Si-Based Anode Materials for Li-Ion Batteries: A Mini Review
Corresponding Author: Anming Hu
Nano-Micro Letters,
Vol. 6 No. 4 (2014), Article Number: 347-358
Abstract
Si has been considered as one of the most attractive anode materials for Li-ion batteries (LIBs) because of its high gravimetric and volumetric capacity. Importantly, it is also abundant, cheap, and environmentally benign. In this review, we summarized the recent progress in developments of Si anode materials. First, the electrochemical reaction and failure are outlined, and then, we summarized various methods for improving the battery performance, including those of nanostructuring, alloying, forming hierarchic structures, and using suitable binders. We hope that this review can be of benefit to more intensive investigation of Si-based anode materials.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). doi:10.1126/science.1212741
- K. Kang, Y.S. Meng, J. Bréger, C.P. Grey, G. Ceder, Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311(5763), 977–980 (2006). doi:10.1126/science.1122152
- C.M. Park, J.H. Kim, H. Kim, H.J. Sohn, Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev. 39(8), 3115–3141 (2010). doi:10.1039/b919877f
- N.S. Choi, Z. Chen, S.A. Freunberger, X. Ji, Y.K. Sun, K. Amine, G. Yushin, L.F. Nazar, J. Cho, P.G. Bruce, Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem. Int. Ed. 51(40), 9994–10024 (2012). doi:10.1002/anie.201201429
- L. Wang, X. He, J. Li, W. Sun, J. Gao, J. Guo, C. Jiang, Nano-structured phosphorus composite as high-capacity anode materials for lithium batteries. Angew. Chem. Int. Ed. 51(36), 9034–9037 (2012). doi:10.1002/anie.201204591
- A.N. Dey, Electrochemical alloying of lithium in organic electrolytes. J. Electrochem. Soc. 118(10), 1547–1549 (1971). doi:10.1149/1.2407783
- X. Su, Q. Wu, J. Li, X. Xiao, A. Lott, W. Lu, B.W. Sheldon, J. Wu, Silicon-based nanomaterials for lithium-ion batteries: A review. Adv. Energy Mater. 4(1), 1–23 (2014). doi:10.1002/aenm.201300882
- Y.X. Yin, L.J. Wan, Y.G. Guo, Silicon-based nanomaterials for lithium-ion batteries. Chin. Sci. Bull. 57(32), 4104–4110 (2012). doi:10.1007/s11434-012-5017-2
- B. Gao, S. Sinha, L. Fleming, O. Zhou, Alloy formation in nanostructured silicon. Adv. Mater. 13(11), 816–819 (2001). doi:10.1002/1521-4095(200106)13:11<816:AID-ADMA816>3.0.CO;2-P
- H. Li, X. Huang, L. Chen, G. Zhou, Z. Zhang, D. Yu, Y.J. Mo, N. Pei, The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature. Solid State Ionics 135(1–4), 181–191 (2000). doi:10.1016/S0167-2738(00)00362-3
- P. Limthongkul, Y.I. Jang, N.J. Dudney, Y.M. Chiang, Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage. Acta Mater. 51(4), 1103–1113 (2003). doi:10.1016/S1359-6454(02)00514-1
- A. Netz, R.A. Huggins, W. Weppner, The formation and properties of amorphous silicon as negative electrode reactant in lithium systems. J. Power Sources 119–121, 95–100 (2003). doi:10.1016/S0378-7753(03)00132-0
- M.N. Obrovac, L. Christensen, Structural changes in silicon anodes during lithium insertion/extraction. Electrochem. Solid-State Lett. 7(5), A93–A96 (2004). doi:10.1149/1.1652421
- T.D. Hatchard, J.R. Dahn, In-situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J. Electrochem. Soc. 151(6), A838–A842 (2004). doi:10.1149/1.1739217
- J. Li, J.R. Dahn, An in situ X-ray diffraction study of the reaction of Li with crystalline Si. J. Electrochem. Soc. 154(3), A156–A161 (2007). doi:10.1149/1.2409862
- J.H. Ryu, J.W. Kim, Y.E. Sung, S.M. Oh, Failure Modes of silicon powder negative electrode in lithium secondary batteries. Electrochem. Solid-State Lett. 7(10), A306–A309 (2004). doi:10.1149/1.1792242
- C.J. Wen, R.A. Huggins, Chemical diffusion in intermediate phases in the lithium-silicon system. J. Solid-State Chem. 37(3), 271–278 (1981). doi:10.1016/0022-4596(81)90487-4
