Synthesis, Properties and Potential Applications of Porous Graphene: A Review
Corresponding Author: Anming Hu
Nano-Micro Letters,
Vol. 5 No. 4 (2013), Article Number: 260-273
Abstract
Since the discovery of graphene, many efforts have been done to modify the graphene structure for integrating this novel material to nanoelectronics, fuel cells, energy storage devices and in many other applications. This leads to the production of different types of graphene-based materials, which possess properties different from those of pure graphene. Porous graphene is an example of this type of materials. It can be considered as a graphene sheet with some holes/pores within the atomic plane. Due to its spongy structure, porous graphene can have potential applications as membranes for molecular sieving, energy storage components and in nanoelectronics. In this review, we present the recent progress in the synthesis of porous graphene. The properties and the potential applications of this new material are also discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. K. Geim and K. S. Novoselov, “The rise of graphene”, Nat. Mater. 6, 183–191 (2007). http://dx.doi.org/10.1038/nmat1849
- K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov “Electric field effect in atomically thin carbon films”, Science 306, 666–669 (2004). http://dx.doi.org/10.1126/science.1102896
- T. Ohta, A. Bostwick, T. Seyller, K. Horn and E. Rotenberg, “Controlling the electronic structure of bilayer graphene”, Science 313, 951–954 (2006). http://dx.doi.org/10.1126/science.1130681
- L. Kane and E. J. Mele, “Quantum spin hall effect in graphene”, Phys. Rev. Lett. 95(22), 226801–4 (2005). http://dx.doi.org/10.1103/PhysRevLett.95.226801
- M. A. H. Vozmediano, M. P. Lopez-Sancho, T. Stauber and F. Giunea, “Local defects and ferromagnetism in graphene layers”, Phys. Rev. B 72(15), 155121–5 (2005). http://dx.doi.org/10.1103/PhysRevB.72.155121
- A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition”, Nano Lett. 9(1), 30–35 (2009). http://dx.doi.org/10.1021/nl801827v
- X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils”, Science 324(5932), 1312–1314 (2009). http://dx.doi.org/10.1126/science.1171245
- K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi and B. Hee Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes”, Nature 457, 706–710 (2009). http://dx.doi.org/10.1038/nature07719
- Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite”, Nat. Nanotech. 3, 563–568 (2008). http://dx.doi.org/10.1038/nnano.2008.215
- H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, R. K. Prud’homme, R. Car, D. A. Saville and I. A. J. Aksay, “Functionalized single graphene sheets derived from splitting graphite oxide”, J. Phys. Chem. B 110(17), 8535–8539 (2006). http://dx.doi.org/10.1021/jp060936f
- S. Niyogi, E. Bekyarova, M. E. Itikis, J. L. McWilliams, M. A. Hammon and R. C. Haddon, “Solution properties of graphite and graphene”, J. Am. Chem. Soc. 128(24), 7720–7721 (2006). http://dx.doi.org/10.1021/ja060680r
- M. Zhou, Y. M. Zhai and S. J. Dong, “Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide”, Anal. Chem. 81(14), 5603–5613 (2009). http://dx.doi.org/10.1021/ac900136z
- H. Bi, S. Sun, F. Huang, X. Xieb and M. Jiang, “Direct growth of few-layer graphene films on SiO2 substrates and their photovoltaic applications”, J. Mater. Chem. 22, 411–416 (2012). http://dx.doi.org/10.1039/c1jm14778a
- W. Choi and J-W. Lee, “Graphene: Synthesis and Applications”, CRC Press, Taylor & Francis group, 2012. ISBN: 978-1-4398-6187-5.
- K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos and A. A. Firsov, “Two-dimensional gas of massless dirac fermions in graphene”, Nature 438, 197–200 (2005). http://dx.doi.org/10.1038/nature04233
- X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo and H. Dai, “N-doping of graphene through electrothermal reactions with ammonia”, Science 324(5928), 768–771 (2009). http://dx.doi.org/10.1126/science.1170335
- Y. Shao, S. Zhang, M. H. Engelhard, G. Li, G. Shao, Y. Wang, J. Liu, I. A. Aksay and Y. Lin, “Nitrogen-doped graphene and its electrochemical applications”, J. Mater. Chem. 20, 7491–7496 (2010). http://dx.doi.org/10.1039/c0jm00782j
- X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells”, Nano Lett. 8(1), 323–327 (2008). http://dx.doi.org/10.1021/nl072838r
- D. Kim, D. Lee, Y. Lee and D. Y. Jeon, “Work-function engineering of graphene anode by bis (trifluoromethanesulfonyl) amide doping for efficient polymer light-emitting diodes”, Adv. Funct. Mater. 23(40), 5049–5055 (2013). http://dx.doi.org/10.1002/adfm201301386
- J. Ha, S. Park, D. Kim, J. Ryu, C. Lee, B. H. Hong and Y. Hong, “High-performance polymer light emitting diodes with interface-engineered graphene anodes”, Organic Electronics 14(9), 2324–2330 (2013). http://dx.doi.org/10.1016/j.orgel.2013.05.033
- X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics”, Science 307(5709), 538–544 (2005). http://dx.doi.org/10.1126/science.1104274
- B. D. Zdravkov, J. J. Cermak, M. Sefara and J. Jank, “Pore classification in the characterization of porous materials: a perspective”, Cent. Eur. J. Chem. 5(2), 385–395 (2007). http://dx.doi.org/10.2478/s11532-007-0017-9
- C. Liang, Z. Li and S. Dai, “Mesoporous carbon materials: synthesis and modification”, Angew Chem. Int. Ed. 47, 3696–3717 (2008). http://dx.doi.org/10.1002/anie.200702046
- T. Kyotani,“Control of pore structure in carbon”, Carbon 38(2), 269–286 (2000). http://dx.doi.org/10.1016/S0008-6223(99)00142-6
- C. R. Bansal, J. B. Donnet and F. Stoeckl, “Active carbon”, Marcel Dekker, New York, pp.482 (1988).
