Ultrastable and High-Performance Silk Energy Harvesting Textiles
Corresponding Author: Shengjie Ling
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 12
Abstract
Energy harvesting textiles (EHTs) have attracted much attention in wearable electronics and the internet-of-things for real-time mechanical energy harvesting associated with human activities. However, to satisfy practical application requirements, especially the demand for long-term use, it is challenging to construct an energy harvesting textile with elegant trade-off between mechanical and triboelectric performance. In this study, an energy harvesting textile was constructed using natural silk inspired hierarchical structural designs combined with rational material screening; this design strategy provides multiscale opportunities to optimize the mechanical and triboelectric performance of the final textile system. The resulting EHTs with traditional advantages of textiles showed good mechanical properties (tensile strength of 237 ± 13 MPa and toughness of 4.5 ± 0.4 MJ m−3 for single yarns), high power output (3.5 mW m−2), and excellent structural stability (99% conductivity maintained after 2.3 million multi-type cyclic deformations without severe change in appearance), exhibiting broad application prospects in integrated intelligent clothing, energy harvesting, and human-interactive interfaces.
Article Highlights:
1 An energy harvesting textile with an elegant trade-off of mechanical and triboelectric performance was constructed by hierarchical structural design.
2 Modified rotor co-spinning technique was developed to produce triboelectric yarns in large scale.
3 Mass-producible energy harvesting textiles show ultrahigh stability withstands millions of multi-type cyclic deformations and various applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Di, X. Zhang, Z. Yong, Y. Zhang, D. Li, R. Li, Q. Li, Carbon-nanotube fibers for wearable devices and smart textiles. Adv. Mater. 28, 10529–10538 (2016). https://doi.org/10.1002/adma.201601186
- M. Zhang, M. Zhao, M. Jian, C. Wang, A. Yu et al., Printable smart pattern for multifunctional energy-management e-textile. Matter 1, 168–179 (2019). https://doi.org/10.1016/j.matt.2019.02.003
- J. Wang, X. Li, Y. Zi, S. Wang, Z. Li, L. Zheng, F. Yi, S. Li, Z.L. Wang, A flexible fiber-based supercapacitor–triboelectric-nanogenerator power system for wearable electronics. Adv. Mater. 27, 4830–4836 (2015). https://doi.org/10.1002/adma.201501934
- K. Dong, X. Peng, Z.L. Wang, Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv. Mater. 31, 1902549 (2019). https://doi.org/10.1002/adma.201902549
- S.S. Kwak, H.J. Yoon, S.W. Kim, Textile-based triboelectric nanogenerators for self-powered wearable electronics. Adv. Funct. Mater. 29, 1804533 (2019). https://doi.org/10.1002/adfm.201804533
- K. Dong, Y.C. Wang, J. Deng, Y. Dai, S.L. Zhang, H. Zou, B. Gu, B. Sun, Z.L. Wang, A highly stretchable and washable all-yarn-based self-charging knitting power textile composed of fiber triboelectric nanogenerators and supercapacitors. ACS Nano 11, 9490–9499 (2017). https://doi.org/10.1021/acsnano.7b05317
- C. Wu, A.C. Wang, W. Ding, H. Guo, Z.L. Wang, Triboelectric nanogenerator: a foundation of the energy for the new era. Adv. Energy Mater. 9, 1802906 (2019). https://doi.org/10.1002/aenm.201802906
