Low-Temperature Growing Anatase TiO2/SnO2 Multi-dimensional Heterojunctions at MXene Conductive Network for High-Efficient Perovskite Solar Cells
Corresponding Author: Yi Xiong
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 44
Abstract
A multi-dimensional conductive heterojunction structure, composited by TiO2, SnO2, and Ti3C2TX MXene, is facilely designed and applied as electron transport layer in efficient and stable planar perovskite solar cells. Based on an oxygen vacancy scramble effect, the zero-dimensional anatase TiO2 quantum dots, surrounding on two-dimensional conductive Ti3C2TX sheets, are in situ rooted on three-dimensional SnO2 nanoparticles, constructing nanoscale TiO2/SnO2 heterojunctions. The fabrication is implemented in a controlled low-temperature anneal method in air and then in N2 atmospheres. With the optimal MXene content, the optical property, the crystallinity of perovskite layer, and internal interfaces are all facilitated, contributing more amount of carrier with effective and rapid transferring in device. The champion power conversion efficiency of resultant perovskite solar cells achieves 19.14%, yet that of counterpart is just 16.83%. In addition, it can also maintain almost 85% of its initial performance for more than 45 days in 30–40% humidity air; comparatively, the counterpart declines to just below 75% of its initial performance.
Highlights:
1 Nanoscale multi-dimensional heterojunctions in situ grow at the edge of two-dimensional MXene conductive network.
2 A controlled anneal procedure in 150 °C is for preparing anatase TiO2/SnO2 heterojunctions with oxygen vacancy scramble effect.
3 The perovskite solar cells achieve high power conversion efficiency and high moisture-resistance stability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- National renewable energy laboratory, Best research-cell efficiencies. https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20190802.pdf (Accessed 22 Sept 2019)
- C. Chen, Z. Song, C. Xiao, D. Zhao, N. Shrestha et al., Achieving a high open-circuit voltage in inverted wide-bandgap perovskite solar cells with a graded perovskite homojunction. Nano Energy 61, 141–147 (2019). https://doi.org/10.1016/j.nanoen.2019.04.069
- J. Liang, Z. Chen, G. Yang, H. Wang, F. Ye, C. Tao, G. Fang, Achieving high open-circuit voltage on planar perovskite solar cells via chlorine -doped tin oxide electron transport layers. ACS Appl. Mater. Interfaces 11(26), 23152–23159 (2019). https://doi.org/10.1021/acsami.9b03873
- X. Ren, Z.S. Wang, W.C.H. Choy, Device physics of the carrier transporting layer in planar perovskite solar cells. Adv. Opt. Mater. 7(20), 1900407 (2019). https://doi.org/10.1002/adom.201900407
- G. Yang, H. Zhang, G. Li, G. Fang, Stabilizer-assisted growth of formamdinium-based perovskites for highly efficient and stable planar solar cells with over 22% efficiency. Nano Energy 63, 103835 (2019). https://doi.org/10.1016/j.nanoen.2019.06.031
- X. Ren, Z. Wang, W.E.I. Sha, W.C.H. Choy, Exploring the way to approach the efficiency limit of perovskite solar cells by drift-diffusion model. ACS Photon. 4(4), 934–942 (2017). https://doi.org/10.1021/acsphotonics.6b01043
- T. Meng, C. Liu, K. Wang, T. He, Y. Zhu, A. Al-Enizi, A. Elzatahry, X. Gong, High performance perovskite hybrid solar cells with E-beam-processed TiOx electron extraction layer. ACS Appl. Mater. Interfaces 8(3), 1876–1883 (2016). https://doi.org/10.1021/acsami.5b09873
- Y. Bai, Q. Dong, Y. Shao, Y. Deng, Q. Wang, L. Shen, D. Wang, W. Wei, J. Huang, Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene. Nat. Commun. 7, 12806 (2016). https://doi.org/10.1038/ncomms12806
- Z. Zhu, Q. Xue, H. He, K. Jiang, Z. Hu et al., A PCBM electron transport layer containing small amounts of dual polymer additives that enables enhanced perovskite solar cell performance. Adv. Sci. 3(9), 1500353 (2016). https://doi.org/10.1002/advs.201500353
- Q. Jiang, L. Zhang, H. Wang, X. Yang, J. Meng et al., Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy 2(1), 1–7 (2017). https://doi.org/10.1038/nenergy.2016.177