- J. S. Bunch, S. S Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead and P. L. McEuen, “Impermeable atomic membranes from graphene sheets”, Nano Lett. 8(8), 2458–2462, (2008). http://dx.doi.org/10.1021/nl801457b
- S. Patchkovskii, J. S. Tse, S. N. Yurchenko, L. Zhechkov, T. Heine and G. Seifert, “Graphene nanostructures as tunable storage media for molecular hydrogen”, Proc. Natl. Acad. Sci. 102, 10439–10444 (2005). http://dx.doi.org/10.1073/pnas.0501030102
- S. P. Koenig, L. Wang, J. Pellegrino and J. S. Bunch, “Selective molecular sieving through porous graphene”, Nat. Nanotech. 7, 728–732, (2012). http://dx.doi.org/10.1038/nnano.2012.162
- D. Jiang, V. R. Cooper and S. Dai, “Porous graphene as the ultimate membrane for gas separation”, Nano Lett. 9(12), 4019–4024 (2009). http://dx.doi.org/10.1021/nl9021946
- J. Zhu, D. Yang, X. Rui, D. Sim, H. Yu, H. E. Hoster, P. M. Ajayan and Q. Yan, “Facile preparation of ordered porous graphene-metal oxide@C binder-free electrodes with high Li storage performance”, Small 9(20), 3390–3397 (2013). http://dx.doi.org/10.1002/smll.201300755
- Y. Yan, Y. X. Yin, S. Xin, Y. G. Guo and L. J. Wan, “Ionothermal synthesis of sulfur-doped porous carbons hybridized with graphene as superior anode materials for lithium-ion batteries”, Chem. Commun. 48, 10663–10665 (2012). http://dx.doi.org/10.1039/c2cc36234a
- A. Du, Z. Zhu and S. C. Smith, “Multifunctional porous graphene for nanoelectronics and hydrogen storage: new properties revealed by first principle calculations”, J. Am. Chem. Soc. 132(9), 2876–2877 (2010). http://dx.doi.org/10.1021/ja100156d
- J. Bai, X. Zhong, S. Jiang, Y. Huang and X. Duan, “Graphene nanomesh”, Nat. Nanotech. 5, 190–194 (2010). http://dx.doi.org/10.1038/nnano.2010.8
- M. Bieri, M. Treier, J. Cai, K. Ait-Mansour, P. Ruffieux, O. Groning, P. Groning, M. Kastler, R. Rieger, X. Feng, K. Mullen and R. Fasel, “Porous graphenes: two-dimensional polymer synthesis with atomic precision”, Chem. Commun. 45, 6919–6921 (2009). http://dx.doi.org/10.1039/b915190g
- Y. Li, Z. Zhou, P. Shena and Z. Chen, “Two-dimensional polyphenylene: experimentally available porous graphene as a hydrogen purification membrane”, Chem. Commun. 46, 3672–3674 (2010). http://dx.doi.org/10.1039/b926313f
- W. Frank, D. M. Tanenbaum, A. M. Van der Zande and P. L. McEuen, “Mechanical properties of suspended graphene sheets”, J. Vac. Sci. Technol. B 25, 2558–2561 (2007). http://dx.doi.org/10.1116/1.2789446
- C. Lee, X. Wei, J.W. Kysar and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene”, Science 321, 385–388 (2008). http://dx.doi.org/10.1126/science.1157996
- A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C. N. Lau, “Superior thermal conductivity of single-layer graphene”, Nano Lett. 8(3), 902–907 (2008). http://dx.doi.org/10.1021/nl0731872
- C. Faugeras, B. Faugeras, M. Orlita, M. Potemski, R. R. Nair and A. K. Geim, “Thermal conductivity of graphene in corbino membrane geometry”, ACS Nano 4(4), 1889–1892 (2010). http://dx.doi.org/10.1021/nn9016229
- W. Cai, A. L. Moore, Y. Zhu, X. Li, S. Chen, L. Shi and R. S. Ruoff, “Thermal transport in suspended and supported monolayer graphene grown by chemical”, Nano Lett. 10(5), 1645–1651 (2010). http://dx.doi.org/10.1021/nl9041966
- H. W. Ha, A. Choudhury, T. Kamal, D.-H. Kim and S.-Y. Park, “Effect of chemical modification of graphene on mechanical, electrical, and thermal properties of polyimide/graphene nanocomposites”, ACS Appl. Mater. Interfaces 4(9), 4623–4630, (2012). http://dx.doi.org/10.1021/am300999g
- M. Mecklenburg, A. Schuchardt, Y. K. Mishra, S. Kaps, R. Adelung, A. Lotnyk, L. Kienle and K. Schulte, “Aerographite: ultra lightweight, flexible nanowall, carbon microtube material with outstanding mechanical performance”, Adv. Mater. 24(26), 3486–3490 (2012). http://dx.doi.org/10.1002/adma.201290158
- S. Murali, J. R. Potts, S. Stoller, J. Park, M. D. Stoller, L. L. Zhang, Y. Zhu and R. S. Ruoff, “Preparation of activated graphene and effect of activation parameters on electrochemical capacitance”, Carbon 50, 3482–3485 (2012). http://dx.doi.org/10.1016/j.carbon.2012.03.014
- L. Zhang, F. Zhang, X. Yang, G. Long, Y. Wu, T. Zhang, K. Leng, Y. Huang, Y. Ma, A. Yu and Y. Chen, “Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors”, Scientific Reports 3, 1408–1417 (2013). http://dx.doi.org/10.1038/srep01408
- H. Du, J. Li, J. Zhang, G. Su, X. Li and Y. Zhao, “Separation of hydrogen and nitrogen gases with porous graphene membrane”, J. Phys. Chem. C 115(47), 23261–23266 (2011). http://dx.doi.org/10.1021/jp206258u
- J. Schrier, “Helium separation using porous graphene membranes”, J. Phys. Chem. Lett. 1(15), 2284–2287 (2010). http://dx.doi.org/10.1021/jz100748x
- W. Hauser and P. Schwerdtfeger, “Nanoporous graphene membranes for efficient 3He/4He separation”, J. Phys. Chem. Lett. 3(2), 209–213 (2012). http://dx.doi.org/10.1021/jz201504k
- S. Blankenburg, M. Bieri, R. Fasel, K. Mullen, C. A. Pignedoli and D. Passerone, “Porous graphene as an atmospheric nanofilter”, Small 6(20), 2266–2271 (2010). http://dx.doi.org/10.1002/smll.201090068
- J. Xiao, D. Mei, X. Li, W. Xu, D. Wang, G. L. Graff, W. D. Bennett, Z. Nie, L. V. Saraf, I. A. Aksay, J. Liu and J.-G. Zhang, “Hierarchically porous graphene as a Lithium-air battery electrode”, Nano Lett. 11(11), 5071–5078 (2011). http://dx.doi.org/10.1021/nl203332e
- J. Yan, Z. Fan, W. Sun, G. Ning, T. Wei, Q. Zhang, R. Zhang, L. Zhi and F. Wei, “Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density”, Adv. Funct. Mater. 22(12), 2632–2641 (2012). http://dx.doi.org/10.1002/adfm.201102839
- J. Zhao, W. Ren and H.-M. Cheng, “Graphene sponge for efficient and repeatable adsorption and desorption of water contaminations”, J. Mater. Chem. 22, 20197–20202 (2012). http://dx.doi.org/10.1039/c2jm34128j
