Highly Efficient Photoelectrocatalytic Reduction of CO2 to Methanol by a p–n Heterojunction CeO2/CuO/Cu Catalyst
Corresponding Author: Peiqiang Li
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 18
Abstract
Photoelectrocatalytic reduction of CO2 to fuels has great potential for reducing anthropogenic CO2 emissions and also lessening our dependence on fossil fuel energy. Herein, we report the successful development of a novel photoelectrocatalytic catalyst for the selective reduction of CO2 to methanol, comprising a copper catalyst modified with flower-like cerium oxide nanoparticles (CeO2 NPs) (a n-type semiconductor) and copper oxide nanoparticles (CuO NPs) (a p-type semiconductor). At an applied potential of − 1.0 V (vs SCE) under visible light irradiation, the CeO2 NPs/CuO NPs/Cu catalyst yielded methanol at a rate of 3.44 μmol cm−2 h−1, which was approximately five times higher than that of a CuO NPs/Cu catalyst (0.67 μmol cm−2 h−1). The carrier concentration increased by ~ 108 times when the flower-like CeO2 NPs were deposited on the CuO NPs/Cu catalyst, due to synergistic transfer of photoexcited electrons from the conduction band of CuO to that of CeO2, which enhanced both photocatalytic and photoelectrocatalytic CO2 reduction on the CeO2 NPs. The facile migration of photoexcited electrons and holes across the p–n heterojunction that formed between the CeO2 and CuO components was thus critical to excellent light-induced CO2 reduction properties of the CeO2 NPs/CuO NPs/Cu catalyst. Results encourage the wider application of composite semiconductor electrodes in carbon dioxide reduction.
Highlights:
1 Flower-like CeO2 nanoparticles enhance the performance of CuO nanoparticle/Cu.
2 The system benefits from the heterojunction between p-type CuO and n-type CeO2.
3 The selective reduction of CO2 to methanol on the target catalyst is studied.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Burke, S.M. Hsiang, E. Miguel, Global non-linear effect of temperature on economic production. Nature 527, 235–239 (2015). https://doi.org/10.1038/nature15725
- S. Zhao, S. Li, T. Guo, S. Zhang, J. Wang, Y. Wu, Y. Chen, Advances in Sn-based catalysts for electrochemical CO2 reduction. Nano-Micro Lett. 11, 62 (2019). https://doi.org/10.1007/s40820-019-0293-x
- E.M. Volodin, Relation between temperature sensitivity to doubled carbon dioxide and the distribution of clouds in current climate models. Izvestiya Atmos. Ocean. Phys. 44, 288–299 (2008). https://doi.org/10.1134/S0001433808030043
- I. Tan, T. Storelvmo, M.D. Zelinka, Observational constraints on mixed-phase clouds imply higher climate sensitivity. Science 352, 224–227 (2016). https://doi.org/10.1126/science.aad5300
- I.C. Prentice, G. Farquhar, M. Fasham, M. Goulden, M. Heimann et al., The carbon cycle and atmospheric carbon dioxide. In IPCC Climate Change 2001 (2001), pp. 183–237. http://oceanrep.geomar.de/id/eprint/3422
- D. Schimel, B.B. Stephens, J.B. Fisher, Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl. Acad. Sci. 112, 436–441 (2015). https://doi.org/10.1073/pnas.1407302112
- W. Wang, S. Wang, X. Ma, J. Gong, Recent advances in catalytic hydrogenation of carbon dioxide. Chem. Soc. Rev. 40, 3703–3727 (2011). https://doi.org/10.1039/C1CS15008A
- R. Tanaka, M. Yamashita, K. Nozaki, Catalytic hydrogenation of carbon dioxide using Ir(III)-pincer complexes. J. Am. Chem. Soc. 131, 14168–14169 (2009). https://doi.org/10.1021/ja903574e
