Multifunctional Integrated Organic–Inorganic-Metal Hybrid Aerogel for Excellent Thermal Insulation and Electromagnetic Shielding Performance
Corresponding Author: Xiao Hou
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 200
Abstract
Vehicles operating in space need to withstand extreme thermal and electromagnetic environments in light of the burgeoning of space science and technology. It is imperatively desired to high insulation materials with lightweight and extensive mechanical properties. Herein, a boron–silica–tantalum ternary hybrid phenolic aerogel (BSiTa-PA) with exceptional thermal stability, extensive mechanical strength, low thermal conductivity (49.6 mW m−1 K−1), and heightened ablative resistance is prepared by an expeditious method. After extremely thermal erosion, the obtained carbon aerogel demonstrates noteworthy electromagnetic interference (EMI) shielding performance with an efficiency of 31.6 dB, accompanied by notable loading property with specific modulus of 272.8 kN·m kg−1. This novel design concept has laid the foundation for the development of insulation materials in more complex extreme environments.
Highlights:
1 The homogeneous hybridization of organic–inorganic-metal elements in 3D aerogel was achieved by an expeditious method.
2 The aerogel tightly integrates excellent thermal insulation (49.6 mW m−1 K−1), ablative resistance, mechanical strength, and superhydrophobic properties.
3 The ablated carbon aerogel combines notable electromagnetic interference shielding properties (31.6 dB) and load-carrying properties (272.8 kN·m kg−1).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Guo, S. Fu, Y. Deng, X. Xu, S. Laima et al., Hypocrystalline ceramic aerogels for thermal insulation at extreme conditions. Nature 606, 909–916 (2022). https://doi.org/10.1038/s41586-022-04784-0
- M. Wu, H. Geng, Y. Hu, H. Ma, C. Yang et al., Superelastic graphene aerogel-based metamaterials. Nat. Commun. 13, 4561 (2022). https://doi.org/10.1038/s41467-022-32200-8
- F. Wu, P. Hu, F. Hu, Z. Tian, J. Tang et al., Multifunctional MXene/C aerogels for enhanced microwave absorption and thermal insulation. Nano-Micro Lett. 15, 194 (2023). https://doi.org/10.1007/s40820-023-01158-7
- Z.-M. Han, W.-B. Sun, K.-P. Yang, H.-B. Yang, Z.-X. Liu et al., An all-natural wood-inspired aerogel. Angew. Chem. Int. Ed. 62(6), e202211099 (2023). https://doi.org/10.1002/anie.202211099
- L. Su, S. Jia, J. Ren, X. Lu, S.-W. Guo et al., Strong yet flexible ceramic aerogel. Nat. Commun. 14, 7057 (2023). https://doi.org/10.1038/s41467-023-42703-7
- J. Zhang, J. Zheng, M. Gao, C. Xu, Y. Cheng et al., Nacre-mimetic nanocomposite aerogels with exceptional mechanical performance for thermal superinsulation at extreme conditions. Adv. Mater. 35, e2300813 (2023). https://doi.org/10.1002/adma.202300813
- V.A. Edlabadkar, S. Gorla, R.U. Soni, A.B.M.S.U. Doulah, J. Gloriod et al., Polybenzodiazine aerogels: all-nitrogen analogues of polybenzoxazines-synthesis, characterization, and high-yield conversion to nanoporous carbons. Chem. Mater. 35, 432–446 (2023). https://doi.org/10.1021/acs.chemmater.2c02797