- J.H. Kim, PhD Dissertation, Seoul National University, 2006
- Y. Oumellal, N. Delpuech, D. Mazouzi, N. Dupré, J. Gaubicher, P. Moreau, P. Soudan, B. Lestriez, D. Guyomard, The failure mechanism of nano-sized Si-based negative electrodes for lithium ion batteries. J. Mater. Chem. 21(17), 6201–6208 (2011). doi:10.1039/c1jm10213c
- C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3(1), 31–35 (2008). doi:10.1038/nnano.2007.411
- H. Wu, G. Chan, J.W. Choi, I. Ryu, Y. Yao, M.T. McDowell, S.W. Lee, A. Jackson, Y. Yang, L. Hu, Y. Cui, Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 7(5), 310–315 (2012). doi:10.1038/nnano.2012.35
- P.G. Bruce, B. Scrosati, J.M. Tarascon, Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47(16), 2930–2946 (2008). doi:10.1002/anie.200702505
- H. Li, X. Huang, L. Chen, Z. Wu, Y. Liang, A high capacity nano Si composite anode material for lithium rechargeable batteries. Electrochem. Solid-State Lett. 2(11), 547–549 (1999). doi:10.1149/1.1390899
- H. Kim, M. Seo, M.-H. Park, J. Cho, A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew. Chem. Int. Ed. 49(12), 2146–2149 (2010). doi:10.1002/anie.200906287
- T. Song, J. Xia, J.H. Lee, D.H. Lee, M.S. Kwon, J.M. Choi, J. Wu, S.K. Doo, H. Chang, W. Park, D.S. Zang, H. Kim, Y.G. Huang, K.C. Hwang, J.A. Rogers, U. Paik, Arrays of sealed silicon nanotubes as anodes for Lithium ion batteries. Nano Lett. 10(5), 1710–1716 (2010). doi:10.1021/nl100086e
- S. Ohara, J. Suzuki, K. Sekine, T. Takamura, A thin film silicon anode for Li-ion batteries having a very large specific capacity and long cycle life. J. Power Sources 136(2), 303–306 (2004). doi:10.1016/j.jpowsour.2004.03.014
- K.L. Lee, J.Y. Jung, S.W. Lee, H.S. Moon, J.W. Park, Electrochemical characteristics of a-Si thin film anode for Li-ion rechargeable batteries. J. Power Sources 129(2), 270–274 (2004). doi:10.1016/j.jpowsour.2003.10.013
- M.S. Park, G.X. Wang, H.K. Liu, S.W. Dou, Electrochemical properties of Si thin film prepared by pulsed laser deposition for lithium ion micro-batteries. Electrochim. Acta 51(25), 5246–5249 (2006). doi:10.1016/j.electacta.2006.01.045
- J.P. Maranchi, A.F. Hepp, P.N. Kumta, High capacity, reversible silicon thin-film anodes for lithium-ion batteries. Electrochem. Solid-State Lett. 6(9), A198–A201 (2003). doi:10.1149/1.1596918
- H. Kim, B. Han, J. Choo, J. Cho, Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew. Chem. 120(52), 10305–10308 (2008). doi:10.1002/ange.200804355
- D. Ma, Z. Cao, H. Wang, X. Huang, L. Wang, X. Zhang, Three-dimensionally ordered macroporous FeF3 and its in situ homogenous polymerization coating for high energy and power density lithium ion batteries. Energy Environ. Sci. 5(9), 8538–8542 (2012). doi:10.1039/c2ee22568a
- D. Ma, S. Yuan, Z. Cao, Three-dimensionally macroporous graphene-supported Fe3O4 composite as anode material for Li ion batteries with long cycling life and ultrahigh rate capability. Chin. Sci. Bull. 59(17), 2017–2023 (2014). doi:10.1007/s11434-014-0307-5
- H. Zhang, X. Yu, P.V. Braun, Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nat. Nanotechnol. 6(5), 277–281 (2011). doi:10.1038/nnano.2011.38
- J.H. Pikul, H.G. Zhang, J. Cho, P.V. Braun, W.P. King, High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. Nat. Commun. 4, 1732 (2013). doi:10.1038/ncomms2747
- H. Jia, P. Gao, J. Yang, J. Wang, Y. Nuli, Z. Yang, Novel three-dimensional mesoporous silicon for high power lithium-ion battery anode material. Adv. Energy Mater. 1(6), 1036–1039 (2011). doi:10.1002/aenm.201100485
- A. Esmanski, G.A. Ozin, Silicon inverse-opal-based macroporous materials as negative electrodes for lithium ion batteries. Adv. Funct. Mater. 19(12), 1999–2010 (2009). doi:10.1002/adfm.200900306
