Advances in Conceptual Electronic Nanodevices based on 0D and 1D Nanomaterials
Corresponding Author: Qing Zhang
Nano-Micro Letters,
Vol. 6 No. 1 (2014), Article Number: 1-19
Abstract
Nanoelectronic devices are being extensively developed in these years with a large variety of potential applications. In this article, some recent developments in nanoelectronic devices, including their principles, structures and potential applications are reviewed. As nanodevices work in nanometer dimensions, they consume much less power and function much faster than conventional microelectronic devices. Nanoelectronic devices can operate in different principles so that they can be further grouped into field emission devices, molecular devices, quantum devices, etc. Nanodevices can function as sensors, diodes, transistors, photovoltaic and light emitting devices, etc. Recent advances in both theoretical simulation and fabrication technologies expedite the development process from device design to prototype demonstration. Practical applications with a great market value from nanoelectronic devices are expected in near future.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Walt A. de Heer, A. Châtelain and D. Ugarte, “A carbon nanotube field-emission electron source”, Science 270(5239), 1179–1180 (1995). http://dx.doi.org/10.1126/science.270.5239.1179
- R. H. Baughman, A. A. Zakhidov and W. A. De Heer, “Carbon nanotubes-the route toward applications”, Science 297(5582), 787–792 (2002). http://dx.doi.org/10.1126/science.1060928
- A. A. Kuznetzov, S. B. Lee, M. Zhang, R. H. Baughman and A. A. Zakhidov, “Electron field emission from transparent multiwalled carbon nanotube sheets for inverted field emission displays”, Carbon 48(1), 41–46 (2010). http://dx.doi.org/10.1016/j.carbon.2009.08.009
- M. K. Shin, J. Oh, M. Lima, M. E. Kozlov, S. J. Kim and R. H. Baughman, “Elastomeric conductive composites based on carbon nanotube forests”, Adv. Mater. 22(24), 2663–2667 (2010). http://dx.doi.org/10.1002/adma.200904270
- M. Monti, M. Natali, R. Petrucci, J M. Kenny and L. Torre, “Impact damage sensing in glass fiber reinforced composites based on carbon nanotubes by electrical resistance measurements”, J. Appl. Polym. Sci. 122(4), 2829–2836 (2011). http://dx.doi.org/10.1002/app.34412
- A. Aviram and M. A. Ratner, “Molecular rectifiers”, Chem. Phys. Lett. 29(2), 277–283 (1974). http://dx.doi.org/10.1016/0009-2614(74)85031-1
- J. M. Tour, R. Wu and J. S. Schumm, “Approaches to orthogonally fused conducting polymers for molecular electronics”, J. Am. Chem. Soc. 112(14), 5662–5663 (1990). http://dx.doi.org/10.1021/ja00170a053
- J. M. Tour, L. Jones, D. L. Pearson, J. J. S. Lamba, T. P. Burgin, G. M. Whitesides, D. L. Allara, A. N. Parikh and S. Atre, “Self-Assembled monolayers and multilayers of conjugated thiols,.alpha.,.omega.-dithiols, and thioacetyl-containing adsorbates. Understanding attachments between potential molecular wires and gold surfaces”, J. Am. Chem. Soc. 117(37), 9529–9534 (1995). http://dx.doi.org/10.1021/ja00142a021
- J. J. Hopfield, J. N. Onuchic and D. N. Beratan, “A molecular shift register based on electron transfer”, Science 241(4867), 817–820 (1988). http://dx.doi.org/10.1126/science.241.4867.817
- M. H. Tsai, T. H. Lu and Y. H. Tang, “The electronic and transport properties of a molecular junction studied by an integrated piecewise thermal equilibrium approach”, J. Appl. Phys. 104(4), 043703 (2008). http://dx.doi.org/10.1063/1.2970164
- P. W. Fowler, B. T. Pickup and T. Z. Todorova, “Equiconducting molecular conductors”, Chem. Phys. Lett. 465(1–3), 142–146 (2008). http://dx.doi.org/10.1016/j.cplett.2008.09.048
- T. Hansen, V. Mujica and M. A. Ratner, “Cotunneling model for current-induced events in molecular wires”, Nano Lett. 8(10), 3525–3531 (2008). http://dx.doi.org/10.1021/nl801001q
- J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho and H. J. Dai, “Nanotube molecular wires as chemical sensors”, Science 287(5453), 622–625 (2000). http://dx.doi.org/10.1126/science.287.5453.622
- N. R. Franklin, Y. Li, R. J. Chen, A. Javey and H. J. Dai, “Patterned growth of single-walled carbon nanotubes on full 4-inch wafers”, Appl. Phys. Lett. 79(27), 4571–4573 (2001). http://dx.doi.org/10.1063/1.1429294
- C. P. Collier, E. W. Wong, M. Belohradský, F. M. Raymo, J. F. Stoddart, P. J. Kuekes, R. S. Williams and J. R. Heath, “Electronically configurable molecular-based lLogic gates”, Science 285(5426), 391–394 (1999). http://dx.doi.org/10.1126/science.285.5426.391
- D. I. Gittins, D. Bethell, D. J. Schiffrin and R. J. Nichols, “A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups”, Nature 408(6808), 67–69 (2000). http://dx.doi.org/10.1038/35040518