- B.A. MacLeod, N.J. Stanton, I.E. Gould, D. Wesenberg, R. Ihly et al., Large n- and p-type thermoelectric power factors from doped semiconducting single-walled carbon nanotube thin films. Energy Environ. Sci. 10, 2168–2179 (2017). https://doi.org/10.1039/C7EE01130J
- M.K. Nazeeruddin, Twenty-five years of low-cost solar cells. Nature 538, 463–464 (2016). https://doi.org/10.1038/538463a
- X. Pu, W. Song, M. Liu, C. Sun, C. Du et al., Wearable power-textiles by integrating fabric triboelectric nanogenerators and fiber-shaped dye-sensitized solar cells. Adv. Energy Mater. 6, 1601048 (2016). https://doi.org/10.1002/aenm.201601048
- J. Chen, Y. Huang, N. Zhang, H. Zou, R. Liu, C. Tao, X. Fan, Z.L. Wang, Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat. Energy 1, 16138 (2016). https://doi.org/10.1038/nenergy.2016.138
- K. Dong, J. Deng, Y. Zi, Y.C. Wang, C. Xu et al., 3d orthogonal woven triboelectric nanogenerator for effective biomechanical energy harvesting and as self-powered active motion sensors. Adv. Mater. 29, 1702648 (2017). https://doi.org/10.1002/adma.201702648
- K. Dong, J. Deng, W. Ding, A.C. Wang, P. Wang et al., Versatile core–sheath yarn for sustainable biomechanical energy harvesting and real-time human-interactive sensing. Adv. Energy Mater. 8, 1801114 (2018). https://doi.org/10.1002/aenm.201801114
- R. Cao, X. Pu, X. Du, W. Yang, J. Wang et al., Screen-printed washable electronic textiles as self-powered touch/gesture tribo-sensors for intelligent human–machine interaction. ACS Nano 12, 5190–5196 (2018). https://doi.org/10.1021/acsnano.8b02477
- Q. Qiu, M. Zhu, Z. Li, K. Qiu, X. Liu, J. Yu, B. Ding, Highly flexible, breathable, tailorable and washable power generation fabrics for wearable electronics. Nano Energy 58, 750–758 (2019). https://doi.org/10.1016/j.nanoen.2019.02.010
- T. Zhou, C. Zhang, C.B. Han, F.R. Fan, W. Tang, Z.L. Wang, Woven structured triboelectric nanogenerator for wearable devices. ACS Appl. Mater. Interfaces 6, 14695–14701 (2014). https://doi.org/10.1021/am504110u
- Z. Junwen, Z. Yan, Z. Qize, H. Qiyi, H. Bin, W. Zhong Lin, Z. Jun, Fiber-based generator for wearable electronics and mobile medication. ACS Nano 8, 6273–6280 (2014). https://doi.org/10.1021/nn501732z
- X. Pu, L. Li, M. Liu, C. Jiang, C. Du, Z. Zhao, W. Hu, Z.L. Wang, Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators. Adv. Mater. 28, 98–105 (2016). https://doi.org/10.1002/adma.201504403
- L. Zhang, Y. Yu, G.P. Eyer, G. Suo, T.L. Andrew, All-textile triboelectric generator compatible with traditional textile process. Adv. Mater. Technol. 1, 1600147 (2016). https://doi.org/10.1002/admt.201600147
- X. Pu, L.X. Li, H.Q. Song, C.H. Du, Z.F. Zhao et al., A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics. Adv. Mater. 27, 2472–2478 (2015). https://doi.org/10.1002/adma.201500311
- S. Wang, L. Lin, Z.L. Wang, Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett. 12, 6339–6346 (2012). https://doi.org/10.1021/nl303573d
- J. Tao, Y. Yao, X. Liang, L. Zhang, T. Xiao, L.W. Zhong, Spring-assisted triboelectric nanogenerator for efficiently harvesting water wave energy. Nano Energy 31, 560–567 (2016). https://doi.org/10.1016/j.nanoen.2016.12.004
- Y. Hua, H. Xu, W. Ding, Y. Hu, Z.L. Wang, A self-powered dynamic displacement monitoring system based on triboelectric accelerometer. Adv. Energy Mater. 7, 1700565 (2017). https://doi.org/10.1002/aenm.201700565
