Laser-Assisted Reduction of Highly Conductive Circuits Based on Copper Nitrate for Flexible Printed Sensors
Corresponding Author: Anming Hu
Nano-Micro Letters,
Vol. 9 No. 4 (2017), Article Number: 42
Abstract
Stretchable electronic sensing devices are defining the path toward wearable electronics. High-performance flexible strain sensors attached on clothing or human skin are required for potential applications in the entertainment, health monitoring, and medical care sectors. In this work, conducting copper electrodes were fabricated on polydimethylsiloxane as sensitive stretchable microsensors by integrating laser direct writing and transfer printing approaches. The copper electrode was reduced from copper salt using laser writing rather than the general approach of printing with pre-synthesized copper or copper oxide nanoparticles. An electrical resistivity of 96 μΩ cm was achieved on 40-μm-thick Cu electrodes on flexible substrates. The motion sensing functionality successfully demonstrated a high sensitivity and mechanical robustness. This in situ fabrication method leads to a path toward electronic devices on flexible substrates.
Highlights:
1 A novel method to fabricate flexible sensors based on conductive copper circuits by laser-assisted reduction is introduced.
2 The copper nitrate hydroxide (Cu(OH)(NO3)) was reduced by ethylene glycol using laser scanning on glass and polyethylene terephthalate. By transferring the copper electrode onto the polydimethylsiloxane, which acted as stretchable substrate, the electrode exhibits high sensitivity, and its resistivity is as low as ~90 μΩ cm.
3 This type of device can be used for motion detection and touch sensors to control electrical devices.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Lee, S. Kim, D. Lee, J. Yang, B.C. Park, S. Ryua, I. Park, A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection. Nanoscale 6(20), 11932–11939 (2014). doi:10.1039/C4NR03295K
- S. Jung, J.H. Kim, J. Kim, S. Choi, J. Lee, I. Park, T. Hyeon, D. Kim, Reverse-micelle-induced porous pressure-sensitive rubber for wearable human–machine interfaces. Adv. Mater. 26(28), 4825–4830 (2014). doi:10.1002/adma.201401364
- J. Huang, H. Zhu, Y. Chen, C. Preston, K. Rohrbach, J. Cumings, L. Hu, Highly transparent and flexible nanopaper transistors. ACS Nano 7(3), 2106–2113 (2016). doi:10.1021/nn304407r
- X. Huang, Y. Liu, K. Chen, W. Shin, C. Lu et al., Stretchable, wireless sensors and functional substrates for epidermal characterization of sweat. Small 10(15), 3083–3090 (2014). doi:10.1002/smll.201400483
- C. Cheng, S. Wang, J. Wu, Y. Yu, R. Li et al., Bisphenol a sensors on polyimide fabricated by laser direct writing for onsite river water monitoring at attomolar concentration. ACS Appl. Mater. Interfaces 8(28), 17784 (2016). doi:10.1021/acsami.6b03743
- T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa et al., Ultraflexible organic photonic skin. Sci. Adv. 2(4), e1501856 (2016). doi:10.1126/sciadv.1501856
- S. Luo, P.T. Hoang, T. Liu, Direct laser writing for creating porous graphitic structures and their use for flexible and highly sensitive sensor and sensor arrays. Carbon 96, 522–531 (2016). doi:10.1016/j.carbon.2015.09.076