- S. Katano, Y. Kim, M. Hori, M. Trenary and M. Kawai, “Reversible control of hydrogenation of a single molecule”, Science 316(5833), 1883–1886 (2007). http://dx.doi.org/10.1126/science.1141410
- R. M. Metzger, B. Chen, U. Hopfner, M. V. Lakshmikantham, D. Vuillaume, T. Kawai, X. L. Wu, H. Tachibana, T. V. Hughes, H. Sakurai, J. W. Baldwin, C. Hosch, M. P. Cava, L. Brehmer and G. J. Ashwell, “Unimolecular electrical rectification in hexadecylquinolinium tricyanoquinodimethanide”, J. Am. Chem. Soc. 119(43), 10455–10466 (1997). http://dx.doi.org/10.1021/ja971811e
- B. Chen and R. M. Metzger, “Rectification between 370 and 105 K in hexadecylquinolinium tricyanoquinodimethanide”, J. Phys. Chem. B 103(21), 4447–4451 (1999). http://dx.doi.org/10.1021/jp990006e
- J. Zhao, C. Zeng, X. Cheng, K. D. Wang, G. W. Wang, J. L. Yang, J. G. Hou and Q. S. Zhu, “Single C[sub 59]N Molecule as a molecular rectifier”, Phys. Rev. Lett. 95(4), 045502/1-4 (2005). http://dx.doi.org/10.1103/PhysRevLett.95.045502
- Y. Wada, T. Uda, M. Lutwyche, S. Kondo and S. Heike, “A proposal of nanoscale devices based on atom/molecule switching”, J. Appl. Phys. 74(12), 7321–7328 (1993). http://dx.doi.org/10.1063/1.354999
- D. Goldhaber-gordon, M. S. Montemerlo, J. C. Love, G. J. Opiteck, James and J. C. Ellenbogen, “Overview of nanoelectronic devices”, Proceedings of the IEEE 85(4), 521–540 (1997). http://dx.doi.org/10.1109/5.573739
- C. Joachim, J. K. Gimzewski, R. R. Schlittler and C. Chavy, “Electronic transparence of a single C60 molecule”, Phys. Rev. Lett. 74(11), 2102–2105 (1995). http://dx.doi.org/10.1103/PhysRevLett.74.2102
- C. Joachim and J. K. Gimzewski, “An electromechanical amplifier using a single molecule”, Chemical Physics Letters 265(3–5), 353–357 (1997). http://dx.doi.org/10.1016/S0009-2614(97)00014-6
- C. Joachim, J. K. Gimzewski and H. Tang, “Physical principles of the single-C60 transistor effect”, Phys. Rev. B-Condensed Matter and Materials Physics 58(24), 16407–16417 (1998). http://dx.doi.org/10.1103/PhysRevB.58.16407
- Y. Wada, “Atom electronics: a proposal of atom/molecule switching devices”, Annals of the New York Academy of Sciences 852(1), 257–276 (1998). http://dx.doi.org/10.1111/j.1749-6632.1998.tb09878.x
- J. F. Mennemann, A. Jüngel and H. Kosina, “Transient schrödinger-poisson simulations of a high-frequency resonant tunneling diode oscillator”, J. Comput. Phys. 239, 187–205 (2013). http://dx.doi.org/10.1016/j.jcp.2012.12.009
- G. Q. Zhang, S. Finefrock, D. X. Liang, Gautam, G. Yadav, H. R. Yang, H. Y. Fang and Y. Wu, “Semiconductor nanostructure -based photovoltaic solar cells”, Nanoscale 3, 2430–2443 (2011). http://dx.doi.org/10.1039/c1nr10152h
- Moore, “Cramming more components onto integrated circuits”, Proc. IEEE 86 (1), 82–85 (1998). http://dx.doi.org/10.1109/JPROC.1998.658762
- M. Lundstrom and Z. Ren, “Essential physics of carrier transport in nanoscale MOSFETs”, IEEE Trans. Electron Devices 49(1), 133 (2002). http://dx.doi.org/10.1109/16.974760
- B. Winstead and U. Ravaioli, “Simulation of schottky barrier MOSFET’s with a coupled quantum injection/monte carlo technique”, IEEE Trans. Electron Devices 47(6), 1241 (2000). http://dx.doi.org/10.1109/16.842968
- G. Baccarani and S. Reggiani, “A compact double-gate MOSFET model comprising quantum-mechanical and nonstatic effects”, IEEE Trans. Electron Devices 46(8), 1656 (1999). http://dx.doi.org/10.1109/16.777154
- T. Dürkop, S. A. Getty, Enrique Cobas and M. S. Fuhrer, “Extraordinary mobility in semiconducting carbon nanotubes”, Nano Lett. 4(1), 35–39 (2004). http://dx.doi.org/10.1021/nl034841q
- C. W. Zhou, J. Kong and H. J. Dai, “Electrical measurements of individual semiconducting single-wall carbon nanotubes of warious diameters”, Appl. Phys. Lett. 76(12), 1597 (2000). http://dx.doi.org/10.1063/1.126107
- A. Bachtold, P. Hadley, T. Nakanishi and C. Dekker, “Logic circuits with carbon nanotube transistors”, Science 294(5545), 1317–1320 (2001). http://dx.doi.org/10.1126/science.1065824
- S. J. Wind, J. Appenzeller, R. Martel, V. Derycke and Ph. Avouris, “Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes”, Appl. Phys. Lett. 80(20), 3817 (2002). http://dx.doi.org/10.1063/1.1480877
- M. H. Yang, K. B. K. Teo, L. Gangloff, W. I. Milne, D. G. Hasko, Y. Robert and P. Legagneux, “Advantages of top-gate, high-k dielectric carbon nanotube field-effect transistors”, Appl. Phys. Lett. 88(11), 113 507 (2006). http://dx.doi.org/10.1063/1.2186100