- X. Li, R. Hu, Z. Xiong, D. Wang, Z. Zhang et al., Metal-organic gel leading to customized magnetic-coupling engineering in carbon aerogels for excellent radar stealth and thermal insulation performances. Nano-Micro Lett. 16, 42 (2023). https://doi.org/10.1007/s40820-023-01255-7
- X.-C. Lin, S.-L. Li, W.-X. Li, Z.-H. Wang, J.-Y. Zhang et al., Thermo-responsive self-ceramifiable robust aerogel with exceptional strengthening and thermal insulating performance at ultrahigh temperatures. Adv. Funct. Mater. 33, 2214913 (2023). https://doi.org/10.1002/adfm.202214913
- Y. Chen, Y. Yang, Y. Xiong, L. Zhang, W. Xu et al., Porous aerogel and sponge composites: assisted by novel nanomaterials for electromagnetic interference shielding. Nano Today 38, 101204 (2021). https://doi.org/10.1016/j.nantod.2021.101204
- L. Feng, P. Wei, Q. Song, J. Zhang, Q. Fu et al., Superelastic, highly conductive, superhydrophobic, and powerful electromagnetic shielding hybrid aerogels built from orthogonal graphene and boron nitride nanoribbons. ACS Nano 16, 17049–17061 (2022). https://doi.org/10.1021/acsnano.2c07187
- N.P. Padture, Advanced structural ceramics in aerospace propulsion. Nat. Mater. 15, 804–809 (2016). https://doi.org/10.1038/nmat4687
- J. Li, P. Guo, C. Hu, S. Pang, J. Ma et al., Fabrication of large aerogel-like carbon/carbon composites with excellent load-bearing capacity and thermal-insulating performance at 1800 °C. ACS Nano 16, 6565–6577 (2022). https://doi.org/10.1021/acsnano.2c00943
- P. Guo, J. Li, S. Pang, C. Hu, S. Tang et al., Ultralight carbon fiber felt reinforced monolithic carbon aerogel composites with excellent thermal insulation performance. Carbon 183, 525–529 (2021). https://doi.org/10.1016/j.carbon.2021.07.027
- Z. Yang, J. Li, X. Xu, S. Pang, C. Hu et al., Synthesis of monolithic carbon aerogels with high mechanical strength via ambient pressure drying without solvent exchange. J. Mater. Sci. Technol. 50, 66–74 (2020). https://doi.org/10.1016/j.jmst.2020.02.013
- X. Chang, F. Wu, X. Cheng, H. Zhang, L. He et al., Multiscale interpenetrated/interconnected network design confers all-carbon aerogels with unprecedented thermomechanical properties for thermal insulation under extreme environments. Adv. Mater. 36, e2308519 (2024). https://doi.org/10.1002/adma.202308519
- T. Xue, Y. Yang, D. Yu, Q. Wali, Z. Wang et al., 3D printed integrated gradient-conductive MXene/CNT/polyimide aerogel frames for electromagnetic interference shielding with ultra-low reflection. Nano-Micro Lett. 15, 45 (2023). https://doi.org/10.1007/s40820-023-01017-5
- Z. Niu, Y. Xin, L. Wang, S. Shen, X. Ma et al., Two birds with one stone: Construction of bifunctional-poss hybridized boron-silicon ceramicized phenolic composites and its ablation behavior. J. Mater. Sci. Technol. 141, 199–208 (2023). https://doi.org/10.1016/j.jmst.2022.10.004
- Z. Niu, B. Chen, S. Shen, H. Zhang, X. Ma et al., Zirconium chelated hybrid phenolic resin with enhanced thermal and ablation resistance properties for thermal insulation composites. Compos. Commun. 35, 101284 (2022). https://doi.org/10.1016/j.coco.2022.101284