- R. Li, A. Hu, T. Zhang, K.D. Oakes, Direct writing on paper of foldable capacitive touch pads with silver nanowire inks. ACS Appl. Mater. Interfaces 6(23), 21721–21729 (2014). doi:10.1021/am506987w
- M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, I. Park, Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano 8(5), 5154–5163 (2014). doi:10.1021/nn501204t
- R. Rahimi, M. Ochoa, W. Yu, B. Ziaie, Highly stretchable and sensitive unidirectional strain sensor via laser carbonization. ACS Appl. Mater. Interfaces 7(8), 4463–4470 (2015). doi:10.1021/am509087u
- A. Hu, J.Y. Guo, H. Alarifi, G. Patane, Y. Zhou, G. Compagnini, X. Xu, Low temperature sintering of Ag nanoparticles for flexible electronics packaging. Appl. Phys. Lett. 97(15), 153117 (2010). doi:10.1063/1.3502604
- A. Hu, R. Li, D. Bridges, W. Zhou, S. Bai, D. Ma, P. Peng, Photonic nanomanufacturing of high performance energy devices on flexible substrates. J. Laser Appl. 28, 022602 (2016). doi:10.2351/1.4944449
- T. Wang, D. Huang, Z. Yang, S. Xu, G. He, X. Li, N. Hu, G. Yin, D. He, L. Zhang, A review on graphene-based gas/vapor sensors with unique properties and potential applications. Nano-Micro Lett. 8(2), 95–119 (2016). doi:10.1007/s40820-015-0073-1
- W. Li, W. Li, J. Wei, J. Tan, M. Chen, Preparation of conductive Cu patterns by directly writing using nano-Cu ink. Mater. Chem. Phys. 146(S1–2), 82–87 (2014). doi:10.1016/j.matchemphys.2014.02.045
- W. Li, M. Chen, Synthesis of stable ultra-small Cu nanoparticles for direct writing flexible electronics. Appl. Surf. Sci. 290, 240–245 (2014). doi:10.1016/j.apsusc.2013.11.057
- K. Shin, J.S. Lee, J. Hong, J. Jang, One-step fabrication of a highly conductive and durable copper paste and its flexible dipole tag-antenna application. Chem. Commun. 50(23), 3093–3096 (2014). doi:10.1039/c3cc49782h
- D. Kim, N. Lu, R. Ma, Y. Kim, R. Kim et al., Epidermal electronics. Science 333(6044), 838–843 (2011). doi:10.1126/science.1206157
- J. Yan, G. Zou, A. Hu, Y.N. Zhou, Preparation of PVP coated Cu NPs and the application for low-temperature bonding. J. Mater. Chem. 21(40), 15981–15986 (2011). doi:10.1039/c1jm12108a
- Y. Lee, Y.J. Choa, Adhesion enhancement of ink-jet printed conductive copper patterns on a flexible substrate. J. Mater. Chem. 22(25), 12517–12522 (2012). doi:10.1039/c2jm31381b
- B. Kang, S. Han, J. Kim, S. Ko, M.J. Yang, One-step fabrication of copper electrode by laser-induced direct local reduction and agglomeration of copper oxide nanoparticle. J. Phys. Chem. C 115(48), 23664–23670 (2011). doi:10.1021/jp205281a
- N.N. Jason, W. Shen, W. Cheng, Copper nanowires as conductive ink for low-cost draw-on electronics. ACS Appl. Mater. Interfaces 7(30), 16760–16766 (2015). doi:10.1021/acsami.5b04522
- R. Dharmadasa, M. Jha, D.A. Amos, T. Druffel, Room temperature synthesis of a copper ink for the intense pulsed light sintering of conductive copper films. ACS Appl. Mater. Interfaces 5(24), 13227–13234 (2013). doi:10.1021/am404226e
- Z. Pei, H. Hu, G. Liang, C. Ye, Carbon-based flexible and all-solid-state micro-supercapacitors fabricated by inkjet printing with enhanced performance. Nano-Micro Lett. 9(2), 19 (2017). doi:10.1007/s40820-016-0119-z