- W.Q. Wu, D. Chen, Y.B. Cheng, R.A. Caruso, Thin films of tin oxide nanosheets used as the electron transporting layer for improved performance and ambient stability of perovskite photovoltaics. Solar RRL 1(11), 1700117 (2017). https://doi.org/10.1002/solr.201700117
- L. Xiong, Y. Guo, J. Wen, H. Liu, G. Yang, P. Qin, G. Fang, Review on the application of SnO2 in perovskite solar cells. Adv. Funct. Mater. 28(35), 1802757 (2018). https://doi.org/10.1002/adfm.201802757
- J. Song, W. Zhang, D. Wang, K. Deng, J. Wu, Z. Lan, Colloidal synthesis of Y-doped SnO2 nanocrystals for efficient and slight hysteresis planar perovskite solar cells. Sol. Energy 185, 508–515 (2019). https://doi.org/10.1016/j.solener.2019.04.084
- Y. Bai, Y. Fang, Y. Deng, Q. Wang, J. Zhao, X. Zheng, Y. Zhang, J. Huang, Low temperature solution-processed Sb:SnO2 nanocrystals for efficient planar perovskite solar cells. Chemsuschem 9(18), 2686–2691 (2016). https://doi.org/10.1002/cssc.201600944
- M. Park, J.Y. Kim, H.J. Son, C.H. Lee, S.S. Jang, M.J. Ko, Low-temperature solution-processed Li-doped SnO2 as an effective electron transporting layer for high-performance flexible and wearable perovskite solar cells. Nano Energy 26, 208–215 (2016). https://doi.org/10.1016/j.nanoen.2016.04.060
- D. Yang, R. Yang, K. Wang, C. Wu, X. Zhu et al., High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nat. Commun. 9, 3239 (2018). https://doi.org/10.1038/s41467-018-05760-x
- X. Huang, Z. Hu, J. Xu, P. Wang, L. Wang, J. Zhang, Y. Zhu, Low-temperature processed SnO2 compact layer by incorporating TiO2 layer toward efficient planar heterojunction perovskite solar cells. Sol. Energ. Mat. Sol. C 164, 87–92 (2017). https://doi.org/10.1016/j.solmat.2017.02.010
- N. Zhou, Q. Cheng, L. Li, H. Zhou, Doping effects in SnO2 transport materia for high performance planar perovskite solar cells. J. Phys. D Appl. Phys. 51(39), 1–9 (2018). https://doi.org/10.1088/1361-6463/aad685
- Y. Hou, X. Chen, S. Yang, C. Li, H. Zhao, H.G. Yang, A band-edge potential gradient heterostructure to enhance electron extraction efficiency of the electron transport layer in high-performance perovskite solar cells. Adv. Funct. Mater. 27(27), 1700878 (2017). https://doi.org/10.1002/adfm.201700878
- M.M. Tavakoli, P. Yadav, R. Tavakoli, J. Kong, Surface engineering of TiO2 ETL for highly efficient and hysteresis-less planar perovskite solar cell (21.4%) with enhanced open-circuit voltage and stability. Adv. Energy Mater. (2018). https://doi.org/10.1002/aenm.201800794
- L. Huang, X. Zhou, R. Wu, C. Shi, R. Xue et al., Oriented haloing metal-organic framework providing high efficiency and high moisture-resistance for perovskite solar cells. J. Power Sources 433, 226699 (2019). https://doi.org/10.1016/j.jpowsour.2019.226699
- J. He, E. Bi, W. Tang, Y. Wang, X. Yang, H. Chen, L. Han, Low-temperature soft-cover-assisted hydrolysis deposition of large-scale TiO2 layer for efficient perovskite solar modules. Nano-Micro Lett. 10(3), 49 (2018). https://doi.org/10.1007/s40820-018-0203-7
- B. Ding, S.Y. Huang, Q.Q. Chu, Y. Li, C.X. Li, C.J. Li, G.J. Yang, Low-temperature SnO2-modified TiO2 yields record efficiency for normal planar perovskite solar modules. J. Mater. Chem. A 6(22), 10233–10242 (2018). https://doi.org/10.1039/c8ta01192c
- J. Xie, K. Huang, X. Yu, Z. Yang, K. Xiao et al., Enhanced electronic properties of SnO2 via electron transfer from graphene quantum dots for efficient perovskite solar cells. ACS Nano 11(9), 9176–9182 (2017). https://doi.org/10.1021/acsnano.7b04070
- N. Fu, C. Huang, P. Lin, M. Zhu, T. Li, M. Ye et al., Black phosphorus quantum dots as dual-functional electron-selective materials for efficient plastic perovskite solar cells. J. Mater. Chem. A 6(19), 8886–8894 (2018). https://doi.org/10.1039/c8ta01408f
- S. Wang, Q. Wang, W. Zeng, M. Wang, L. Ruan, Y. Ma, A new free-standing aqueous zinc-ion capacitor based on MnO2–CNTs cathode and MXene anode. Nano-Micro Lett. 11(1), 70 (2019). https://doi.org/10.1007/s40820-019-0301-1