- B.M. Bang, J.I. Lee, H. Kim, J. Cho, S.J. Park, High-performance macroporous bulk silicon anodes synthesized by template-free chemical etching. Adv. Energy Mater. 2(7), 878–883 (2012). doi:10.1002/aenm.201100765
- W.R. Liu, Z.Z. Guo, W.S. Young, D.T. Shieh, H.C. Wu, M.H. Yang, N.L. Wu, Effect of electrode structure on performance of Si anode in Li-ion batteries: Si particle size and conductive additive. J. Power Sources 140(1), 139–144 (2005). doi:10.1016/j.jpowsour.2004.07.032
- C.K. Huang, S. Surampudi, A.I. Attia, G. Halpert, US Pat. 5, 294–503 (1994)
- H. Kim, J. Choi, H.J. Sohn, T. Kang, The insertion mechanism of lithium into Mg2Si anode material for Li-Ion batteries. J. Electrochem. Soc. 146(12), 4401–4405 (1999). doi:10.1149/1.1392650
- T. Moriga, K. Watanabe, D. Tsuji, S. Massaki, I. Nakabayashi, Reaction mechanism of metal silicide Mg2Si for Li insertion. J. Solid State Chem. 153(2), 386–390 (2000). doi:10.1006/jssc.2000.8787
- G.A. Roberts, E.J. Cairns, J.A. Reimer, Magnesium silicide as a negative electrode material for lithium-ion batteries. J. Power Sources 110(2), 424–429 (2002). doi:10.1016/S0378-7753(02)00207-0
- J. Wolfenstine, CaSi2 as an anode for lithium-ion batteries. J. Power Sources 124(1), 241–245 (2003). doi:10.1016/S0378-7753(03)00731-6
- G.X. Wang, L. Sun, D.H. Bradhurst, S. Zhong, S.X. Dou, H.K. Liu, Innovative nanosize lithium storage alloys with silica as active centre. J. Power Sources 88(2), 278–281 (2000). doi:10.1016/S0378-7753(00)00385-2
- S.Y. Chew, Z.P. Guo, J.Z. Wang, J. Chen, P. Munroe, S.H. Ng, L. Zhao, H.K. Liu, Novel nano-silicon/polypyrrole composites for lithium storage. Electrochem. Commun. 9(5), 941–946 (2007). doi:10.1016/j.elecom.2006.11.028
- X. Fan, W. Peng, Y. Li, X.Y. Li, S.L. Wang, G.L. Zhang, F.B. Zhang, Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv. Mater. 20(23), 4490–4493 (2008). doi:10.1002/adma.200801306
- Z. Wang, D. Xu, Y. Huang, Z. Wu, L.M. Wang, X.B. Zhang, Facile, mild and fast thermal-decomposition reduction of graphene oxide in air and its application in high-performance lithium batteries. Chem. Commun. 48(7), 976–978 (2012). doi:10.1039/c2cc16239c
- X.L. Huang, R.Z. Wang, D. Xu, Z.L. Wang, H.G. Wang, J.J. Xu, Z. Wu, Q.C. Liu, Y. Zhang, X.B. Zhang, Homogeneous CoO on graphene for binder-free and ultralong-life lithium ion batteries. Adv. Funct. Mater. 23(35), 4345–4353 (2013). doi:10.1002/adfm.201203777
- Y.G. Zhou, J.J. Chen, F. Wang, Z.H. Sheng, X.H. Xia, A facile approach to the synthesis of highly electroactive Pt nanoparticles on graphene as an anode catalyst for direct methanol fuel cells. Chem. Commun. 46(32), 5951–5953 (2010). doi:10.1039/c0cc00394h
- S.L. Chou, J.Z. Wang, M. Choucair, H.K. Liu, J.A. Stride, S.X. Dou, Enhanced reversible lithium storage in a nanosize silicon/graphene composite. Electrochem. Commun. 12(2), 303–306 (2010). doi:10.1016/j.elecom.2009.12.024
- X. Zhao, C.M. Hayner, M.C. Kung, H.H. Kung, In-plane vacancy-enabled high-power Si-graphene composite electrode for lithium-ion batteries. Adv. Energy Mater. 1(6), 1079–1084 (2011). doi:10.1002/aenm.201100426
- X. Zhou, Y.X. Yin, L.J. Wan, Y.G. Guo, Self-assembled nanocomposite of silicon nanoparticles encapsulated in graphene through electrostatic attraction for lithium ion batteries. Adv. Energy Mater. 2(9), 1086–1090 (2012). doi:10.1002/aenm.201200158
- H. Wu, G. Chan, J.W. Choi, I. Ryu, Y. Yao, M.T. McDowell, S.W. Lee, A. Jackson, Y. Yang, L. Hu, Y. Cui, Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotech. 7(5), 310–315 (2012). doi:10.1038/nnano.2012.35
- N. Liu, H. Wu, M.T. McDowell, Y. Yao, C.M. Wang, Y. Cui, A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett. 12(6), 3315–3321 (2012). doi:10.1021/nl3014814