- E. Halonen, E. Heinonen, M. Mäntysalo, The effect of laser sintering process parameters on cu nanoparticle ink in room conditions. Opt. Photon. J. 3(4), 40–44 (2013). doi:10.4236/opj.2013.34A007
- G.L. Draper, R. Dharmadasa, M.E. Staats, B.W. Lavery, T. Druffel, Fabrication of elemental copper by intense pulsed light processing of a copper nitrate hydroxide ink. ACS Appl. Mater. Interfaces 7(30), 16478–16485 (2015). doi:10.1021/acsami.5b03854
- S. Bai, Y. Lin, X. Zhang, W. Zhou, T. Chen et al., Two-step photonic reduction of controlled periodic silver nanostructures for surface-enhanced raman spectroscopy. Plasmonics 10(6), 1675–1685 (2015). doi:10.1007/s11468-015-9979-1
- Y. Lin, X. Zhang, S. Bai, A. Hu, Photo-reduction of metallic ions doped in patterned polymer films for the fabrication of plasmonic photonic crystals. J. Mater. Chem. C 3(23), 6046–6052 (2015). doi:10.1039/C5TC00945F
- P. Peng, A. Hu, Y. Zhou, Laser sintering of silver nanoparticle thin films: microstructure and optical properties. Appl. Phys. A 108(3), 685–691 (2012). doi:10.1007/s00339-012-6951-1
- S. Bai, W. Zhou, T. Hou, A. Hu, Laser direct writing of copper circuits on flexible substrates for electronic devices. J. Laser Micro Nanoeng. 11(3), 333–336 (2016)
- J. Zhang, T. Zhou, L. Wen, A. Zhang, Fabricating metallic circuit patterns on polymer substrates through laser and selective metallization. ACS Appl. Mater. Interfaces 8(49), 33999–34007 (2016). doi:10.1021/acsami.6b11305
- B. Wang, T. Yoo, Y. Song, D. Lim, Y. Oh, Cu ion ink for a flexible substrate and highly conductive patterning by intensive pulsed light sintering. ACS Appl. Mater. Interfaces 5(10), 4113–4119 (2013). doi:10.1021/am303268k
- M.S. Rager, T. Aytug, G.M. Veith, P. Joshi, Low-thermal-budget photonic processing of highly conductive cu interconnects based on CuO nanoinks: potential for flexible printed electronics. ACS Appl. Appl. Mater. Interfaces 8(3), 2441–2448 (2016). doi:10.1021/acsami.5b12156
- S. Joo, H. Hwang, H. Kim, Highly conductive copper nano/microparticles inks via flash light sintering for printed electronics. Nanotechnology 25(26), 265601 (2014). doi:10.1088/0957-4484/25/26/265601
- K. Shiota, H. Matsunaga, A. Miyake, Thermal analysis of ammonium nitrate and basic copper(II) nitrate mixtures. J. Therm. Anal. Calorim. 121(1), 281–286 (2015). doi:10.1007/s10973-015-4536-x
- S. Bai, W. Zhou, Y. Lin, Y. Zhao, T. Chen, A. Hu, Ultraviolet pulsed laser interference lithography and application of periodic structured Ag-nanoparticle films for surface-enhanced Raman spectroscopy. J. Nanopart. Res. 16(7), 2470 (2014). doi:10.1007/s11051-014-2470-7
- S. Ye, A.R. Rathmell, Y. Ha, A.R. Wilson, B.J. Wiley, The role of cuprous oxide seeds in the one-pot and seeded syntheses of copper nanowires. Small 10(9), 1771–1778 (2014). doi:10.1002/smll.201303005
- W. Xu, L. Wang, Z. Guo, X. Chen, J. Liu, X. Huang, Copper nanowires as nanoscale interconnects: their stability, electrical transport, and mechanical properties. ACS Nano 9(1), 241–250 (2015). doi:10.1021/nn506583e
- V. Hayez, T. Segato, A. Hubin, H. Terryn, Study of copper nitrate-based patinas. J. Raman Spectrosc. 37(10), 1211–1220 (2016). doi:10.1002/jrs.1591
- J.M. Aguirre, A. Gutiérrez, O. Giraldo, Simple route for the synthesis of copper hydroxy salts. J. Braz. Chem. Soc. 22(3), 546–551 (2011). doi:10.1590/S0103-50532011000300019