- S. H. Hur, M. H. Yoon, A. Gaur, M. Shim, A. Facchetti, T. J. Marks and J. A. Rogers, “Organic nanodielectrics for low voltage carbon nanotube thin film transistors and complementary logic gates”, J. Am. Chem. Soc. 127(40), 13808 (2005). http://dx.doi.org/10.1021/ja0553203
- R. Martel, T. Schmidt, H. R. Shea, T. Hertel and Ph. Avouris, “Single- and multi-wall carbon nanotube field-effect transistors”, Appl. Phys. Lett. 73(17), 2447 (1998). http://dx.doi.org/10.1063/1.122477
- S. J. Tans, A. R. M. Verschueren and C. Dekker, “Room-temperature transistor based on a single carbon nanotube”, Nature 393(6680), 49–52 (1998). http://dx.doi.org/10.1038/29954
- C. X. Chen and Y. F. Zhang, “Carbon nanotube multi-channeled field-effect transistors”, J. Nanosci. Nanotech. 6(12), 3789–3793 (2006). http://dx.doi.org/10.1166/jnn.2006.626
- M. M. Shulaker, G. Hills, N. Patil, H. Wei, H. Y. Chen, H. S. P. Wong and S. Mitra, “Carbon nanotube computer”, Nature 501(7468), 526–530 (2013). http://dx.doi.org/10.1038/nature12502
- J. W. Fergus, “Solid electrolyte based sensors for the measurement of CO and hydrocarbon gases”, Sens. Actuators B-Chem 122(2), 683–693 (2007). http://dx.doi.org/10.1016/j.snb.2006.06.024
- R. Ramamoorthy, P. K. Dutta and S. A. Akbar, “Oxygen sensors: materials, methods, designs and applications”, J. Mater. Sci. 38(21), 4271–4282 (2003). http://dx.doi.org/10.1023/A:1026370729205
- D. D. Lee, D. S. Lee, “Environmental gas sensors”, IEEE Sens. J. 1, 214–224 (2001). http://dx.doi.org/10.1109/JSEN.2001.954834
- A. M. Azad, S. A. Akbar, S. G. Mhaisalkar, L. D. Birkefeld and K. S. Goto, “Solid-state gas sensors: A Review”, J. Electrochem. Soc. 139(12), 3690–3704 (1992). http://dx.doi.org/10.1149/1.2069145
- J. Janata, M. Josowicz, P. Vanysek, D. M. DeVaney, “Chemical sensors”, Anal. Chem. 70(20), 179–208 (1998). http://dx.doi.org/10.1021/a1980010w
- R. Knake, P. Jacquinot, A. W. E. Hodgson and P. C. Hauser, “Amperometric sensing in the gas-phase”, Anal. Chim. Acta 549(1–2), 1–9 (2005). http://dx.doi.org/10.1016/j.aca.2005.06.007
- J. Wang, “Carbon-nanotube based electrochemical biosensors: A Review”, Electroanalysis 17(1), 7–14 (2005). http://dx.doi.org/10.1002/elan.200403113
- M. Valcárcel, S. Cárdenas and B. M. Simonet, “Role of carbon nanotubes in analytical science”, Anal. Chem 79(13), 4788–4797 (2007). http://dx.doi.org/10.1021/ac070196m
- G. Gruner, “Carbon nanotube transistors for biosensing applications”, Anal. Bioanal. Chem. 384(2), 322–335 (2006). http://dx.doi.org/10.1007/s00216-005-3400-4
- B. L. Allen, P. D. Kichambare and A. Star, “Carbon nanotube field-effect-transistor-based biosensors”, Adv. Mater. 19(11), 1439–1451 (2007). http://dx.doi.org/10.1002/adma.200602043
- T. Zhang, S. Mubeen, N. V. Myung and M. A. Deshusses, “Recent progress in carbon nanotube-based gas sensors”, Nanotechnology 19(33), 332001 (2008). http://dx.doi.org/10.1088/0957-4484/19/33/332001
- S. J. Tans, A. R. M. Verschueren and Cees Dekker, “Room-temperature transistor based on a single carbon nanotube”, Nature 393(6680), 49–52 (1998). http://dx.doi.org/10.1038/29954
- R. Martel, T. Schmidt, H. R. Shea, T. Hertel and Ph. Avouris, “Single- and multi-wall carbon nanotube field-effect transistors”, Appl. Phys. Lett. 73(17), 2447 (1998). http://dx.doi.org/10.1063/1.122477
- J. Kong, N. R. Franklin, C. W. Zhou, M. G. Chapline, S. Peng, K. Cho, H. J. Dai, “Nanotube molecular wires as chemical sensors”, Science 287(5453), 622–625 (2000). http://dx.doi.org/10.1126/science.287.5453.622
- J. Koh, B. Kim, S. Hong, H. Choi and H. Im, “Nanotube-based chemical and biomolecular sensors”, J. Mater. Sci. Technol. 24(4), 578–588 (2008). http://www.jmst.org/EN/Y2008/V24/I04/578
- S. Chattopadhyay, A. Ganguly, K. H. Chen and L. C. Chen, “One-dimensional group III-Nitrides: growth, properties, and applications in nanosensing and nano-optoelectronics”, Crit. Rev. Solid State Mater. Sci. 34(3–4), 224–279 (2009). http://dx.doi.org/10.1080/10408430903352082
- A. Qureshi, W. P. Kang, J. L. Davidson and Y. Gurbuz, “Review on carbon-derived, solid-state, micro and nano sensors for electrochemical sensing applications”, Diam. Relat. Mater. 18(12), 1401–1420 (2009). http://dx.doi.org/10.1016/j.diamond.2009.09.008
- S. J. Pearton, F. Ren, Y. L. Wang, B. H. Chu, K. H. Chen, C. Y. Chang, W. Lim, J. Lin and D. P. Norton, “Recent advances in wide bandgap semiconductor biological and gas sensors”, Prog. Mater. Sci. 55(1), 1–59 (2010). http://dx.doi.org/10.1016/j.pmatsci.2009.08.003
- Y. Zhang, J. H. Liu and C. C. Zhu, “Novel gas ionization sensors using carbon nanotubes”, Sens. Lett. 8(2), 219–227 (2010). http://dx.doi.org/10.1166/sl.2010.1270