- R. Kuriki, K. Sekizawa, O. Ishitani, K. Maeda, Visible-light-driven CO2 reduction with carbon nitride: Enhancing the activity of ruthenium catalysts. Angew. Chem. Int. Ed. 54, 2406–2409 (2015). https://doi.org/10.1002/anie.201411170
- C. Gao, Q. Meng, K. Zhao, H. Yin, D. Wang et al., Co3O4 Hexagonal platelets with controllable facets enabling highly efficient visible-light photocatalytic reduction of CO2. Adv. Mater. 28, 6485–6490 (2016). https://doi.org/10.1002/adma.201601387
- D. Gao, H. Zhou, J. Wang, S. Miao, F. Yang, G. Wang, J. Wang, X. Bao, Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J. Am. Chem. Soc. 137, 4288–4291 (2015). https://doi.org/10.1021/jacs.5b00046
- M. Fujihira, Y. Hirata, K. Suga, Electrocatalytic reduction of CO2 by nickel(II) cyclam: Study of the reduction mechanism on mercury by cyclic voltammetry, polarography and electrocapillarity. J. Electroanal. Chem. 292, 199–215 (1990). https://doi.org/10.1016/0022-0728(90)87336-I
- P. Li, J. Xu, H. Jing, C. Wu, H. Peng, J. Lu, H. Yin, Wedged N-doped CuO with more negative conductive band and lower overpotential for high efficiency photoelectric converting CO2 to methanol. Appl. Catal. B Environ. 156, 134–140 (2014). https://doi.org/10.1016/j.apcatb.2014.03.011
- W.H. Wang, Y. Himeda, J.T. Muckerman, G.F. Manbeck, E. Fujita, CO2 hydrogenation to formate and methanol as an alternative to photo—and electrochemical CO2 reduction. Chem. Rev. 115, 12936–12973 (2015). https://doi.org/10.1021/acs.chemrev.5b00197
- M. Packer, Algal capture of carbon dioxide; biomass generation as a tool for greenhouse gas mitigation with reference to New Zealand energy strategy and policy. Energy Policy 37, 3428–3437 (2009). https://doi.org/10.1016/j.enpol.2008.12.025
- S.R. Chae, E.J. Hwang, H.S. Shin, Single cell protein production of Euglena gracilis and carbon dioxide fixation in an innovative photo-bioreactor. Bioresource Technol. 97, 322–329 (2006). https://doi.org/10.1016/j.biortech.2005.02.037
- X. Chang, T. Wang, J. Gong, CO2 photo-reduction: Insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci. 9, 2177–2196 (2016). https://doi.org/10.1039/C6EE00383D
- L. Jia, X. Sun, Y. Jiang, S. Yu, C. Wang, A novel MoSe2-reduced graphene oxide/polyimide composite film for applications in electrocatalysis and photoelectrocatalysis hydrogen evolution. Adv. Funct. Mater. 25, 1814–1820 (2015). https://doi.org/10.1002/adfm.201401814
- Q. Zhang, L. Gao, J. Guo, Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis. Appl. Catal. B Environ. 26, 207–215 (2000). https://doi.org/10.1016/S0926-3373(00)00122-3
- J. Bisquert, F. Fabregat-Santiago, I. Mora-Seró, G. Garcia-Belmonte, E.M. Barea, E. Palomares, A review of recent results on electrochemical determination of the density of electronic states of nanostructured metal-oxide semiconductors and organic hole conductors. Inorg. Chim. Acta 361, 684–698 (2008). https://doi.org/10.1016/j.ica.2007.05.032
- H. Shi, G. Chen, C. Zhang, Z. Zou, Polymeric g-C3N4 coupled with NaNbO3 nanowires toward enhanced photocatalytic reduction of CO2 into renewable fuel. ACS Inorg. Chim. Acta 4, 3637–3643 (2014). https://doi.org/10.1021/cs500848f
- S. Zhang, P. Kang, S. Ubnoske, M.K. Brennaman, N. Song, R.L. House, J.T. Glass, T.J. Meyer, Polyethylenimine-enhanced electrocatalytic reduction of CO2 to formate at nitrogen-doped carbon nanomaterials. J. Am. Chem. Soc. 136, 7845–7848 (2014). https://doi.org/10.1021/ja5031529