- W. Wang, X. Jin, H. Huang, S. Hu, C. Wu et al., Thermal-insulation and ablation-resistance of Ti-Si binary modified carbon/phenolic nanocomposites for high-temperature thermal protection. Compos. A Appl. Sci. Manuf. 169, 107528 (2023). https://doi.org/10.1016/j.compositesa.2023.107528
- X. Jin, C. Liu, H. Huang, R. Pan, C. Wu et al., Multiscale, elastic, and low-density carbon fibre/siliconoxycarbide-phenolic interpenetrating aerogel nanocomposite for ablative thermal protection. Compos. B Eng. 245, 110212 (2022). https://doi.org/10.1016/j.compositesb.2022.110212
- H. Geng, Q.-Z. Zhong, J. Li, Z. Lin, J. Cui et al., Metal ion-directed functional metal-phenolic materials. Chem. Rev. 122, 11432–11473 (2022). https://doi.org/10.1021/acs.chemrev.1c01042
- X. Xu, Q. Zhang, M. Hao, Y. Hu, Z. Lin et al., Double-negative-index ceramic aerogels for thermal superinsulation. Science 363, 723–727 (2019). https://doi.org/10.1126/science.aav7304
- M. Zhu, G. Li, W. Gong, L. Yan, X. Zhang, Calcium-doped boron nitride aerogel enables infrared stealth at high temperature up to 1300 °C. Nano-Micro Lett. 14, 18 (2021). https://doi.org/10.1007/s40820-021-00754-9
- Q. Yuan, L. Yan, J. Tian, W. Ding, Z. Heng et al., In situ ceramization of nanoscale interface enables aerogel with thermal protection at 1950 °C. ACS Nano 18, 3520–3530 (2024). https://doi.org/10.1021/acsnano.3c11129
- Z. Qian, H. Cai, J. Cao, P. Wang, L. Li et al., 3D needle-punched carbon/quartz fabric reinforced nanoporous phenolic composites with co-optimized mechanics, insulation and ablation. Compos. Commun. 36, 101393 (2022). https://doi.org/10.1016/j.coco.2022.101393
- M. Natali, J.M. Kenny, L. Torre, Science and technology of polymeric ablative materials for thermal protection systems and propulsion devices: a review. Prog. Mater. Sci. 84, 192–275 (2016). https://doi.org/10.1016/j.pmatsci.2016.08.003
- Z. Niu, G. Li, X. Ma, S. Shen, Y. Xin et al., Synergetic effect of O-POSS and T-POSS to enhance ablative resistant of phenolic-based silica fiber composites via strong interphase strength and ceramic formation. Compos. A Appl. Sci. Manuf. 155, 106855 (2022). https://doi.org/10.1016/j.compositesa.2022.106855
- Y. Huang, H. Zhang, Z. Liu, C. Zhou, L. Yan et al., Pre-oxidized mesophase pitch modified phenolic composites with mosaic-structured char layers and excellent ablation resistance. Compos. B: Engin. 257, 110691 (2023). https://doi.org/10.1016/j.compositesb.2023.110691
- Z. Niu, G. Li, Y. Xin, X. Ma, C. Zhang et al., Enhanced thermal and anti-ablation properties of high-temperature resistant reactive POSS modified boron phenolic resin. J. Appl. Polym. Sci. 139, 52087 (2022). https://doi.org/10.1002/app.52087
- W. Zhang, S. Hu, H. Li, T. Song, L. Jiang et al., Epoxidized vinyl silicone rubber-based flexible ablative material with low linear ablation rate. Compos. Commun. 40, 101606 (2023). https://doi.org/10.1016/j.coco.2023.101606
- B. Chu, S. Liu, L. You, D. Liu, T. Huang et al., Enhancing the cycling stability of Ni-rich LiNi0.6Co0.2Mn0.2O2 cathode at a high cutoff voltage with Ta doping. ACS Sustain. Chem. Eng. 8, 3082–3090 (2020). https://doi.org/10.1021/acssuschemeng.9b05560