- H. Bi, X. Xie, K. Yin, Y. Zhou, S. Wan, L. He, F. Xu, F. Banhart, L. Sun and R. S. Ruoff, “Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents”, Adv. Funct. Mater. 22(21), 4421–4425 (2012). http://dx.doi.org/10.1002/adfm.201200888
- R. Balog, B. Jørgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Lægsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T. G. Pedersen, P. Hofmann and L. Hornekær, “Band gap opening in graphene induced by patterned hydrogen adsorption”, Nat. Mater. 9, 315–319 (2010). http://dx.doi.org/10.1038/nmat2710
- F. Cervantes-Sodi, G. Csanyi, S. Piscanec and A. C Ferrari, “Edge functionalized and substitutionally doped graphene nanoribbons: electronic and spin properties”, Phys. Rev. B 77(16), 165427–165439 (2008). http://dx.doi.org/10.1103/PhysRevB.77.165427
- M. Vanevic, M. S. Stojanovic and M. Kindermann, “Character of electronic states in graphene antidot lattices: flat bands and spatial localization”, Phys. Rev. B 80(4), 045410–045417 (2009). http://dx.doi.org/10.1103/PhysRevB.80.045410
- M. De La Pierre, P. Karamanis, J. Baima, R. Orlando, C. Pouchan, and R. Dovesi, “Ab initio periodic simulation of the spectroscopic and optical properties of novel porous graphene phases”, J. Phys. Chem. C 117(5), 2222–2229 (2013). http://dx.doi.org/10.1021/jp3103436
- G. Brunetto, P. A. S. Autreto, L. D. Machado, B. I. Santos, R. P. B. dos Santos, D. S. Galvão, “A nonzero gap two-dimensional carbon allotrope from porous graphene”, J. Phys. Chem. C 116(23), 12810–12813 (2012). http://dx.doi.org/10.1021/jp211300n
- Y. Matsuda, J. Tahir-Kheli and W. A. III Goddard, “Definitive band gaps for single-wall carbon nanotubes”, J. Phys. Chem. Lett. 1(19), 2946 (2010). http://dx.doi.org/10.1021/jz100889u
- M. D. Fischbein and M. Drndic, “Electron beam nanosculpting of suspended graphene sheets”, Appl. Phys. Lett. 93(11), 113107–113109 (2008). http://dx.doi.org/10.1063/1.2980518
- D. Fox, A. O’Neill, D. Zhou, M. Boese, J. N. Coleman and H. Z. Zhang, “Nitrogen assisted etching of grapheme layers in a scanning electron microscope”, Appl. Phys. Lett. 98(24), 243117–243119 (2011). http://dx.doi.org/10.1063/1.3601467
- Z. Fan, Q. Zhao, T. Li, J. Yan, Y. Ren, J. Feng and T. Wei, “Easy synthesis of porous graphene nanosheets and their use in supercapacitors”, Carbon 50, 1699–1712 (2012). http://dx.doi.org/10.1016/j.carbon.2011.12.016
- W. S. Hummers and R. E Offeman, “Preparation of graphitic oxide”, J. Am. Chem. Soc. 80(6), 1339 (1958). http://dx.doi.org/10.1021/ja01539a017
- M. Koinuma, C. Ogata, Y. Kamei, K. Hatakeyama, H. Tateishi, Y. Watanabe, T. Taniguchi, K. Gezuhara, S. Hayami, A. Funatsu, M. Sakata, Y. Kuwahara, S. Kurihara and Y. Matsumoto, “Photochemical engineering of graphene oxide nanosheets”, J. Phys. Chem. C 116(37), 19822–19827 (2012). http://dx.doi.org/10.1021/jp305403r
- P. Russo, A. Hu, G. Compagnini, W. W. Dule and N. Y. Zhou. Submitted to Nanoscale.
- H. O. Jeschke, M. E. Garcia and K. H. Bennemann, “Theory for the ultrafast ablation of graphite films”, Phys. Rev. Lett. 87(1), 015003–015006 (2001). http://dx.doi.org/10.1103/PhysRevLett.87.015003
- Y. Miyamoto, H. Zhang and D. Tománek, “Photoexfoliation of graphene from graphite: an Ab initio study”, Phys. Rev. Lett. 104(20), 208302–208307 (2010). http://dx.doi.org/10.1103/PhysRevLett.104.208302
- L. D. Smoot and P. J. Smith, “Coal combustion and gasification: gasification of coal in practical flames”, Plenum Press: New York, 151–162 (1985).
- D. Fan, Y. Liu, J. He, Y. Zhou and Y. Yang, “Porous graphene-based materials by thermolytic cracking”, J. Mater. Chem. 22, 1396–1402 (2012). http://dx.doi.org/10.1039/c1jm13947a
- Y. Matsumoto, M. Koinuma, S. Ida, S. Hayami, T. Taniguchi, K. Hatakeyama, H. Tateishi, Y. Watanabe and S. Amano, “Photoreaction of graphene oxide nanosheets in water”, J. Phys. Chem. C 115(39), 19280–19286 (2011). http://dx.doi.org/10.1021/jp206348s
- M. Lotya, P. J. King, U. Khan, S. De and J. N. Coleman, “High-concentration, surfactant-stabilized graphene dispersions”, ACS Nano 4(6), 3155–3162 (2010). http://dx.doi.org/10.1021/nn1005304
- J. Shen, Y. Zhu, X. Yang, J. Zong, J. Zhang and C. Li, “One-pot hydrothermal synthesis of graphene quantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light”, New J. Chem. 36, 97–101 (2012). http://dx.doi.org/10.1039/c1nj20658c
- K. Sint, B. Wang and P. Kral, “Selective ion passage through functionalized graphene nanopores”, J. Am. Chem. Soc. 130(49), 16448–16449 (2008). http://dx.doi.org/10.1021/ja804409f
- H. Liu, S. Dai and D. Jiang, “Insights into CO2/N2 separation through nanoporous graphene from molecular dynamics”, Nanoscale 5, 9984–9987 (2013). http://dx.doi.org/10.1039/c3nr02852f
- H. Liu, S. Dai and D. Jiang, “Permeance of H2 through porous graphene from molecular dynamics”, Solid State Commun. In press (2013). http://dx.doi.org/10.1016/j.ssc.2013.07.004
- H. W. Kim, H. W. Yoon, S.-M. Yoon, B. M. Yoo, B. K. Ahn, Y. H. Cho, H. J. Shin, H. Yang, U. Paik, S. Kwon, J.-Y. Choi, H. B. Park, “Selective gas transport through few-layered graphene and graphene oxide membranes”, Science 342, 91–95 (2013). http://dx.doi.org/10.1126/science.1236098
- H. Li, Z. Song, X. Zhang, Y. Huang, S. Li, Y. Mao, H. J. Ploehn, Y. Bao and M. Yu, “Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation”, Science 342, 95–98 (2013). http://dx.doi.org/10.1126/science.1236686
- S.-M. Paek, E. Yoo and I. Honma, “Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure”, Nano Lett. 9(1), 72–75 (2009). http://dx.doi.org/10.1126/science.1236686