- X. Yi, H. Guo, Y. Zi, X. Li, L.W. Zhong, Multifunctional teng for blue energy scavenging and self-powered wind-speed sensor. Adv. Energy Mater. 7, 1602397 (2017). https://doi.org/10.1002/aenm.201602397
- Z. Wang, J. Cheng, Q. Guan, H. Huang, Y. Li et al., All-in-one fiber for stretchable fiber-shaped tandem supercapacitors. Nano Energy 45, 210–219 (2018). https://doi.org/10.1016/j.nanoen.2017.12.054
- Z. Zhang, M. Liao, H. Lou, Y. Hu, X. Sun, H. Peng, Conjugated polymers for flexible energy harvesting and storage. Adv. Mater. 30, 1704261 (2018). https://doi.org/10.1002/adma.201704261
- Z. Guo, Y. Zhao, Y. Ding, X. Dong, L. Chen et al., Multi-functional flexible aqueous sodium-ion batteries with high safety. Chem 3, 348–362 (2017). https://doi.org/10.1016/j.chempr.2017.05.004
- L. Persano, C. Dagdeviren, Y. Su, Y. Zhang, S. Girardo, D. Pisignano, Y. Huang, J.A. Rogers, High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nat. Commun. 4, 1633 (2013). https://doi.org/10.1038/ncomms2639
- S. Ling, Q. Wang, D. Zhang, Y. Zhang, X. Mu, D.L. Kaplan, M.J. Buehler, Integration of stiff graphene and tough silk for the design and fabrication of versatile electronic materials. Adv. Funct. Mater. 28, 1705291 (2018). https://doi.org/10.1002/adfm.201705291
- Z. Wen, M.H. Yeh, H. Guo, J. Wang, Y. Zi et al., Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Sci. Adv. 2, e1600097 (2016). https://doi.org/10.1126/sciadv.1600097
- S. Ling, W. Chen, Y. Fan, K. Zheng, K. Jin, H. Yu, M.J. Buehler, D.L. Kaplan, Biopolymer nanofibrils: structure, modeling, preparation, and applications. Prog. Polymer Sci. 85, 1–56 (2018). https://doi.org/10.1016/j.progpolymsci.2018.06.004
- S. Ling, D.L. Kaplan, M.J. Buehler, Nanofibrils in nature and materials engineering. Nat. Rev. Mater. 3, 18016 (2018). https://doi.org/10.1038/natrevmats.2018.16
- M. Eder, S. Amini, P. Fratzl, Biological composites—complex structures for functional diversity. Science 362, 543–547 (2018). https://doi.org/10.1126/science.aat8297
- S.E. Naleway, M.M. Porter, J. McKittrick, M.A. Meyers, Structural design elements in biological materials: application to bioinspiration. Adv. Mater. 27, 5455–5476 (2015). https://doi.org/10.1002/adma.201502403
- C.W. Lin, J.H. Lin, Manufacture and application of high-performance geogrids with pp/pet composite covered yarn. Text. Res. J. 75, 453 (2005). https://doi.org/10.1177/0040517505053872
- G. Zhu, B. Peng, J. Chen, Q. Jing, Z.L. Wang, Triboelectric nanogenerators as a new energy technology: from fundamentals, devices, to applications. Nano Energy 14, 126–138 (2015). https://doi.org/10.1016/j.nanoen.2014.11.050
- X. Cao, Y. Jie, N. Wang, Z.L. Wang, Triboelectric nanogenerators driven self-powered electrochemical processes for energy and environmental science. Adv. Energy Mater. 6, 1600665 (2016). https://doi.org/10.1002/aenm.201600665
- H. Zou, Y. Zhang, L. Guo, P. Wang, X. He, G. Dai, H. Zheng, C. Chen, A.C. Wang, C. Xu, Z.L. Wang, Quantifying the triboelectric series. Nat. Commun. 10, 1427 (2019). https://doi.org/10.1038/s41467-019-09461-x
- R. Elsdon, F.R.G. Mitchell, Contact electrification of polymers. J. Phys D-Appl. Phys. 9, 1445 (1976). https://doi.org/10.1088/0022-3727/9/10/010
- J. Henniker, Triboelectricity in polymers. Nature 196, 474 (1962). https://doi.org/10.1038/196474a0
- Z.L. Wang, Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7, 9533–9557 (2013). https://doi.org/10.1021/nn404614z