- V. Bongiorno, S. Campodonico, R. Caffara, P. Piccardo, M.M. Carnasciali, Micro-Raman spectroscopy for the characterization of artistic patinas produced on copper-based alloys. J. Raman Spectrosc. 43(43), 1617–1622 (2012). doi:10.1002/jrs.4167
- F. Fievet, J.P. Lagier, B. Blin, Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles. Solid State Ion. 32–33(1), 198–205 (1989). doi:10.1016/0167-2738(89)90222-1
- M.T. Rahman, J. McColy, C.V. Ramana, R. Panat, Structure, electrical characteristics, and high-temperature stability of aerosol jet printed silver nanoparticle films. J. Appl. Phys. 120(7), 075305 (2016). doi:10.1063/1.4960779
- S. Wang, X. Huang, Y. He, H. Huang, Y. Wu et al., Synthesis, growth mechanism and thermal stability of copper nanoparticles encapsulated by multi-layer graphene. Carbon 50(6), 2119–2125 (2012). doi:10.1016/j.carbon.2011.12.063
- M.I. Dar, S. Sampath, S.A. Shivashankar, Microwave-assisted, surfactant-free synthesis of air-stable copper nanostructures and their SERS study. J. Mater. Chem. 22(42), 22418–22423 (2012). doi:10.1039/c2jm35629e
- M. Kevin, W.L. Ong, G.H. Lee, G.W. Ho, Formation of hybrid structures: copper oxide nanocrystals templated on ultralong copper nanowires for open network sensing at room temperature. Nanotechnology 22(23), 235701 (2011). doi:10.1088/0957-4484/22/23/235701
- X. Wang, L. Huang, A novel one-step method to synthesize copper nitrate hydroxide nanorings. Trans. Nonferrous Met. Soc. China 19(s2), s480–s484 (2009)
- C. Henrist, K. Traina, C. Hubert, G. Toussaint, A. Rulmont, R.J. Cloots, Study of the morphology of copper hydroxynitrate nanoplatelets obtained by controlled double jet precipitation and urea hydrolysis. J. Cryst. Growth 254(1–2), 176–187 (2003). doi:10.1016/S0022-0248(03)01145-X
- Y. Wei, S. Chen, F. Li, Y. Lin, Y. Zhang, L. Liu, Highly stable and sensitive paper-based bending sensor using silver nanowires/layered double hydroxides hybrids. ACS Appl. Mater. Interfaces 7(26), 14182–14191 (2015). doi:10.1021/acsami.5b03824
- W. Zhou, S. Bai, Y. Ma, D. Ma, T. Hou, X. Shi, A. Hu, Laser-direct writing of silver metal electrodes on transparent flexible substrates with high-bonding strength. ACS Appl. Appl. Mater. Interfaces 8, 24887–24892 (2016). doi:10.1021/acsami.6b07696
- Y. Joo, J. Byun, N. Seong, J. Ha, H. Kim et al., Silver nanowire-embedded PDMS with a multiscale structure for a highly sensitive and robust flexible pressure sensor. Nanoscale 7(14), 6208–6215 (2015). doi:10.1039/C5NR00313J
References
J. Lee, S. Kim, D. Lee, J. Yang, B.C. Park, S. Ryua, I. Park, A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection. Nanoscale 6(20), 11932–11939 (2014). doi:10.1039/C4NR03295K
S. Jung, J.H. Kim, J. Kim, S. Choi, J. Lee, I. Park, T. Hyeon, D. Kim, Reverse-micelle-induced porous pressure-sensitive rubber for wearable human–machine interfaces. Adv. Mater. 26(28), 4825–4830 (2014). doi:10.1002/adma.201401364
J. Huang, H. Zhu, Y. Chen, C. Preston, K. Rohrbach, J. Cumings, L. Hu, Highly transparent and flexible nanopaper transistors. ACS Nano 7(3), 2106–2113 (2016). doi:10.1021/nn304407r
