Interface Reversible Electric Field Regulated by Amphoteric Charged Protein-Based Coating Toward High-Rate and Robust Zn Anode
Corresponding Author: Danming Chao
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 219
Abstract
Metallic interface engineering is a promising strategy to stabilize Zn anode via promoting Zn2+ uniform deposition. However, strong interactions between the coating and Zn2+ and sluggish transport of Zn2+ lead to high anodic polarization. Here, we present a bio-inspired silk fibroin (SF) coating with amphoteric charges to construct an interface reversible electric field, which manipulates the transfer kinetics of Zn2+ and reduces anodic polarization. The alternating positively and negatively charged surface as a build-in driving force can expedite and homogenize Zn2+ flux via the interplay between the charged coating and adsorbed ions, endowing the Zn-SF anode with low polarization voltage and stable plating/stripping. Experimental analyses with theoretical calculations suggest that SF can facilitate the desolvation of [Zn(H2O)6]2+ and provide nucleation sites for uniform deposition. Consequently, the Zn-SF anode delivers a high-rate performance with low voltage polarization (83 mV at 20 mA cm−2) and excellent stability (1500 h at 1 mA cm−2; 500 h at 10 mA cm−2), realizing exceptional cumulative capacity of 2.5 Ah cm−2. The full cell coupled with ZnxV2O5·nH2O (ZnVO) cathode achieves specific energy of ~ 270.5/150.6 Wh kg−1 (at 0.5/10 A g−1) with ~ 99.8% Coulombic efficiency and retains ~ 80.3% (at 5.0 A g−1) after 3000 cycles.
Highlights:
1 Alternating positively and negatively charged surface controlled by pH expedites and homogenizes Zn2+ flux, endowing the Zn- silk fibroin (SF) anode with low polarization voltage and stable stripping/plating.
2 Experimental analyses with theoretical calculations suggest that SF coating facilitates the desolvation of [Zn(H2O)6]2+ and provides nucleation sites for uniform deposition.
3 Symmetric battery of Zn–SF anodes delivers high-rate performance (up to 20 mA cm−2) and excellent stability (1500 h at 1 mA cm−2; 500 h at 10 mA cm−2) with cumulative capacity of 2.5 Ah cm−2.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1(5), 16039 (2016). https://doi.org/10.1038/nenergy.2016.39
- F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17(6), 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z
- F.P. Joseph, N.C. Christopher, R.P. Irina, M. Machler, F.B. Michael et al., Rechargeable nickel–3D zinc batteries: an energy-dense, safer alternative to lithium-ion. Science 356(6336), 415–418 (2017). https://doi.org/10.1126/science.aak9991
- Z. Yi, G. Chen, F. Hou, L. Wang, J. Liang, Strategies for the stabilization of Zn metal anodes for Zn-ion batteries. Adv. Energy Mater. 11(1), 2003065 (2020). https://doi.org/10.1002/aenm.202003065
- Q. Zhang, J. Luan, Y. Tang, X. Ji, H. Wang, Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 59(32), 13180–13191 (2020). https://doi.org/10.1002/anie.202000162
- C.C. Hou, L. Zou, Q. Xu, A hydrangea-like superstructure of open carbon cages with hierarchical porosity and highly active metal sites. Adv. Mater. 31(46), 1904689 (2019). https://doi.org/10.1002/adma.201904689
- S.B. Wang, Q. Ran, R.Q. Yao, H. Shi, Z. Wen et al., Lamella-nanostructured eutectic zinc–aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries. Nat. Commun. 11, 1634 (2020). https://doi.org/10.1038/s41467-020-15478-4
- J. Hao, J. Long, B. Li, X. Li, S. Zhang et al., Toward high-performance hybrid Zn-based batteries via deeply understanding their mechanism and using electrolyte additive. Adv. Funct. Mater. 29(34), 1903605 (2019). https://doi.org/10.1002/adfm.201903605
- Y. Chen, D. Ma, K. Ouyang, M. Yang, S. Shen et al., A multifunctional anti-proton electrolyte for high-rate and super-stable aqueous Zn-vanadium oxide battery. Nano-Micro Lett. 14, 154 (2022). https://doi.org/10.1007/s40820-022-00907-4