- X.S. Zhang, J. Brugger, B. Kim, A silk-fibroin-based transparent triboelectric generator suitable for autonomous sensor network. Nano Energy 20, 37–47 (2016). https://doi.org/10.1016/j.nanoen.2015.11.036
- H.J. Kim, J.H. Kim, K.W. Jun, J.H. Kim, W.C. Seung et al., Silk nanofiber-networked bio-triboelectric generator: silk bio-teg. Adv. Energy Mater. 6, 1502329 (2016). https://doi.org/10.1002/aenm.201502329
- J.L. Yarger, B.R. Cherry, A. van der Vaart, Uncovering the structure–function relationship in spider silk. Nat. Rev. Mater. 3, 18008 (2018). https://doi.org/10.1038/natrevmats.2018.8
- Z. Shao, F. Vollrath, Materials: surprising strength of silkworm silk. Nature 418, 741 (2002). https://doi.org/10.1038/418741a
- Y. Wang, J. Guo, L. Zhou, C. Ye, F.G. Omenetto, D.L. Kaplan, S. Ling, Design, fabrication, and function of silk-based nanomaterials. Adv. Funct. Mater. 28, 1805305 (2018). https://doi.org/10.1002/adfm.201805305
- W. Zhang, C. Ye, K. Zheng, J. Zhong, Y. Tang et al., Tensan silk-inspired hierarchical fibers for smart textile applications. ACS Nano 12, 6968–6977 (2018). https://doi.org/10.1021/acsnano.8b02430
- C. Ye, J. Ren, Y. Wang, W. Zhang, C. Qian et al., Design and fabrication of silk templated electronic yarns and applications in multifunctional textiles. Matter 1, 1411–1425 (2019). https://doi.org/10.1016/j.matt.2019.07.016
- H.W. Krause, H.A. Soliman, Theoretical study of the strength of single jet false twist spun yarns. Text. Res. J. 60, 309–318 (1990). https://doi.org/10.1177/004051759006000601
- Y. Xie, W. Oxenham, P. Grosberg, 24—a study of the strength of wrapped yarns part i: the theoretical model. J. Text. Inst. Proc. Abstr. 77, 10 (1986). https://doi.org/10.1080/00405008608658424
- H.M. Behery, M.F. Nunes, 33—the structure, tensile properties, and morphology of failure of wrapped yarns. J. Text. Inst. Proc. Abstr. 77, 386–402 (1986). https://doi.org/10.1080/00405008608658435
- W. Thierron, The flexural rigidity of polyester-fibre–cotton yarns produced on the ring, rotor, and friction-spinning systems. J. Text. Inst. 76, 454–458 (1985). https://doi.org/10.1080/00405008508658961
- G.A.V. Leaf, 28—The bending behaviour of a helical filament part i: the rigidity of the helix. J. Text. Inst. 70, 323–329 (1979). https://doi.org/10.1080/00405007908658860
- D.N.E. Cooper, 24—The stiffness of woven textiles. J. Text. Inst. Trans. 51, T317–T335 (1960). https://doi.org/10.1080/19447026008659775
- A. Tayebi, S. Backer, 70—The mechanics of self-plying structures. Part ii: multifilament strands. J. Text. Inst. 64, 711–717 (1973). https://doi.org/10.1080/00405007308630328
- S. Niu, Y. Liu, S. Wang, L. Lin, Y.S. Zhou, Y. Hu, Z.L. Wang, Theory of sliding-mode triboelectric nanogenerators. Adv. Mater. 25, 6184–6193 (2013). https://doi.org/10.1002/adma.201302808
- L.H. Lee, Dual mechanism for metal-polymer contact electrification. J. Electrost. 32, 1–29 (1994). https://doi.org/10.1016/0304-3886(94)90026-4
- F. Saurenbach, D. Wollmann, B.D. Terris, A.F. Diaz, Force microscopy of ion-containing polymer surfaces: morphology and charge structure. Langmuir 8, 1199–1203 (1992). https://doi.org/10.1021/la00040a030
- S. Niu, S. Wang, L. Lin, Y. Liu, Y.S. Zhou, Y. Hu, Z.L. Wang, Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 6, 3576–3583 (2013). https://doi.org/10.1039/C3EE42571A
- H. Mankodi, Developments in hybrid yarns. Specialist Yarn and Fabric Structures (Woodhead Publishing Limited, 2011), pp. 21–55
