Palladium Nanoparticles Loaded on Carbon Modified TiO2 Nanobelts for Enhanced Methanol Electrooxidation
Corresponding Author: Anming Hu
Nano-Micro Letters,
Vol. 5 No. 3 (2013), Article Number: 202-212
Abstract
Carbon modified TiO2 nanobelts (TiO2-C) were synthesized using a hydrothermal growth method, as a support material for palladium (Pd) nanoparticles (Pd/TiO2-C) to improve the electrocatalytic performance for methanol electrooxidation by comparison to Pd nanoparticles on bare TiO2 nanobelts (Pd/TiO2) and activated carbon (Pd/AC). Cyclic voltammetry characterization was conducted with respect to saturated calomel electrode (SCE) in an alkaline methanol solution, and the results indicate that the specific activity of Pd/TiO2-C is 2.2 times that of Pd/AC and 1.5 times that of Pd/TiO2. Chronoamperometry results revealed that the TiO2-C support was comparable in stability to activated carbon, but possesses an enhanced current density for methanol oxidation at a potential of −0.2 V vs. SCE. The current study demonstrates the potential of Pd nanoparticle loaded on hierarchical TiO2-C nanobelts for electrocatalytic applications such as fuel cells and batteries.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Zhiani, B. Rezaei and J. Jalili, “Methanol electrooxidation on Pt/C modified by polyaniline nanofibers for DMFC applications”, Int. J. Hydrogen Energy 35(17), 9298–9305 (2010). http://dx.doi.org/10.1016/j.ijhydene.2010.03.050
- W. Wang, Q. Huang, J. Liu, Z. Zou, Z. Li and H. Yang, “One-step synthesis of carbon-supported Pd-Pt alloy electrocatalysts for methanol tolerant oxygen reduction”, Electrochem. Commun. 10(9), 1396–1399 (2008). http://dx.doi.org/10.1016/j.elecom.2008.07.018
- H. B. Zhao, J. Yang, L. Li, H. Li, J. L. Wang and Y. M. Zhang, “Effect of over-oxidation treatment of Pt-Co/polypyrrole-carbon nanotube catalysts on methanol oxidation”, Int. J. Hydrogen Energy 34(9), 3908–3914 (2009). http://dx.doi.org/10.1016/j.ijhydene.2009.02.079
- W. Q. Zhou, C. Y. Zhai, Y. K. Du, J. K. Xu and P. Yang, “Electrochemical fabrication of novel platinumpoly(5-nitroindole) composite catalyst and its application for methanol oxidation in alkaline medium”, Int. J. Hydrogen Energy 34(23), 9315–9323 (2009). http://dx.doi.org/10.1016/j.ijhydene.2009.09.059
- W. Q, Zhou, Y. K. Du, F. F. Ren, C. Y. Wang, J. K. Xu and P. Yang, “High efficient electrocatalytic oxidation of methanol on Pt/polyindoles composite catalysts”, Int. J. Hydrogen Energy 35(8), 3270–3279 (2010). http://dx.doi.org/10.1016/j. ijhydene.2010.01.083
- H. Zhang, W. Zhou, Y. Du, P. Yang, C. Wang and J. Xu, “Enhanced electrocatalytic performance for methanol oxidation on Pt-TiO2/ITO electrode under UV illumination”, Int. J. Hydrogen Energy 35(24), 13290–13297 (2010). http://dx.doi.org/10.1016/j.ijhydene.2010.09.025
- A. V. Tripkovic, K. Dj. Popovic. J. D. Lovic, V. M. Jovanovic and A. Kowal, “Methanol oxidation at platinum electrodes in alkaline solution: comparison between supported catalysts and model systems”, J. Electro. Chem. 572(1), 119–128 (2004). http://dx.doi.org/10.1016/j.jelechem.2004.06.007