- K. Zhao, G. Fan, J. Liu, F. Liu, J. Li et al., Boosting the kinetics and stability of Zn anodes in aqueous electrolytes with supramolecular cyclodextrin additives. J. Am. Chem. Soc. 144(25), 11129–11137 (2022). https://doi.org/10.1021/jacs.2c00551
- Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12(6), 1938–1949 (2019). https://doi.org/10.1039/c9ee00596j
- B. Li, X. Zhang, T. Wang, Z. He, B. Lu et al., Interfacial engineering strategy for high-performance Zn metal anodes. Nano-Micro Lett. 14, 6 (2022). https://doi.org/10.1007/s40820-021-00764-7
- R. Chen, Q. Liu, L. Xu, X. Zuo, F. Liu et al., Zwitterionic bifunctional layer for reversible Zn anode. ACS Energy Lett. 7(5), 1719–1727 (2022). https://doi.org/10.1021/acsenergylett.2c00124
- X. He, Y. Cui, Y. Qian, Y. Wu, H. Ling et al., Anion concentration gradient-assisted construction of a solid–electrolyte interphase for a stable zinc metal anode at high rates. J. Am. Chem. Soc. 144(25), 11168–11177 (2022). https://doi.org/10.1021/jacs.2c01815
- H. Meng, Q. Ran, T.Y. Dai, H. Shi, S.P. Zeng et al., Surface-alloyed nanoporous zinc as reversible and stable anodes for high-performance aqueous zinc-ion battery. Nano-Micro Lett. 14, 128 (2022). https://doi.org/10.1007/s40820-022-00867-9
- M. Kwon, J. Lee, S. Ko, G. Lim, S.H. Yu et al., Stimulating Cu–Zn alloying for compact Zn metal growth towards high energy aqueous batteries and hybrid supercapacitors. Energy Environ. Sci. 15(7), 2889–2899 (2022). https://doi.org/10.1039/D2EE00617K
- J. Zheng, Z. Cao, F. Ming, H. Liang, Z. Qi et al., Preferred orientation of tin coatings enables stable zinc anodes. ACS Energy Lett. 7(1), 197–203 (2021). https://doi.org/10.1021/acsenergylett.1c02299
- L. Kang, M. Cui, F. Jiang, Y. Gao, H. Luo et al., Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv. Energy Mater. 8(25), 1801090 (2018). https://doi.org/10.1002/aenm.201801090
- N. Zhang, S. Huang, Z. Yuan, J. Zhu, Z. Zhao et al., Direct self-assembly of MXene on Zn anodes for dendrite-free aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 60(6), 2861–2865 (2021). https://doi.org/10.1002/anie.202012322
- S. Jiao, J. Fu, M. Wu, T. Hua, H. Hu, Ion sieve: tailoring Zn2+ desolvation kinetics and flux toward dendrite-free metallic zinc anodes. ACS Nano 16(1), 1013–1024 (2021). https://doi.org/10.1021/acsnano.1c08638
- L. Hong, X. Wu, L.Y. Wang, M. Zhong, P. Zhang et al., Highly reversible zinc anode enabled by a cation-exchange coating with Zn-ion selective channels. ACS Nano 16(4), 6906–6915 (2022). https://doi.org/10.1021/acsnano.2c02370
- M. Zhu, J. Hu, Q. Lu, H. Dong, D.D. Karnaushenko et al., A patternable and in situ formed polymeric zinc blanket for a reversible zinc anode in a skin-mountable microbattery. Adv. Mater. 33(8), 2007497 (2021). https://doi.org/10.1002/adma.202007497
- G. Wang, B. Kohn, U. Scheler, F. Wang, S. Oswald et al., A high-voltage, dendrite-free, and durable Zn–graphite battery. Adv. Mater. 32(4), 1905681 (2020). https://doi.org/10.1002/adma.201905681
- H. Liu, J.G. Wang, W. Hua, H. Sun, Y. Huyan et al., Building ohmic contact interfaces toward ultrastable Zn metal anodes. Adv. Sci. 8(23), 2102612 (2021). https://doi.org/10.1002/advs.202102612
- Y. Liang, D. Ma, N. Zhao, Y. Wang, M. Yang et al., Novel concept of separator design: efficient ions transport modulator enabled by dual-interface engineering toward ultra-stable Zn metal anodes. Adv. Funct. Mater. 32(25), 2112936 (2022). https://doi.org/10.1002/adfm.202112936
- T. Chen, F. Huang, Y. Wang, Y. Yang, H. Tian et al., Unveiling the synergistic effect of ferroelectric polarization and domain configuration for reversible zinc metal anodes. Adv. Sci. 9(14), 2105980 (2022). https://doi.org/10.1002/advs.202105980
- Z. Cao, B. Li, S. Yang, Dendrite-free lithium anodes with ultra-deep stripping and plating properties based on vertically oriented lithium-copper-lithium arrays. Adv. Mater. 31(29), 1901310 (2019). https://doi.org/10.1002/adma.201901310