- Z. Yu, W. Feng, W. Lu, B. Li, H. Yao, K. Zeng, J. Ouyang, MXenes with tunable work functions and their application as electron- and hole-transport materials in non-fullerene organic solar cells. J. Mater. Chem. A 7(18), 11160–11169 (2019). https://doi.org/10.1039/c9ta01195a
- Z. Guo, L. Gao, Z. Xu, S. Teo, C. Zhang, Y. Kamata, S. Hayase, T. Ma, High electrical conductivity 2D MXene serves as additive of perovskite for efficient solar cells. Small 14(47), 1802738 (2018). https://doi.org/10.1002/smll.201802738
- L. Yang, Y. Dall’Agnese, K. Hantanasirisakul, C.E. Shuck, K. Maleski et al., SnO2-Ti3C2 MXene electron transport layers for perovskite solar cells. J. Mater. Chem. A 7(10), 5635–5642 (2019). https://doi.org/10.1039/c8ta12140k
- J. Shi, S. Wang, X. Chen, Z. Chen, X. Du et al., An ultrahigh energy density quasi-solid-state zinc ion microbattery with excellent flexibility and thermostability. Adv. Energy Mater. (2019). https://doi.org/10.1002/aenm.201901957
- Q. Wang, S. Wang, X. Guo, L. Ruan, N. Wei et al., MXene -reduced graphene oxide aerogel for aqueous zinc-ion hybrid supercapacitor with ultralong cycle life. Adv. Elect. Mater. (2019). https://doi.org/10.1002/aelm.201900537
- Y. Yue, N. Liu, W. Liu, M. Li, Y. Ma et al., 3D hybrid porous MXene-sponge network and its application in piezoresistive sensor. Nano Energy 50, 79–87 (2018). https://doi.org/10.1016/j.nanoen.2018.05.020
- C. Peng, H. Wang, H. Yu, F. Peng, (111) TiO2-X/Ti3C2: synergy of active facets, interfacial charge transfer and Ti3+ doping for enhance photocatalytic activity. Mater. Res. Bull. 89, 16–25 (2017). https://doi.org/10.1016/j.materresbull.2016.12.049
- C. Peng, X. Yang, Y. Li, H. Yu, H. Wang, F. Peng, Hybrids of two-dimensional Ti3C2 and TiO2 exposing 001 facets toward enhanced photocatalytic activity. ACS Appl. Mater. Interfaces 8(9), 6051–6060 (2016). https://doi.org/10.1021/acsami.5b11973
- J. Zhu, Y. Tang, C. Yang, F. Wang, M. Cao, Composites of TiO2 nanoparticles deposited on Ti3C2 MXene nanosheets with enhanced electrochemical performance. J. Electrochem. Soc. 163(5), A785–A791 (2016). https://doi.org/10.1149/2.0981605jes
- X. Zhang, Y. Liu, S. Dong, Z. Ye, Y. Guo, One-step hydrothermal synthesis of a TiO2-Ti3C2TX nanocomposite with small sized TiO2 nanoparticles. Ceram. Int. 43(14), 11065–11070 (2017). https://doi.org/10.1016/j.ceramint.2017.05.151
- A. Shahzad, K. Rasool, M. Nawaz, W. Miran, J. Jang, M. Moztahida, K.A. Mahmoud, D.S. Lee, Heterostructural TiO2/Ti3C2TX (MXene) for photocatalytic degradation of antiepileptic drug carbamazepine. Chem. Eng. J. 349, 748–755 (2018). https://doi.org/10.1016/j.cej.2018.05.148
- J. Zhang, L. Yang, H. Wang, G. Zhu, H. Wen et al., In situ hydrothermal growth of TiO2 nanoparticles on a conductive Ti3C2TX MXene nanosheet: a synergistically active Ti-based nanohybrid electrocatalyst for enhanced N2 reduction to NH3 at ambient conditions. Inorg. Chem. 58(9), 5414–5418 (2019). https://doi.org/10.1021/acs.inorgchem.9b00606
- L. He, J. Liu, Y. Liu, B. Cui, B. Hu et al., Titanium dioxide encapsulated carbon-nitride nanosheets derived from MXene and melamine-cyanuric acid composite as a multifunctional electrocatalyst for hydrogen and oxygen evolution reaction and oxygen reduction reaction. Appl. Catal. B 248, 366–379 (2019). https://doi.org/10.1016/j.apcatb.2019.02.033
- J. Li, S. Wang, Y. Du, W. Liao, Enhanced photocatalytic performance of TiO2@C nanosheets derived from two-dimensional Ti2CTX. Ceram. Int. 44(6), 7042–7046 (2018). https://doi.org/10.1016/j.ceramint.2018.01.139
- R.B. Rakhi, B. Ahmed, M.N. Hedhili, D.H. Anjum, H.N. Alshareef, Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CTX MXene electrodes for supercapacitor applications. Chem. Mater. 27(15), 5314–5323 (2015). https://doi.org/10.1021/acs.chemmater.5b01623
- H. Liu, X. Zhang, Y. Zhu, B. Cao, Q. Zhu, P. Zhang, B. Xu, F. Wu, R. Chen, Electrostatic self-assembly of 0D-2D SnO2 quantum dots/Ti3C2TX MXene hybrids as anode for lithium-ion batteries. Nano-Micro Lett. 11(1), 65 (2019). https://doi.org/10.1007/s40820-019-0296-7
- R. Wu, J. Yao, S. Wang, X. Zhou, Q. Wang, L. Gao, W. Ding, X. Dang, W. Zeng, Ultra-compact, well-packed perovskite flat crystals: preparation and application in planar solar cells with high efficiency and humidity tolerance. ACS Appl. Mater. Interfaces 11(12), 11283–11291 (2019). https://doi.org/10.1021/acsami.8b17300