- H. Wang, M. Zhang, F. Cheng and C. Xu, “Pt supported on Ti for methanol electrooxidation by magnetron sputter method”, Int. J. Electrochem. Sci. 3, 946 (2008). http://www.electrochemsci.org/papers/vol3/3080946.pdf
- R. G. Freitas, M. C. Santos, R. T. S. Oliveira, L. O. S. Bulhoes and E. C. Pereira, “Methanol and ethanol electroxidation using Pt electrodes prepared by the polymeric precursor method”, J. Power Sources 158 (1), 164–168 (2006). http://dx.doi.org/10.1016/j.jpowsour.2005.10.002
- B. Liu, J. H. Chen, C. H. Xiao, K. Z. Cui, L. Yang, H. L. Pang and Y. F. Kuang, “Preparation of Pt/MgO/CNT hybrid catalysts and their electrocatalytic properties for ethanol electrooxidation”, Energy & Fuels 21(3), 1365–1369 (2007). http://dx.doi.org/10.1021/ef060452i
- N. Jha, A. L. M. Reddy, M. M. Shaijumon, N. Rajalakshmi and S. Ramaprabhu, “Pt-Ru/multiwalled carbon nanotubes as electrocatalysts for di- rect methanol fuel cell”, Int. J. Hydrogen Energy 33(1), 427–433 (2008). http://dx.doi.org/10.1016/j.ijhydene.2007.07.064
- E. H. Yu, K. Scott and R. W. Reeve, “A study of the anodic oxidation of methanol on Pt in alkaline solutions”, J. Electroanal. Chem. 547(1), 17–24 (2003). http://dx.doi.org/10.1016/S0022-0728(03)00172-4
- Q. He, W. Chen, S. Mukerjee, S. Chen and F. Laufek, “Carbon-supported PdM (M = Au and Sn) nanocatalysts for the electrooxidation of ethanol in high pH media”, J. Power Sources 187(2), 298–304 (2009). http://dx.doi.org/10.1016/j.jpowsour.2008.11.065
- Deffernez, S. Hermans and M. Devillers, “Bimetallic Bi-Pt, Ru-Pt and Ru-Pd and trimetallic catalysts for the selective oxidation of glyoxal into glyoxalic acid in aqueous phase”, App. Catalysis A: General 282(1–2), 303–313 (2005). http://dx.doi.org/10.1016/j.apcata.2004.12.023
- C. H. Yen, K. Shimizu, Y. Lin, F. Bailey, I. F. Cheng and C. M. Wai, “Chemical fluid deposition of Pt-based bimetallic nanoparticles on multiwalled carbon nanotubes for direct methanol fuel cell application”, En- ergy & Fuels 21(4), 2268–2271 (2007). http://dx.doi.org/10.1021/ef0606409
- W. Du, Q. Wang, C. A. LaScala, L. Zhang, D. Su, A. Frenkel, V. K. Mathur and X. Teng, “Ternary PtSnRh- SnO2 nanoclusters: synthesis and electroactivity for ethanol oxidation fuel cell reaction”, J. Mater. Chem. 21, 8887–8892 (2011). http://dx.doi.org/10.1039/C0JM04358C
- J. Kim and S. Park, “Electrochemical oxidation of ethanol at thermally prepared RuO2-Modified electrodes in alkaline media”, J. Electrochem. Soc. 146(3), 1075–1080 (1999). http://dx.doi.org/10.1149/1.1391723
- Fujishima, T. N. Rao and D. A. Tryk, “Titanium dioxide photocatalysis”, J. Photochem. Photobiol. C 1(1), 1–21 (2000). http://dx.doi.org/10.1016/S1389-5567(00)00002-2
- A. R. Gandhe, S. P. Naik and J. B. Fer- nandes, “Selective synthesis of N-doped mesoporous TiO2 phases having enhanced photocatalytic activity”, Microporous Mesoporous Mater. 87(2), 103–109 (2005). http://dx.doi.org/10.1016/j.micromeso.2005.07.017