- Y. Yamazaki, H. Takeda, O. Ishitani, Photocatalytic reduction of CO2 using metal complexes. J. Photochem. Photobiol. C 25, 106–137 (2015). https://doi.org/10.1016/j.jphotochemrev.2015.09.001
- Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim. Acta 39, 1833–1839 (1994). https://doi.org/10.1016/0013-4686(94)85172-7
- J. Zhang, S.Z. Qiao, L. Qi, J. Yu, Fabrication of NiS modified CdS nanorod p-n junction photocatalysts with enhanced visible-light photocatalytic H2-production activity. Phys. Chem. Chem. Phys. 15, 12088–12094 (2013). https://doi.org/10.1039/C3CP50734C
- A.J. Cowan, J.R. Durrant, Long-lived charge separated states in nanostructured semiconductor photoelectrodes for the production of solar fuels. Chem. Soc. Rev. 42, 2281–2293 (2013). https://doi.org/10.1039/C2CS35305A
- J. Qiao, M. Fan, Y. Fu, Z. Bai, C. Ma, Y. Liu, X.D. Zhou, Highly-active copper oxide/copper electrocatalysts induced from hierarchical copper oxide nanospheres for carbon dioxide reduction reaction. Electrochim. Acta 153, 559–565 (2015). https://doi.org/10.1016/j.electacta.2014.09.147
- M. Le, M. Ren, Z. Zhang, P.T. Sprunger, R.L. Kurtz, J.C. Flake, Electrochemical reduction of CO2 to CH3OH at copper oxide surfaces. J. Electrochem. Soc. 158, E45–E49 (2011). https://doi.org/10.1149/1.3561636
- R. Gusain, P. Kumar, O.P. Sharma, S.L. Jain, O.P. Khatri, Reduced graphene oxide-CuO nanocomposites for photocatalytic conversion of CO2 into methanol under visible light irradiation. Appl. Catal. B Environ. 181, 352–362 (2016). https://doi.org/10.1016/j.apcatb.2015.08.012
- H.R. Kim, A. Razzaq, C.A. Grimes, S.I. In, Heterojunction p-n-p Cu2O/S-TiO2/CuO: Synthesis and application to photocatalytic conversion of CO2 to methane. J. CO2 Util. 20, 91–96 (2017). https://doi.org/10.1016/j.jcou.2017.05.008
- P.V. Kamat, Manipulation of Charge Transfer Across Semiconductor Interface. A criterion that cannot be ignored in photocatalyst design. J. Phys. Chem. Lett. 3, 663–672 (2012). https://doi.org/10.1021/jz201629p
- S. Qin, F. Xin, Y. Liu, X. Yin, W. Ma, Photocatalytic reduction of CO2 in methanol to methyl formate over CuO-TiO2 composite catalysts. J. Colloid Interf. Sci. 356, 257–261 (2011). https://doi.org/10.1016/j.jcis.2010.12.034
- H. Kominami, A. Tanaka, K. Hashimoto, Mineralization of organic acids in aqueous suspensions of gold nanoparticles supported on cerium(IV) oxide powder under visible light irradiation. Chem. Commun. 46, 1287–1289 (2010). https://doi.org/10.1039/B919598J
- P. Ji, J. Zhang, F. Chen, M. Anpo, Study of adsorption and degradation of acid orange 7 on the surface of CeO2 under visible light irradiation. Appl. Catal. B Environ. 85, 148–154 (2009). https://doi.org/10.1016/j.apcatb.2008.07.004
- J. Graciani, K. Mudiyanselage, F. Xu, A.E. Baber, J. Evans et al., Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2. Science 345, 546–550 (2014). https://doi.org/10.1126/science.1253057
- M.J. Wolf, J. Kullgren, P. Broqvist, K. Hermansson, Fluorine impurities at CeO2(111): Effects on oxygen vacancy formation, molecular adsorption, and surface re-oxidation. J. Chem. Phys. 146, 044703 (2017). https://doi.org/10.1063/1.4973239
- X.H. Lu, D.Z. Zheng, J.Y. Gan, Z.Q. Liu, C.I. Liang, P. Liu, Y.X. Tong, Porous CeO2 nanowires/nanowire arrays: Electrochemical synthesis and application in water treatment. J. Mater. Chem. 20, 7118–7122 (2010). https://doi.org/10.1039/C0JM00487A