- R. Liu, M. Miao, Y. Li, J. Zhang, S. Cao, X. Feng, Ultrathin biomimetic polymeric Ti3C2TX MXene composite films for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10(51), 44787–44795 (2018). https://doi.org/10.1021/acsami.8b18347
- X. Ren, D. Yang, Z. Yang, J. Feng, X. Zhu, J. Niu, Y. Liu, W. Zhao, S.F. Liu, Solution-processed Nb:SnO2 electron transport layer for efficient planar perovskite solar cells. ACS Appl. Mater. Interfaces 9(3), 2421–2429 (2017). https://doi.org/10.1021/acsami.6b13362
- Z.X. Yang, G.D. Du, Q. Meng, Z.P. Guo, X.B. Yu, Z.X. Chen, T.L. Guo, R. Zeng, Dispersion of SnO2 nanocrystals on TiO2 (B) nanowires as anode material for lithium ion battery applications. RSC Adv. 1(9), 1834–1840 (2011). https://doi.org/10.1039/c1ra00500f
- T. Hanawa, A comprehensive review of techniques for biofunctionalization of titanium. J. Periodontal Implant Sci. 41(6), 263–272 (2011). https://doi.org/10.5051/jpis.2011.41.6.263
- X.L. Wang, X. Wang, Q.Y. Di, H.L. Zhao, B. Liang, J.K. Yang, Mutual effects of fluorine dopant and oxygen vacancies on structural and luminescence characteristics of F doped SnO2 nanoparticles. Materials 10(12), 1398 (2017). https://doi.org/10.3390/ma10121398
- S. Gubbala, H.B. Russell, H. Shah, J.B. Deb, H. Jasinski Rypkema, M.K. Sunkara, Surface properties of SnO2 nanowires for enhanced performance with dye-sensitized solar cells. Energ. Environ. Sci. 2(12), 1302–1309 (2009). https://doi.org/10.1039/b910174h
- Y. Alivov, Z.Y. Fan, A TiO2 nanostructure transformation: from ordered nanotubes to nanoparticles. Nanotechnology 20(40), 405610 (2009). https://doi.org/10.1088/0957-4484/20/40/405610
- M. Batzill, K. Katsiev, J.M. Burst, U. Diebold, A.M. Chaka, B. Delley, Gas-phase-dependent properties of SnO2 (110), (100), and (101) single-crystal surfaces: structure, composition, and electronic properties. Phys. Rev. B 72(16), 165414 (2005). https://doi.org/10.1103/PhysRevB.72.165414
- Y. Zhang, X.H. Zha, K.N. Luo Qiu, Y. Zhou et al., Tuning the electrical conductivity of Ti2CO2 MXene by varying the layer thickness and applying strains. J. Phys. Chem. C 123(11), 6802–6811 (2019). https://doi.org/10.1021/acs.jpcc.8b10888
- C. Shi, X. Zhou, W. Li, H. Guo, Y. Zhao, L. Ruan, C. Xu, W. Zeng, D. Liang, Synergistic enhancing photoelectrochemical response of Bi10O6S9 with WO3 optical heterojunction in wide wavelength range. Appl. Surf. Sci. 27, 144697 (2019). https://doi.org/10.1016/j.apsusc.2019.144697
- Y. Ma, N. Wei, Q. Wang, C. Wu, W. Zeng et al., Ultrathin PEDOT:PSS/RGO aerogel providing tape-like self-healable electrode for sensing space electric field with electrochemical mechanism. Adv. Elect. Mater. (2019). https://doi.org/10.1002/aelm.201900637
- Y. Zhang, X. Liu, P. Li, Y. Duan, X. Hu, F. Li, Y. Song, Dopamine-crosslinked TiO2/perovskite layer for efficient and photostable perovskite solar cells under full spectral continuous illumination. Nano Energy 56, 733–740 (2019). https://doi.org/10.1016/j.nanoen.2018.11.068
- Y. Zhao, H. Zhang, X. Ren, H.L. Zhu, Z. Huang et al., Thick TiO2-based top electron transport layer on perovskite for highly efficient and stable solar cells. ACS Energy Lett. 3(12), 2891–2898 (2018). https://doi.org/10.1021/acsenergylett.8b01507
- X. Zhao, S. Liu, H. Zhang, S.Y. Chang, W. Huang et al., 20% efficient perovskite solar cells with 2D electron transporting layer. Adv. Funct. Mater. 29(4), 1805168 (2019). https://doi.org/10.1002/adfm.201805168
- R. Wang, J. Xue, L. Meng, J.W. Lee, Z. Zhao et al., Caffeine improves the performance and thermal stability of perovskite solar cells. Joule 3(6), 1464–1477 (2019). https://doi.org/10.1016/j.joule.2019.04.005
- S. Yang, H. Zhao, M. Wu, S. Yuan, Y. Han et al., Highly efficient and stable planar CsPbI2Br perovskite solar cell with a new sensitive-dopant-free hole transport layer obtained via an effective surface passivation. Sol. Energ. Mat. Sol. C 201, 110052 (2019). https://doi.org/10.1016/j.solmat.2019.110052