- Anming Hu, X. Zhang, K. D. Oakes, P. Peng, Y. N. Zhou and M. R. Servos, “Hydrothermal growth of free standing TiO2 nanowire membranes for photocatalytic degradation of pharmaceuticals”, J. Hazard. Mater. 189(1-2), 278–285 (2011). http://dx.doi.org/10.1016/j.jhazmat.2011.02.033
- A. Hu, R. Liang, X. Zhang, S. Kurdi, D. Luong, H. Huang, P. Peng, E. Marzbanrad, K. D. Oakes, Y. Zhou and M. R. Servos, “Enhanced photocatalytic degradation of dyes by TiO2 nanobelts with hierarchical structures”, J. Photochem. Photobiology A: Chem. 256, 7–15 (2013). http://dx.doi.org/10.1016/j.jphotochem.2013.01.015
- A. Hu, X. Zhang, D. Luong, K. Oakes, M. Servos, R. Liang, S. Kurdi, P. Peng and Y. Zhou, “Adsorption and photocatalytic degradation kinetics of pharmaceuticals by TiO2 nanowires during water treatment”, Waste Biomass Valor 3(4), 443–449 (2012). http://dx.doi.org/10.1007/s12649-012-9142-6
- F. Hu, F. Ding, S. Song and P. K. Shen, “Pd electrocatalyst supported on carbonized TiO2 nanotube for ethanol oxidation”, J. Power Sources 163(1), 415–419 (2006). http://dx.doi.org/10.1016/j.jpowsour.2006.09.039
- Z. Yang, G. Du, Q. Meng, Z. Guo, X. Yu, Z. Chen, T. Guo and R. Zeng, “Synthesis of uniform TiO2@carbon composite nanofibers as anode for lithium ion batteries with enhanced electrochemical performance”, J. Mater. Chem. 22, 5848–5854 (2012). http://dx.doi.org/10.1039/C2JM14852H
- M. A. Abdelkareem, Y. Ito, T. Tsujiguchi and N. Nakagawa, “Carbon-TiO2 composite nanofibers as a promising support for PtRu anode catalyst of DMFC”, ECS Trans. 50(2), 1959–1967 (2013). http://dx.doi.org/10.1149/05002.1959ecst
- A. R. Fakhari, B. Rafiee, H. Ahmar and A. Bagheri, “Electrocatalytic determination of oxalic acid by TiO2 nanoparticles/multiwalled carbon nanotubes modified electrode”, Anal. Methods 4, 3314–3319 (2012). http://dx.doi.org/10.1039/C2AY25077B
- F. Zhang, F. Xie, H. Xu, J. Liu and W. C. Oh, “Characterization of Pd/TiO2 embedded in multi-walled carbon nanotube catalyst with a high photocatalytic ac- tivity”, Kinetics and Catalysts 54(3), 297–306 (2013). http://dx.doi.org/10.1134/S002315841303018X
- D. Guo, X. Qiu, L. Chen and W. Zhu, “Multi-walled carbon nanotubes modified by sulfated TiO2 - A promising support for Pt catalyst in a direct ethanol fuel cell”, Carbon 47(7), 1680–1685 (2009). http://dx.doi.org/10.1016/j.carbon.2009.02.023
- Alex Bauer, R. Hui, A. Ignaszak, J. Zhang and D. Jones, “Application of a composite structure of carbon nanoparticles and Nb-TiO2 nanofibers as electrocatalyst support for PEM fuel cells”, J. Power Sources 210, 15–20 (2012). http://dx.doi.org/10.1016/j.jpowsour.2012.02.093
- Z. Yang, G. Du, Z. Guo, X. Yu, Z. Chen, T. Guo and R. Zeng, “Encapsulation of TiO2(B) nanowire cores into SnO2/carbon nanoparticle shells and their high performance in lithium storage”, Nanoscale 3, 4440–4447 (2011). http://dx.doi.org/10.1039/C1NR10837A