- P. Li, H. Wang, J. Xu, H. Jing, J. Zhang, H. Han, F. Lu, Reduction of CO2 to low carbon alcohols on CuO FCs/Fe2O3 NTs catalyst with photoelectric dual catalytic interfaces. Nanoscale 5(23), 11748–11754 (2013). https://doi.org/10.1039/C3NR03352J
- L. Artiglia, F. Orlando, K. Roy, R. Kopelent, O. Safonova, M. Nachtegaal, T. Huthwelker, J.A. van Bokhoven, Introducing time resolution to detect Ce3+ catalytically active sites at the Pt/CeO2 interface through ambient pressure X-ray photoelectron spectroscopy. J. Phys. Chem. Lett. 8, 102–108 (2017). https://doi.org/10.1021/acs.jpclett.6b02314
- Y. Wang, Z. Chen, P. Han, Y. Du, Z. Gu, X. Xu, G. Zheng, Single-atomic Cu with multiple oxygen vacancies on ceria for electrocatalytic CO2 reduction to CH4. ACS Catal. 8, 7113–7119 (2018). https://doi.org/10.1021/acscatal.8b01014
- E. Johnson, R. Willardson, A. Beer, Semiconductors and semimetals. Opt. Prop. III-V. Comp. 3, 153 (1967)
- K. Gelderman, L. Lee, S.W. Donne, Flat-band potential of a semiconductor: Using the Mott–Schottky equation. J. Chem. Educ. 84, 685 (2007). https://doi.org/10.1021/ed084p685
- Z. Yang, J. Xu, C. Wu, H. Jing, P. Li, H. Yin, New insight into photoelectric converting CO2 to CH3OH on the one-dimensional ribbon CoPc enhanced Fe2O3 NTs. Appl. Catal. B Environ. 156, 249–256 (2014). https://doi.org/10.1016/j.apcatb.2014.03.012
- W. Schottky, Zur halbleitertheorie der sperrschicht- und spitzengleichrichter. Z. Phys. 113, 367–414 (1939). https://doi.org/10.1007/BF01340116
- W. Schottky, Halbleitertheorie der sperrschicht. Naturwissenschaften 26, 843 (1938). https://doi.org/10.1007/BF01774216
- N.F. Mott, The theory of crystal rectifiers. Proc. R. Soc. Lond. A 171, 27–38 (1939). https://doi.org/10.1098/rspa.1939.0051
- P. Li, X. Sui, J. Xu, H. Jing, C. Wu, H. Peng, J. Lu, H. Yin, Worm-like InP/TiO2 NTs heterojunction with unmatched energy band photo-enhanced electrocatalytic reduction of CO2 to methanol. Chem. Eng. J. 247, 25–32 (2014). https://doi.org/10.1016/j.cej.2014.03.001
- P. Burroughs, A. Hamnett, A.F. Orchard, G. Thornton, Satellite structure in the X-ray photoelectron spectra of some binary and mixed oxides of lanthanum and cerium. J. Chem. Soc. Dalton Trans. 17, 1686–1698 (1976). https://doi.org/10.1039/DT9760001686
- C. Ho, J.C. Yu, T. Kwong, A.C. Mak, S. Lai, Morphology-controllable synthesis of mesoporous CeO2 nano—and microstructures. Chem. Mater. 17, 4514–4522 (2005). https://doi.org/10.1021/cm0507967
- S. Issarapanacheewin, K. Wetchakun, S. Phanichphant, W. Kangwansupamonkon, N. Wetchakun, A novel CeO2/Bi2WO6 composite with highly enhanced photocatalytic activity. Mater. Lett. 156, 28–31 (2015). https://doi.org/10.1016/j.matlet.2015.04.139
References
M. Burke, S.M. Hsiang, E. Miguel, Global non-linear effect of temperature on economic production. Nature 527, 235–239 (2015). https://doi.org/10.1038/nature15725
S. Zhao, S. Li, T. Guo, S. Zhang, J. Wang, Y. Wu, Y. Chen, Advances in Sn-based catalysts for electrochemical CO2 reduction. Nano-Micro Lett. 11, 62 (2019). https://doi.org/10.1007/s40820-019-0293-x
E.M. Volodin, Relation between temperature sensitivity to doubled carbon dioxide and the distribution of clouds in current climate models. Izvestiya Atmos. Ocean. Phys. 44, 288–299 (2008). https://doi.org/10.1134/S0001433808030043
I. Tan, T. Storelvmo, M.D. Zelinka, Observational constraints on mixed-phase clouds imply higher climate sensitivity. Science 352, 224–227 (2016). https://doi.org/10.1126/science.aad5300