- J. Zhang, J. Liu, R.C. Zhuang, E. Mader, G. Heinrich, S.L. Gao, Single MWNT-glass fiber as strain sensor and switch. Adv. Mater. 23, 3392–3397 (2011). https://doi.org/10.1002/adma.201101104
- Y. Hu, H. Cheng, F. Zhao, N. Chen, L. Jiang, Z. Feng, L. Qu, All-in-one graphene fiber supercapacitor. Nanoscale 6, 6448–6451 (2014). https://doi.org/10.1039/C4NR01220H
- J. Chen, J. Yang, Z. Li, X. Fan, Y. Zi et al., Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy. ACS Nano 9, 3324–3331 (2015). https://doi.org/10.1021/acsnano.5b00534
- L. Xu, T.Z. Bu, X.D. Yang, C. Zhang, Z.L. Wang, Ultrahigh charge density realized by charge pumping at ambient conditions for triboelectric nanogenerators. Nano Energy 49, 625–633 (2018). https://doi.org/10.1016/j.nanoen.2018.05.011
- G. Gu, C. Han, J. Tian, C. Lu, C. He, T. Jiang, Z. Li, Z.L. Wang, Antibacterial composite film-based triboelectric nanogenerator for harvesting walking energy. ACS Appl. Mater. Interfaces 9, 11882–11888 (2017). https://doi.org/10.1021/acsami.7b00230
References
J. Di, X. Zhang, Z. Yong, Y. Zhang, D. Li, R. Li, Q. Li, Carbon-nanotube fibers for wearable devices and smart textiles. Adv. Mater. 28, 10529–10538 (2016). https://doi.org/10.1002/adma.201601186
M. Zhang, M. Zhao, M. Jian, C. Wang, A. Yu et al., Printable smart pattern for multifunctional energy-management e-textile. Matter 1, 168–179 (2019). https://doi.org/10.1016/j.matt.2019.02.003
J. Wang, X. Li, Y. Zi, S. Wang, Z. Li, L. Zheng, F. Yi, S. Li, Z.L. Wang, A flexible fiber-based supercapacitor–triboelectric-nanogenerator power system for wearable electronics. Adv. Mater. 27, 4830–4836 (2015). https://doi.org/10.1002/adma.201501934
K. Dong, X. Peng, Z.L. Wang, Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv. Mater. 31, 1902549 (2019). https://doi.org/10.1002/adma.201902549
S.S. Kwak, H.J. Yoon, S.W. Kim, Textile-based triboelectric nanogenerators for self-powered wearable electronics. Adv. Funct. Mater. 29, 1804533 (2019). https://doi.org/10.1002/adfm.201804533
K. Dong, Y.C. Wang, J. Deng, Y. Dai, S.L. Zhang, H. Zou, B. Gu, B. Sun, Z.L. Wang, A highly stretchable and washable all-yarn-based self-charging knitting power textile composed of fiber triboelectric nanogenerators and supercapacitors. ACS Nano 11, 9490–9499 (2017). https://doi.org/10.1021/acsnano.7b05317
C. Wu, A.C. Wang, W. Ding, H. Guo, Z.L. Wang, Triboelectric nanogenerator: a foundation of the energy for the new era. Adv. Energy Mater. 9, 1802906 (2019). https://doi.org/10.1002/aenm.201802906
B.A. MacLeod, N.J. Stanton, I.E. Gould, D. Wesenberg, R. Ihly et al., Large n- and p-type thermoelectric power factors from doped semiconducting single-walled carbon nanotube thin films. Energy Environ. Sci. 10, 2168–2179 (2017). https://doi.org/10.1039/C7EE01130J
M.K. Nazeeruddin, Twenty-five years of low-cost solar cells. Nature 538, 463–464 (2016). https://doi.org/10.1038/538463a
X. Pu, W. Song, M. Liu, C. Sun, C. Du et al., Wearable power-textiles by integrating fabric triboelectric nanogenerators and fiber-shaped dye-sensitized solar cells. Adv. Energy Mater. 6, 1601048 (2016). https://doi.org/10.1002/aenm.201601048
J. Chen, Y. Huang, N. Zhang, H. Zou, R. Liu, C. Tao, X. Fan, Z.L. Wang, Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat. Energy 1, 16138 (2016). https://doi.org/10.1038/nenergy.2016.138
K. Dong, J. Deng, Y. Zi, Y.C. Wang, C. Xu et al., 3d orthogonal woven triboelectric nanogenerator for effective biomechanical energy harvesting and as self-powered active motion sensors. Adv. Mater. 29, 1702648 (2017). https://doi.org/10.1002/adma.201702648