- Z.-L. Yu, N. Yang, V. Apostolopoulou-Kalkavoura, B. Qin, Z.-Y. Ma et al., Fire-retardant and thermally insulating phenolic-silica aerogels. Angew. Chem. Int. Ed. 57, 4538–4542 (2018). https://doi.org/10.1002/anie.201711717
- Z.-L. Yu, Z.-Y. Ma, H.-X. Yao, B. Qin, Y.-C. Gao et al., Economical architected foamy aerogel coating for energy conservation and flame resistance. ACS Mater. Lett. 4, 1453–1461 (2022). https://doi.org/10.1021/acsmaterialslett.2c00419
- S. Zhao, W.J. Malfait, A. Demilecamps, Y. Zhang, S. Brunner et al., Strong, thermally superinsulating biopolymer–silica aerogel hybrids by cogelation of silicic acid with pectin. Angew. Chem. Int. Ed. 54, 14282–14286 (2015). https://doi.org/10.1002/anie.201507328
- H. Huang, X. Yan, X. Jin, C. Wu, Y. Pan et al., Flexible and interlocked quartz fibre reinforced dual polyimide network for high-temperature thermal protection. J. Mater. Chem. A 11, 9931–9941 (2023). https://doi.org/10.1039/d3ta01413d
- S. Shi, L. Li, J. Liang, S. Tang, Surface and volumetric ablation behaviors of SiFRP composites at high heating rates for thermal protection applications. Int. J. Heat Mass Transf. 102, 1190–1198 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.085
- Z.-L. Yu, B. Qin, Z.-Y. Ma, J. Huang, S.-C. Li et al., Superelastic hard carbon nanofiber aerogels. Adv. Mater. 31, e1900651 (2019). https://doi.org/10.1002/adma.201900651
- X. Ma, S. Liu, H. Luo, H. Guo, S. Jiang et al., MOF@wood derived ultrathin carbon composite film for electromagnetic interference shielding with effective absorption and electrothermal management. Adv. Funct. Mater. 34, 2310126 (2024). https://doi.org/10.1002/adfm.202310126
- Y. Morikawa, S.-I. Nishimura, R.-I. Hashimoto, M. Ohnuma, A. Yamada, Mechanism of sodium storage in hard carbon: an X-ray scattering analysis. Adv. Energy Mater. 10, 1903176 (2020). https://doi.org/10.1002/aenm.201903176
- C. Ding, L. Huang, X. Yan, F. Dunne, S. Hong et al., Robust, superelastic hard carbon with in situ ultrafine crystals. Adv. Funct. Mater. 30, 1907486 (2020). https://doi.org/10.1002/adfm.201907486
- H. Guo, F. Wang, H. Luo, Y. Li, Z. Lou et al., Flexible TaC/C electrospun non–woven fabrics with multiple spatial-scale conductive frameworks for efficient electromagnetic interference shielding. Compos. A Appl. Sci. Manuf. 151, 106662 (2021). https://doi.org/10.1016/j.compositesa.2021.106662
- R. Verma, P. Thakur, A. Chauhan, R. Jasrotia, A. Thakur, A review on MXene and its’ composites for electromagnetic interference (EMI) shielding applications. Carbon 208, 170–190 (2023). https://doi.org/10.1016/j.carbon.2023.03.050
- W. Yang, D. Yang, H. Mei, L. Yao, S. Xiao et al., 3D printing of PDC-SiOC@SiC twins with high permittivity and electromagnetic interference shielding effectiveness. J. Eur. Ceram. Soc. 41, 5437–5444 (2021). https://doi.org/10.1016/j.jeurceramsoc.2021.04.048
- C. Liang, Z. Gu, Y. Zhang, Z. Ma, H. Qiu et al., Structural design strategies of polymer matrix composites for electromagnetic interference shielding: a review. Nano-Micro Lett. 13, 181 (2021). https://doi.org/10.1007/s40820-021-00707-2