- P. A. Smith, C. J. Lepage, K. L. Harrer and P. J. Brochu, “Hand-held photoionization instruments for quantitative detection of sarin vapor and for rapid qualitative screening of contaminated objects”, J. Occup. Environ. Hyg. 4(10), 729–738 (2007). http://dx.doi.org/10.1080/15459620701547233
- Y. W. Cheng, Z. Yang, H. Wei, Y. Y. Wang, L. M. Wei and Y. F. Zhang, “Progress in carbon nanotube gas sensor research”, Acta Phys. Chim. Sin. 26(12), 3127–3142 (2010). http://dx.doi.org/10.3866/PKU.WHXB20101138
- Z. Y. Hou, H. Liu, X. Wei, J. H. Wu, W. M. Zhou, Y. F. Zhang, D. Xu and B. C. Cai, “MEMS-based microelectrode system incorporating carbon nanotubes for ionization gas sensing”, Sens. Actuators B: Chemical 127(2), 637–648 (2007). http://dx.doi.org/10.1016/j.snb.2007.05.026
- N. Dattoli, Q. Wan, W. Guo, Y. Chen, X. Pan and W. Lu, “Fully transparent thin-film transistor devices based on SnO2 nanowires”, Nano Lett. 7(8), 2463–2469 (2007). http://dx.doi.org/10.1021/nl0712217
- C. Korman and GE Global Research, “Overview of solar photovoltaic markets and technology”, Presentation given for MSE 542, A short course presented at Cornell University, March 28 (2006).
- G. Q. Zhang, S. Finefrock, D. X. Liang, G. G. Yadav, H. R. Yang, H. Y. Fang and Y. Wu, “Semiconductor nanostructure-based photovoltaic solar cells”, Nanoscale 3(6), 2430–2443 (2011). http://dx.doi.org/10.1039/c1nr10152h
- R. D. Schaller and V. I. Klimov, “High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion”, Phys. Rev. Lett. 92(18), 186601–186604 (2004). http://dx.doi.org/10.1103/PhysRevLett.92.186601
- R. J. Ellingson, M. C. Beard, J. C. Johnson, P. Yu, O. I. Micic, A. J. Nozik, A. Shabaev and A. L. Efros, “Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots”, Nano Lett. 5(5), 865–871 (2005). http://dx.doi.org/10.1021/nl0502672
- J. E. Murphy, M. C. Beard, A. G. Norman, S. P. Ahrenkiel, J. C. Johnson, P. Yu, O. I. Micic, R. J. Ellingson and A. J. Nozik, “PbTe colloidal nanocrystals: synthesis, characterization, and multiple exciton generation”, J. Am. Chem. Soc. 128(10), 3241–3247 (2006).http://dx.doi.org/10.1021/ja0574973
- R. D. Schaller, M. Sykora, S. Jeong and V. I. Klimov, “High-efficiency carrier multiplication and ultrafast charge separation in semiconductor nanocrystals studied via time-resolved photoluminescence”, J. Phys. Chem. B. 110(50), 25332–25338 (2006). http://dx.doi.org/10.1021/jp065282p
- M. C. Beard, K. P. Knutsen, P. Yu, J. M. Luther, Q. Song, W. K. Metzger, R. J. Ellingson and A. J. Nozik, “Multiple exciton generation in colloidal silicon nanocrystals”, Nano Lett. 7(8), 2506–2512 (2007). http://dx.doi.org/10.1021/nl071486l
- J. J. H. Pijpers, E. Hendry, M. T. W. Milder, R. Fanciulli, J. Savolainen, J. L. Herek, D. Vanmaekelbergh, S. Ruhman, D. Mocatta, D. Oron, A. Aharoni, U. Banin and M. Bonn, “Carrier multiplication and Its reduction by photodoping in colloidal InAs quantum dots”, J. Phys. Chem. C. 111(11), 4146–4152 (2007). http://dx.doi.org/10.1021/jp066709v
- A. J. Nozik, “Quantum dot solar cells”, Physica E 14(1–2), 115–120 (2002). http://dx.doi.org/10.1016/S1386-9477(02)00374-0
- G. F. Brown and J. Wu, “Third generation photovoltaics”, Laser Photonics Rev. 3(4), 394–405 (2009). http://dx.doi.org/10.1002/lpor.200810039
- R. Zhang, X. Y. Chen, J. J. Lu and W. Z. Shen, “Photocurrent of hydrogenated nanocrystalline silicon thin film/crystalline silicon heterostructure”, J. Appl. Phys. 102(12), 123708 (2007). http://dx.doi.org/10.1063/1.2826742
- C. Chen, Y. Lu, E. S. Kong, Y. Zhang and S. T. Lee, “Nanowelded carbon-nanotube-based solar microcells”, Small 4(9), 1313–1318 (2008). http://dx.doi.org/10.1002/smll.200701309
- N. M. Gabor, Z. Zhong, K. Bosnick, J. Park and P. L. McEuen, “Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes”, Science 325(5946), 1367–1371 (2009). http://dx.doi.org/10.1126/science.1176112
- M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. M. Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu and C. Xu, “Design of organic molecules with large two-photon absorption cross sections”, Science 281(5383), 1653–1656 (1998). http://dx.doi.org/10.1126/science.281.5383.1653
- C. Strumpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C. del Canizo and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials”, Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007). http://dx.doi.org/10.1016/j.solmat.2006.09.003
- E. Garnett and P. D. Yang, “Light trapping in silicon nanowire solar cells”, Nano Lett. 10(3), 1082–1087 (2010). http://dx.doi.org/10.1021/nl100161z
- H. J. Hovel, “Semiconductors and semimetals”, Academic Press, New York, San Francisco, London Subsidiary of Harcoun Brace Jvanovich Publishers 48–69 (1976).
