoumpos, C.D. Malliakas, M.J. Katz, O.K. Farha, J.T. Hupp, M.G. Kanatzidis, Remnant PbI2, an unforeseen necessity in high-efficiency hybrid perovskite-based solar cells? APL Mater. 2(9), 091101 (2014). https://doi.org/10.1063/1.4895038
- J. Schoonman, Organic–inorganic lead halide perovskite solar cell materials: a possible stability problem. Chem. Phys. Lett. 619, 193–195 (2015). https://doi.org/10.1016/j.cplett.2014.11.063
- D. Luo, W. Yang, Z. Wang, A. Sadhanala, Q. Hu et al., Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science 360(6396), 1442–1446 (2018). https://doi.org/10.1126/science.aap9282
- K. Meng, X. Wang, Q. Xu, Z. Li, Z. Liu et al., In situ observation of crystallization dynamics and grain orientation in sequential deposition of metal halide perovskites. Adv. Funct. Mater. 29(35), 1902319 (2019). https://doi.org/10.1002/adfm.201902319
- L. Wang, X. Wang, L.-L. Deng, S. Leng, X. Guo et al., The mechanism of universal green antisolvents for intermediate phase controlled high-efficiency formamidinium-based perovskite solar cells. Mater. Horizons (2020). https://doi.org/10.1039/C9MH01679A
- P. Zhao, B.J. Kim, X. Ren, D.G. Lee, G.J. Bang et al., Antisolvent with an ultrawide processing window for the one-step fabrication of efficient and large-area perovskite solar cells. Adv. Mater. 30(49), 1802763 (2018). https://doi.org/10.1002/adma.201802763
- S. Paek, P. Schouwink, E.N. Athanasopoulou, K.T. Cho, G. Grancini et al., From nano- to micrometer scale: the role of antisolvent treatment on high performance perovskite solar cells. Chem. Mater. 29(8), 3490–3498 (2017). https://doi.org/10.1021/acs.chemmater.6b05353
- N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S.I. Seok, Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13(9), 897–903 (2014). https://doi.org/10.1038/nmat4014
- Y. Chen, Q. Meng, Y. Xiao, X. Zhang, J. Sun et al., Mechanism of PbI2 in situ passivated perovskite films for enhancing the performance of perovskite solar cells. ACS Appl. Mater. Interfaces. 11(47), 44101–44108 (2019). https://doi.org/10.1021/acsami.9b13648
- A. Alberti, I. Deretzis, G. Mannino, E. Smecca, F. Giannazzo et al., Nitrogen soaking promotes lattice recovery in polycrystalline hybrid perovskites. Adv. Energy Mater. 9(12), 1803450 (2019). https://doi.org/10.1002/aenm.201803450
- W.F. Wei, B. Jiao, H. Dong, J. Xu, T. Lei et al., Bifunctional π-conjugated ligand assisted stable and efficient perovskite solar cell fabrication via interfacial stitching. J. Mater. Chem. A 7(27), 16533–16540 (2019). https://doi.org/10.1039/C9TA03898A
- D. Yang, R. Yang, K. Wang, C. Wu, X. Zhu et al., High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nat. Commun. 9(1), 3239 (2018). https://doi.org/10.1038/s41467-018-05760-x
- S. Wang, Y. Zhu, C. Wang, R. Ma, Interface modification by a multifunctional ammonium salt for high performance and stable planar perovskite solar cells. J. Mater. Chem. A 7(19), 11867–11876 (2019). https://doi.org/10.1039/C9TA02631B
- Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347(6225), 967–970 (2015). https://doi.org/10.1126/science.aaa5760
- T. Chen, G. Tong, E. Xu, H. Li, P. Li et al., Accelerating hole extraction by inserting 2D Ti3C2-mxene interlayer to all inorganic perovskite solar cells with long-term stability. J. Mater. Chem. A 7(36), 20597–20603 (2019). https://doi.org/10.1039/C9TA06035A
- Z. Liu, L. Qiu, E.J. Juarez-Perez, Z. Hawash, T. Kim et al., Gas-solid reaction based over one-micrometer thick stable perovskite films for efficient solar cells and modules. Nat. Commun. 9(1), 3880 (2018). https://doi.org/10.1038/s41467-018-06317-8