- D. Chen, W. Zhang, K. Luo, Y. Song, Y. Zhong et al., Hard carbon for sodium storage: mechanism and optimization strategies toward commercialization. Energy Environ. Sci. 14, 2244–2262 (2021). https://doi.org/10.1039/D0EE03916K
- S. Alvin, D. Yoon, C. Chandra, H.S. Cahyadi, J.-H. Park et al., Revealing sodium ion storage mechanism in hard carbon. Carbon 145, 67–81 (2019). https://doi.org/10.1016/j.carbon.2018.12.112
- C.M. Jeffries, J. Ilavsky, A. Martel, S. Hinrichs, A. Meyer et al., Small-angle X-ray and neutron scattering. Nat. Rev. Meth. Primers 1, 70 (2021). https://doi.org/10.1038/s43586-021-00064-9
- D. Saurel, J. Segalini, M. Jauregui, A. Pendashteh, B. Daffos et al., A SAXS outlook on disordered carbonaceous materials for electrochemical energy storage. Energy Storage Mater. 21, 162–173 (2019). https://doi.org/10.1016/j.ensm.2019.05.007
References
J. Guo, S. Fu, Y. Deng, X. Xu, S. Laima et al., Hypocrystalline ceramic aerogels for thermal insulation at extreme conditions. Nature 606, 909–916 (2022). https://doi.org/10.1038/s41586-022-04784-0
M. Wu, H. Geng, Y. Hu, H. Ma, C. Yang et al., Superelastic graphene aerogel-based metamaterials. Nat. Commun. 13, 4561 (2022). https://doi.org/10.1038/s41467-022-32200-8
F. Wu, P. Hu, F. Hu, Z. Tian, J. Tang et al., Multifunctional MXene/C aerogels for enhanced microwave absorption and thermal insulation. Nano-Micro Lett. 15, 194 (2023). https://doi.org/10.1007/s40820-023-01158-7
Z.-M. Han, W.-B. Sun, K.-P. Yang, H.-B. Yang, Z.-X. Liu et al., An all-natural wood-inspired aerogel. Angew. Chem. Int. Ed. 62(6), e202211099 (2023). https://doi.org/10.1002/anie.202211099
L. Su, S. Jia, J. Ren, X. Lu, S.-W. Guo et al., Strong yet flexible ceramic aerogel. Nat. Commun. 14, 7057 (2023). https://doi.org/10.1038/s41467-023-42703-7
J. Zhang, J. Zheng, M. Gao, C. Xu, Y. Cheng et al., Nacre-mimetic nanocomposite aerogels with exceptional mechanical performance for thermal superinsulation at extreme conditions. Adv. Mater. 35, e2300813 (2023). https://doi.org/10.1002/adma.202300813
V.A. Edlabadkar, S. Gorla, R.U. Soni, A.B.M.S.U. Doulah, J. Gloriod et al., Polybenzodiazine aerogels: all-nitrogen analogues of polybenzoxazines-synthesis, characterization, and high-yield conversion to nanoporous carbons. Chem. Mater. 35, 432–446 (2023). https://doi.org/10.1021/acs.chemmater.2c02797
X. Li, R. Hu, Z. Xiong, D. Wang, Z. Zhang et al., Metal-organic gel leading to customized magnetic-coupling engineering in carbon aerogels for excellent radar stealth and thermal insulation performances. Nano-Micro Lett. 16, 42 (2023). https://doi.org/10.1007/s40820-023-01255-7
X.-C. Lin, S.-L. Li, W.-X. Li, Z.-H. Wang, J.-Y. Zhang et al., Thermo-responsive self-ceramifiable robust aerogel with exceptional strengthening and thermal insulating performance at ultrahigh temperatures. Adv. Funct. Mater. 33, 2214913 (2023). https://doi.org/10.1002/adfm.202214913
Y. Chen, Y. Yang, Y. Xiong, L. Zhang, W. Xu et al., Porous aerogel and sponge composites: assisted by novel nanomaterials for electromagnetic interference shielding. Nano Today 38, 101204 (2021). https://doi.org/10.1016/j.nantod.2021.101204