I.C. Prentice, G. Farquhar, M. Fasham, M. Goulden, M. Heimann et al., The carbon cycle and atmospheric carbon dioxide. In IPCC Climate Change 2001 (2001), pp. 183–237. http://oceanrep.geomar.de/id/eprint/3422
D. Schimel, B.B. Stephens, J.B. Fisher, Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl. Acad. Sci. 112, 436–441 (2015). https://doi.org/10.1073/pnas.1407302112
W. Wang, S. Wang, X. Ma, J. Gong, Recent advances in catalytic hydrogenation of carbon dioxide. Chem. Soc. Rev. 40, 3703–3727 (2011). https://doi.org/10.1039/C1CS15008A
R. Tanaka, M. Yamashita, K. Nozaki, Catalytic hydrogenation of carbon dioxide using Ir(III)-pincer complexes. J. Am. Chem. Soc. 131, 14168–14169 (2009). https://doi.org/10.1021/ja903574e
R. Kuriki, K. Sekizawa, O. Ishitani, K. Maeda, Visible-light-driven CO2 reduction with carbon nitride: Enhancing the activity of ruthenium catalysts. Angew. Chem. Int. Ed. 54, 2406–2409 (2015). https://doi.org/10.1002/anie.201411170
C. Gao, Q. Meng, K. Zhao, H. Yin, D. Wang et al., Co3O4 Hexagonal platelets with controllable facets enabling highly efficient visible-light photocatalytic reduction of CO2. Adv. Mater. 28, 6485–6490 (2016). https://doi.org/10.1002/adma.201601387
D. Gao, H. Zhou, J. Wang, S. Miao, F. Yang, G. Wang, J. Wang, X. Bao, Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J. Am. Chem. Soc. 137, 4288–4291 (2015). https://doi.org/10.1021/jacs.5b00046
M. Fujihira, Y. Hirata, K. Suga, Electrocatalytic reduction of CO2 by nickel(II) cyclam: Study of the reduction mechanism on mercury by cyclic voltammetry, polarography and electrocapillarity. J. Electroanal. Chem. 292, 199–215 (1990). https://doi.org/10.1016/0022-0728(90)87336-I
P. Li, J. Xu, H. Jing, C. Wu, H. Peng, J. Lu, H. Yin, Wedged N-doped CuO with more negative conductive band and lower overpotential for high efficiency photoelectric converting CO2 to methanol. Appl. Catal. B Environ. 156, 134–140 (2014). https://doi.org/10.1016/j.apcatb.2014.03.011
W.H. Wang, Y. Himeda, J.T. Muckerman, G.F. Manbeck, E. Fujita, CO2 hydrogenation to formate and methanol as an alternative to photo—and electrochemical CO2 reduction. Chem. Rev. 115, 12936–12973 (2015). https://doi.org/10.1021/acs.chemrev.5b00197
M. Packer, Algal capture of carbon dioxide; biomass generation as a tool for greenhouse gas mitigation with reference to New Zealand energy strategy and policy. Energy Policy 37, 3428–3437 (2009). https://doi.org/10.1016/j.enpol.2008.12.025
S.R. Chae, E.J. Hwang, H.S. Shin, Single cell protein production of Euglena gracilis and carbon dioxide fixation in an innovative photo-bioreactor. Bioresource Technol. 97, 322–329 (2006). https://doi.org/10.1016/j.biortech.2005.02.037
X. Chang, T. Wang, J. Gong, CO2 photo-reduction: Insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci. 9, 2177–2196 (2016). https://doi.org/10.1039/C6EE00383D
L. Jia, X. Sun, Y. Jiang, S. Yu, C. Wang, A novel MoSe2-reduced graphene oxide/polyimide composite film for applications in electrocatalysis and photoelectrocatalysis hydrogen evolution. Adv. Funct. Mater. 25, 1814–1820 (2015). https://doi.org/10.1002/adfm.201401814
Q. Zhang, L. Gao, J. Guo, Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis. Appl. Catal. B Environ. 26, 207–215 (2000). https://doi.org/10.1016/S0926-3373(00)00122-3