- M. Stolterfoht, P. Caprioglio, C.M. Wolff, J.A. Márquez, J. Nordmann et al., The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells. Energy Environ. Sci. 12(9), 2778–2788 (2019). https://doi.org/10.1039/C9EE02020A
- H. Hu, S. Birkhold, M. Sultan, A. Fakharuddin, S. Koch, L. Schmidt-Mende, Surface band bending influences the open-circuit voltage of perovskite solar cells. ACS Appl. Energy Mater. 2(6), 4045–4052 (2019). https://doi.org/10.1021/acsaem.9b00060
- N. Li, S. Tao, Y. Chen, X. Niu, C.K. Onwudinanti, C. Hu et al., Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat. Energy 4(5), 408–415 (2019). https://doi.org/10.1038/s41560-019-0382-6
- G. Tong, T. Chen, H. Li, L. Qiu, Z. Liu et al., Phase transition induced recrystallization and low surface potential barrier leading to 10.91%-efficient CsPbBr 3 perovskite solar cells. Nano Energy 65, 104015 (2019). https://doi.org/10.1016/j.nanoen.2019.104015
- J.-H. Lee, J. Kim, G. Kim, D. Shin, S.Y. Jeong et al., Introducing paired electric dipole layers for efficient and reproducible perovskite solar cells. Energy Environ. Sci. 11(7), 1742–1751 (2018). https://doi.org/10.1039/C8EE00162F
References
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
National Renewable Energy Laboratory, Best Research-cell Efficiency Chart. (2020). https://www.nrel.gov/pv/cell-efficiency.html. Accessed 3 Jan 2020.
M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu et al., Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354(6309), 206–209 (2016). https://doi.org/10.1126/science.aah5557
M. Saliba, T. Matsui, J.Y. Seo, K. Domanski, J.P. Correa-Baena et al., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9(6), 1989–1997 (2016). https://doi.org/10.1039/C5EE03874J
T. Singh, T. Miyasaka, Stabilizing the efficiency beyond 20% with a mixed cation perovskite solar cell fabricated in ambient air under controlled humidity. Adv. Energy Mater. 8(3), 1700677 (2018). https://doi.org/10.1002/aenm.201700677
T. Bu, L. Wu, X. Liu, X. Yang, P. Zhou et al., Synergic interface optimization with green solvent engineering in mixed perovskite solar cells. Adv. Energy Mater. 7(20), 1700576 (2017). https://doi.org/10.1002/aenm.201700576
M. Kim, G.-H. Kim, T.K. Lee, I.W. Choi, H.W. Choi et al., Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 3, 1–14 (2019). https://doi.org/10.1016/j.joule.2019.06.014
Y. Zhao, H. Tan, H. Yuan, Z. Yang, J.Z. Fan et al., Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells. Nat. Commun. 9(1), 1607 (2018). https://doi.org/10.1038/s41467-018-04029-7
G. Yang, H. Zhang, G. Li, G. Fang, Stabilizer-assisted growth of formamdinium-based perovskites for highly efficient and stable planar solar cells with over 22% efficiency. Nano Energy 63, 103835 (2019). https://doi.org/10.1016/j.nanoen.2019.06.031
Q. Jiang, L. Zhang, H. Wang, X. Yang, J. Meng, Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy 2, 16177 (2016). https://doi.org/10.1038/nenergy.2016.177
H. Tan, A. Jain, O. Voznyy, X. Lan, F.P. García de Arquer, J.Z. Fan et al., Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355(6326), 722–726 (2017). https://doi.org/10.1126/science.aai9081
M. Singh, A. Ng, Z. Ren, H. Hu, H.-C. Lin, C.-W. Chu, G. Li, Facile synthesis of composite tin oxide nanostructures for high-performance planar perovskite solar cells. Nano Energy 60, 275–284 (2019). https://doi.org/10.1016/j.nanoen.2019.03.044
S. Bai, P. Da, C. Li, Z. Wang, Z. Yuan et al., Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 571(7764), 245–250 (2019). https://doi.org/10.1038/s41586-019-1357-2
M.I. Saidaminov, J. Kim, A. Jain, R. Quintero-Bermudez, H. Tan et al., Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nat. Energy 3(8), 648–654 (2018). https://doi.org/10.1038/s41560-018-0192-2