- X. Li, P. Meduri, X. Chen, W. Qi, M.H. Engelhard, W. Xu, F. Ding, J. Xiao, W. Wang, C.M. Wang, J.G. Zhang, J. Liu, Hollow core-shell structured porous Si-C nanocomposites for Li-ion battery anodes. J. Mater. Chem. 22(22), 11014–11017 (2012). doi:10.1039/c2jm31286g
- S. Chen, M.L. Gordin, R. Yi, G. Howlett, H. Sohn, D.H. Wang, Silicon core-hollow carbon shell nanocomposites with tunable buffer voids for high capacity anodes of lithium-ion batteries. Phys. Chem. Chem. Phys. 14(37), 12741–12745 (2012). doi:10.1039/c2cp42231j
- Y. Park, N.S. Choi, S. Park, S. Woo, S.H. Sim, S. Jang, B.Y. Oh, S.M. Park, S. Cho, K.T. Lee, Si-encapsulating hollow carbon electrodes via electroless etching for lithium-ion batteries. Adv. Energy Mater. 3(2), 206–212 (2013). doi:10.1002/aenm.201200389
- B. Wang, X. Li, X. Zhang, B. Luo, Y.B. Zhang, L.J. Zhi, Contact-engineered and void-involved silicon/carbon nanohybrids as lithium-ion-battery anodes. Adv. Mater. 25(26), 3560–3565 (2013). doi:10.1002/adma.201300844
- N. Liu, Z. Lu, J. Zhao, M.T. McDowell, H.W. Lee, W.T. Zhao, Y. Cui, A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 9(3), 187–192 (2014). doi:10.1038/NNANO.2014.6
- D. Chen, X. Mei, G. Ji, M. Lu, J. Xie, J. Lu, J.Y. Lee, Reversible lithium-ion storage in silver-treated nanoscale hollow porous silicon particles. Angew. Chem. Int. Ed. 51(10), 2409–2413 (2012). doi:10.1002/anie.201107885
- J.S. Bridel, T. Azais, M. Morcrette, J.M. Tarascon, D. Larcher, Key parameters governing the reversibility of Si/Carbon/CMC electrodes for li-ion batteries. Chem. Mater. 22(3), 1229–1233 (2010). doi:10.1021/cm902688w
- L. Fransson, T. Eriksson, K. Edström, T. Gustafsson, J.O. Thomas, Influence of carbon black and binder on Li-ion batteries. J. Power Sources 101(1), 1–9 (2001). doi:10.1016/S0378-7753(01)00481-5
- S.S. Zhang, T.R. Jow, Study of poly (acrylonitrile-methyl methacrylate) as binder for graphite anode and LiMn2O4 cathode of Li-ion batteries. J. Power Sources 109(2), 422–426 (2002). doi:10.1016/S0378-7753(02)00107-6
- D. Guy, B. Lestriez, D. Guyomard, New composite electrode architecture and improved battery performance from the smart use of polymers and their properties. Adv. Mater. 16(6), 553–557 (2004). doi:10.1002/adma.200306075
- D. Mazouzi, B. Lestriez, L. Roue, D. Guyomard, Silicon composite electrode with high capacity and long cycle life. Electrochem. Solid-State Lett. 12(11), A215–A218 (2009). doi:10.1149/1.3212894
- A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy, C.F. Huebner, T.F. Fuller, I. Luzinov, G. Yushin, Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. ACS Appl. Mater. Inter. 2(11), 3004–3010 (2010). doi:10.1021/am100871y
- I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov, G. Yushin, A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 334(6052), 75–79 (2011). doi:10.1126/science.1209150
- M.Y. Wu, J.E.C. Sabisch, X.Y. Song, A.M. Minor, V.S. Battaglia, G. Liu, In situ formed Si nanoparticle network with micron-sized Si particles for lithium-ion battery anodes. Nano Lett. 13(11), 5397–5402 (2013). doi:10.1021/nl402953h
- P.J. Zhang, L.B. Wang, J. Xie, L.W. Su, C.A. Ma, Micro/nano-complex-structure SiOx-PANI-Ag composites with homogeneously-embedded Si nanocrystals and nanopores as high-performance anodes for lithium ion batteries. J. Mater. Chem. A 2(11), 3776–3782 (2014). doi:10.1039/c3ta14498d
- H.L. Zhang, Y. Zhang, X.G. Zhang, F. Li, C. Liu, J. Tan, H.M. Cheng, Urchin-like nano/micro hybrid anode materials for lithium ion battery. Carbon 44(13), 2778–2784 (2006). doi:10.1016/j.carbon.2006.03.029
- M. Yoshio, H. Wang, K. Fukuda, T. Umeno, N. Dimov, Z. Ogumi, Carbon-coated Si as a lithium-ion battery anode material. J. Electrochem. Soc. 149(12), A1598–A1603 (2002). doi:10.1149/1.1518988
- H.Y. Lee, S.M. Lee, Carbon-coated nano-Si dispersed oxides/graphite composites as anode material for lithium ion batteries. Electrochem. Commun. 6(5), 465–469 (2004). doi:10.1016/j.elecom.2004.03.005