J. Bisquert, F. Fabregat-Santiago, I. Mora-Seró, G. Garcia-Belmonte, E.M. Barea, E. Palomares, A review of recent results on electrochemical determination of the density of electronic states of nanostructured metal-oxide semiconductors and organic hole conductors. Inorg. Chim. Acta 361, 684–698 (2008). https://doi.org/10.1016/j.ica.2007.05.032
H. Shi, G. Chen, C. Zhang, Z. Zou, Polymeric g-C3N4 coupled with NaNbO3 nanowires toward enhanced photocatalytic reduction of CO2 into renewable fuel. ACS Inorg. Chim. Acta 4, 3637–3643 (2014). https://doi.org/10.1021/cs500848f
S. Zhang, P. Kang, S. Ubnoske, M.K. Brennaman, N. Song, R.L. House, J.T. Glass, T.J. Meyer, Polyethylenimine-enhanced electrocatalytic reduction of CO2 to formate at nitrogen-doped carbon nanomaterials. J. Am. Chem. Soc. 136, 7845–7848 (2014). https://doi.org/10.1021/ja5031529
Y. Yamazaki, H. Takeda, O. Ishitani, Photocatalytic reduction of CO2 using metal complexes. J. Photochem. Photobiol. C 25, 106–137 (2015). https://doi.org/10.1016/j.jphotochemrev.2015.09.001
Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim. Acta 39, 1833–1839 (1994). https://doi.org/10.1016/0013-4686(94)85172-7
J. Zhang, S.Z. Qiao, L. Qi, J. Yu, Fabrication of NiS modified CdS nanorod p-n junction photocatalysts with enhanced visible-light photocatalytic H2-production activity. Phys. Chem. Chem. Phys. 15, 12088–12094 (2013). https://doi.org/10.1039/C3CP50734C
A.J. Cowan, J.R. Durrant, Long-lived charge separated states in nanostructured semiconductor photoelectrodes for the production of solar fuels. Chem. Soc. Rev. 42, 2281–2293 (2013). https://doi.org/10.1039/C2CS35305A
J. Qiao, M. Fan, Y. Fu, Z. Bai, C. Ma, Y. Liu, X.D. Zhou, Highly-active copper oxide/copper electrocatalysts induced from hierarchical copper oxide nanospheres for carbon dioxide reduction reaction. Electrochim. Acta 153, 559–565 (2015). https://doi.org/10.1016/j.electacta.2014.09.147
M. Le, M. Ren, Z. Zhang, P.T. Sprunger, R.L. Kurtz, J.C. Flake, Electrochemical reduction of CO2 to CH3OH at copper oxide surfaces. J. Electrochem. Soc. 158, E45–E49 (2011). https://doi.org/10.1149/1.3561636
R. Gusain, P. Kumar, O.P. Sharma, S.L. Jain, O.P. Khatri, Reduced graphene oxide-CuO nanocomposites for photocatalytic conversion of CO2 into methanol under visible light irradiation. Appl. Catal. B Environ. 181, 352–362 (2016). https://doi.org/10.1016/j.apcatb.2015.08.012
H.R. Kim, A. Razzaq, C.A. Grimes, S.I. In, Heterojunction p-n-p Cu2O/S-TiO2/CuO: Synthesis and application to photocatalytic conversion of CO2 to methane. J. CO2 Util. 20, 91–96 (2017). https://doi.org/10.1016/j.jcou.2017.05.008
P.V. Kamat, Manipulation of Charge Transfer Across Semiconductor Interface. A criterion that cannot be ignored in photocatalyst design. J. Phys. Chem. Lett. 3, 663–672 (2012). https://doi.org/10.1021/jz201629p
S. Qin, F. Xin, Y. Liu, X. Yin, W. Ma, Photocatalytic reduction of CO2 in methanol to methyl formate over CuO-TiO2 composite catalysts. J. Colloid Interf. Sci. 356, 257–261 (2011). https://doi.org/10.1016/j.jcis.2010.12.034
H. Kominami, A. Tanaka, K. Hashimoto, Mineralization of organic acids in aqueous suspensions of gold nanoparticles supported on cerium(IV) oxide powder under visible light irradiation. Chem. Commun. 46, 1287–1289 (2010). https://doi.org/10.1039/B919598J
P. Ji, J. Zhang, F. Chen, M. Anpo, Study of adsorption and degradation of acid orange 7 on the surface of CeO2 under visible light irradiation. Appl. Catal. B Environ. 85, 148–154 (2009). https://doi.org/10.1016/j.apcatb.2008.07.004