- M. Liang and L. Zhi, “Graphene-based electrode materials for rechargeable lithium batteries”, J. Mater. Chem. 19, 5871–5878 (2009). http://dx.doi.org/10.1039/b901551e
- M. Tarascon and M. Armand, “Issues and challenges facing rechargeable lithium batteries”, Nature 414, 359–367 (2001). http://dx.doi.org/10.1038/35104644
- Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa and T. Miyasaka, “Tin-based amorphous oxide: a high-capacity lithium-ion-storage material”, Science 276(5317), 1395–1397 (1997). http://dx.doi.org/10.1126/science.276.5317.1395
- P. Poizot, S. Laruelle, S. Grugeon, L. Dupont and J. M. Tarascon, “Nano-sized transition-metal oxides as negative-electrode-materials for lithium-ion batteries”, Nature 407, 496–499 (2000). http://dx.doi.org/10.1038/35035045
- G. Wang, B. Wang, X. Wang, J. Park, S. Dou, H. Ahn and K. Kim, “Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries”, J. Mater. Chem. 19, 8378–8384 (2009). http://dx.doi.org/10.1039/b914650d
- E. Yoo, J. Kim, E. Hosono, H.-S. Zhou, T. Kudo and I. Honma, “Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries”, Nano Lett. 8(8), 2277–2282 (2008). http://dx.doi.org/10.1021/nl800957b
- T. Takamura, K. Endo, L. Fu, Y. Wu, K. J. Lee and T. Matsumoto, “Identification of nano-sized holes by TEM in the graphene layer of graphite and the high rate discharge capability of Li-ion battery anodes”, Electrochim. Acta 53(3), 1055–1061 (2007). http://dx.doi.org/10.1016/j.electacta.2007.03.052
- G. Zhang, D. Wang, W. Xu, J. Xiao and R. E. Williford, “Ambient operation of Li/air batteries”, J. Power Sources 195(3), 4332–4337 (2010). http://dx.doi.org/10.1016/j.jpowsour.2010.01.022
- J. Read, K. Mutolo, M. Ervin, W. Behl, J. Wolfenstine, A. Driedger and D. Foster, “Oxygen transport properties of organic electrolytes and performance of lithium/oxygen battery”, J. Electrochem. Soc. 150(10), 1351–1356 (2003). http://dx.doi.org/10.1149/1.1606454
- A. Débart, A. J. Paterson, J. Bao and P. G. Bruce, “a-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries”, Angew. Chem. 120(24), 4597–4600 (2008). http://dx.doi.org/10.1002/ange.200705648
- J. Christensen, P. Albertus, R. S. Sanchez-Carrera, T. Lohmann, B. Kozinsky, R. Liedtke, J. Ahmed and A. Kojic, “A critical review of Li/air batteries”, J. Electrochem. Soc. 159(2), 1–30 (2012). http://dx.doi.org/10.1149/2.086202jes
- P. Simon and Y. Gogotsi, “Materials for electrochemical capacitors”, Nat. Mater. 7, 845–854 (2008). http://dx.doi.org/10.1038/nmat2297
- A. Burke, “Ultracapacitors: why, how, and where is the technology”, J. Power Sources 91(1), 37–50 (2000). http://dx.doi.org/10.1016/S0378-7753 (00)00485-7
- E. Conway, V. Birss and J. Wojtowicz, “The role and utilization of pseudocapacitance for energy storage by supercapacitors”, J. Power Sources 66(1–2), 1–14 (1997). http://dx.doi.org/10.1016/S0378-7753(96)02474-3
- H. Wang, Y. Liang, T. Mirfakhari, Z. Chen, H. S. Casalongue and H. Dai, “Advanced asymmetrical supercapacitors based on graphene hybrid materials”, Nano Res. 4(8), 729–736 (2011). http://dx.doi.org/10.1007/s12274-011-0129-6
- E. Frackowiak and F. Béguin, “Carbon materials for the electrochemical storage of energy in capacitors”, Carbon 39(6), 937–950 (2001). http://dx.doi.org/10.1016/S0008-6223(00)00183-4
- M. Endo, T. Takeda, Y. J. Kim, K. Koshiba and K. Ishii, “High power electric double layer capacitor (EDLC’s); from operating principle to pore size control in advanced activated carbons”, Carbon Science 1(3–4), 117–128 (2001).
- D. Qu and H. Shi, “Studies of activated carbons used in double-layer capacitors”, J. Power Sources 74(1), 99–107 (1998). http://dx.doi.org/10.1016/S0378-7753(98)00038-X
- J. P. Zheng, P. J. Cygan and T. R. Jow, “Hydrous ruthenium oxide as an electrode material for electrochemical capacitors”, J. Electrochem. Soc. 142(8), 2699–2703 (1995). http://dx.doi.org/10.1149/1.2050077
- D. Yu and L. Dai, “Self-assembled graphene/carbon nanotube hybrid films for supercapacitors”, J. Phys. Chem. Lett. 1(2), 467–470 (2009). http://dx.doi.org/10.1021/jz9003137
- K. H. An, W. S. Kim, Y. S. Park, J. M. Moon, D. J. Bae, S. C. Lim, Y. S. Lee and Y. H. Lee, “Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes”, Adv. Funct. Mater. 11(5), 387–392 (2001). http://dx.doi.org/10.1002/1616-3028 (200110)11:5<387::AID-ADFM387>3.3.CO;2-7
- D. Stoller, S. Park, Y. Zhu, J. An and R. S. Ruoff, “Graphene-based ultracapacitors”, Nano Lett. 8(10), 3498–3502 (2008). http://dx.doi.org/10.1021/nl802558y
- Y. Zhu, S. Murali, M. D. Stoller, A. Velamakanni, R. D. Piner and R. S. Ruoff, “Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors”, Carbon 48(7), 2118–2122 (2010). http://dx.doi.org/10.1016/j.carbon.2010.02.001
- Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen and Y. Chen, “Supercapacitor devices based on graphene materials”, J. Phys. Chem. C 113(30), 13103–13107 (2009). http://dx.doi.org/10.1021/jp902214f
- B. Fuertes, F. Pico and J. M. Rojo, “Influence of pore structure on electric double-layer capacitance of template mesoporous carbons”, J. Power Sources 133(2), 329–336 (2004). http://dx.doi.org/10.1016/j.jpowsour.2004.02.013
- C. Liu, Z. Yu, D. Neff, A. Zhamu and B. Z. Jang, “Graphene-based supercapacitor with an ultrahigh energy density”, Nano Lett. 1(12), 4863–4868 (2010). http://dx.doi.org/10.1021/nl102661q
- L. L. Zhang, R. Zhou and X. S. Zhao, “Graphene-based materials as supercapacitor electrodes”, J. Mater. Chem. 20, 5983–5992 (2010). http://dx.doi.org/10.1039/c000417k
- L. L. Zhang, X. Zhao, M. D. Stoller, Y. Zhu, H. Ji, S. Murali, Y. Wu, S. Perales, B. Clevenger and R. S. Ruoff, “Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors”, Nano Lett. 12(4), 1806–1812 (2012). http://dx.doi.org/10.1021/nl203903z