- A.J. Lopes, E. MacDonald, R.B. Wicker, Integrating stereolithography and direct print technologies for 3D structural electronics fabrication. Rapid Prototyping J. 18(2), 129–143 (2012). doi:10.1108/13552541211212113
- L.T. Le, M.H. Ervin, H. Qiu, B.E. Fuchs, W.Y. Lee, Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphene oxide. Electrochem. Commun. 13(4), 355–358 (2011). doi:10.1016/j.elecom.2011.01.023
References
B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). doi:10.1126/science.1212741
K. Kang, Y.S. Meng, J. Bréger, C.P. Grey, G. Ceder, Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311(5763), 977–980 (2006). doi:10.1126/science.1122152
C.M. Park, J.H. Kim, H. Kim, H.J. Sohn, Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev. 39(8), 3115–3141 (2010). doi:10.1039/b919877f
N.S. Choi, Z. Chen, S.A. Freunberger, X. Ji, Y.K. Sun, K. Amine, G. Yushin, L.F. Nazar, J. Cho, P.G. Bruce, Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem. Int. Ed. 51(40), 9994–10024 (2012). doi:10.1002/anie.201201429
L. Wang, X. He, J. Li, W. Sun, J. Gao, J. Guo, C. Jiang, Nano-structured phosphorus composite as high-capacity anode materials for lithium batteries. Angew. Chem. Int. Ed. 51(36), 9034–9037 (2012). doi:10.1002/anie.201204591
A.N. Dey, Electrochemical alloying of lithium in organic electrolytes. J. Electrochem. Soc. 118(10), 1547–1549 (1971). doi:10.1149/1.2407783
X. Su, Q. Wu, J. Li, X. Xiao, A. Lott, W. Lu, B.W. Sheldon, J. Wu, Silicon-based nanomaterials for lithium-ion batteries: A review. Adv. Energy Mater. 4(1), 1–23 (2014). doi:10.1002/aenm.201300882
Y.X. Yin, L.J. Wan, Y.G. Guo, Silicon-based nanomaterials for lithium-ion batteries. Chin. Sci. Bull. 57(32), 4104–4110 (2012). doi:10.1007/s11434-012-5017-2
B. Gao, S. Sinha, L. Fleming, O. Zhou, Alloy formation in nanostructured silicon. Adv. Mater. 13(11), 816–819 (2001). doi:10.1002/1521-4095(200106)13:11<816:AID-ADMA816>3.0.CO;2-P
H. Li, X. Huang, L. Chen, G. Zhou, Z. Zhang, D. Yu, Y.J. Mo, N. Pei, The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature. Solid State Ionics 135(1–4), 181–191 (2000). doi:10.1016/S0167-2738(00)00362-3
P. Limthongkul, Y.I. Jang, N.J. Dudney, Y.M. Chiang, Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage. Acta Mater. 51(4), 1103–1113 (2003). doi:10.1016/S1359-6454(02)00514-1
A. Netz, R.A. Huggins, W. Weppner, The formation and properties of amorphous silicon as negative electrode reactant in lithium systems. J. Power Sources 119–121, 95–100 (2003). doi:10.1016/S0378-7753(03)00132-0
M.N. Obrovac, L. Christensen, Structural changes in silicon anodes during lithium insertion/extraction. Electrochem. Solid-State Lett. 7(5), A93–A96 (2004). doi:10.1149/1.1652421
T.D. Hatchard, J.R. Dahn, In-situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J. Electrochem. Soc. 151(6), A838–A842 (2004). doi:10.1149/1.1739217
J. Li, J.R. Dahn, An in situ X-ray diffraction study of the reaction of Li with crystalline Si. J. Electrochem. Soc. 154(3), A156–A161 (2007). doi:10.1149/1.2409862
J.H. Ryu, J.W. Kim, Y.E. Sung, S.M. Oh, Failure Modes of silicon powder negative electrode in lithium secondary batteries. Electrochem. Solid-State Lett. 7(10), A306–A309 (2004). doi:10.1149/1.1792242
C.J. Wen, R.A. Huggins, Chemical diffusion in intermediate phases in the lithium-silicon system. J. Solid-State Chem. 37(3), 271–278 (1981). doi:10.1016/0022-4596(81)90487-4
J.H. Kim, PhD Dissertation, Seoul National University, 2006
Y. Oumellal, N. Delpuech, D. Mazouzi, N. Dupré, J. Gaubicher, P. Moreau, P. Soudan, B. Lestriez, D. Guyomard, The failure mechanism of nano-sized Si-based negative electrodes for lithium ion batteries. J. Mater. Chem. 21(17), 6201–6208 (2011). doi:10.1039/c1jm10213c