X. Huang, Y. Liu, K. Chen, W. Shin, C. Lu et al., Stretchable, wireless sensors and functional substrates for epidermal characterization of sweat. Small 10(15), 3083–3090 (2014). doi:10.1002/smll.201400483
C. Cheng, S. Wang, J. Wu, Y. Yu, R. Li et al., Bisphenol a sensors on polyimide fabricated by laser direct writing for onsite river water monitoring at attomolar concentration. ACS Appl. Mater. Interfaces 8(28), 17784 (2016). doi:10.1021/acsami.6b03743
T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa et al., Ultraflexible organic photonic skin. Sci. Adv. 2(4), e1501856 (2016). doi:10.1126/sciadv.1501856
S. Luo, P.T. Hoang, T. Liu, Direct laser writing for creating porous graphitic structures and their use for flexible and highly sensitive sensor and sensor arrays. Carbon 96, 522–531 (2016). doi:10.1016/j.carbon.2015.09.076
R. Li, A. Hu, T. Zhang, K.D. Oakes, Direct writing on paper of foldable capacitive touch pads with silver nanowire inks. ACS Appl. Mater. Interfaces 6(23), 21721–21729 (2014). doi:10.1021/am506987w
M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, I. Park, Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano 8(5), 5154–5163 (2014). doi:10.1021/nn501204t
R. Rahimi, M. Ochoa, W. Yu, B. Ziaie, Highly stretchable and sensitive unidirectional strain sensor via laser carbonization. ACS Appl. Mater. Interfaces 7(8), 4463–4470 (2015). doi:10.1021/am509087u
A. Hu, J.Y. Guo, H. Alarifi, G. Patane, Y. Zhou, G. Compagnini, X. Xu, Low temperature sintering of Ag nanoparticles for flexible electronics packaging. Appl. Phys. Lett. 97(15), 153117 (2010). doi:10.1063/1.3502604
A. Hu, R. Li, D. Bridges, W. Zhou, S. Bai, D. Ma, P. Peng, Photonic nanomanufacturing of high performance energy devices on flexible substrates. J. Laser Appl. 28, 022602 (2016). doi:10.2351/1.4944449
T. Wang, D. Huang, Z. Yang, S. Xu, G. He, X. Li, N. Hu, G. Yin, D. He, L. Zhang, A review on graphene-based gas/vapor sensors with unique properties and potential applications. Nano-Micro Lett. 8(2), 95–119 (2016). doi:10.1007/s40820-015-0073-1
W. Li, W. Li, J. Wei, J. Tan, M. Chen, Preparation of conductive Cu patterns by directly writing using nano-Cu ink. Mater. Chem. Phys. 146(S1–2), 82–87 (2014). doi:10.1016/j.matchemphys.2014.02.045
W. Li, M. Chen, Synthesis of stable ultra-small Cu nanoparticles for direct writing flexible electronics. Appl. Surf. Sci. 290, 240–245 (2014). doi:10.1016/j.apsusc.2013.11.057
K. Shin, J.S. Lee, J. Hong, J. Jang, One-step fabrication of a highly conductive and durable copper paste and its flexible dipole tag-antenna application. Chem. Commun. 50(23), 3093–3096 (2014). doi:10.1039/c3cc49782h
D. Kim, N. Lu, R. Ma, Y. Kim, R. Kim et al., Epidermal electronics. Science 333(6044), 838–843 (2011). doi:10.1126/science.1206157
J. Yan, G. Zou, A. Hu, Y.N. Zhou, Preparation of PVP coated Cu NPs and the application for low-temperature bonding. J. Mater. Chem. 21(40), 15981–15986 (2011). doi:10.1039/c1jm12108a
Y. Lee, Y.J. Choa, Adhesion enhancement of ink-jet printed conductive copper patterns on a flexible substrate. J. Mater. Chem. 22(25), 12517–12522 (2012). doi:10.1039/c2jm31381b
B. Kang, S. Han, J. Kim, S. Ko, M.J. Yang, One-step fabrication of copper electrode by laser-induced direct local reduction and agglomeration of copper oxide nanoparticle. J. Phys. Chem. C 115(48), 23664–23670 (2011). doi:10.1021/jp205281a