- Y. Han, B. Oyilmaz, Y. Zhang and P. Kim.Energy, “Band-gap engineering of graphene nanoribbons”, Phys. Rev. Lett. 98(20), 206805–206808 (2007). http://dx.doi.org/10.1103/PhysRevLett.98.206805
- B. Z. Jiang and A. Zhamu, “Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review”, J. Mater. Sci. 43, 5092–5101 (2008). http://dx.doi.org/10.1007/s10853-008-2755-2
- H. Zhang, X. Lv, Y. Li, Y. Wang and J. Li, “P25-graphene composite as a high performance photocatalyst”, ACS Nano 4(1), 380–386 (2010). http://dx.doi.org/10.1021/nn901221k
- X. Y. Zhang, H. P. Li, X. L. Cui and Y. Lin, “Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting”, J. Mater. Chem. 20, 2801–2806 (2010). http://dx.doi.org/10.1039/b917240h
- G. Jiang, Z. Lin, C. Chen, L. Zhu, Q. Chang, N. Wang, W. Wei and H. Tang, “TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants”, Carbon 49(8), 2693–2701 (2011). http://dx.doi.org/10.1016/j.carbon.2011.02.059
- V. Štengl, S. Bakardjieva, T. M. Grygar, J. Bludská and M. Kormunda, “TiO2-graphene oxide nanocomposite as advanced photocatalytic materials”, Chem. Centr. J. 7, 41–53 (2013). http://dx.doi.org/10.1186/1752-153X-7-41
- A. Hu, P. Peng, H. Alarifi, X. Y. Zhang, J. Y. Guo, Y. Zhou and W. W. Duley, “Femtosecond laser welded nanostructures and plasmonic devices”, J. Laser Appl. 24(4), 042001–7 (2012). http://dx.doi.org/10.2351/1.3695174
References
A. K. Geim and K. S. Novoselov, “The rise of graphene”, Nat. Mater. 6, 183–191 (2007). http://dx.doi.org/10.1038/nmat1849
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov “Electric field effect in atomically thin carbon films”, Science 306, 666–669 (2004). http://dx.doi.org/10.1126/science.1102896
T. Ohta, A. Bostwick, T. Seyller, K. Horn and E. Rotenberg, “Controlling the electronic structure of bilayer graphene”, Science 313, 951–954 (2006). http://dx.doi.org/10.1126/science.1130681
L. Kane and E. J. Mele, “Quantum spin hall effect in graphene”, Phys. Rev. Lett. 95(22), 226801–4 (2005). http://dx.doi.org/10.1103/PhysRevLett.95.226801
M. A. H. Vozmediano, M. P. Lopez-Sancho, T. Stauber and F. Giunea, “Local defects and ferromagnetism in graphene layers”, Phys. Rev. B 72(15), 155121–5 (2005). http://dx.doi.org/10.1103/PhysRevB.72.155121
A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition”, Nano Lett. 9(1), 30–35 (2009). http://dx.doi.org/10.1021/nl801827v
X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils”, Science 324(5932), 1312–1314 (2009). http://dx.doi.org/10.1126/science.1171245
K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi and B. Hee Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes”, Nature 457, 706–710 (2009). http://dx.doi.org/10.1038/nature07719
Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite”, Nat. Nanotech. 3, 563–568 (2008). http://dx.doi.org/10.1038/nnano.2008.215
H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, R. K. Prud’homme, R. Car, D. A. Saville and I. A. J. Aksay, “Functionalized single graphene sheets derived from splitting graphite oxide”, J. Phys. Chem. B 110(17), 8535–8539 (2006). http://dx.doi.org/10.1021/jp060936f
S. Niyogi, E. Bekyarova, M. E. Itikis, J. L. McWilliams, M. A. Hammon and R. C. Haddon, “Solution properties of graphite and graphene”, J. Am. Chem. Soc. 128(24), 7720–7721 (2006). http://dx.doi.org/10.1021/ja060680r
M. Zhou, Y. M. Zhai and S. J. Dong, “Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide”, Anal. Chem. 81(14), 5603–5613 (2009). http://dx.doi.org/10.1021/ac900136z
H. Bi, S. Sun, F. Huang, X. Xieb and M. Jiang, “Direct growth of few-layer graphene films on SiO2 substrates and their photovoltaic applications”, J. Mater. Chem. 22, 411–416 (2012). http://dx.doi.org/10.1039/c1jm14778a
W. Choi and J-W. Lee, “Graphene: Synthesis and Applications”, CRC Press, Taylor & Francis group, 2012. ISBN: 978-1-4398-6187-5.
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos and A. A. Firsov, “Two-dimensional gas of massless dirac fermions in graphene”, Nature 438, 197–200 (2005). http://dx.doi.org/10.1038/nature04233
X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo and H. Dai, “N-doping of graphene through electrothermal reactions with ammonia”, Science 324(5928), 768–771 (2009). http://dx.doi.org/10.1126/science.1170335
Y. Shao, S. Zhang, M. H. Engelhard, G. Li, G. Shao, Y. Wang, J. Liu, I. A. Aksay and Y. Lin, “Nitrogen-doped graphene and its electrochemical applications”, J. Mater. Chem. 20, 7491–7496 (2010). http://dx.doi.org/10.1039/c0jm00782j
X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells”, Nano Lett. 8(1), 323–327 (2008). http://dx.doi.org/10.1021/nl072838r
D. Kim, D. Lee, Y. Lee and D. Y. Jeon, “Work-function engineering of graphene anode by bis (trifluoromethanesulfonyl) amide doping for efficient polymer light-emitting diodes”, Adv. Funct. Mater. 23(40), 5049–5055 (2013). http://dx.doi.org/10.1002/adfm201301386
J. Ha, S. Park, D. Kim, J. Ryu, C. Lee, B. H. Hong and Y. Hong, “High-performance polymer light emitting diodes with interface-engineered graphene anodes”, Organic Electronics 14(9), 2324–2330 (2013). http://dx.doi.org/10.1016/j.orgel.2013.05.033
X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics”, Science 307(5709), 538–544 (2005). http://dx.doi.org/10.1126/science.1104274
B. D. Zdravkov, J. J. Cermak, M. Sefara and J. Jank, “Pore classification in the characterization of porous materials: a perspective”, Cent. Eur. J. Chem. 5(2), 385–395 (2007). http://dx.doi.org/10.2478/s11532-007-0017-9
C. Liang, Z. Li and S. Dai, “Mesoporous carbon materials: synthesis and modification”, Angew Chem. Int. Ed. 47, 3696–3717 (2008). http://dx.doi.org/10.1002/anie.200702046
T. Kyotani,“Control of pore structure in carbon”, Carbon 38(2), 269–286 (2000). http://dx.doi.org/10.1016/S0008-6223(99)00142-6