C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3(1), 31–35 (2008). doi:10.1038/nnano.2007.411
H. Wu, G. Chan, J.W. Choi, I. Ryu, Y. Yao, M.T. McDowell, S.W. Lee, A. Jackson, Y. Yang, L. Hu, Y. Cui, Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 7(5), 310–315 (2012). doi:10.1038/nnano.2012.35
P.G. Bruce, B. Scrosati, J.M. Tarascon, Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47(16), 2930–2946 (2008). doi:10.1002/anie.200702505
H. Li, X. Huang, L. Chen, Z. Wu, Y. Liang, A high capacity nano Si composite anode material for lithium rechargeable batteries. Electrochem. Solid-State Lett. 2(11), 547–549 (1999). doi:10.1149/1.1390899
H. Kim, M. Seo, M.-H. Park, J. Cho, A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew. Chem. Int. Ed. 49(12), 2146–2149 (2010). doi:10.1002/anie.200906287
T. Song, J. Xia, J.H. Lee, D.H. Lee, M.S. Kwon, J.M. Choi, J. Wu, S.K. Doo, H. Chang, W. Park, D.S. Zang, H. Kim, Y.G. Huang, K.C. Hwang, J.A. Rogers, U. Paik, Arrays of sealed silicon nanotubes as anodes for Lithium ion batteries. Nano Lett. 10(5), 1710–1716 (2010). doi:10.1021/nl100086e
S. Ohara, J. Suzuki, K. Sekine, T. Takamura, A thin film silicon anode for Li-ion batteries having a very large specific capacity and long cycle life. J. Power Sources 136(2), 303–306 (2004). doi:10.1016/j.jpowsour.2004.03.014
K.L. Lee, J.Y. Jung, S.W. Lee, H.S. Moon, J.W. Park, Electrochemical characteristics of a-Si thin film anode for Li-ion rechargeable batteries. J. Power Sources 129(2), 270–274 (2004). doi:10.1016/j.jpowsour.2003.10.013
M.S. Park, G.X. Wang, H.K. Liu, S.W. Dou, Electrochemical properties of Si thin film prepared by pulsed laser deposition for lithium ion micro-batteries. Electrochim. Acta 51(25), 5246–5249 (2006). doi:10.1016/j.electacta.2006.01.045
J.P. Maranchi, A.F. Hepp, P.N. Kumta, High capacity, reversible silicon thin-film anodes for lithium-ion batteries. Electrochem. Solid-State Lett. 6(9), A198–A201 (2003). doi:10.1149/1.1596918
H. Kim, B. Han, J. Choo, J. Cho, Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew. Chem. 120(52), 10305–10308 (2008). doi:10.1002/ange.200804355
D. Ma, Z. Cao, H. Wang, X. Huang, L. Wang, X. Zhang, Three-dimensionally ordered macroporous FeF3 and its in situ homogenous polymerization coating for high energy and power density lithium ion batteries. Energy Environ. Sci. 5(9), 8538–8542 (2012). doi:10.1039/c2ee22568a
D. Ma, S. Yuan, Z. Cao, Three-dimensionally macroporous graphene-supported Fe3O4 composite as anode material for Li ion batteries with long cycling life and ultrahigh rate capability. Chin. Sci. Bull. 59(17), 2017–2023 (2014). doi:10.1007/s11434-014-0307-5
H. Zhang, X. Yu, P.V. Braun, Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nat. Nanotechnol. 6(5), 277–281 (2011). doi:10.1038/nnano.2011.38
J.H. Pikul, H.G. Zhang, J. Cho, P.V. Braun, W.P. King, High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. Nat. Commun. 4, 1732 (2013). doi:10.1038/ncomms2747
H. Jia, P. Gao, J. Yang, J. Wang, Y. Nuli, Z. Yang, Novel three-dimensional mesoporous silicon for high power lithium-ion battery anode material. Adv. Energy Mater. 1(6), 1036–1039 (2011). doi:10.1002/aenm.201100485
A. Esmanski, G.A. Ozin, Silicon inverse-opal-based macroporous materials as negative electrodes for lithium ion batteries. Adv. Funct. Mater. 19(12), 1999–2010 (2009). doi:10.1002/adfm.200900306
B.M. Bang, J.I. Lee, H. Kim, J. Cho, S.J. Park, High-performance macroporous bulk silicon anodes synthesized by template-free chemical etching. Adv. Energy Mater. 2(7), 878–883 (2012). doi:10.1002/aenm.201100765
W.R. Liu, Z.Z. Guo, W.S. Young, D.T. Shieh, H.C. Wu, M.H. Yang, N.L. Wu, Effect of electrode structure on performance of Si anode in Li-ion batteries: Si particle size and conductive additive. J. Power Sources 140(1), 139–144 (2005). doi:10.1016/j.jpowsour.2004.07.032