N.N. Jason, W. Shen, W. Cheng, Copper nanowires as conductive ink for low-cost draw-on electronics. ACS Appl. Mater. Interfaces 7(30), 16760–16766 (2015). doi:10.1021/acsami.5b04522
R. Dharmadasa, M. Jha, D.A. Amos, T. Druffel, Room temperature synthesis of a copper ink for the intense pulsed light sintering of conductive copper films. ACS Appl. Mater. Interfaces 5(24), 13227–13234 (2013). doi:10.1021/am404226e
Z. Pei, H. Hu, G. Liang, C. Ye, Carbon-based flexible and all-solid-state micro-supercapacitors fabricated by inkjet printing with enhanced performance. Nano-Micro Lett. 9(2), 19 (2017). doi:10.1007/s40820-016-0119-z
E. Halonen, E. Heinonen, M. Mäntysalo, The effect of laser sintering process parameters on cu nanoparticle ink in room conditions. Opt. Photon. J. 3(4), 40–44 (2013). doi:10.4236/opj.2013.34A007
G.L. Draper, R. Dharmadasa, M.E. Staats, B.W. Lavery, T. Druffel, Fabrication of elemental copper by intense pulsed light processing of a copper nitrate hydroxide ink. ACS Appl. Mater. Interfaces 7(30), 16478–16485 (2015). doi:10.1021/acsami.5b03854
S. Bai, Y. Lin, X. Zhang, W. Zhou, T. Chen et al., Two-step photonic reduction of controlled periodic silver nanostructures for surface-enhanced raman spectroscopy. Plasmonics 10(6), 1675–1685 (2015). doi:10.1007/s11468-015-9979-1
Y. Lin, X. Zhang, S. Bai, A. Hu, Photo-reduction of metallic ions doped in patterned polymer films for the fabrication of plasmonic photonic crystals. J. Mater. Chem. C 3(23), 6046–6052 (2015). doi:10.1039/C5TC00945F
P. Peng, A. Hu, Y. Zhou, Laser sintering of silver nanoparticle thin films: microstructure and optical properties. Appl. Phys. A 108(3), 685–691 (2012). doi:10.1007/s00339-012-6951-1
S. Bai, W. Zhou, T. Hou, A. Hu, Laser direct writing of copper circuits on flexible substrates for electronic devices. J. Laser Micro Nanoeng. 11(3), 333–336 (2016)
J. Zhang, T. Zhou, L. Wen, A. Zhang, Fabricating metallic circuit patterns on polymer substrates through laser and selective metallization. ACS Appl. Mater. Interfaces 8(49), 33999–34007 (2016). doi:10.1021/acsami.6b11305
B. Wang, T. Yoo, Y. Song, D. Lim, Y. Oh, Cu ion ink for a flexible substrate and highly conductive patterning by intensive pulsed light sintering. ACS Appl. Mater. Interfaces 5(10), 4113–4119 (2013). doi:10.1021/am303268k
M.S. Rager, T. Aytug, G.M. Veith, P. Joshi, Low-thermal-budget photonic processing of highly conductive cu interconnects based on CuO nanoinks: potential for flexible printed electronics. ACS Appl. Appl. Mater. Interfaces 8(3), 2441–2448 (2016). doi:10.1021/acsami.5b12156
S. Joo, H. Hwang, H. Kim, Highly conductive copper nano/microparticles inks via flash light sintering for printed electronics. Nanotechnology 25(26), 265601 (2014). doi:10.1088/0957-4484/25/26/265601
K. Shiota, H. Matsunaga, A. Miyake, Thermal analysis of ammonium nitrate and basic copper(II) nitrate mixtures. J. Therm. Anal. Calorim. 121(1), 281–286 (2015). doi:10.1007/s10973-015-4536-x
S. Bai, W. Zhou, Y. Lin, Y. Zhao, T. Chen, A. Hu, Ultraviolet pulsed laser interference lithography and application of periodic structured Ag-nanoparticle films for surface-enhanced Raman spectroscopy. J. Nanopart. Res. 16(7), 2470 (2014). doi:10.1007/s11051-014-2470-7