- G. Yin, J. Ma, H. Jiang, J. Li, D. Yang et al., Enhancing efficiency and stability of perovskite solar cells through Nb-doping of TiO2 at low temperature. ACS Appl. Mater. Interfaces 9(12), 10752–10758 (2017). https://doi.org/10.1021/acsami.7b01063
- X. Fan, W. Nie, H. Tsai, N. Wang, H. Huang et al., PEDOT:PSS for flexible and stretchable electronics: modifications, strategies, and applications. Adv. Sci. 6(19), 1900813 (2019). https://doi.org/10.1002/advs.201900813
- X. Zhao, L. Tao, H. Li, W. Huang, P. Sun et al., Efficient planar perovskite solar cells with improved fill factor via interface engineering with graphene. Nano Lett. 18(4), 2442–2449 (2018). https://doi.org/10.1021/acs.nanolett.8b00025
- P. Qin, T. Wu, Z. Wang, X. Zheng, X. Yu, G. Fang, G. Li, Vitrification transformation of poly(ethylene oxide) activating interface passivation for high-efficiency perovskite solar cells. Solar RRL (2019). https://doi.org/10.1002/solr.201900134
References
National renewable energy laboratory, Best research-cell efficiencies. https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20190802.pdf (Accessed 22 Sept 2019)
C. Chen, Z. Song, C. Xiao, D. Zhao, N. Shrestha et al., Achieving a high open-circuit voltage in inverted wide-bandgap perovskite solar cells with a graded perovskite homojunction. Nano Energy 61, 141–147 (2019). https://doi.org/10.1016/j.nanoen.2019.04.069
J. Liang, Z. Chen, G. Yang, H. Wang, F. Ye, C. Tao, G. Fang, Achieving high open-circuit voltage on planar perovskite solar cells via chlorine -doped tin oxide electron transport layers. ACS Appl. Mater. Interfaces 11(26), 23152–23159 (2019). https://doi.org/10.1021/acsami.9b03873
X. Ren, Z.S. Wang, W.C.H. Choy, Device physics of the carrier transporting layer in planar perovskite solar cells. Adv. Opt. Mater. 7(20), 1900407 (2019). https://doi.org/10.1002/adom.201900407
G. Yang, H. Zhang, G. Li, G. Fang, Stabilizer-assisted growth of formamdinium-based perovskites for highly efficient and stable planar solar cells with over 22% efficiency. Nano Energy 63, 103835 (2019). https://doi.org/10.1016/j.nanoen.2019.06.031
X. Ren, Z. Wang, W.E.I. Sha, W.C.H. Choy, Exploring the way to approach the efficiency limit of perovskite solar cells by drift-diffusion model. ACS Photon. 4(4), 934–942 (2017). https://doi.org/10.1021/acsphotonics.6b01043
T. Meng, C. Liu, K. Wang, T. He, Y. Zhu, A. Al-Enizi, A. Elzatahry, X. Gong, High performance perovskite hybrid solar cells with E-beam-processed TiOx electron extraction layer. ACS Appl. Mater. Interfaces 8(3), 1876–1883 (2016). https://doi.org/10.1021/acsami.5b09873
Y. Bai, Q. Dong, Y. Shao, Y. Deng, Q. Wang, L. Shen, D. Wang, W. Wei, J. Huang, Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene. Nat. Commun. 7, 12806 (2016). https://doi.org/10.1038/ncomms12806
Z. Zhu, Q. Xue, H. He, K. Jiang, Z. Hu et al., A PCBM electron transport layer containing small amounts of dual polymer additives that enables enhanced perovskite solar cell performance. Adv. Sci. 3(9), 1500353 (2016). https://doi.org/10.1002/advs.201500353
Q. Jiang, L. Zhang, H. Wang, X. Yang, J. Meng et al., Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy 2(1), 1–7 (2017). https://doi.org/10.1038/nenergy.2016.177
W.Q. Wu, D. Chen, Y.B. Cheng, R.A. Caruso, Thin films of tin oxide nanosheets used as the electron transporting layer for improved performance and ambient stability of perovskite photovoltaics. Solar RRL 1(11), 1700117 (2017). https://doi.org/10.1002/solr.201700117
L. Xiong, Y. Guo, J. Wen, H. Liu, G. Yang, P. Qin, G. Fang, Review on the application of SnO2 in perovskite solar cells. Adv. Funct. Mater. 28(35), 1802757 (2018). https://doi.org/10.1002/adfm.201802757
J. Song, W. Zhang, D. Wang, K. Deng, J. Wu, Z. Lan, Colloidal synthesis of Y-doped SnO2 nanocrystals for efficient and slight hysteresis planar perovskite solar cells. Sol. Energy 185, 508–515 (2019). https://doi.org/10.1016/j.solener.2019.04.084
Y. Bai, Y. Fang, Y. Deng, Q. Wang, J. Zhao, X. Zheng, Y. Zhang, J. Huang, Low temperature solution-processed Sb:SnO2 nanocrystals for efficient planar perovskite solar cells. Chemsuschem 9(18), 2686–2691 (2016). https://doi.org/10.1002/cssc.201600944