- F. Pehnchon and P. Mialhe, “Toward a theoretical limit of solar cell efficiency with light trapping and sub-structure”, Solar Energy 54(6), 381–385 (1995). http://dx.doi.org/10.1016/0038-092X(95)00005-C
References
Walt A. de Heer, A. Châtelain and D. Ugarte, “A carbon nanotube field-emission electron source”, Science 270(5239), 1179–1180 (1995). http://dx.doi.org/10.1126/science.270.5239.1179
R. H. Baughman, A. A. Zakhidov and W. A. De Heer, “Carbon nanotubes-the route toward applications”, Science 297(5582), 787–792 (2002). http://dx.doi.org/10.1126/science.1060928
A. A. Kuznetzov, S. B. Lee, M. Zhang, R. H. Baughman and A. A. Zakhidov, “Electron field emission from transparent multiwalled carbon nanotube sheets for inverted field emission displays”, Carbon 48(1), 41–46 (2010). http://dx.doi.org/10.1016/j.carbon.2009.08.009
M. K. Shin, J. Oh, M. Lima, M. E. Kozlov, S. J. Kim and R. H. Baughman, “Elastomeric conductive composites based on carbon nanotube forests”, Adv. Mater. 22(24), 2663–2667 (2010). http://dx.doi.org/10.1002/adma.200904270
M. Monti, M. Natali, R. Petrucci, J M. Kenny and L. Torre, “Impact damage sensing in glass fiber reinforced composites based on carbon nanotubes by electrical resistance measurements”, J. Appl. Polym. Sci. 122(4), 2829–2836 (2011). http://dx.doi.org/10.1002/app.34412
A. Aviram and M. A. Ratner, “Molecular rectifiers”, Chem. Phys. Lett. 29(2), 277–283 (1974). http://dx.doi.org/10.1016/0009-2614(74)85031-1
J. M. Tour, R. Wu and J. S. Schumm, “Approaches to orthogonally fused conducting polymers for molecular electronics”, J. Am. Chem. Soc. 112(14), 5662–5663 (1990). http://dx.doi.org/10.1021/ja00170a053
J. M. Tour, L. Jones, D. L. Pearson, J. J. S. Lamba, T. P. Burgin, G. M. Whitesides, D. L. Allara, A. N. Parikh and S. Atre, “Self-Assembled monolayers and multilayers of conjugated thiols,.alpha.,.omega.-dithiols, and thioacetyl-containing adsorbates. Understanding attachments between potential molecular wires and gold surfaces”, J. Am. Chem. Soc. 117(37), 9529–9534 (1995). http://dx.doi.org/10.1021/ja00142a021
J. J. Hopfield, J. N. Onuchic and D. N. Beratan, “A molecular shift register based on electron transfer”, Science 241(4867), 817–820 (1988). http://dx.doi.org/10.1126/science.241.4867.817
M. H. Tsai, T. H. Lu and Y. H. Tang, “The electronic and transport properties of a molecular junction studied by an integrated piecewise thermal equilibrium approach”, J. Appl. Phys. 104(4), 043703 (2008). http://dx.doi.org/10.1063/1.2970164
P. W. Fowler, B. T. Pickup and T. Z. Todorova, “Equiconducting molecular conductors”, Chem. Phys. Lett. 465(1–3), 142–146 (2008). http://dx.doi.org/10.1016/j.cplett.2008.09.048
T. Hansen, V. Mujica and M. A. Ratner, “Cotunneling model for current-induced events in molecular wires”, Nano Lett. 8(10), 3525–3531 (2008). http://dx.doi.org/10.1021/nl801001q
J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho and H. J. Dai, “Nanotube molecular wires as chemical sensors”, Science 287(5453), 622–625 (2000). http://dx.doi.org/10.1126/science.287.5453.622
N. R. Franklin, Y. Li, R. J. Chen, A. Javey and H. J. Dai, “Patterned growth of single-walled carbon nanotubes on full 4-inch wafers”, Appl. Phys. Lett. 79(27), 4571–4573 (2001). http://dx.doi.org/10.1063/1.1429294
C. P. Collier, E. W. Wong, M. Belohradský, F. M. Raymo, J. F. Stoddart, P. J. Kuekes, R. S. Williams and J. R. Heath, “Electronically configurable molecular-based lLogic gates”, Science 285(5426), 391–394 (1999). http://dx.doi.org/10.1126/science.285.5426.391
D. I. Gittins, D. Bethell, D. J. Schiffrin and R. J. Nichols, “A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups”, Nature 408(6808), 67–69 (2000). http://dx.doi.org/10.1038/35040518
S. Katano, Y. Kim, M. Hori, M. Trenary and M. Kawai, “Reversible control of hydrogenation of a single molecule”, Science 316(5833), 1883–1886 (2007). http://dx.doi.org/10.1126/science.1141410
R. M. Metzger, B. Chen, U. Hopfner, M. V. Lakshmikantham, D. Vuillaume, T. Kawai, X. L. Wu, H. Tachibana, T. V. Hughes, H. Sakurai, J. W. Baldwin, C. Hosch, M. P. Cava, L. Brehmer and G. J. Ashwell, “Unimolecular electrical rectification in hexadecylquinolinium tricyanoquinodimethanide”, J. Am. Chem. Soc. 119(43), 10455–10466 (1997). http://dx.doi.org/10.1021/ja971811e
B. Chen and R. M. Metzger, “Rectification between 370 and 105 K in hexadecylquinolinium tricyanoquinodimethanide”, J. Phys. Chem. B 103(21), 4447–4451 (1999). http://dx.doi.org/10.1021/jp990006e
J. Zhao, C. Zeng, X. Cheng, K. D. Wang, G. W. Wang, J. L. Yang, J. G. Hou and Q. S. Zhu, “Single C[sub 59]N Molecule as a molecular rectifier”, Phys. Rev. Lett. 95(4), 045502/1-4 (2005). http://dx.doi.org/10.1103/PhysRevLett.95.045502