- X. Wang, J. Wang, Q. Zou and Y. Xia, “Pd nanoparticles supported on carbon-modified rutile TiO2 as a highly efficient catalyst for formic acid electrooxidation”, Electrochemica Acta 56, 1646-1651 (2011). http://dx.doi.org/10.1016/j. electacta.2010.08.003
- Y. L. Hsin, K. C. Hwang and C. Yeh, “Poly(vinylpyrrolidone)-modified graphite carbon nanofibers as promising supports for PtRu catalysts in direct methanol fuel cells”, J. Am. Chem. Soc. 129(32), 9999–10010 (2007). http://dx.doi.org/10. 1021/ja072367a
- S. S. Mahapatra and J. Datta, “Characterization of Pt-Pd/C electrocatalyst for methanol oxidation in alkaline medium”, Int. J. Electrochem. 2011, Article ID: 563495 (2011). http://dx.doi.org/10.4061/2011/563495
- R. N. Singh, A. Singh and Anindita, “Electrocatalytic activity of binary and ternary composite films of Pd, MWCNT and Ni, Part II: Methanol electrooxidation in 1 M KOH”, Int. J. Hydrogen Energy 34(4), 2052–2057 (2009). http://dx.doi.org/10.1016/j.ijhydene.2008.12.047
- G. Xue, Y. Gui, T. Yu, J. Guan, X. Yu, J. Zhang, J. Liu and Z. Zou, “Degradation mechanisms investigation for long-term thermal stability of dyesensitized solar cells”, Int. J. Electrochem. Sci. 7, 1496–1511 (2012). http://www.electrochemsci.org/papers/vol7/7021496.pdf
- Y. Wang, D. C. Alsmeyer and R. L. McCreery, “Raman spectroscopy of carbon materials: structural basis of observed spectra”, Chem. Mater. 2(5), 557–563 (1990). http://dx.doi.org/10.1021/cm00011a018
- XPS database on Web: http://www.lasurface.com/database/elementxps.php (Accessed Oct. 2012).
- Z. X. Liang, T. S. Zhao, J. B. Xu and L. D. Zhu, “Mechanism study of the ethanol oxidation reaction on palladium in alkaline media”, Electrochimica Acta 54, 2203 (2009). http://dx.doi.org/10.1016/j.electacta.2008.10.034
- M. Grden and A. Czerwinski, “EQCM studies on Pd- Ni alloy oxidation in basic solution”, J. Solid State Electrochem. 12(4), 375–385 (2008). http://dx.doi.org/10.1007/s10008-007-0452-8
- M. C. Jeong, C. H. Pyun and I. H. Yeo, “Voltammetric studies on the palladium oxides in alkaline media”, J. Electrochem. Soc. 140(7), 1986–1989 (1993). http://dx.doi.org/10.1149/1.2220750
- L. J. Vracar, S. Burojevic and N. Krstajic, “The surface processes at Pd-Ni alloy in acid and alkaline solutions”, Int. J. Hydrogen Energy 23(12), 1157–1164 (1998). http://dx.doi.org/10.1016/S0360-3199(97)00176-6
- T. Takamura and K. Minamiya, “Anodic oxidation of methanol at palladium electrode in alkaline solution”, J. Electrochem. Soc. 112(3), 333–335 (1965). http://dx.doi.org/10.1149/1.2423534
- C. Xu, Y. Liu and D. Yuan, “Pt and Pd supported on carbon microspheres for alcohol electrooxidation in alkaline media”, Int. J. Electrochem. Sci. 2, 674–680 (2007). http://www.electrochemsci.org/papers/vol2/2090674.pdf
- Z. Shih, C. Wang, G. Xu and H. Chang, “Porous palladium copper nanoparticles for the electrocatalytic oxidation of methanol in direct methanol fuel cells”, J. Mater. Chem. A 1(15), 4774–4778 (2013). http://dx.doi.org/10.1039/C3TA01664A
- Z. Qi, in PEM Fuel Cell Electrocatalysts and Catalyst Layers, ed. J. Zhang, Springer-Verlag London Limited, ch.11, 547 (2008).