M. Park, J.Y. Kim, H.J. Son, C.H. Lee, S.S. Jang, M.J. Ko, Low-temperature solution-processed Li-doped SnO2 as an effective electron transporting layer for high-performance flexible and wearable perovskite solar cells. Nano Energy 26, 208–215 (2016). https://doi.org/10.1016/j.nanoen.2016.04.060
D. Yang, R. Yang, K. Wang, C. Wu, X. Zhu et al., High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nat. Commun. 9, 3239 (2018). https://doi.org/10.1038/s41467-018-05760-x
X. Huang, Z. Hu, J. Xu, P. Wang, L. Wang, J. Zhang, Y. Zhu, Low-temperature processed SnO2 compact layer by incorporating TiO2 layer toward efficient planar heterojunction perovskite solar cells. Sol. Energ. Mat. Sol. C 164, 87–92 (2017). https://doi.org/10.1016/j.solmat.2017.02.010
N. Zhou, Q. Cheng, L. Li, H. Zhou, Doping effects in SnO2 transport materia for high performance planar perovskite solar cells. J. Phys. D Appl. Phys. 51(39), 1–9 (2018). https://doi.org/10.1088/1361-6463/aad685
Y. Hou, X. Chen, S. Yang, C. Li, H. Zhao, H.G. Yang, A band-edge potential gradient heterostructure to enhance electron extraction efficiency of the electron transport layer in high-performance perovskite solar cells. Adv. Funct. Mater. 27(27), 1700878 (2017). https://doi.org/10.1002/adfm.201700878
M.M. Tavakoli, P. Yadav, R. Tavakoli, J. Kong, Surface engineering of TiO2 ETL for highly efficient and hysteresis-less planar perovskite solar cell (21.4%) with enhanced open-circuit voltage and stability. Adv. Energy Mater. (2018). https://doi.org/10.1002/aenm.201800794
L. Huang, X. Zhou, R. Wu, C. Shi, R. Xue et al., Oriented haloing metal-organic framework providing high efficiency and high moisture-resistance for perovskite solar cells. J. Power Sources 433, 226699 (2019). https://doi.org/10.1016/j.jpowsour.2019.226699
J. He, E. Bi, W. Tang, Y. Wang, X. Yang, H. Chen, L. Han, Low-temperature soft-cover-assisted hydrolysis deposition of large-scale TiO2 layer for efficient perovskite solar modules. Nano-Micro Lett. 10(3), 49 (2018). https://doi.org/10.1007/s40820-018-0203-7
B. Ding, S.Y. Huang, Q.Q. Chu, Y. Li, C.X. Li, C.J. Li, G.J. Yang, Low-temperature SnO2-modified TiO2 yields record efficiency for normal planar perovskite solar modules. J. Mater. Chem. A 6(22), 10233–10242 (2018). https://doi.org/10.1039/c8ta01192c
J. Xie, K. Huang, X. Yu, Z. Yang, K. Xiao et al., Enhanced electronic properties of SnO2 via electron transfer from graphene quantum dots for efficient perovskite solar cells. ACS Nano 11(9), 9176–9182 (2017). https://doi.org/10.1021/acsnano.7b04070
N. Fu, C. Huang, P. Lin, M. Zhu, T. Li, M. Ye et al., Black phosphorus quantum dots as dual-functional electron-selective materials for efficient plastic perovskite solar cells. J. Mater. Chem. A 6(19), 8886–8894 (2018). https://doi.org/10.1039/c8ta01408f
S. Wang, Q. Wang, W. Zeng, M. Wang, L. Ruan, Y. Ma, A new free-standing aqueous zinc-ion capacitor based on MnO2–CNTs cathode and MXene anode. Nano-Micro Lett. 11(1), 70 (2019). https://doi.org/10.1007/s40820-019-0301-1
Z. Yu, W. Feng, W. Lu, B. Li, H. Yao, K. Zeng, J. Ouyang, MXenes with tunable work functions and their application as electron- and hole-transport materials in non-fullerene organic solar cells. J. Mater. Chem. A 7(18), 11160–11169 (2019). https://doi.org/10.1039/c9ta01195a
Z. Guo, L. Gao, Z. Xu, S. Teo, C. Zhang, Y. Kamata, S. Hayase, T. Ma, High electrical conductivity 2D MXene serves as additive of perovskite for efficient solar cells. Small 14(47), 1802738 (2018). https://doi.org/10.1002/smll.201802738
L. Yang, Y. Dall’Agnese, K. Hantanasirisakul, C.E. Shuck, K. Maleski et al., SnO2-Ti3C2 MXene electron transport layers for perovskite solar cells. J. Mater. Chem. A 7(10), 5635–5642 (2019). https://doi.org/10.1039/c8ta12140k
J. Shi, S. Wang, X. Chen, Z. Chen, X. Du et al., An ultrahigh energy density quasi-solid-state zinc ion microbattery with excellent flexibility and thermostability. Adv. Energy Mater. (2019). https://doi.org/10.1002/aenm.201901957