Y. Wada, T. Uda, M. Lutwyche, S. Kondo and S. Heike, “A proposal of nanoscale devices based on atom/molecule switching”, J. Appl. Phys. 74(12), 7321–7328 (1993). http://dx.doi.org/10.1063/1.354999
D. Goldhaber-gordon, M. S. Montemerlo, J. C. Love, G. J. Opiteck, James and J. C. Ellenbogen, “Overview of nanoelectronic devices”, Proceedings of the IEEE 85(4), 521–540 (1997). http://dx.doi.org/10.1109/5.573739
C. Joachim, J. K. Gimzewski, R. R. Schlittler and C. Chavy, “Electronic transparence of a single C60 molecule”, Phys. Rev. Lett. 74(11), 2102–2105 (1995). http://dx.doi.org/10.1103/PhysRevLett.74.2102
C. Joachim and J. K. Gimzewski, “An electromechanical amplifier using a single molecule”, Chemical Physics Letters 265(3–5), 353–357 (1997). http://dx.doi.org/10.1016/S0009-2614(97)00014-6
C. Joachim, J. K. Gimzewski and H. Tang, “Physical principles of the single-C60 transistor effect”, Phys. Rev. B-Condensed Matter and Materials Physics 58(24), 16407–16417 (1998). http://dx.doi.org/10.1103/PhysRevB.58.16407
Y. Wada, “Atom electronics: a proposal of atom/molecule switching devices”, Annals of the New York Academy of Sciences 852(1), 257–276 (1998). http://dx.doi.org/10.1111/j.1749-6632.1998.tb09878.x
J. F. Mennemann, A. Jüngel and H. Kosina, “Transient schrödinger-poisson simulations of a high-frequency resonant tunneling diode oscillator”, J. Comput. Phys. 239, 187–205 (2013). http://dx.doi.org/10.1016/j.jcp.2012.12.009
G. Q. Zhang, S. Finefrock, D. X. Liang, Gautam, G. Yadav, H. R. Yang, H. Y. Fang and Y. Wu, “Semiconductor nanostructure -based photovoltaic solar cells”, Nanoscale 3, 2430–2443 (2011). http://dx.doi.org/10.1039/c1nr10152h
Moore, “Cramming more components onto integrated circuits”, Proc. IEEE 86 (1), 82–85 (1998). http://dx.doi.org/10.1109/JPROC.1998.658762
M. Lundstrom and Z. Ren, “Essential physics of carrier transport in nanoscale MOSFETs”, IEEE Trans. Electron Devices 49(1), 133 (2002). http://dx.doi.org/10.1109/16.974760
B. Winstead and U. Ravaioli, “Simulation of schottky barrier MOSFET’s with a coupled quantum injection/monte carlo technique”, IEEE Trans. Electron Devices 47(6), 1241 (2000). http://dx.doi.org/10.1109/16.842968
G. Baccarani and S. Reggiani, “A compact double-gate MOSFET model comprising quantum-mechanical and nonstatic effects”, IEEE Trans. Electron Devices 46(8), 1656 (1999). http://dx.doi.org/10.1109/16.777154
T. Dürkop, S. A. Getty, Enrique Cobas and M. S. Fuhrer, “Extraordinary mobility in semiconducting carbon nanotubes”, Nano Lett. 4(1), 35–39 (2004). http://dx.doi.org/10.1021/nl034841q
C. W. Zhou, J. Kong and H. J. Dai, “Electrical measurements of individual semiconducting single-wall carbon nanotubes of warious diameters”, Appl. Phys. Lett. 76(12), 1597 (2000). http://dx.doi.org/10.1063/1.126107
A. Bachtold, P. Hadley, T. Nakanishi and C. Dekker, “Logic circuits with carbon nanotube transistors”, Science 294(5545), 1317–1320 (2001). http://dx.doi.org/10.1126/science.1065824
S. J. Wind, J. Appenzeller, R. Martel, V. Derycke and Ph. Avouris, “Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes”, Appl. Phys. Lett. 80(20), 3817 (2002). http://dx.doi.org/10.1063/1.1480877
M. H. Yang, K. B. K. Teo, L. Gangloff, W. I. Milne, D. G. Hasko, Y. Robert and P. Legagneux, “Advantages of top-gate, high-k dielectric carbon nanotube field-effect transistors”, Appl. Phys. Lett. 88(11), 113 507 (2006). http://dx.doi.org/10.1063/1.2186100
S. H. Hur, M. H. Yoon, A. Gaur, M. Shim, A. Facchetti, T. J. Marks and J. A. Rogers, “Organic nanodielectrics for low voltage carbon nanotube thin film transistors and complementary logic gates”, J. Am. Chem. Soc. 127(40), 13808 (2005). http://dx.doi.org/10.1021/ja0553203
R. Martel, T. Schmidt, H. R. Shea, T. Hertel and Ph. Avouris, “Single- and multi-wall carbon nanotube field-effect transistors”, Appl. Phys. Lett. 73(17), 2447 (1998). http://dx.doi.org/10.1063/1.122477
S. J. Tans, A. R. M. Verschueren and C. Dekker, “Room-temperature transistor based on a single carbon nanotube”, Nature 393(6680), 49–52 (1998). http://dx.doi.org/10.1038/29954
C. X. Chen and Y. F. Zhang, “Carbon nanotube multi-channeled field-effect transistors”, J. Nanosci. Nanotech. 6(12), 3789–3793 (2006). http://dx.doi.org/10.1166/jnn.2006.626
M. M. Shulaker, G. Hills, N. Patil, H. Wei, H. Y. Chen, H. S. P. Wong and S. Mitra, “Carbon nanotube computer”, Nature 501(7468), 526–530 (2013). http://dx.doi.org/10.1038/nature12502
J. W. Fergus, “Solid electrolyte based sensors for the measurement of CO and hydrocarbon gases”, Sens. Actuators B-Chem 122(2), 683–693 (2007). http://dx.doi.org/10.1016/j.snb.2006.06.024