C. R. Bansal, J. B. Donnet and F. Stoeckl, “Active carbon”, Marcel Dekker, New York, pp.482 (1988).
J. S. Bunch, S. S Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead and P. L. McEuen, “Impermeable atomic membranes from graphene sheets”, Nano Lett. 8(8), 2458–2462, (2008). http://dx.doi.org/10.1021/nl801457b
S. Patchkovskii, J. S. Tse, S. N. Yurchenko, L. Zhechkov, T. Heine and G. Seifert, “Graphene nanostructures as tunable storage media for molecular hydrogen”, Proc. Natl. Acad. Sci. 102, 10439–10444 (2005). http://dx.doi.org/10.1073/pnas.0501030102
S. P. Koenig, L. Wang, J. Pellegrino and J. S. Bunch, “Selective molecular sieving through porous graphene”, Nat. Nanotech. 7, 728–732, (2012). http://dx.doi.org/10.1038/nnano.2012.162
D. Jiang, V. R. Cooper and S. Dai, “Porous graphene as the ultimate membrane for gas separation”, Nano Lett. 9(12), 4019–4024 (2009). http://dx.doi.org/10.1021/nl9021946
J. Zhu, D. Yang, X. Rui, D. Sim, H. Yu, H. E. Hoster, P. M. Ajayan and Q. Yan, “Facile preparation of ordered porous graphene-metal oxide@C binder-free electrodes with high Li storage performance”, Small 9(20), 3390–3397 (2013). http://dx.doi.org/10.1002/smll.201300755
Y. Yan, Y. X. Yin, S. Xin, Y. G. Guo and L. J. Wan, “Ionothermal synthesis of sulfur-doped porous carbons hybridized with graphene as superior anode materials for lithium-ion batteries”, Chem. Commun. 48, 10663–10665 (2012). http://dx.doi.org/10.1039/c2cc36234a
A. Du, Z. Zhu and S. C. Smith, “Multifunctional porous graphene for nanoelectronics and hydrogen storage: new properties revealed by first principle calculations”, J. Am. Chem. Soc. 132(9), 2876–2877 (2010). http://dx.doi.org/10.1021/ja100156d
J. Bai, X. Zhong, S. Jiang, Y. Huang and X. Duan, “Graphene nanomesh”, Nat. Nanotech. 5, 190–194 (2010). http://dx.doi.org/10.1038/nnano.2010.8
M. Bieri, M. Treier, J. Cai, K. Ait-Mansour, P. Ruffieux, O. Groning, P. Groning, M. Kastler, R. Rieger, X. Feng, K. Mullen and R. Fasel, “Porous graphenes: two-dimensional polymer synthesis with atomic precision”, Chem. Commun. 45, 6919–6921 (2009). http://dx.doi.org/10.1039/b915190g
Y. Li, Z. Zhou, P. Shena and Z. Chen, “Two-dimensional polyphenylene: experimentally available porous graphene as a hydrogen purification membrane”, Chem. Commun. 46, 3672–3674 (2010). http://dx.doi.org/10.1039/b926313f
W. Frank, D. M. Tanenbaum, A. M. Van der Zande and P. L. McEuen, “Mechanical properties of suspended graphene sheets”, J. Vac. Sci. Technol. B 25, 2558–2561 (2007). http://dx.doi.org/10.1116/1.2789446
C. Lee, X. Wei, J.W. Kysar and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene”, Science 321, 385–388 (2008). http://dx.doi.org/10.1126/science.1157996
A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C. N. Lau, “Superior thermal conductivity of single-layer graphene”, Nano Lett. 8(3), 902–907 (2008). http://dx.doi.org/10.1021/nl0731872
C. Faugeras, B. Faugeras, M. Orlita, M. Potemski, R. R. Nair and A. K. Geim, “Thermal conductivity of graphene in corbino membrane geometry”, ACS Nano 4(4), 1889–1892 (2010). http://dx.doi.org/10.1021/nn9016229
W. Cai, A. L. Moore, Y. Zhu, X. Li, S. Chen, L. Shi and R. S. Ruoff, “Thermal transport in suspended and supported monolayer graphene grown by chemical”, Nano Lett. 10(5), 1645–1651 (2010). http://dx.doi.org/10.1021/nl9041966
H. W. Ha, A. Choudhury, T. Kamal, D.-H. Kim and S.-Y. Park, “Effect of chemical modification of graphene on mechanical, electrical, and thermal properties of polyimide/graphene nanocomposites”, ACS Appl. Mater. Interfaces 4(9), 4623–4630, (2012). http://dx.doi.org/10.1021/am300999g
M. Mecklenburg, A. Schuchardt, Y. K. Mishra, S. Kaps, R. Adelung, A. Lotnyk, L. Kienle and K. Schulte, “Aerographite: ultra lightweight, flexible nanowall, carbon microtube material with outstanding mechanical performance”, Adv. Mater. 24(26), 3486–3490 (2012). http://dx.doi.org/10.1002/adma.201290158
S. Murali, J. R. Potts, S. Stoller, J. Park, M. D. Stoller, L. L. Zhang, Y. Zhu and R. S. Ruoff, “Preparation of activated graphene and effect of activation parameters on electrochemical capacitance”, Carbon 50, 3482–3485 (2012). http://dx.doi.org/10.1016/j.carbon.2012.03.014
L. Zhang, F. Zhang, X. Yang, G. Long, Y. Wu, T. Zhang, K. Leng, Y. Huang, Y. Ma, A. Yu and Y. Chen, “Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors”, Scientific Reports 3, 1408–1417 (2013). http://dx.doi.org/10.1038/srep01408
H. Du, J. Li, J. Zhang, G. Su, X. Li and Y. Zhao, “Separation of hydrogen and nitrogen gases with porous graphene membrane”, J. Phys. Chem. C 115(47), 23261–23266 (2011). http://dx.doi.org/10.1021/jp206258u
J. Schrier, “Helium separation using porous graphene membranes”, J. Phys. Chem. Lett. 1(15), 2284–2287 (2010). http://dx.doi.org/10.1021/jz100748x
W. Hauser and P. Schwerdtfeger, “Nanoporous graphene membranes for efficient 3He/4He separation”, J. Phys. Chem. Lett. 3(2), 209–213 (2012). http://dx.doi.org/10.1021/jz201504k
S. Blankenburg, M. Bieri, R. Fasel, K. Mullen, C. A. Pignedoli and D. Passerone, “Porous graphene as an atmospheric nanofilter”, Small 6(20), 2266–2271 (2010). http://dx.doi.org/10.1002/smll.201090068
J. Xiao, D. Mei, X. Li, W. Xu, D. Wang, G. L. Graff, W. D. Bennett, Z. Nie, L. V. Saraf, I. A. Aksay, J. Liu and J.-G. Zhang, “Hierarchically porous graphene as a Lithium-air battery electrode”, Nano Lett. 11(11), 5071–5078 (2011). http://dx.doi.org/10.1021/nl203332e
J. Yan, Z. Fan, W. Sun, G. Ning, T. Wei, Q. Zhang, R. Zhang, L. Zhi and F. Wei, “Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density”, Adv. Funct. Mater. 22(12), 2632–2641 (2012). http://dx.doi.org/10.1002/adfm.201102839
J. Zhao, W. Ren and H.-M. Cheng, “Graphene sponge for efficient and repeatable adsorption and desorption of water contaminations”, J. Mater. Chem. 22, 20197–20202 (2012). http://dx.doi.org/10.1039/c2jm34128j
H. Bi, X. Xie, K. Yin, Y. Zhou, S. Wan, L. He, F. Xu, F. Banhart, L. Sun and R. S. Ruoff, “Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents”, Adv. Funct. Mater. 22(21), 4421–4425 (2012). http://dx.doi.org/10.1002/adfm.201200888