L. Feng, P. Wei, Q. Song, J. Zhang, Q. Fu et al., Superelastic, highly conductive, superhydrophobic, and powerful electromagnetic shielding hybrid aerogels built from orthogonal graphene and boron nitride nanoribbons. ACS Nano 16, 17049–17061 (2022). https://doi.org/10.1021/acsnano.2c07187
N.P. Padture, Advanced structural ceramics in aerospace propulsion. Nat. Mater. 15, 804–809 (2016). https://doi.org/10.1038/nmat4687
J. Li, P. Guo, C. Hu, S. Pang, J. Ma et al., Fabrication of large aerogel-like carbon/carbon composites with excellent load-bearing capacity and thermal-insulating performance at 1800 °C. ACS Nano 16, 6565–6577 (2022). https://doi.org/10.1021/acsnano.2c00943
P. Guo, J. Li, S. Pang, C. Hu, S. Tang et al., Ultralight carbon fiber felt reinforced monolithic carbon aerogel composites with excellent thermal insulation performance. Carbon 183, 525–529 (2021). https://doi.org/10.1016/j.carbon.2021.07.027
Z. Yang, J. Li, X. Xu, S. Pang, C. Hu et al., Synthesis of monolithic carbon aerogels with high mechanical strength via ambient pressure drying without solvent exchange. J. Mater. Sci. Technol. 50, 66–74 (2020). https://doi.org/10.1016/j.jmst.2020.02.013
X. Chang, F. Wu, X. Cheng, H. Zhang, L. He et al., Multiscale interpenetrated/interconnected network design confers all-carbon aerogels with unprecedented thermomechanical properties for thermal insulation under extreme environments. Adv. Mater. 36, e2308519 (2024). https://doi.org/10.1002/adma.202308519
T. Xue, Y. Yang, D. Yu, Q. Wali, Z. Wang et al., 3D printed integrated gradient-conductive MXene/CNT/polyimide aerogel frames for electromagnetic interference shielding with ultra-low reflection. Nano-Micro Lett. 15, 45 (2023). https://doi.org/10.1007/s40820-023-01017-5
Z. Niu, Y. Xin, L. Wang, S. Shen, X. Ma et al., Two birds with one stone: Construction of bifunctional-poss hybridized boron-silicon ceramicized phenolic composites and its ablation behavior. J. Mater. Sci. Technol. 141, 199–208 (2023). https://doi.org/10.1016/j.jmst.2022.10.004
Z. Niu, B. Chen, S. Shen, H. Zhang, X. Ma et al., Zirconium chelated hybrid phenolic resin with enhanced thermal and ablation resistance properties for thermal insulation composites. Compos. Commun. 35, 101284 (2022). https://doi.org/10.1016/j.coco.2022.101284
W. Wang, X. Jin, H. Huang, S. Hu, C. Wu et al., Thermal-insulation and ablation-resistance of Ti-Si binary modified carbon/phenolic nanocomposites for high-temperature thermal protection. Compos. A Appl. Sci. Manuf. 169, 107528 (2023). https://doi.org/10.1016/j.compositesa.2023.107528
X. Jin, C. Liu, H. Huang, R. Pan, C. Wu et al., Multiscale, elastic, and low-density carbon fibre/siliconoxycarbide-phenolic interpenetrating aerogel nanocomposite for ablative thermal protection. Compos. B Eng. 245, 110212 (2022). https://doi.org/10.1016/j.compositesb.2022.110212
H. Geng, Q.-Z. Zhong, J. Li, Z. Lin, J. Cui et al., Metal ion-directed functional metal-phenolic materials. Chem. Rev. 122, 11432–11473 (2022). https://doi.org/10.1021/acs.chemrev.1c01042