- G. A. Somorjai, “Modern concepts in surface science and heterogeneous catalysis”, J. Phys. Chem. 94, 1013–1023 (1990). http://dx.doi.org/10.1021/j100366a001
- H. Hoster, T. Iwasita, H. Baumgartner and W. Vielstich, “Current-Time behavior of smooth and porous PtRu surfaces for methanol oxidation”, J. Electrochem. Soc. 148, A496–A501 (2001). http://dx.doi.org/10.1149/1.1365142
- J.W. Guo, T. S. Zhao, J. Prabhuram, R. Chen and W. Wong, “Preparation and characterization of a PtRu/C nanocatalyst for direct methanol fuel cells”, J. Electrochem. Acta 51(4), 754–763 (2005). http://dx.doi.org/10.1016/j.electacta.2005.05.056
- J. Jiang and A. Kucernak, “Electrooxidation of small organic molecules on mesoporous precious metal catalysts: II: CO and methanol on platinumruthenium alloy”, J. Electroanal. Chem. 543(2), 187–199 (2003). http://dx.doi.org/10.1016/S0022-0728(03)00046-9
References
M. Zhiani, B. Rezaei and J. Jalili, “Methanol electrooxidation on Pt/C modified by polyaniline nanofibers for DMFC applications”, Int. J. Hydrogen Energy 35(17), 9298–9305 (2010). http://dx.doi.org/10.1016/j.ijhydene.2010.03.050
W. Wang, Q. Huang, J. Liu, Z. Zou, Z. Li and H. Yang, “One-step synthesis of carbon-supported Pd-Pt alloy electrocatalysts for methanol tolerant oxygen reduction”, Electrochem. Commun. 10(9), 1396–1399 (2008). http://dx.doi.org/10.1016/j.elecom.2008.07.018
H. B. Zhao, J. Yang, L. Li, H. Li, J. L. Wang and Y. M. Zhang, “Effect of over-oxidation treatment of Pt-Co/polypyrrole-carbon nanotube catalysts on methanol oxidation”, Int. J. Hydrogen Energy 34(9), 3908–3914 (2009). http://dx.doi.org/10.1016/j.ijhydene.2009.02.079
W. Q. Zhou, C. Y. Zhai, Y. K. Du, J. K. Xu and P. Yang, “Electrochemical fabrication of novel platinumpoly(5-nitroindole) composite catalyst and its application for methanol oxidation in alkaline medium”, Int. J. Hydrogen Energy 34(23), 9315–9323 (2009). http://dx.doi.org/10.1016/j.ijhydene.2009.09.059
W. Q, Zhou, Y. K. Du, F. F. Ren, C. Y. Wang, J. K. Xu and P. Yang, “High efficient electrocatalytic oxidation of methanol on Pt/polyindoles composite catalysts”, Int. J. Hydrogen Energy 35(8), 3270–3279 (2010). http://dx.doi.org/10.1016/j. ijhydene.2010.01.083
H. Zhang, W. Zhou, Y. Du, P. Yang, C. Wang and J. Xu, “Enhanced electrocatalytic performance for methanol oxidation on Pt-TiO2/ITO electrode under UV illumination”, Int. J. Hydrogen Energy 35(24), 13290–13297 (2010). http://dx.doi.org/10.1016/j.ijhydene.2010.09.025
A. V. Tripkovic, K. Dj. Popovic. J. D. Lovic, V. M. Jovanovic and A. Kowal, “Methanol oxidation at platinum electrodes in alkaline solution: comparison between supported catalysts and model systems”, J. Electro. Chem. 572(1), 119–128 (2004). http://dx.doi.org/10.1016/j.jelechem.2004.06.007
H. Wang, M. Zhang, F. Cheng and C. Xu, “Pt supported on Ti for methanol electrooxidation by magnetron sputter method”, Int. J. Electrochem. Sci. 3, 946 (2008). http://www.electrochemsci.org/papers/vol3/3080946.pdf
R. G. Freitas, M. C. Santos, R. T. S. Oliveira, L. O. S. Bulhoes and E. C. Pereira, “Methanol and ethanol electroxidation using Pt electrodes prepared by the polymeric precursor method”, J. Power Sources 158 (1), 164–168 (2006). http://dx.doi.org/10.1016/j.jpowsour.2005.10.002