J. Graciani, K. Mudiyanselage, F. Xu, A.E. Baber, J. Evans et al., Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2. Science 345, 546–550 (2014). https://doi.org/10.1126/science.1253057
M.J. Wolf, J. Kullgren, P. Broqvist, K. Hermansson, Fluorine impurities at CeO2(111): Effects on oxygen vacancy formation, molecular adsorption, and surface re-oxidation. J. Chem. Phys. 146, 044703 (2017). https://doi.org/10.1063/1.4973239
X.H. Lu, D.Z. Zheng, J.Y. Gan, Z.Q. Liu, C.I. Liang, P. Liu, Y.X. Tong, Porous CeO2 nanowires/nanowire arrays: Electrochemical synthesis and application in water treatment. J. Mater. Chem. 20, 7118–7122 (2010). https://doi.org/10.1039/C0JM00487A
P. Li, H. Wang, J. Xu, H. Jing, J. Zhang, H. Han, F. Lu, Reduction of CO2 to low carbon alcohols on CuO FCs/Fe2O3 NTs catalyst with photoelectric dual catalytic interfaces. Nanoscale 5(23), 11748–11754 (2013). https://doi.org/10.1039/C3NR03352J
L. Artiglia, F. Orlando, K. Roy, R. Kopelent, O. Safonova, M. Nachtegaal, T. Huthwelker, J.A. van Bokhoven, Introducing time resolution to detect Ce3+ catalytically active sites at the Pt/CeO2 interface through ambient pressure X-ray photoelectron spectroscopy. J. Phys. Chem. Lett. 8, 102–108 (2017). https://doi.org/10.1021/acs.jpclett.6b02314
Y. Wang, Z. Chen, P. Han, Y. Du, Z. Gu, X. Xu, G. Zheng, Single-atomic Cu with multiple oxygen vacancies on ceria for electrocatalytic CO2 reduction to CH4. ACS Catal. 8, 7113–7119 (2018). https://doi.org/10.1021/acscatal.8b01014
E. Johnson, R. Willardson, A. Beer, Semiconductors and semimetals. Opt. Prop. III-V. Comp. 3, 153 (1967)
K. Gelderman, L. Lee, S.W. Donne, Flat-band potential of a semiconductor: Using the Mott–Schottky equation. J. Chem. Educ. 84, 685 (2007). https://doi.org/10.1021/ed084p685
Z. Yang, J. Xu, C. Wu, H. Jing, P. Li, H. Yin, New insight into photoelectric converting CO2 to CH3OH on the one-dimensional ribbon CoPc enhanced Fe2O3 NTs. Appl. Catal. B Environ. 156, 249–256 (2014). https://doi.org/10.1016/j.apcatb.2014.03.012
W. Schottky, Zur halbleitertheorie der sperrschicht- und spitzengleichrichter. Z. Phys. 113, 367–414 (1939). https://doi.org/10.1007/BF01340116
W. Schottky, Halbleitertheorie der sperrschicht. Naturwissenschaften 26, 843 (1938). https://doi.org/10.1007/BF01774216
N.F. Mott, The theory of crystal rectifiers. Proc. R. Soc. Lond. A 171, 27–38 (1939). https://doi.org/10.1098/rspa.1939.0051
P. Li, X. Sui, J. Xu, H. Jing, C. Wu, H. Peng, J. Lu, H. Yin, Worm-like InP/TiO2 NTs heterojunction with unmatched energy band photo-enhanced electrocatalytic reduction of CO2 to methanol. Chem. Eng. J. 247, 25–32 (2014). https://doi.org/10.1016/j.cej.2014.03.001
P. Burroughs, A. Hamnett, A.F. Orchard, G. Thornton, Satellite structure in the X-ray photoelectron spectra of some binary and mixed oxides of lanthanum and cerium. J. Chem. Soc. Dalton Trans. 17, 1686–1698 (1976). https://doi.org/10.1039/DT9760001686
C. Ho, J.C. Yu, T. Kwong, A.C. Mak, S. Lai, Morphology-controllable synthesis of mesoporous CeO2 nano—and microstructures. Chem. Mater. 17, 4514–4522 (2005). https://doi.org/10.1021/cm0507967
S. Issarapanacheewin, K. Wetchakun, S. Phanichphant, W. Kangwansupamonkon, N. Wetchakun, A novel CeO2/Bi2WO6 composite with highly enhanced photocatalytic activity. Mater. Lett. 156, 28–31 (2015). https://doi.org/10.1016/j.matlet.2015.04.139