R. Balog, B. Jørgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Lægsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T. G. Pedersen, P. Hofmann and L. Hornekær, “Band gap opening in graphene induced by patterned hydrogen adsorption”, Nat. Mater. 9, 315–319 (2010). http://dx.doi.org/10.1038/nmat2710
F. Cervantes-Sodi, G. Csanyi, S. Piscanec and A. C Ferrari, “Edge functionalized and substitutionally doped graphene nanoribbons: electronic and spin properties”, Phys. Rev. B 77(16), 165427–165439 (2008). http://dx.doi.org/10.1103/PhysRevB.77.165427
M. Vanevic, M. S. Stojanovic and M. Kindermann, “Character of electronic states in graphene antidot lattices: flat bands and spatial localization”, Phys. Rev. B 80(4), 045410–045417 (2009). http://dx.doi.org/10.1103/PhysRevB.80.045410
M. De La Pierre, P. Karamanis, J. Baima, R. Orlando, C. Pouchan, and R. Dovesi, “Ab initio periodic simulation of the spectroscopic and optical properties of novel porous graphene phases”, J. Phys. Chem. C 117(5), 2222–2229 (2013). http://dx.doi.org/10.1021/jp3103436
G. Brunetto, P. A. S. Autreto, L. D. Machado, B. I. Santos, R. P. B. dos Santos, D. S. Galvão, “A nonzero gap two-dimensional carbon allotrope from porous graphene”, J. Phys. Chem. C 116(23), 12810–12813 (2012). http://dx.doi.org/10.1021/jp211300n
Y. Matsuda, J. Tahir-Kheli and W. A. III Goddard, “Definitive band gaps for single-wall carbon nanotubes”, J. Phys. Chem. Lett. 1(19), 2946 (2010). http://dx.doi.org/10.1021/jz100889u
M. D. Fischbein and M. Drndic, “Electron beam nanosculpting of suspended graphene sheets”, Appl. Phys. Lett. 93(11), 113107–113109 (2008). http://dx.doi.org/10.1063/1.2980518
D. Fox, A. O’Neill, D. Zhou, M. Boese, J. N. Coleman and H. Z. Zhang, “Nitrogen assisted etching of grapheme layers in a scanning electron microscope”, Appl. Phys. Lett. 98(24), 243117–243119 (2011). http://dx.doi.org/10.1063/1.3601467
Z. Fan, Q. Zhao, T. Li, J. Yan, Y. Ren, J. Feng and T. Wei, “Easy synthesis of porous graphene nanosheets and their use in supercapacitors”, Carbon 50, 1699–1712 (2012). http://dx.doi.org/10.1016/j.carbon.2011.12.016
W. S. Hummers and R. E Offeman, “Preparation of graphitic oxide”, J. Am. Chem. Soc. 80(6), 1339 (1958). http://dx.doi.org/10.1021/ja01539a017
M. Koinuma, C. Ogata, Y. Kamei, K. Hatakeyama, H. Tateishi, Y. Watanabe, T. Taniguchi, K. Gezuhara, S. Hayami, A. Funatsu, M. Sakata, Y. Kuwahara, S. Kurihara and Y. Matsumoto, “Photochemical engineering of graphene oxide nanosheets”, J. Phys. Chem. C 116(37), 19822–19827 (2012). http://dx.doi.org/10.1021/jp305403r
P. Russo, A. Hu, G. Compagnini, W. W. Dule and N. Y. Zhou. Submitted to Nanoscale.
H. O. Jeschke, M. E. Garcia and K. H. Bennemann, “Theory for the ultrafast ablation of graphite films”, Phys. Rev. Lett. 87(1), 015003–015006 (2001). http://dx.doi.org/10.1103/PhysRevLett.87.015003
Y. Miyamoto, H. Zhang and D. Tománek, “Photoexfoliation of graphene from graphite: an Ab initio study”, Phys. Rev. Lett. 104(20), 208302–208307 (2010). http://dx.doi.org/10.1103/PhysRevLett.104.208302
L. D. Smoot and P. J. Smith, “Coal combustion and gasification: gasification of coal in practical flames”, Plenum Press: New York, 151–162 (1985).
D. Fan, Y. Liu, J. He, Y. Zhou and Y. Yang, “Porous graphene-based materials by thermolytic cracking”, J. Mater. Chem. 22, 1396–1402 (2012). http://dx.doi.org/10.1039/c1jm13947a
Y. Matsumoto, M. Koinuma, S. Ida, S. Hayami, T. Taniguchi, K. Hatakeyama, H. Tateishi, Y. Watanabe and S. Amano, “Photoreaction of graphene oxide nanosheets in water”, J. Phys. Chem. C 115(39), 19280–19286 (2011). http://dx.doi.org/10.1021/jp206348s
M. Lotya, P. J. King, U. Khan, S. De and J. N. Coleman, “High-concentration, surfactant-stabilized graphene dispersions”, ACS Nano 4(6), 3155–3162 (2010). http://dx.doi.org/10.1021/nn1005304
J. Shen, Y. Zhu, X. Yang, J. Zong, J. Zhang and C. Li, “One-pot hydrothermal synthesis of graphene quantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light”, New J. Chem. 36, 97–101 (2012). http://dx.doi.org/10.1039/c1nj20658c
K. Sint, B. Wang and P. Kral, “Selective ion passage through functionalized graphene nanopores”, J. Am. Chem. Soc. 130(49), 16448–16449 (2008). http://dx.doi.org/10.1021/ja804409f
H. Liu, S. Dai and D. Jiang, “Insights into CO2/N2 separation through nanoporous graphene from molecular dynamics”, Nanoscale 5, 9984–9987 (2013). http://dx.doi.org/10.1039/c3nr02852f
H. Liu, S. Dai and D. Jiang, “Permeance of H2 through porous graphene from molecular dynamics”, Solid State Commun. In press (2013). http://dx.doi.org/10.1016/j.ssc.2013.07.004
H. W. Kim, H. W. Yoon, S.-M. Yoon, B. M. Yoo, B. K. Ahn, Y. H. Cho, H. J. Shin, H. Yang, U. Paik, S. Kwon, J.-Y. Choi, H. B. Park, “Selective gas transport through few-layered graphene and graphene oxide membranes”, Science 342, 91–95 (2013). http://dx.doi.org/10.1126/science.1236098
H. Li, Z. Song, X. Zhang, Y. Huang, S. Li, Y. Mao, H. J. Ploehn, Y. Bao and M. Yu, “Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation”, Science 342, 95–98 (2013). http://dx.doi.org/10.1126/science.1236686
S.-M. Paek, E. Yoo and I. Honma, “Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure”, Nano Lett. 9(1), 72–75 (2009). http://dx.doi.org/10.1126/science.1236686
M. Liang and L. Zhi, “Graphene-based electrode materials for rechargeable lithium batteries”, J. Mater. Chem. 19, 5871–5878 (2009). http://dx.doi.org/10.1039/b901551e
M. Tarascon and M. Armand, “Issues and challenges facing rechargeable lithium batteries”, Nature 414, 359–367 (2001). http://dx.doi.org/10.1038/35104644
Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa and T. Miyasaka, “Tin-based amorphous oxide: a high-capacity lithium-ion-storage material”, Science 276(5317), 1395–1397 (1997). http://dx.doi.org/10.1126/science.276.5317.1395
P. Poizot, S. Laruelle, S. Grugeon, L. Dupont and J. M. Tarascon, “Nano-sized transition-metal oxides as negative-electrode-materials for lithium-ion batteries”, Nature 407, 496–499 (2000). http://dx.doi.org/10.1038/35035045
G. Wang, B. Wang, X. Wang, J. Park, S. Dou, H. Ahn and K. Kim, “Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries”, J. Mater. Chem. 19, 8378–8384 (2009). http://dx.doi.org/10.1039/b914650d