B. Liu, J. H. Chen, C. H. Xiao, K. Z. Cui, L. Yang, H. L. Pang and Y. F. Kuang, “Preparation of Pt/MgO/CNT hybrid catalysts and their electrocatalytic properties for ethanol electrooxidation”, Energy & Fuels 21(3), 1365–1369 (2007). http://dx.doi.org/10.1021/ef060452i
N. Jha, A. L. M. Reddy, M. M. Shaijumon, N. Rajalakshmi and S. Ramaprabhu, “Pt-Ru/multiwalled carbon nanotubes as electrocatalysts for di- rect methanol fuel cell”, Int. J. Hydrogen Energy 33(1), 427–433 (2008). http://dx.doi.org/10.1016/j.ijhydene.2007.07.064
E. H. Yu, K. Scott and R. W. Reeve, “A study of the anodic oxidation of methanol on Pt in alkaline solutions”, J. Electroanal. Chem. 547(1), 17–24 (2003). http://dx.doi.org/10.1016/S0022-0728(03)00172-4
Q. He, W. Chen, S. Mukerjee, S. Chen and F. Laufek, “Carbon-supported PdM (M = Au and Sn) nanocatalysts for the electrooxidation of ethanol in high pH media”, J. Power Sources 187(2), 298–304 (2009). http://dx.doi.org/10.1016/j.jpowsour.2008.11.065
Deffernez, S. Hermans and M. Devillers, “Bimetallic Bi-Pt, Ru-Pt and Ru-Pd and trimetallic catalysts for the selective oxidation of glyoxal into glyoxalic acid in aqueous phase”, App. Catalysis A: General 282(1–2), 303–313 (2005). http://dx.doi.org/10.1016/j.apcata.2004.12.023
C. H. Yen, K. Shimizu, Y. Lin, F. Bailey, I. F. Cheng and C. M. Wai, “Chemical fluid deposition of Pt-based bimetallic nanoparticles on multiwalled carbon nanotubes for direct methanol fuel cell application”, En- ergy & Fuels 21(4), 2268–2271 (2007). http://dx.doi.org/10.1021/ef0606409
W. Du, Q. Wang, C. A. LaScala, L. Zhang, D. Su, A. Frenkel, V. K. Mathur and X. Teng, “Ternary PtSnRh- SnO2 nanoclusters: synthesis and electroactivity for ethanol oxidation fuel cell reaction”, J. Mater. Chem. 21, 8887–8892 (2011). http://dx.doi.org/10.1039/C0JM04358C
J. Kim and S. Park, “Electrochemical oxidation of ethanol at thermally prepared RuO2-Modified electrodes in alkaline media”, J. Electrochem. Soc. 146(3), 1075–1080 (1999). http://dx.doi.org/10.1149/1.1391723
Fujishima, T. N. Rao and D. A. Tryk, “Titanium dioxide photocatalysis”, J. Photochem. Photobiol. C 1(1), 1–21 (2000). http://dx.doi.org/10.1016/S1389-5567(00)00002-2
A. R. Gandhe, S. P. Naik and J. B. Fer- nandes, “Selective synthesis of N-doped mesoporous TiO2 phases having enhanced photocatalytic activity”, Microporous Mesoporous Mater. 87(2), 103–109 (2005). http://dx.doi.org/10.1016/j.micromeso.2005.07.017
Anming Hu, X. Zhang, K. D. Oakes, P. Peng, Y. N. Zhou and M. R. Servos, “Hydrothermal growth of free standing TiO2 nanowire membranes for photocatalytic degradation of pharmaceuticals”, J. Hazard. Mater. 189(1-2), 278–285 (2011). http://dx.doi.org/10.1016/j.jhazmat.2011.02.033
A. Hu, R. Liang, X. Zhang, S. Kurdi, D. Luong, H. Huang, P. Peng, E. Marzbanrad, K. D. Oakes, Y. Zhou and M. R. Servos, “Enhanced photocatalytic degradation of dyes by TiO2 nanobelts with hierarchical structures”, J. Photochem. Photobiology A: Chem. 256, 7–15 (2013). http://dx.doi.org/10.1016/j.jphotochem.2013.01.015
A. Hu, X. Zhang, D. Luong, K. Oakes, M. Servos, R. Liang, S. Kurdi, P. Peng and Y. Zhou, “Adsorption and photocatalytic degradation kinetics of pharmaceuticals by TiO2 nanowires during water treatment”, Waste Biomass Valor 3(4), 443–449 (2012). http://dx.doi.org/10.1007/s12649-012-9142-6
F. Hu, F. Ding, S. Song and P. K. Shen, “Pd electrocatalyst supported on carbonized TiO2 nanotube for ethanol oxidation”, J. Power Sources 163(1), 415–419 (2006). http://dx.doi.org/10.1016/j.jpowsour.2006.09.039