C.K. Huang, S. Surampudi, A.I. Attia, G. Halpert, US Pat. 5, 294–503 (1994)
H. Kim, J. Choi, H.J. Sohn, T. Kang, The insertion mechanism of lithium into Mg2Si anode material for Li-Ion batteries. J. Electrochem. Soc. 146(12), 4401–4405 (1999). doi:10.1149/1.1392650
T. Moriga, K. Watanabe, D. Tsuji, S. Massaki, I. Nakabayashi, Reaction mechanism of metal silicide Mg2Si for Li insertion. J. Solid State Chem. 153(2), 386–390 (2000). doi:10.1006/jssc.2000.8787
G.A. Roberts, E.J. Cairns, J.A. Reimer, Magnesium silicide as a negative electrode material for lithium-ion batteries. J. Power Sources 110(2), 424–429 (2002). doi:10.1016/S0378-7753(02)00207-0
J. Wolfenstine, CaSi2 as an anode for lithium-ion batteries. J. Power Sources 124(1), 241–245 (2003). doi:10.1016/S0378-7753(03)00731-6
G.X. Wang, L. Sun, D.H. Bradhurst, S. Zhong, S.X. Dou, H.K. Liu, Innovative nanosize lithium storage alloys with silica as active centre. J. Power Sources 88(2), 278–281 (2000). doi:10.1016/S0378-7753(00)00385-2
S.Y. Chew, Z.P. Guo, J.Z. Wang, J. Chen, P. Munroe, S.H. Ng, L. Zhao, H.K. Liu, Novel nano-silicon/polypyrrole composites for lithium storage. Electrochem. Commun. 9(5), 941–946 (2007). doi:10.1016/j.elecom.2006.11.028
X. Fan, W. Peng, Y. Li, X.Y. Li, S.L. Wang, G.L. Zhang, F.B. Zhang, Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv. Mater. 20(23), 4490–4493 (2008). doi:10.1002/adma.200801306
Z. Wang, D. Xu, Y. Huang, Z. Wu, L.M. Wang, X.B. Zhang, Facile, mild and fast thermal-decomposition reduction of graphene oxide in air and its application in high-performance lithium batteries. Chem. Commun. 48(7), 976–978 (2012). doi:10.1039/c2cc16239c
X.L. Huang, R.Z. Wang, D. Xu, Z.L. Wang, H.G. Wang, J.J. Xu, Z. Wu, Q.C. Liu, Y. Zhang, X.B. Zhang, Homogeneous CoO on graphene for binder-free and ultralong-life lithium ion batteries. Adv. Funct. Mater. 23(35), 4345–4353 (2013). doi:10.1002/adfm.201203777
Y.G. Zhou, J.J. Chen, F. Wang, Z.H. Sheng, X.H. Xia, A facile approach to the synthesis of highly electroactive Pt nanoparticles on graphene as an anode catalyst for direct methanol fuel cells. Chem. Commun. 46(32), 5951–5953 (2010). doi:10.1039/c0cc00394h
S.L. Chou, J.Z. Wang, M. Choucair, H.K. Liu, J.A. Stride, S.X. Dou, Enhanced reversible lithium storage in a nanosize silicon/graphene composite. Electrochem. Commun. 12(2), 303–306 (2010). doi:10.1016/j.elecom.2009.12.024
X. Zhao, C.M. Hayner, M.C. Kung, H.H. Kung, In-plane vacancy-enabled high-power Si-graphene composite electrode for lithium-ion batteries. Adv. Energy Mater. 1(6), 1079–1084 (2011). doi:10.1002/aenm.201100426
X. Zhou, Y.X. Yin, L.J. Wan, Y.G. Guo, Self-assembled nanocomposite of silicon nanoparticles encapsulated in graphene through electrostatic attraction for lithium ion batteries. Adv. Energy Mater. 2(9), 1086–1090 (2012). doi:10.1002/aenm.201200158
H. Wu, G. Chan, J.W. Choi, I. Ryu, Y. Yao, M.T. McDowell, S.W. Lee, A. Jackson, Y. Yang, L. Hu, Y. Cui, Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotech. 7(5), 310–315 (2012). doi:10.1038/nnano.2012.35
N. Liu, H. Wu, M.T. McDowell, Y. Yao, C.M. Wang, Y. Cui, A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett. 12(6), 3315–3321 (2012). doi:10.1021/nl3014814
X. Li, P. Meduri, X. Chen, W. Qi, M.H. Engelhard, W. Xu, F. Ding, J. Xiao, W. Wang, C.M. Wang, J.G. Zhang, J. Liu, Hollow core-shell structured porous Si-C nanocomposites for Li-ion battery anodes. J. Mater. Chem. 22(22), 11014–11017 (2012). doi:10.1039/c2jm31286g
S. Chen, M.L. Gordin, R. Yi, G. Howlett, H. Sohn, D.H. Wang, Silicon core-hollow carbon shell nanocomposites with tunable buffer voids for high capacity anodes of lithium-ion batteries. Phys. Chem. Chem. Phys. 14(37), 12741–12745 (2012). doi:10.1039/c2cp42231j