R. Ramamoorthy, P. K. Dutta and S. A. Akbar, “Oxygen sensors: materials, methods, designs and applications”, J. Mater. Sci. 38(21), 4271–4282 (2003). http://dx.doi.org/10.1023/A:1026370729205
D. D. Lee, D. S. Lee, “Environmental gas sensors”, IEEE Sens. J. 1, 214–224 (2001). http://dx.doi.org/10.1109/JSEN.2001.954834
A. M. Azad, S. A. Akbar, S. G. Mhaisalkar, L. D. Birkefeld and K. S. Goto, “Solid-state gas sensors: A Review”, J. Electrochem. Soc. 139(12), 3690–3704 (1992). http://dx.doi.org/10.1149/1.2069145
J. Janata, M. Josowicz, P. Vanysek, D. M. DeVaney, “Chemical sensors”, Anal. Chem. 70(20), 179–208 (1998). http://dx.doi.org/10.1021/a1980010w
R. Knake, P. Jacquinot, A. W. E. Hodgson and P. C. Hauser, “Amperometric sensing in the gas-phase”, Anal. Chim. Acta 549(1–2), 1–9 (2005). http://dx.doi.org/10.1016/j.aca.2005.06.007
J. Wang, “Carbon-nanotube based electrochemical biosensors: A Review”, Electroanalysis 17(1), 7–14 (2005). http://dx.doi.org/10.1002/elan.200403113
M. Valcárcel, S. Cárdenas and B. M. Simonet, “Role of carbon nanotubes in analytical science”, Anal. Chem 79(13), 4788–4797 (2007). http://dx.doi.org/10.1021/ac070196m
G. Gruner, “Carbon nanotube transistors for biosensing applications”, Anal. Bioanal. Chem. 384(2), 322–335 (2006). http://dx.doi.org/10.1007/s00216-005-3400-4
B. L. Allen, P. D. Kichambare and A. Star, “Carbon nanotube field-effect-transistor-based biosensors”, Adv. Mater. 19(11), 1439–1451 (2007). http://dx.doi.org/10.1002/adma.200602043
T. Zhang, S. Mubeen, N. V. Myung and M. A. Deshusses, “Recent progress in carbon nanotube-based gas sensors”, Nanotechnology 19(33), 332001 (2008). http://dx.doi.org/10.1088/0957-4484/19/33/332001
S. J. Tans, A. R. M. Verschueren and Cees Dekker, “Room-temperature transistor based on a single carbon nanotube”, Nature 393(6680), 49–52 (1998). http://dx.doi.org/10.1038/29954
R. Martel, T. Schmidt, H. R. Shea, T. Hertel and Ph. Avouris, “Single- and multi-wall carbon nanotube field-effect transistors”, Appl. Phys. Lett. 73(17), 2447 (1998). http://dx.doi.org/10.1063/1.122477
J. Kong, N. R. Franklin, C. W. Zhou, M. G. Chapline, S. Peng, K. Cho, H. J. Dai, “Nanotube molecular wires as chemical sensors”, Science 287(5453), 622–625 (2000). http://dx.doi.org/10.1126/science.287.5453.622
J. Koh, B. Kim, S. Hong, H. Choi and H. Im, “Nanotube-based chemical and biomolecular sensors”, J. Mater. Sci. Technol. 24(4), 578–588 (2008). http://www.jmst.org/EN/Y2008/V24/I04/578
S. Chattopadhyay, A. Ganguly, K. H. Chen and L. C. Chen, “One-dimensional group III-Nitrides: growth, properties, and applications in nanosensing and nano-optoelectronics”, Crit. Rev. Solid State Mater. Sci. 34(3–4), 224–279 (2009). http://dx.doi.org/10.1080/10408430903352082
A. Qureshi, W. P. Kang, J. L. Davidson and Y. Gurbuz, “Review on carbon-derived, solid-state, micro and nano sensors for electrochemical sensing applications”, Diam. Relat. Mater. 18(12), 1401–1420 (2009). http://dx.doi.org/10.1016/j.diamond.2009.09.008
S. J. Pearton, F. Ren, Y. L. Wang, B. H. Chu, K. H. Chen, C. Y. Chang, W. Lim, J. Lin and D. P. Norton, “Recent advances in wide bandgap semiconductor biological and gas sensors”, Prog. Mater. Sci. 55(1), 1–59 (2010). http://dx.doi.org/10.1016/j.pmatsci.2009.08.003
Y. Zhang, J. H. Liu and C. C. Zhu, “Novel gas ionization sensors using carbon nanotubes”, Sens. Lett. 8(2), 219–227 (2010). http://dx.doi.org/10.1166/sl.2010.1270
P. A. Smith, C. J. Lepage, K. L. Harrer and P. J. Brochu, “Hand-held photoionization instruments for quantitative detection of sarin vapor and for rapid qualitative screening of contaminated objects”, J. Occup. Environ. Hyg. 4(10), 729–738 (2007). http://dx.doi.org/10.1080/15459620701547233
Y. W. Cheng, Z. Yang, H. Wei, Y. Y. Wang, L. M. Wei and Y. F. Zhang, “Progress in carbon nanotube gas sensor research”, Acta Phys. Chim. Sin. 26(12), 3127–3142 (2010). http://dx.doi.org/10.3866/PKU.WHXB20101138
Z. Y. Hou, H. Liu, X. Wei, J. H. Wu, W. M. Zhou, Y. F. Zhang, D. Xu and B. C. Cai, “MEMS-based microelectrode system incorporating carbon nanotubes for ionization gas sensing”, Sens. Actuators B: Chemical 127(2), 637–648 (2007). http://dx.doi.org/10.1016/j.snb.2007.05.026
N. Dattoli, Q. Wan, W. Guo, Y. Chen, X. Pan and W. Lu, “Fully transparent thin-film transistor devices based on SnO2 nanowires”, Nano Lett. 7(8), 2463–2469 (2007). http://dx.doi.org/10.1021/nl0712217
C. Korman and GE Global Research, “Overview of solar photovoltaic markets and technology”, Presentation given for MSE 542, A short course presented at Cornell University, March 28 (2006).