Z. Yang, G. Du, Q. Meng, Z. Guo, X. Yu, Z. Chen, T. Guo and R. Zeng, “Synthesis of uniform TiO2@carbon composite nanofibers as anode for lithium ion batteries with enhanced electrochemical performance”, J. Mater. Chem. 22, 5848–5854 (2012). http://dx.doi.org/10.1039/C2JM14852H
M. A. Abdelkareem, Y. Ito, T. Tsujiguchi and N. Nakagawa, “Carbon-TiO2 composite nanofibers as a promising support for PtRu anode catalyst of DMFC”, ECS Trans. 50(2), 1959–1967 (2013). http://dx.doi.org/10.1149/05002.1959ecst
A. R. Fakhari, B. Rafiee, H. Ahmar and A. Bagheri, “Electrocatalytic determination of oxalic acid by TiO2 nanoparticles/multiwalled carbon nanotubes modified electrode”, Anal. Methods 4, 3314–3319 (2012). http://dx.doi.org/10.1039/C2AY25077B
F. Zhang, F. Xie, H. Xu, J. Liu and W. C. Oh, “Characterization of Pd/TiO2 embedded in multi-walled carbon nanotube catalyst with a high photocatalytic ac- tivity”, Kinetics and Catalysts 54(3), 297–306 (2013). http://dx.doi.org/10.1134/S002315841303018X
D. Guo, X. Qiu, L. Chen and W. Zhu, “Multi-walled carbon nanotubes modified by sulfated TiO2 - A promising support for Pt catalyst in a direct ethanol fuel cell”, Carbon 47(7), 1680–1685 (2009). http://dx.doi.org/10.1016/j.carbon.2009.02.023
Alex Bauer, R. Hui, A. Ignaszak, J. Zhang and D. Jones, “Application of a composite structure of carbon nanoparticles and Nb-TiO2 nanofibers as electrocatalyst support for PEM fuel cells”, J. Power Sources 210, 15–20 (2012). http://dx.doi.org/10.1016/j.jpowsour.2012.02.093
Z. Yang, G. Du, Z. Guo, X. Yu, Z. Chen, T. Guo and R. Zeng, “Encapsulation of TiO2(B) nanowire cores into SnO2/carbon nanoparticle shells and their high performance in lithium storage”, Nanoscale 3, 4440–4447 (2011). http://dx.doi.org/10.1039/C1NR10837A
X. Wang, J. Wang, Q. Zou and Y. Xia, “Pd nanoparticles supported on carbon-modified rutile TiO2 as a highly efficient catalyst for formic acid electrooxidation”, Electrochemica Acta 56, 1646-1651 (2011). http://dx.doi.org/10.1016/j. electacta.2010.08.003
Y. L. Hsin, K. C. Hwang and C. Yeh, “Poly(vinylpyrrolidone)-modified graphite carbon nanofibers as promising supports for PtRu catalysts in direct methanol fuel cells”, J. Am. Chem. Soc. 129(32), 9999–10010 (2007). http://dx.doi.org/10. 1021/ja072367a
S. S. Mahapatra and J. Datta, “Characterization of Pt-Pd/C electrocatalyst for methanol oxidation in alkaline medium”, Int. J. Electrochem. 2011, Article ID: 563495 (2011). http://dx.doi.org/10.4061/2011/563495
R. N. Singh, A. Singh and Anindita, “Electrocatalytic activity of binary and ternary composite films of Pd, MWCNT and Ni, Part II: Methanol electrooxidation in 1 M KOH”, Int. J. Hydrogen Energy 34(4), 2052–2057 (2009). http://dx.doi.org/10.1016/j.ijhydene.2008.12.047
G. Xue, Y. Gui, T. Yu, J. Guan, X. Yu, J. Zhang, J. Liu and Z. Zou, “Degradation mechanisms investigation for long-term thermal stability of dyesensitized solar cells”, Int. J. Electrochem. Sci. 7, 1496–1511 (2012). http://www.electrochemsci.org/papers/vol7/7021496.pdf
Y. Wang, D. C. Alsmeyer and R. L. McCreery, “Raman spectroscopy of carbon materials: structural basis of observed spectra”, Chem. Mater. 2(5), 557–563 (1990). http://dx.doi.org/10.1021/cm00011a018
XPS database on Web: http://www.lasurface.com/database/elementxps.php (Accessed Oct. 2012).