X. Xu, Q. Zhang, M. Hao, Y. Hu, Z. Lin et al., Double-negative-index ceramic aerogels for thermal superinsulation. Science 363, 723–727 (2019). https://doi.org/10.1126/science.aav7304
M. Zhu, G. Li, W. Gong, L. Yan, X. Zhang, Calcium-doped boron nitride aerogel enables infrared stealth at high temperature up to 1300 °C. Nano-Micro Lett. 14, 18 (2021). https://doi.org/10.1007/s40820-021-00754-9
Q. Yuan, L. Yan, J. Tian, W. Ding, Z. Heng et al., In situ ceramization of nanoscale interface enables aerogel with thermal protection at 1950 °C. ACS Nano 18, 3520–3530 (2024). https://doi.org/10.1021/acsnano.3c11129
Z. Qian, H. Cai, J. Cao, P. Wang, L. Li et al., 3D needle-punched carbon/quartz fabric reinforced nanoporous phenolic composites with co-optimized mechanics, insulation and ablation. Compos. Commun. 36, 101393 (2022). https://doi.org/10.1016/j.coco.2022.101393
M. Natali, J.M. Kenny, L. Torre, Science and technology of polymeric ablative materials for thermal protection systems and propulsion devices: a review. Prog. Mater. Sci. 84, 192–275 (2016). https://doi.org/10.1016/j.pmatsci.2016.08.003
Z. Niu, G. Li, X. Ma, S. Shen, Y. Xin et al., Synergetic effect of O-POSS and T-POSS to enhance ablative resistant of phenolic-based silica fiber composites via strong interphase strength and ceramic formation. Compos. A Appl. Sci. Manuf. 155, 106855 (2022). https://doi.org/10.1016/j.compositesa.2022.106855
Y. Huang, H. Zhang, Z. Liu, C. Zhou, L. Yan et al., Pre-oxidized mesophase pitch modified phenolic composites with mosaic-structured char layers and excellent ablation resistance. Compos. B: Engin. 257, 110691 (2023). https://doi.org/10.1016/j.compositesb.2023.110691
Z. Niu, G. Li, Y. Xin, X. Ma, C. Zhang et al., Enhanced thermal and anti-ablation properties of high-temperature resistant reactive POSS modified boron phenolic resin. J. Appl. Polym. Sci. 139, 52087 (2022). https://doi.org/10.1002/app.52087
W. Zhang, S. Hu, H. Li, T. Song, L. Jiang et al., Epoxidized vinyl silicone rubber-based flexible ablative material with low linear ablation rate. Compos. Commun. 40, 101606 (2023). https://doi.org/10.1016/j.coco.2023.101606
B. Chu, S. Liu, L. You, D. Liu, T. Huang et al., Enhancing the cycling stability of Ni-rich LiNi0.6Co0.2Mn0.2O2 cathode at a high cutoff voltage with Ta doping. ACS Sustain. Chem. Eng. 8, 3082–3090 (2020). https://doi.org/10.1021/acssuschemeng.9b05560
Z.-L. Yu, N. Yang, V. Apostolopoulou-Kalkavoura, B. Qin, Z.-Y. Ma et al., Fire-retardant and thermally insulating phenolic-silica aerogels. Angew. Chem. Int. Ed. 57, 4538–4542 (2018). https://doi.org/10.1002/anie.201711717
Z.-L. Yu, Z.-Y. Ma, H.-X. Yao, B. Qin, Y.-C. Gao et al., Economical architected foamy aerogel coating for energy conservation and flame resistance. ACS Mater. Lett. 4, 1453–1461 (2022). https://doi.org/10.1021/acsmaterialslett.2c00419
S. Zhao, W.J. Malfait, A. Demilecamps, Y. Zhang, S. Brunner et al., Strong, thermally superinsulating biopolymer–silica aerogel hybrids by cogelation of silicic acid with pectin. Angew. Chem. Int. Ed. 54, 14282–14286 (2015). https://doi.org/10.1002/anie.201507328