Q. Wang, S. Wang, X. Guo, L. Ruan, N. Wei et al., MXene -reduced graphene oxide aerogel for aqueous zinc-ion hybrid supercapacitor with ultralong cycle life. Adv. Elect. Mater. (2019). https://doi.org/10.1002/aelm.201900537
Y. Yue, N. Liu, W. Liu, M. Li, Y. Ma et al., 3D hybrid porous MXene-sponge network and its application in piezoresistive sensor. Nano Energy 50, 79–87 (2018). https://doi.org/10.1016/j.nanoen.2018.05.020
C. Peng, H. Wang, H. Yu, F. Peng, (111) TiO2-X/Ti3C2: synergy of active facets, interfacial charge transfer and Ti3+ doping for enhance photocatalytic activity. Mater. Res. Bull. 89, 16–25 (2017). https://doi.org/10.1016/j.materresbull.2016.12.049
C. Peng, X. Yang, Y. Li, H. Yu, H. Wang, F. Peng, Hybrids of two-dimensional Ti3C2 and TiO2 exposing 001 facets toward enhanced photocatalytic activity. ACS Appl. Mater. Interfaces 8(9), 6051–6060 (2016). https://doi.org/10.1021/acsami.5b11973
J. Zhu, Y. Tang, C. Yang, F. Wang, M. Cao, Composites of TiO2 nanoparticles deposited on Ti3C2 MXene nanosheets with enhanced electrochemical performance. J. Electrochem. Soc. 163(5), A785–A791 (2016). https://doi.org/10.1149/2.0981605jes
X. Zhang, Y. Liu, S. Dong, Z. Ye, Y. Guo, One-step hydrothermal synthesis of a TiO2-Ti3C2TX nanocomposite with small sized TiO2 nanoparticles. Ceram. Int. 43(14), 11065–11070 (2017). https://doi.org/10.1016/j.ceramint.2017.05.151
A. Shahzad, K. Rasool, M. Nawaz, W. Miran, J. Jang, M. Moztahida, K.A. Mahmoud, D.S. Lee, Heterostructural TiO2/Ti3C2TX (MXene) for photocatalytic degradation of antiepileptic drug carbamazepine. Chem. Eng. J. 349, 748–755 (2018). https://doi.org/10.1016/j.cej.2018.05.148
J. Zhang, L. Yang, H. Wang, G. Zhu, H. Wen et al., In situ hydrothermal growth of TiO2 nanoparticles on a conductive Ti3C2TX MXene nanosheet: a synergistically active Ti-based nanohybrid electrocatalyst for enhanced N2 reduction to NH3 at ambient conditions. Inorg. Chem. 58(9), 5414–5418 (2019). https://doi.org/10.1021/acs.inorgchem.9b00606
L. He, J. Liu, Y. Liu, B. Cui, B. Hu et al., Titanium dioxide encapsulated carbon-nitride nanosheets derived from MXene and melamine-cyanuric acid composite as a multifunctional electrocatalyst for hydrogen and oxygen evolution reaction and oxygen reduction reaction. Appl. Catal. B 248, 366–379 (2019). https://doi.org/10.1016/j.apcatb.2019.02.033
J. Li, S. Wang, Y. Du, W. Liao, Enhanced photocatalytic performance of TiO2@C nanosheets derived from two-dimensional Ti2CTX. Ceram. Int. 44(6), 7042–7046 (2018). https://doi.org/10.1016/j.ceramint.2018.01.139
R.B. Rakhi, B. Ahmed, M.N. Hedhili, D.H. Anjum, H.N. Alshareef, Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CTX MXene electrodes for supercapacitor applications. Chem. Mater. 27(15), 5314–5323 (2015). https://doi.org/10.1021/acs.chemmater.5b01623
H. Liu, X. Zhang, Y. Zhu, B. Cao, Q. Zhu, P. Zhang, B. Xu, F. Wu, R. Chen, Electrostatic self-assembly of 0D-2D SnO2 quantum dots/Ti3C2TX MXene hybrids as anode for lithium-ion batteries. Nano-Micro Lett. 11(1), 65 (2019). https://doi.org/10.1007/s40820-019-0296-7
R. Wu, J. Yao, S. Wang, X. Zhou, Q. Wang, L. Gao, W. Ding, X. Dang, W. Zeng, Ultra-compact, well-packed perovskite flat crystals: preparation and application in planar solar cells with high efficiency and humidity tolerance. ACS Appl. Mater. Interfaces 11(12), 11283–11291 (2019). https://doi.org/10.1021/acsami.8b17300
R. Liu, M. Miao, Y. Li, J. Zhang, S. Cao, X. Feng, Ultrathin biomimetic polymeric Ti3C2TX MXene composite films for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10(51), 44787–44795 (2018). https://doi.org/10.1021/acsami.8b18347
X. Ren, D. Yang, Z. Yang, J. Feng, X. Zhu, J. Niu, Y. Liu, W. Zhao, S.F. Liu, Solution-processed Nb:SnO2 electron transport layer for efficient planar perovskite solar cells. ACS Appl. Mater. Interfaces 9(3), 2421–2429 (2017). https://doi.org/10.1021/acsami.6b13362
Z.X. Yang, G.D. Du, Q. Meng, Z.P. Guo, X.B. Yu, Z.X. Chen, T.L. Guo, R. Zeng, Dispersion of SnO2 nanocrystals on TiO2 (B) nanowires as anode material for lithium ion battery applications. RSC Adv. 1(9), 1834–1840 (2011). https://doi.org/10.1039/c1ra00500f