S. Ye, A.R. Rathmell, Y. Ha, A.R. Wilson, B.J. Wiley, The role of cuprous oxide seeds in the one-pot and seeded syntheses of copper nanowires. Small 10(9), 1771–1778 (2014). doi:10.1002/smll.201303005
W. Xu, L. Wang, Z. Guo, X. Chen, J. Liu, X. Huang, Copper nanowires as nanoscale interconnects: their stability, electrical transport, and mechanical properties. ACS Nano 9(1), 241–250 (2015). doi:10.1021/nn506583e
V. Hayez, T. Segato, A. Hubin, H. Terryn, Study of copper nitrate-based patinas. J. Raman Spectrosc. 37(10), 1211–1220 (2016). doi:10.1002/jrs.1591
J.M. Aguirre, A. Gutiérrez, O. Giraldo, Simple route for the synthesis of copper hydroxy salts. J. Braz. Chem. Soc. 22(3), 546–551 (2011). doi:10.1590/S0103-50532011000300019
V. Bongiorno, S. Campodonico, R. Caffara, P. Piccardo, M.M. Carnasciali, Micro-Raman spectroscopy for the characterization of artistic patinas produced on copper-based alloys. J. Raman Spectrosc. 43(43), 1617–1622 (2012). doi:10.1002/jrs.4167
F. Fievet, J.P. Lagier, B. Blin, Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles. Solid State Ion. 32–33(1), 198–205 (1989). doi:10.1016/0167-2738(89)90222-1
M.T. Rahman, J. McColy, C.V. Ramana, R. Panat, Structure, electrical characteristics, and high-temperature stability of aerosol jet printed silver nanoparticle films. J. Appl. Phys. 120(7), 075305 (2016). doi:10.1063/1.4960779
S. Wang, X. Huang, Y. He, H. Huang, Y. Wu et al., Synthesis, growth mechanism and thermal stability of copper nanoparticles encapsulated by multi-layer graphene. Carbon 50(6), 2119–2125 (2012). doi:10.1016/j.carbon.2011.12.063
M.I. Dar, S. Sampath, S.A. Shivashankar, Microwave-assisted, surfactant-free synthesis of air-stable copper nanostructures and their SERS study. J. Mater. Chem. 22(42), 22418–22423 (2012). doi:10.1039/c2jm35629e
M. Kevin, W.L. Ong, G.H. Lee, G.W. Ho, Formation of hybrid structures: copper oxide nanocrystals templated on ultralong copper nanowires for open network sensing at room temperature. Nanotechnology 22(23), 235701 (2011). doi:10.1088/0957-4484/22/23/235701
X. Wang, L. Huang, A novel one-step method to synthesize copper nitrate hydroxide nanorings. Trans. Nonferrous Met. Soc. China 19(s2), s480–s484 (2009)
C. Henrist, K. Traina, C. Hubert, G. Toussaint, A. Rulmont, R.J. Cloots, Study of the morphology of copper hydroxynitrate nanoplatelets obtained by controlled double jet precipitation and urea hydrolysis. J. Cryst. Growth 254(1–2), 176–187 (2003). doi:10.1016/S0022-0248(03)01145-X
Y. Wei, S. Chen, F. Li, Y. Lin, Y. Zhang, L. Liu, Highly stable and sensitive paper-based bending sensor using silver nanowires/layered double hydroxides hybrids. ACS Appl. Mater. Interfaces 7(26), 14182–14191 (2015). doi:10.1021/acsami.5b03824
W. Zhou, S. Bai, Y. Ma, D. Ma, T. Hou, X. Shi, A. Hu, Laser-direct writing of silver metal electrodes on transparent flexible substrates with high-bonding strength. ACS Appl. Appl. Mater. Interfaces 8, 24887–24892 (2016). doi:10.1021/acsami.6b07696
Y. Joo, J. Byun, N. Seong, J. Ha, H. Kim et al., Silver nanowire-embedded PDMS with a multiscale structure for a highly sensitive and robust flexible pressure sensor. Nanoscale 7(14), 6208–6215 (2015). doi:10.1039/C5NR00313J