G. Q. Zhang, S. Finefrock, D. X. Liang, G. G. Yadav, H. R. Yang, H. Y. Fang and Y. Wu, “Semiconductor nanostructure-based photovoltaic solar cells”, Nanoscale 3(6), 2430–2443 (2011). http://dx.doi.org/10.1039/c1nr10152h
R. D. Schaller and V. I. Klimov, “High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion”, Phys. Rev. Lett. 92(18), 186601–186604 (2004). http://dx.doi.org/10.1103/PhysRevLett.92.186601
R. J. Ellingson, M. C. Beard, J. C. Johnson, P. Yu, O. I. Micic, A. J. Nozik, A. Shabaev and A. L. Efros, “Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots”, Nano Lett. 5(5), 865–871 (2005). http://dx.doi.org/10.1021/nl0502672
J. E. Murphy, M. C. Beard, A. G. Norman, S. P. Ahrenkiel, J. C. Johnson, P. Yu, O. I. Micic, R. J. Ellingson and A. J. Nozik, “PbTe colloidal nanocrystals: synthesis, characterization, and multiple exciton generation”, J. Am. Chem. Soc. 128(10), 3241–3247 (2006).http://dx.doi.org/10.1021/ja0574973
R. D. Schaller, M. Sykora, S. Jeong and V. I. Klimov, “High-efficiency carrier multiplication and ultrafast charge separation in semiconductor nanocrystals studied via time-resolved photoluminescence”, J. Phys. Chem. B. 110(50), 25332–25338 (2006). http://dx.doi.org/10.1021/jp065282p
M. C. Beard, K. P. Knutsen, P. Yu, J. M. Luther, Q. Song, W. K. Metzger, R. J. Ellingson and A. J. Nozik, “Multiple exciton generation in colloidal silicon nanocrystals”, Nano Lett. 7(8), 2506–2512 (2007). http://dx.doi.org/10.1021/nl071486l
J. J. H. Pijpers, E. Hendry, M. T. W. Milder, R. Fanciulli, J. Savolainen, J. L. Herek, D. Vanmaekelbergh, S. Ruhman, D. Mocatta, D. Oron, A. Aharoni, U. Banin and M. Bonn, “Carrier multiplication and Its reduction by photodoping in colloidal InAs quantum dots”, J. Phys. Chem. C. 111(11), 4146–4152 (2007). http://dx.doi.org/10.1021/jp066709v
A. J. Nozik, “Quantum dot solar cells”, Physica E 14(1–2), 115–120 (2002). http://dx.doi.org/10.1016/S1386-9477(02)00374-0
G. F. Brown and J. Wu, “Third generation photovoltaics”, Laser Photonics Rev. 3(4), 394–405 (2009). http://dx.doi.org/10.1002/lpor.200810039
R. Zhang, X. Y. Chen, J. J. Lu and W. Z. Shen, “Photocurrent of hydrogenated nanocrystalline silicon thin film/crystalline silicon heterostructure”, J. Appl. Phys. 102(12), 123708 (2007). http://dx.doi.org/10.1063/1.2826742
C. Chen, Y. Lu, E. S. Kong, Y. Zhang and S. T. Lee, “Nanowelded carbon-nanotube-based solar microcells”, Small 4(9), 1313–1318 (2008). http://dx.doi.org/10.1002/smll.200701309
N. M. Gabor, Z. Zhong, K. Bosnick, J. Park and P. L. McEuen, “Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes”, Science 325(5946), 1367–1371 (2009). http://dx.doi.org/10.1126/science.1176112
M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. M. Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu and C. Xu, “Design of organic molecules with large two-photon absorption cross sections”, Science 281(5383), 1653–1656 (1998). http://dx.doi.org/10.1126/science.281.5383.1653
C. Strumpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C. del Canizo and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials”, Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007). http://dx.doi.org/10.1016/j.solmat.2006.09.003
E. Garnett and P. D. Yang, “Light trapping in silicon nanowire solar cells”, Nano Lett. 10(3), 1082–1087 (2010). http://dx.doi.org/10.1021/nl100161z
H. J. Hovel, “Semiconductors and semimetals”, Academic Press, New York, San Francisco, London Subsidiary of Harcoun Brace Jvanovich Publishers 48–69 (1976).
F. Pehnchon and P. Mialhe, “Toward a theoretical limit of solar cell efficiency with light trapping and sub-structure”, Solar Energy 54(6), 381–385 (1995). http://dx.doi.org/10.1016/0038-092X(95)00005-C