K. Dong, J. Deng, W. Ding, A.C. Wang, P. Wang et al., Versatile core–sheath yarn for sustainable biomechanical energy harvesting and real-time human-interactive sensing. Adv. Energy Mater. 8, 1801114 (2018). https://doi.org/10.1002/aenm.201801114
R. Cao, X. Pu, X. Du, W. Yang, J. Wang et al., Screen-printed washable electronic textiles as self-powered touch/gesture tribo-sensors for intelligent human–machine interaction. ACS Nano 12, 5190–5196 (2018). https://doi.org/10.1021/acsnano.8b02477
Q. Qiu, M. Zhu, Z. Li, K. Qiu, X. Liu, J. Yu, B. Ding, Highly flexible, breathable, tailorable and washable power generation fabrics for wearable electronics. Nano Energy 58, 750–758 (2019). https://doi.org/10.1016/j.nanoen.2019.02.010
T. Zhou, C. Zhang, C.B. Han, F.R. Fan, W. Tang, Z.L. Wang, Woven structured triboelectric nanogenerator for wearable devices. ACS Appl. Mater. Interfaces 6, 14695–14701 (2014). https://doi.org/10.1021/am504110u
Z. Junwen, Z. Yan, Z. Qize, H. Qiyi, H. Bin, W. Zhong Lin, Z. Jun, Fiber-based generator for wearable electronics and mobile medication. ACS Nano 8, 6273–6280 (2014). https://doi.org/10.1021/nn501732z
X. Pu, L. Li, M. Liu, C. Jiang, C. Du, Z. Zhao, W. Hu, Z.L. Wang, Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators. Adv. Mater. 28, 98–105 (2016). https://doi.org/10.1002/adma.201504403
L. Zhang, Y. Yu, G.P. Eyer, G. Suo, T.L. Andrew, All-textile triboelectric generator compatible with traditional textile process. Adv. Mater. Technol. 1, 1600147 (2016). https://doi.org/10.1002/admt.201600147
X. Pu, L.X. Li, H.Q. Song, C.H. Du, Z.F. Zhao et al., A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics. Adv. Mater. 27, 2472–2478 (2015). https://doi.org/10.1002/adma.201500311
S. Wang, L. Lin, Z.L. Wang, Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett. 12, 6339–6346 (2012). https://doi.org/10.1021/nl303573d
J. Tao, Y. Yao, X. Liang, L. Zhang, T. Xiao, L.W. Zhong, Spring-assisted triboelectric nanogenerator for efficiently harvesting water wave energy. Nano Energy 31, 560–567 (2016). https://doi.org/10.1016/j.nanoen.2016.12.004
Y. Hua, H. Xu, W. Ding, Y. Hu, Z.L. Wang, A self-powered dynamic displacement monitoring system based on triboelectric accelerometer. Adv. Energy Mater. 7, 1700565 (2017). https://doi.org/10.1002/aenm.201700565
X. Yi, H. Guo, Y. Zi, X. Li, L.W. Zhong, Multifunctional teng for blue energy scavenging and self-powered wind-speed sensor. Adv. Energy Mater. 7, 1602397 (2017). https://doi.org/10.1002/aenm.201602397
Z. Wang, J. Cheng, Q. Guan, H. Huang, Y. Li et al., All-in-one fiber for stretchable fiber-shaped tandem supercapacitors. Nano Energy 45, 210–219 (2018). https://doi.org/10.1016/j.nanoen.2017.12.054
Z. Zhang, M. Liao, H. Lou, Y. Hu, X. Sun, H. Peng, Conjugated polymers for flexible energy harvesting and storage. Adv. Mater. 30, 1704261 (2018). https://doi.org/10.1002/adma.201704261
Z. Guo, Y. Zhao, Y. Ding, X. Dong, L. Chen et al., Multi-functional flexible aqueous sodium-ion batteries with high safety. Chem 3, 348–362 (2017). https://doi.org/10.1016/j.chempr.2017.05.004
L. Persano, C. Dagdeviren, Y. Su, Y. Zhang, S. Girardo, D. Pisignano, Y. Huang, J.A. Rogers, High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nat. Commun. 4, 1633 (2013). https://doi.org/10.1038/ncomms2639