D. Bi, X. Li, J.V. Milić, D.J. Kubicki, N. Pellet, J. Luo et al., Multifunctional molecular modulators for perovskite solar cells with over 20% efficiency and high operational stability. Nat. Commun. 9(1), 4482 (2018). https://doi.org/10.1038/s41467-018-06709-w
L. Chao, Y. Xia, B. Li, G. Xing, Y. Chen, W. Huang, Room-temperature molten salt for facile fabrication of efficient and stable perovskite solar cells in ambient air. Chem 5(4), 995–1006 (2019). https://doi.org/10.1016/j.chempr.2019.02.025
J.J. Yoo, S. Wieghold, M.C. Sponseller, M.R. Chua, S.N. Bertram et al., An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss. Energy Environ. Sci. 12(7), 2192–2199 (2019). https://doi.org/10.1039/C9EE00751B
S. Yang, J. Dai, Z. Yu, Y. Shao, Y. Zhou, X. Xiao, X.C. Zeng, J. Huang, Tailoring passivation molecular structures for extremely small open-circuit voltage loss in perovskite solar cells. J. Am. Chem. Soc. 141(14), 5781–5787 (2019). https://doi.org/10.1021/jacs.8b13091
Y. Zhang, G. Grancini, Z. Fei, E. Shirzadi, X. Liu et al., Auto-passivation of crystal defects in hybrid imidazolium/methylammonium lead iodide films by fumigation with methylamine affords high efficiency perovskite solar cells. Nano Energy 58, 105–111 (2019). https://doi.org/10.1016/j.nanoen.2019.01.027
S. Pang, H. Hu, J. Zhang, S. Lv, Y. Yu et al., NH2CH═NH2PbI3: an alternative organolead iodide perovskite sensitizer for mesoscopic solar cells. Chem. Mater. 26(3), 1485–1491 (2014). https://doi.org/10.1021/cm404006p
G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, H.J. Snaith, Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7(3), 982–988 (2014). https://doi.org/10.1039/C3EE43822H
Q. Han, S.-H. Bae, P. Sun, Y.-T. Hsieh, Y. Yang et al., Single crystal formamidinium lead iodide (FAPbI3): insight into the structural, optical, and electrical properties. Adv. Mater. 28(11), 2253–2258 (2016). https://doi.org/10.1002/adma.201505002
S.-H. Turren-Cruz, A. Hagfeldt, M. Saliba, Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture. Science 362(6413), 449–453 (2018). https://doi.org/10.1126/science.aat3583
D. Bi, C. Yi, J. Luo, J.-D. Décoppet, F. Zhang et al., Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy 1, 16142 (2016). https://doi.org/10.1038/nenergy.2016.142
X. Zheng, B. Chen, J. Dai, Y. Fang, Y. Bai et al., Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy 2, 17102 (2017). https://doi.org/10.1038/nenergy.2017.102
W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348(6240), 1234–1237 (2015). https://doi.org/10.1126/science.aaa9272
W.S. Yang, B.-W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim et al., Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 356(6345), 1376–1379 (2017). https://doi.org/10.1126/science.aan2301
J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013). https://doi.org/10.1038/nature12340
N. Ahn, D.-Y. Son, I.-H. Jang, S.M. Kang, M. Choi, N.-G. Park, Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(II) iodide. J. Am. Chem. Soc. 137(27), 8696–8699 (2015). https://doi.org/10.1021/jacs.5b04930
Y. Chen, N. Li, L. Wang, L. Li, Z. Xu, H. Jiao et al., Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells. Nat. Commun. 10(1), 1112 (2019). https://doi.org/10.1038/s41467-019-09093-1
Y. Zhao, Q. Li, W. Zhou, Y. Hou, Y. Zhao et al., Double-side-passivated perovskite solar cells with ultra-low potential loss. Solar RRL 3(2), 1800296 (2019). https://doi.org/10.1002/solr.201800296
D. Bi, W. Tress, M.I. Dar, P. Gao, J. Luo, C. Renevier et al., Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci. Adv. 2(1), e1501170 (2016). https://doi.org/10.1126/sciadv.1501170