E. Yoo, J. Kim, E. Hosono, H.-S. Zhou, T. Kudo and I. Honma, “Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries”, Nano Lett. 8(8), 2277–2282 (2008). http://dx.doi.org/10.1021/nl800957b
T. Takamura, K. Endo, L. Fu, Y. Wu, K. J. Lee and T. Matsumoto, “Identification of nano-sized holes by TEM in the graphene layer of graphite and the high rate discharge capability of Li-ion battery anodes”, Electrochim. Acta 53(3), 1055–1061 (2007). http://dx.doi.org/10.1016/j.electacta.2007.03.052
G. Zhang, D. Wang, W. Xu, J. Xiao and R. E. Williford, “Ambient operation of Li/air batteries”, J. Power Sources 195(3), 4332–4337 (2010). http://dx.doi.org/10.1016/j.jpowsour.2010.01.022
J. Read, K. Mutolo, M. Ervin, W. Behl, J. Wolfenstine, A. Driedger and D. Foster, “Oxygen transport properties of organic electrolytes and performance of lithium/oxygen battery”, J. Electrochem. Soc. 150(10), 1351–1356 (2003). http://dx.doi.org/10.1149/1.1606454
A. Débart, A. J. Paterson, J. Bao and P. G. Bruce, “a-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries”, Angew. Chem. 120(24), 4597–4600 (2008). http://dx.doi.org/10.1002/ange.200705648
J. Christensen, P. Albertus, R. S. Sanchez-Carrera, T. Lohmann, B. Kozinsky, R. Liedtke, J. Ahmed and A. Kojic, “A critical review of Li/air batteries”, J. Electrochem. Soc. 159(2), 1–30 (2012). http://dx.doi.org/10.1149/2.086202jes
P. Simon and Y. Gogotsi, “Materials for electrochemical capacitors”, Nat. Mater. 7, 845–854 (2008). http://dx.doi.org/10.1038/nmat2297
A. Burke, “Ultracapacitors: why, how, and where is the technology”, J. Power Sources 91(1), 37–50 (2000). http://dx.doi.org/10.1016/S0378-7753 (00)00485-7
E. Conway, V. Birss and J. Wojtowicz, “The role and utilization of pseudocapacitance for energy storage by supercapacitors”, J. Power Sources 66(1–2), 1–14 (1997). http://dx.doi.org/10.1016/S0378-7753(96)02474-3
H. Wang, Y. Liang, T. Mirfakhari, Z. Chen, H. S. Casalongue and H. Dai, “Advanced asymmetrical supercapacitors based on graphene hybrid materials”, Nano Res. 4(8), 729–736 (2011). http://dx.doi.org/10.1007/s12274-011-0129-6
E. Frackowiak and F. Béguin, “Carbon materials for the electrochemical storage of energy in capacitors”, Carbon 39(6), 937–950 (2001). http://dx.doi.org/10.1016/S0008-6223(00)00183-4
M. Endo, T. Takeda, Y. J. Kim, K. Koshiba and K. Ishii, “High power electric double layer capacitor (EDLC’s); from operating principle to pore size control in advanced activated carbons”, Carbon Science 1(3–4), 117–128 (2001).
D. Qu and H. Shi, “Studies of activated carbons used in double-layer capacitors”, J. Power Sources 74(1), 99–107 (1998). http://dx.doi.org/10.1016/S0378-7753(98)00038-X
J. P. Zheng, P. J. Cygan and T. R. Jow, “Hydrous ruthenium oxide as an electrode material for electrochemical capacitors”, J. Electrochem. Soc. 142(8), 2699–2703 (1995). http://dx.doi.org/10.1149/1.2050077
D. Yu and L. Dai, “Self-assembled graphene/carbon nanotube hybrid films for supercapacitors”, J. Phys. Chem. Lett. 1(2), 467–470 (2009). http://dx.doi.org/10.1021/jz9003137
K. H. An, W. S. Kim, Y. S. Park, J. M. Moon, D. J. Bae, S. C. Lim, Y. S. Lee and Y. H. Lee, “Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes”, Adv. Funct. Mater. 11(5), 387–392 (2001). http://dx.doi.org/10.1002/1616-3028 (200110)11:5<387::AID-ADFM387>3.3.CO;2-7
D. Stoller, S. Park, Y. Zhu, J. An and R. S. Ruoff, “Graphene-based ultracapacitors”, Nano Lett. 8(10), 3498–3502 (2008). http://dx.doi.org/10.1021/nl802558y
Y. Zhu, S. Murali, M. D. Stoller, A. Velamakanni, R. D. Piner and R. S. Ruoff, “Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors”, Carbon 48(7), 2118–2122 (2010). http://dx.doi.org/10.1016/j.carbon.2010.02.001
Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen and Y. Chen, “Supercapacitor devices based on graphene materials”, J. Phys. Chem. C 113(30), 13103–13107 (2009). http://dx.doi.org/10.1021/jp902214f
B. Fuertes, F. Pico and J. M. Rojo, “Influence of pore structure on electric double-layer capacitance of template mesoporous carbons”, J. Power Sources 133(2), 329–336 (2004). http://dx.doi.org/10.1016/j.jpowsour.2004.02.013
C. Liu, Z. Yu, D. Neff, A. Zhamu and B. Z. Jang, “Graphene-based supercapacitor with an ultrahigh energy density”, Nano Lett. 1(12), 4863–4868 (2010). http://dx.doi.org/10.1021/nl102661q
L. L. Zhang, R. Zhou and X. S. Zhao, “Graphene-based materials as supercapacitor electrodes”, J. Mater. Chem. 20, 5983–5992 (2010). http://dx.doi.org/10.1039/c000417k
L. L. Zhang, X. Zhao, M. D. Stoller, Y. Zhu, H. Ji, S. Murali, Y. Wu, S. Perales, B. Clevenger and R. S. Ruoff, “Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors”, Nano Lett. 12(4), 1806–1812 (2012). http://dx.doi.org/10.1021/nl203903z
Y. Han, B. Oyilmaz, Y. Zhang and P. Kim.Energy, “Band-gap engineering of graphene nanoribbons”, Phys. Rev. Lett. 98(20), 206805–206808 (2007). http://dx.doi.org/10.1103/PhysRevLett.98.206805
B. Z. Jiang and A. Zhamu, “Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review”, J. Mater. Sci. 43, 5092–5101 (2008). http://dx.doi.org/10.1007/s10853-008-2755-2
H. Zhang, X. Lv, Y. Li, Y. Wang and J. Li, “P25-graphene composite as a high performance photocatalyst”, ACS Nano 4(1), 380–386 (2010). http://dx.doi.org/10.1021/nn901221k
X. Y. Zhang, H. P. Li, X. L. Cui and Y. Lin, “Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting”, J. Mater. Chem. 20, 2801–2806 (2010). http://dx.doi.org/10.1039/b917240h
G. Jiang, Z. Lin, C. Chen, L. Zhu, Q. Chang, N. Wang, W. Wei and H. Tang, “TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants”, Carbon 49(8), 2693–2701 (2011). http://dx.doi.org/10.1016/j.carbon.2011.02.059
V. Štengl, S. Bakardjieva, T. M. Grygar, J. Bludská and M. Kormunda, “TiO2-graphene oxide nanocomposite as advanced photocatalytic materials”, Chem. Centr. J. 7, 41–53 (2013). http://dx.doi.org/10.1186/1752-153X-7-41
A. Hu, P. Peng, H. Alarifi, X. Y. Zhang, J. Y. Guo, Y. Zhou and W. W. Duley, “Femtosecond laser welded nanostructures and plasmonic devices”, J. Laser Appl. 24(4), 042001–7 (2012). http://dx.doi.org/10.2351/1.3695174