S. Ling, Q. Wang, D. Zhang, Y. Zhang, X. Mu, D.L. Kaplan, M.J. Buehler, Integration of stiff graphene and tough silk for the design and fabrication of versatile electronic materials. Adv. Funct. Mater. 28, 1705291 (2018). https://doi.org/10.1002/adfm.201705291
Z. Wen, M.H. Yeh, H. Guo, J. Wang, Y. Zi et al., Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Sci. Adv. 2, e1600097 (2016). https://doi.org/10.1126/sciadv.1600097
S. Ling, W. Chen, Y. Fan, K. Zheng, K. Jin, H. Yu, M.J. Buehler, D.L. Kaplan, Biopolymer nanofibrils: structure, modeling, preparation, and applications. Prog. Polymer Sci. 85, 1–56 (2018). https://doi.org/10.1016/j.progpolymsci.2018.06.004
S. Ling, D.L. Kaplan, M.J. Buehler, Nanofibrils in nature and materials engineering. Nat. Rev. Mater. 3, 18016 (2018). https://doi.org/10.1038/natrevmats.2018.16
M. Eder, S. Amini, P. Fratzl, Biological composites—complex structures for functional diversity. Science 362, 543–547 (2018). https://doi.org/10.1126/science.aat8297
S.E. Naleway, M.M. Porter, J. McKittrick, M.A. Meyers, Structural design elements in biological materials: application to bioinspiration. Adv. Mater. 27, 5455–5476 (2015). https://doi.org/10.1002/adma.201502403
C.W. Lin, J.H. Lin, Manufacture and application of high-performance geogrids with pp/pet composite covered yarn. Text. Res. J. 75, 453 (2005). https://doi.org/10.1177/0040517505053872
G. Zhu, B. Peng, J. Chen, Q. Jing, Z.L. Wang, Triboelectric nanogenerators as a new energy technology: from fundamentals, devices, to applications. Nano Energy 14, 126–138 (2015). https://doi.org/10.1016/j.nanoen.2014.11.050
X. Cao, Y. Jie, N. Wang, Z.L. Wang, Triboelectric nanogenerators driven self-powered electrochemical processes for energy and environmental science. Adv. Energy Mater. 6, 1600665 (2016). https://doi.org/10.1002/aenm.201600665
H. Zou, Y. Zhang, L. Guo, P. Wang, X. He, G. Dai, H. Zheng, C. Chen, A.C. Wang, C. Xu, Z.L. Wang, Quantifying the triboelectric series. Nat. Commun. 10, 1427 (2019). https://doi.org/10.1038/s41467-019-09461-x
R. Elsdon, F.R.G. Mitchell, Contact electrification of polymers. J. Phys D-Appl. Phys. 9, 1445 (1976). https://doi.org/10.1088/0022-3727/9/10/010
J. Henniker, Triboelectricity in polymers. Nature 196, 474 (1962). https://doi.org/10.1038/196474a0
Z.L. Wang, Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7, 9533–9557 (2013). https://doi.org/10.1021/nn404614z
X.S. Zhang, J. Brugger, B. Kim, A silk-fibroin-based transparent triboelectric generator suitable for autonomous sensor network. Nano Energy 20, 37–47 (2016). https://doi.org/10.1016/j.nanoen.2015.11.036
H.J. Kim, J.H. Kim, K.W. Jun, J.H. Kim, W.C. Seung et al., Silk nanofiber-networked bio-triboelectric generator: silk bio-teg. Adv. Energy Mater. 6, 1502329 (2016). https://doi.org/10.1002/aenm.201502329
J.L. Yarger, B.R. Cherry, A. van der Vaart, Uncovering the structure–function relationship in spider silk. Nat. Rev. Mater. 3, 18008 (2018). https://doi.org/10.1038/natrevmats.2018.8
Z. Shao, F. Vollrath, Materials: surprising strength of silkworm silk. Nature 418, 741 (2002). https://doi.org/10.1038/418741a
Y. Wang, J. Guo, L. Zhou, C. Ye, F.G. Omenetto, D.L. Kaplan, S. Ling, Design, fabrication, and function of silk-based nanomaterials. Adv. Funct. Mater. 28, 1805305 (2018). https://doi.org/10.1002/adfm.201805305