Q. Jiang, Z. Chu, P. Wang, X. Yang, H. Liu et al., Planar-structure perovskite solar cells with efficiency beyond 21%. Adv. Mater. 29(46), 1703852 (2017). https://doi.org/10.1002/adma.201703852
Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13(7), 460–466 (2019). https://doi.org/10.1038/s41566-019-0398-2
S. Yang, S. Chen, E. Mosconi, Y. Fang, X. Xiao et al., Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science 365(6452), 473–478 (2019). https://doi.org/10.1126/science.aax3294
B.-W. Park, S.I. Seok et al., Intrinsic instability of inorganic–organic hybrid halide perovskite materials. Adv. Mater. 31(20), 1805337 (2019). https://doi.org/10.1002/adma.201805337
G.S. Shin, S.G. Kim, Y. Zhang, N.G. Park, A correlation between iodoplumbate and photovoltaic performance of perovskite solar cells observed by precursor solution aging. Small Methods (2019). https://doi.org/10.1002/smtd.201900398
H. Zhou, Q. Chen, G. Li, S. Luo, T.-B. Song et al., Interface engineering of highly efficient perovskite solar cells. Science 345(6196), 542–546 (2014). https://doi.org/10.1126/science.1254050
Q. Chen, H. Zhou, T.-B. Song, S. Luo, Z. Hong et al., Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett. 14(7), 4158–4163 (2014). https://doi.org/10.1021/nl501838y
C. Roldán-Carmona, P. Gratia, I. Zimmermann, G. Grancini, P. Gao et al., High efficiency methylammonium lead triiodide perovskite solar cells: the relevance of non-stoichiometric precursors. Energy Environ. Sci. 8(12), 3550–3556 (2015). https://doi.org/10.1039/C5EE02555A
Y.C. Kim, N.J. Jeon, J.H. Noh, W.S. Yang, J. Seo et al., Beneficial effects of PbI2 incorporated in organo-lead halide perovskite solar cells. Adv. Energy Mater. 6(4), 1502104 (2016). https://doi.org/10.1002/aenm.201502104
L. Wang, C. McCleese, A. Kovalsky, Y. Zhao, C. Burda, Femtosecond time-resolved transient absorption spectroscopy of CH3NH3PbI3 perovskite films: evidence for passivation effect of PbI2. J. Am. Chem. Soc. 136(35), 12205–12208 (2014). https://doi.org/10.1021/ja504632z
S. Li, H. Ren, Y. Yan, Boosting efficiency of planar heterojunction perovskite solar cells to 21.2% by a facile two-step deposition strategy. Appl. Surface Sci. 484, 1191–1197 (2019). https://doi.org/10.1016/j.apsusc.2019.04.129
T.J. Jacobsson, J.-P. Correa-Baena, E.H. Anaraki, B. Philippe, S.D. Stranks et al., Unreacted PbI2 as a double-edged sword for enhancing the performance of perovskite solar cells. J. Am. Chem. Soc. 138(32), 10331–10343 (2016). https://doi.org/10.1021/jacs.6b06320
F. Liu, Q. Dong, M.K. Wong, A.B. Djurišić, A. Ng et al., Is excess PbI2 beneficial for perovskite solar cell performance? Adv. Energy Mater. 6(7), 1502206 (2016). https://doi.org/10.1002/aenm.201502206
D.H. Cao, C.C. Stoumpos, C.D. Malliakas, M.J. Katz, O.K. Farha, J.T. Hupp, M.G. Kanatzidis, Remnant PbI2, an unforeseen necessity in high-efficiency hybrid perovskite-based solar cells? APL Mater. 2(9), 091101 (2014). https://doi.org/10.1063/1.4895038
J. Schoonman, Organic–inorganic lead halide perovskite solar cell materials: a possible stability problem. Chem. Phys. Lett. 619, 193–195 (2015). https://doi.org/10.1016/j.cplett.2014.11.063
D. Luo, W. Yang, Z. Wang, A. Sadhanala, Q. Hu et al., Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science 360(6396), 1442–1446 (2018). https://doi.org/10.1126/science.aap9282
K. Meng, X. Wang, Q. Xu, Z. Li, Z. Liu et al., In situ observation of crystallization dynamics and grain orientation in sequential deposition of metal halide perovskites. Adv. Funct. Mater. 29(35), 1902319 (2019). https://doi.org/10.1002/adfm.201902319
L. Wang, X. Wang, L.-L. Deng, S. Leng, X. Guo et al., The mechanism of universal green antisolvents for intermediate phase controlled high-efficiency formamidinium-based perovskite solar cells. Mater. Horizons (2020). https://doi.org/10.1039/C9MH01679A