H. Huang, X. Yan, X. Jin, C. Wu, Y. Pan et al., Flexible and interlocked quartz fibre reinforced dual polyimide network for high-temperature thermal protection. J. Mater. Chem. A 11, 9931–9941 (2023). https://doi.org/10.1039/d3ta01413d
S. Shi, L. Li, J. Liang, S. Tang, Surface and volumetric ablation behaviors of SiFRP composites at high heating rates for thermal protection applications. Int. J. Heat Mass Transf. 102, 1190–1198 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.085
Z.-L. Yu, B. Qin, Z.-Y. Ma, J. Huang, S.-C. Li et al., Superelastic hard carbon nanofiber aerogels. Adv. Mater. 31, e1900651 (2019). https://doi.org/10.1002/adma.201900651
X. Ma, S. Liu, H. Luo, H. Guo, S. Jiang et al., MOF@wood derived ultrathin carbon composite film for electromagnetic interference shielding with effective absorption and electrothermal management. Adv. Funct. Mater. 34, 2310126 (2024). https://doi.org/10.1002/adfm.202310126
Y. Morikawa, S.-I. Nishimura, R.-I. Hashimoto, M. Ohnuma, A. Yamada, Mechanism of sodium storage in hard carbon: an X-ray scattering analysis. Adv. Energy Mater. 10, 1903176 (2020). https://doi.org/10.1002/aenm.201903176
C. Ding, L. Huang, X. Yan, F. Dunne, S. Hong et al., Robust, superelastic hard carbon with in situ ultrafine crystals. Adv. Funct. Mater. 30, 1907486 (2020). https://doi.org/10.1002/adfm.201907486
H. Guo, F. Wang, H. Luo, Y. Li, Z. Lou et al., Flexible TaC/C electrospun non–woven fabrics with multiple spatial-scale conductive frameworks for efficient electromagnetic interference shielding. Compos. A Appl. Sci. Manuf. 151, 106662 (2021). https://doi.org/10.1016/j.compositesa.2021.106662
R. Verma, P. Thakur, A. Chauhan, R. Jasrotia, A. Thakur, A review on MXene and its’ composites for electromagnetic interference (EMI) shielding applications. Carbon 208, 170–190 (2023). https://doi.org/10.1016/j.carbon.2023.03.050
W. Yang, D. Yang, H. Mei, L. Yao, S. Xiao et al., 3D printing of PDC-SiOC@SiC twins with high permittivity and electromagnetic interference shielding effectiveness. J. Eur. Ceram. Soc. 41, 5437–5444 (2021). https://doi.org/10.1016/j.jeurceramsoc.2021.04.048
C. Liang, Z. Gu, Y. Zhang, Z. Ma, H. Qiu et al., Structural design strategies of polymer matrix composites for electromagnetic interference shielding: a review. Nano-Micro Lett. 13, 181 (2021). https://doi.org/10.1007/s40820-021-00707-2
D. Chen, W. Zhang, K. Luo, Y. Song, Y. Zhong et al., Hard carbon for sodium storage: mechanism and optimization strategies toward commercialization. Energy Environ. Sci. 14, 2244–2262 (2021). https://doi.org/10.1039/D0EE03916K
S. Alvin, D. Yoon, C. Chandra, H.S. Cahyadi, J.-H. Park et al., Revealing sodium ion storage mechanism in hard carbon. Carbon 145, 67–81 (2019). https://doi.org/10.1016/j.carbon.2018.12.112
C.M. Jeffries, J. Ilavsky, A. Martel, S. Hinrichs, A. Meyer et al., Small-angle X-ray and neutron scattering. Nat. Rev. Meth. Primers 1, 70 (2021). https://doi.org/10.1038/s43586-021-00064-9
D. Saurel, J. Segalini, M. Jauregui, A. Pendashteh, B. Daffos et al., A SAXS outlook on disordered carbonaceous materials for electrochemical energy storage. Energy Storage Mater. 21, 162–173 (2019). https://doi.org/10.1016/j.ensm.2019.05.007