Z. X. Liang, T. S. Zhao, J. B. Xu and L. D. Zhu, “Mechanism study of the ethanol oxidation reaction on palladium in alkaline media”, Electrochimica Acta 54, 2203 (2009). http://dx.doi.org/10.1016/j.electacta.2008.10.034
M. Grden and A. Czerwinski, “EQCM studies on Pd- Ni alloy oxidation in basic solution”, J. Solid State Electrochem. 12(4), 375–385 (2008). http://dx.doi.org/10.1007/s10008-007-0452-8
M. C. Jeong, C. H. Pyun and I. H. Yeo, “Voltammetric studies on the palladium oxides in alkaline media”, J. Electrochem. Soc. 140(7), 1986–1989 (1993). http://dx.doi.org/10.1149/1.2220750
L. J. Vracar, S. Burojevic and N. Krstajic, “The surface processes at Pd-Ni alloy in acid and alkaline solutions”, Int. J. Hydrogen Energy 23(12), 1157–1164 (1998). http://dx.doi.org/10.1016/S0360-3199(97)00176-6
T. Takamura and K. Minamiya, “Anodic oxidation of methanol at palladium electrode in alkaline solution”, J. Electrochem. Soc. 112(3), 333–335 (1965). http://dx.doi.org/10.1149/1.2423534
C. Xu, Y. Liu and D. Yuan, “Pt and Pd supported on carbon microspheres for alcohol electrooxidation in alkaline media”, Int. J. Electrochem. Sci. 2, 674–680 (2007). http://www.electrochemsci.org/papers/vol2/2090674.pdf
Z. Shih, C. Wang, G. Xu and H. Chang, “Porous palladium copper nanoparticles for the electrocatalytic oxidation of methanol in direct methanol fuel cells”, J. Mater. Chem. A 1(15), 4774–4778 (2013). http://dx.doi.org/10.1039/C3TA01664A
Z. Qi, in PEM Fuel Cell Electrocatalysts and Catalyst Layers, ed. J. Zhang, Springer-Verlag London Limited, ch.11, 547 (2008).
G. A. Somorjai, “Modern concepts in surface science and heterogeneous catalysis”, J. Phys. Chem. 94, 1013–1023 (1990). http://dx.doi.org/10.1021/j100366a001
H. Hoster, T. Iwasita, H. Baumgartner and W. Vielstich, “Current-Time behavior of smooth and porous PtRu surfaces for methanol oxidation”, J. Electrochem. Soc. 148, A496–A501 (2001). http://dx.doi.org/10.1149/1.1365142
J.W. Guo, T. S. Zhao, J. Prabhuram, R. Chen and W. Wong, “Preparation and characterization of a PtRu/C nanocatalyst for direct methanol fuel cells”, J. Electrochem. Acta 51(4), 754–763 (2005). http://dx.doi.org/10.1016/j.electacta.2005.05.056
J. Jiang and A. Kucernak, “Electrooxidation of small organic molecules on mesoporous precious metal catalysts: II: CO and methanol on platinumruthenium alloy”, J. Electroanal. Chem. 543(2), 187–199 (2003). http://dx.doi.org/10.1016/S0022-0728(03)00046-9