Y. Park, N.S. Choi, S. Park, S. Woo, S.H. Sim, S. Jang, B.Y. Oh, S.M. Park, S. Cho, K.T. Lee, Si-encapsulating hollow carbon electrodes via electroless etching for lithium-ion batteries. Adv. Energy Mater. 3(2), 206–212 (2013). doi:10.1002/aenm.201200389
B. Wang, X. Li, X. Zhang, B. Luo, Y.B. Zhang, L.J. Zhi, Contact-engineered and void-involved silicon/carbon nanohybrids as lithium-ion-battery anodes. Adv. Mater. 25(26), 3560–3565 (2013). doi:10.1002/adma.201300844
N. Liu, Z. Lu, J. Zhao, M.T. McDowell, H.W. Lee, W.T. Zhao, Y. Cui, A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 9(3), 187–192 (2014). doi:10.1038/NNANO.2014.6
D. Chen, X. Mei, G. Ji, M. Lu, J. Xie, J. Lu, J.Y. Lee, Reversible lithium-ion storage in silver-treated nanoscale hollow porous silicon particles. Angew. Chem. Int. Ed. 51(10), 2409–2413 (2012). doi:10.1002/anie.201107885
J.S. Bridel, T. Azais, M. Morcrette, J.M. Tarascon, D. Larcher, Key parameters governing the reversibility of Si/Carbon/CMC electrodes for li-ion batteries. Chem. Mater. 22(3), 1229–1233 (2010). doi:10.1021/cm902688w
L. Fransson, T. Eriksson, K. Edström, T. Gustafsson, J.O. Thomas, Influence of carbon black and binder on Li-ion batteries. J. Power Sources 101(1), 1–9 (2001). doi:10.1016/S0378-7753(01)00481-5
S.S. Zhang, T.R. Jow, Study of poly (acrylonitrile-methyl methacrylate) as binder for graphite anode and LiMn2O4 cathode of Li-ion batteries. J. Power Sources 109(2), 422–426 (2002). doi:10.1016/S0378-7753(02)00107-6
D. Guy, B. Lestriez, D. Guyomard, New composite electrode architecture and improved battery performance from the smart use of polymers and their properties. Adv. Mater. 16(6), 553–557 (2004). doi:10.1002/adma.200306075
D. Mazouzi, B. Lestriez, L. Roue, D. Guyomard, Silicon composite electrode with high capacity and long cycle life. Electrochem. Solid-State Lett. 12(11), A215–A218 (2009). doi:10.1149/1.3212894
A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy, C.F. Huebner, T.F. Fuller, I. Luzinov, G. Yushin, Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. ACS Appl. Mater. Inter. 2(11), 3004–3010 (2010). doi:10.1021/am100871y
I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov, G. Yushin, A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 334(6052), 75–79 (2011). doi:10.1126/science.1209150
M.Y. Wu, J.E.C. Sabisch, X.Y. Song, A.M. Minor, V.S. Battaglia, G. Liu, In situ formed Si nanoparticle network with micron-sized Si particles for lithium-ion battery anodes. Nano Lett. 13(11), 5397–5402 (2013). doi:10.1021/nl402953h
P.J. Zhang, L.B. Wang, J. Xie, L.W. Su, C.A. Ma, Micro/nano-complex-structure SiOx-PANI-Ag composites with homogeneously-embedded Si nanocrystals and nanopores as high-performance anodes for lithium ion batteries. J. Mater. Chem. A 2(11), 3776–3782 (2014). doi:10.1039/c3ta14498d
H.L. Zhang, Y. Zhang, X.G. Zhang, F. Li, C. Liu, J. Tan, H.M. Cheng, Urchin-like nano/micro hybrid anode materials for lithium ion battery. Carbon 44(13), 2778–2784 (2006). doi:10.1016/j.carbon.2006.03.029
M. Yoshio, H. Wang, K. Fukuda, T. Umeno, N. Dimov, Z. Ogumi, Carbon-coated Si as a lithium-ion battery anode material. J. Electrochem. Soc. 149(12), A1598–A1603 (2002). doi:10.1149/1.1518988
H.Y. Lee, S.M. Lee, Carbon-coated nano-Si dispersed oxides/graphite composites as anode material for lithium ion batteries. Electrochem. Commun. 6(5), 465–469 (2004). doi:10.1016/j.elecom.2004.03.005
A.J. Lopes, E. MacDonald, R.B. Wicker, Integrating stereolithography and direct print technologies for 3D structural electronics fabrication. Rapid Prototyping J. 18(2), 129–143 (2012). doi:10.1108/13552541211212113
L.T. Le, M.H. Ervin, H. Qiu, B.E. Fuchs, W.Y. Lee, Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphene oxide. Electrochem. Commun. 13(4), 355–358 (2011). doi:10.1016/j.elecom.2011.01.023