P. Zhao, B.J. Kim, X. Ren, D.G. Lee, G.J. Bang et al., Antisolvent with an ultrawide processing window for the one-step fabrication of efficient and large-area perovskite solar cells. Adv. Mater. 30(49), 1802763 (2018). https://doi.org/10.1002/adma.201802763
S. Paek, P. Schouwink, E.N. Athanasopoulou, K.T. Cho, G. Grancini et al., From nano- to micrometer scale: the role of antisolvent treatment on high performance perovskite solar cells. Chem. Mater. 29(8), 3490–3498 (2017). https://doi.org/10.1021/acs.chemmater.6b05353
N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S.I. Seok, Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13(9), 897–903 (2014). https://doi.org/10.1038/nmat4014
Y. Chen, Q. Meng, Y. Xiao, X. Zhang, J. Sun et al., Mechanism of PbI2 in situ passivated perovskite films for enhancing the performance of perovskite solar cells. ACS Appl. Mater. Interfaces. 11(47), 44101–44108 (2019). https://doi.org/10.1021/acsami.9b13648
A. Alberti, I. Deretzis, G. Mannino, E. Smecca, F. Giannazzo et al., Nitrogen soaking promotes lattice recovery in polycrystalline hybrid perovskites. Adv. Energy Mater. 9(12), 1803450 (2019). https://doi.org/10.1002/aenm.201803450
W.F. Wei, B. Jiao, H. Dong, J. Xu, T. Lei et al., Bifunctional π-conjugated ligand assisted stable and efficient perovskite solar cell fabrication via interfacial stitching. J. Mater. Chem. A 7(27), 16533–16540 (2019). https://doi.org/10.1039/C9TA03898A
D. Yang, R. Yang, K. Wang, C. Wu, X. Zhu et al., High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nat. Commun. 9(1), 3239 (2018). https://doi.org/10.1038/s41467-018-05760-x
S. Wang, Y. Zhu, C. Wang, R. Ma, Interface modification by a multifunctional ammonium salt for high performance and stable planar perovskite solar cells. J. Mater. Chem. A 7(19), 11867–11876 (2019). https://doi.org/10.1039/C9TA02631B
Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347(6225), 967–970 (2015). https://doi.org/10.1126/science.aaa5760
T. Chen, G. Tong, E. Xu, H. Li, P. Li et al., Accelerating hole extraction by inserting 2D Ti3C2-mxene interlayer to all inorganic perovskite solar cells with long-term stability. J. Mater. Chem. A 7(36), 20597–20603 (2019). https://doi.org/10.1039/C9TA06035A
Z. Liu, L. Qiu, E.J. Juarez-Perez, Z. Hawash, T. Kim et al., Gas-solid reaction based over one-micrometer thick stable perovskite films for efficient solar cells and modules. Nat. Commun. 9(1), 3880 (2018). https://doi.org/10.1038/s41467-018-06317-8
M. Stolterfoht, P. Caprioglio, C.M. Wolff, J.A. Márquez, J. Nordmann et al., The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells. Energy Environ. Sci. 12(9), 2778–2788 (2019). https://doi.org/10.1039/C9EE02020A
H. Hu, S. Birkhold, M. Sultan, A. Fakharuddin, S. Koch, L. Schmidt-Mende, Surface band bending influences the open-circuit voltage of perovskite solar cells. ACS Appl. Energy Mater. 2(6), 4045–4052 (2019). https://doi.org/10.1021/acsaem.9b00060
N. Li, S. Tao, Y. Chen, X. Niu, C.K. Onwudinanti, C. Hu et al., Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat. Energy 4(5), 408–415 (2019). https://doi.org/10.1038/s41560-019-0382-6
G. Tong, T. Chen, H. Li, L. Qiu, Z. Liu et al., Phase transition induced recrystallization and low surface potential barrier leading to 10.91%-efficient CsPbBr 3 perovskite solar cells. Nano Energy 65, 104015 (2019). https://doi.org/10.1016/j.nanoen.2019.104015
J.-H. Lee, J. Kim, G. Kim, D. Shin, S.Y. Jeong et al., Introducing paired electric dipole layers for efficient and reproducible perovskite solar cells. Energy Environ. Sci. 11(7), 1742–1751 (2018). https://doi.org/10.1039/C8EE00162F