T. Hanawa, A comprehensive review of techniques for biofunctionalization of titanium. J. Periodontal Implant Sci. 41(6), 263–272 (2011). https://doi.org/10.5051/jpis.2011.41.6.263
X.L. Wang, X. Wang, Q.Y. Di, H.L. Zhao, B. Liang, J.K. Yang, Mutual effects of fluorine dopant and oxygen vacancies on structural and luminescence characteristics of F doped SnO2 nanoparticles. Materials 10(12), 1398 (2017). https://doi.org/10.3390/ma10121398
S. Gubbala, H.B. Russell, H. Shah, J.B. Deb, H. Jasinski Rypkema, M.K. Sunkara, Surface properties of SnO2 nanowires for enhanced performance with dye-sensitized solar cells. Energ. Environ. Sci. 2(12), 1302–1309 (2009). https://doi.org/10.1039/b910174h
Y. Alivov, Z.Y. Fan, A TiO2 nanostructure transformation: from ordered nanotubes to nanoparticles. Nanotechnology 20(40), 405610 (2009). https://doi.org/10.1088/0957-4484/20/40/405610
M. Batzill, K. Katsiev, J.M. Burst, U. Diebold, A.M. Chaka, B. Delley, Gas-phase-dependent properties of SnO2 (110), (100), and (101) single-crystal surfaces: structure, composition, and electronic properties. Phys. Rev. B 72(16), 165414 (2005). https://doi.org/10.1103/PhysRevB.72.165414
Y. Zhang, X.H. Zha, K.N. Luo Qiu, Y. Zhou et al., Tuning the electrical conductivity of Ti2CO2 MXene by varying the layer thickness and applying strains. J. Phys. Chem. C 123(11), 6802–6811 (2019). https://doi.org/10.1021/acs.jpcc.8b10888
C. Shi, X. Zhou, W. Li, H. Guo, Y. Zhao, L. Ruan, C. Xu, W. Zeng, D. Liang, Synergistic enhancing photoelectrochemical response of Bi10O6S9 with WO3 optical heterojunction in wide wavelength range. Appl. Surf. Sci. 27, 144697 (2019). https://doi.org/10.1016/j.apsusc.2019.144697
Y. Ma, N. Wei, Q. Wang, C. Wu, W. Zeng et al., Ultrathin PEDOT:PSS/RGO aerogel providing tape-like self-healable electrode for sensing space electric field with electrochemical mechanism. Adv. Elect. Mater. (2019). https://doi.org/10.1002/aelm.201900637
Y. Zhang, X. Liu, P. Li, Y. Duan, X. Hu, F. Li, Y. Song, Dopamine-crosslinked TiO2/perovskite layer for efficient and photostable perovskite solar cells under full spectral continuous illumination. Nano Energy 56, 733–740 (2019). https://doi.org/10.1016/j.nanoen.2018.11.068
Y. Zhao, H. Zhang, X. Ren, H.L. Zhu, Z. Huang et al., Thick TiO2-based top electron transport layer on perovskite for highly efficient and stable solar cells. ACS Energy Lett. 3(12), 2891–2898 (2018). https://doi.org/10.1021/acsenergylett.8b01507
X. Zhao, S. Liu, H. Zhang, S.Y. Chang, W. Huang et al., 20% efficient perovskite solar cells with 2D electron transporting layer. Adv. Funct. Mater. 29(4), 1805168 (2019). https://doi.org/10.1002/adfm.201805168
R. Wang, J. Xue, L. Meng, J.W. Lee, Z. Zhao et al., Caffeine improves the performance and thermal stability of perovskite solar cells. Joule 3(6), 1464–1477 (2019). https://doi.org/10.1016/j.joule.2019.04.005
S. Yang, H. Zhao, M. Wu, S. Yuan, Y. Han et al., Highly efficient and stable planar CsPbI2Br perovskite solar cell with a new sensitive-dopant-free hole transport layer obtained via an effective surface passivation. Sol. Energ. Mat. Sol. C 201, 110052 (2019). https://doi.org/10.1016/j.solmat.2019.110052
G. Yin, J. Ma, H. Jiang, J. Li, D. Yang et al., Enhancing efficiency and stability of perovskite solar cells through Nb-doping of TiO2 at low temperature. ACS Appl. Mater. Interfaces 9(12), 10752–10758 (2017). https://doi.org/10.1021/acsami.7b01063
X. Fan, W. Nie, H. Tsai, N. Wang, H. Huang et al., PEDOT:PSS for flexible and stretchable electronics: modifications, strategies, and applications. Adv. Sci. 6(19), 1900813 (2019). https://doi.org/10.1002/advs.201900813
X. Zhao, L. Tao, H. Li, W. Huang, P. Sun et al., Efficient planar perovskite solar cells with improved fill factor via interface engineering with graphene. Nano Lett. 18(4), 2442–2449 (2018). https://doi.org/10.1021/acs.nanolett.8b00025
P. Qin, T. Wu, Z. Wang, X. Zheng, X. Yu, G. Fang, G. Li, Vitrification transformation of poly(ethylene oxide) activating interface passivation for high-efficiency perovskite solar cells. Solar RRL (2019). https://doi.org/10.1002/solr.201900134