W. Zhang, C. Ye, K. Zheng, J. Zhong, Y. Tang et al., Tensan silk-inspired hierarchical fibers for smart textile applications. ACS Nano 12, 6968–6977 (2018). https://doi.org/10.1021/acsnano.8b02430
C. Ye, J. Ren, Y. Wang, W. Zhang, C. Qian et al., Design and fabrication of silk templated electronic yarns and applications in multifunctional textiles. Matter 1, 1411–1425 (2019). https://doi.org/10.1016/j.matt.2019.07.016
H.W. Krause, H.A. Soliman, Theoretical study of the strength of single jet false twist spun yarns. Text. Res. J. 60, 309–318 (1990). https://doi.org/10.1177/004051759006000601
Y. Xie, W. Oxenham, P. Grosberg, 24—a study of the strength of wrapped yarns part i: the theoretical model. J. Text. Inst. Proc. Abstr. 77, 10 (1986). https://doi.org/10.1080/00405008608658424
H.M. Behery, M.F. Nunes, 33—the structure, tensile properties, and morphology of failure of wrapped yarns. J. Text. Inst. Proc. Abstr. 77, 386–402 (1986). https://doi.org/10.1080/00405008608658435
W. Thierron, The flexural rigidity of polyester-fibre–cotton yarns produced on the ring, rotor, and friction-spinning systems. J. Text. Inst. 76, 454–458 (1985). https://doi.org/10.1080/00405008508658961
G.A.V. Leaf, 28—The bending behaviour of a helical filament part i: the rigidity of the helix. J. Text. Inst. 70, 323–329 (1979). https://doi.org/10.1080/00405007908658860
D.N.E. Cooper, 24—The stiffness of woven textiles. J. Text. Inst. Trans. 51, T317–T335 (1960). https://doi.org/10.1080/19447026008659775
A. Tayebi, S. Backer, 70—The mechanics of self-plying structures. Part ii: multifilament strands. J. Text. Inst. 64, 711–717 (1973). https://doi.org/10.1080/00405007308630328
S. Niu, Y. Liu, S. Wang, L. Lin, Y.S. Zhou, Y. Hu, Z.L. Wang, Theory of sliding-mode triboelectric nanogenerators. Adv. Mater. 25, 6184–6193 (2013). https://doi.org/10.1002/adma.201302808
L.H. Lee, Dual mechanism for metal-polymer contact electrification. J. Electrost. 32, 1–29 (1994). https://doi.org/10.1016/0304-3886(94)90026-4
F. Saurenbach, D. Wollmann, B.D. Terris, A.F. Diaz, Force microscopy of ion-containing polymer surfaces: morphology and charge structure. Langmuir 8, 1199–1203 (1992). https://doi.org/10.1021/la00040a030
S. Niu, S. Wang, L. Lin, Y. Liu, Y.S. Zhou, Y. Hu, Z.L. Wang, Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 6, 3576–3583 (2013). https://doi.org/10.1039/C3EE42571A
H. Mankodi, Developments in hybrid yarns. Specialist Yarn and Fabric Structures (Woodhead Publishing Limited, 2011), pp. 21–55
J. Zhang, J. Liu, R.C. Zhuang, E. Mader, G. Heinrich, S.L. Gao, Single MWNT-glass fiber as strain sensor and switch. Adv. Mater. 23, 3392–3397 (2011). https://doi.org/10.1002/adma.201101104
Y. Hu, H. Cheng, F. Zhao, N. Chen, L. Jiang, Z. Feng, L. Qu, All-in-one graphene fiber supercapacitor. Nanoscale 6, 6448–6451 (2014). https://doi.org/10.1039/C4NR01220H
J. Chen, J. Yang, Z. Li, X. Fan, Y. Zi et al., Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy. ACS Nano 9, 3324–3331 (2015). https://doi.org/10.1021/acsnano.5b00534
L. Xu, T.Z. Bu, X.D. Yang, C. Zhang, Z.L. Wang, Ultrahigh charge density realized by charge pumping at ambient conditions for triboelectric nanogenerators. Nano Energy 49, 625–633 (2018). https://doi.org/10.1016/j.nanoen.2018.05.011
G. Gu, C. Han, J. Tian, C. Lu, C. He, T. Jiang, Z. Li, Z.L. Wang, Antibacterial composite film-based triboelectric nanogenerator for harvesting walking energy. ACS Appl. Mater. Interfaces 9, 11882–11888 (2017). https://doi.org/10.1021/acsami.7b00230