- Q. Liu, Y. Wang, X. Hong, R. Zhou, Z. Hou et al., Elastomer–alginate interface for high-power and high-energy Zn metal anodes. Adv. Energy Mater. 12(20), 2200318 (2022). https://doi.org/10.1002/aenm.202200318
- B. Wang, R. Zheng, W. Yang, X. Han, C. Hou et al., Synergistic solvation and interface regulations of eco-friendly silk peptide additive enabling stable aqueous zinc-ion batteries. Adv. Funct. Mater. 32(23), 2112693 (2022). https://doi.org/10.1002/adfm.202112693
- D. Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark et al., Gromacs: fast, flexible, and free. J. Comput. Chem. 26(16), 1701–1718 (2005). https://doi.org/10.1002/jcc.20291
- V. Hornak, R. Abel, A. Okur, B. Strockbine, A. Roitberg et al., Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins 65(3), 712–725 (2006). https://doi.org/10.1002/prot.21123
- H.J.C. Berendsen, J.R. Grigera, T.P. Straatsma, The missing term in effective pair potentials. J. Phys. Chem. 91(24), 6269–6271 (1987). https://doi.org/10.1021/j100308a038
- B. Hess, H. Bekker, H.J.C. Berendsen, J.G.E.M. Fraaije, Lincs: a linear constraint solver for molecular simulations. J. Comput. Chem. 18(12), 1463–1472 (1997). https://doi.org/10.1002/(SICI)1096-987X(199709)18:12%3c1463::AID-JCC4%3e3.0.CO;2-H
- G. Bussi, D. Donadio, M. Parrinello, Canonical sampling through velocity rescaling. J. Chem. Phys. 126(1), 014101 (2007). https://doi.org/10.1063/1.2408420
- U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee et al., A smooth p mesh Ewald method. J. Chem. Phys. 103(19), 8577–8593 (1995). https://doi.org/10.1063/1.470117
- W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133–A1138 (1965). https://doi.org/10.1103/PhysRev.140.A1133
- S. Keten, Z. Xu, B. Ihle, M.J. Buehler, Nanoconfinement controls stiffness, strength and mechanical toughness of β-sheet crystals in silk. Nat. Mater. 9(4), 359–367 (2010). https://doi.org/10.1038/nmat2704
- F. Zhang, X. You, H. Dou, Z. Liu, B. Zuo et al., Facile fabrication of robust silk nanofibril films via direct dissolution of silk in CaCl2-formic acid solution. ACS Appl. Mater. Interfaces 7(5), 3352–3361 (2015). https://doi.org/10.1021/am508319h
- Z. Lin, Z. Meng, H. Miao, R. Wu, W. Qiu et al., Biomimetic salinity power generation based on silk fibroin ion-exchange membranes. ACS Nano 15(3), 5649–5660 (2021). https://doi.org/10.1021/acsnano.1c00820
- M.C. Krecker, D. Bukharina, C.B. Hatter, Y. Gogotsi, V.V. Tsukruk, Bioencapsulated MXene flakes for enhanced stability and composite precursors. Adv. Funct. Mater. 30(43), 2004554 (2020). https://doi.org/10.1002/adfm.202004554
- L.D. Koh, Y. Cheng, C.P. Teng, Y.W. Khin, X.J. Loh et al., Structures, mechanical properties and applications of silk fibroin materials. Prog. Polym. Sci. 46, 86–110 (2015). https://doi.org/10.1016/j.progpolymsci.2015.02.001
- J. Zhong, Y. Liu, J. Ren, Y. Tang, Z. Qi et al., Understanding secondary structures of silk materials via micro- and nano-infrared spectroscopies. ACS Biomater. Sci. Eng. 7(5), 3161–3183 (2019). https://doi.org/10.1021/acsbiomaterials.9b00305
- X. Zeng, K. Xie, S. Liu, S. Zhang, J. Hao et al., Bio-inspired design of an in situ multifunctional polymeric solid–electrolyte interphase for Zn metal anode cycling at 30 mA cm−2 and 30 mA h cm−2. Energy Environ. Sci. 14(11), 5947–5957 (2021). https://doi.org/10.1039/D1EE01851E
- Q. Yang, L. Li, T. Hussain, D. Wang, L. Hui et al., Stabilizing interface pH by N-modified graphdiyne for dendrite-free and high-rate aqueous Zn-ion batteries. Angew. Chem. Int. Ed. 61(6), e202112304 (2022). https://doi.org/10.1002/anie.202112304
- Y. Hu, X. Jiang, Y. Ding, H. Ge, Y. Yuan et al., Synthesis and characterization of chitosan–poly(acrylic acid) nanops. Biomaterials 23(15), 3193–3201 (2002). https://doi.org/10.1016/S0142-9612(02)00071-6
- J. Xu, W. Lv, W. Yang, Y. Jin, Q. Jin et al., In situ construction of protective films on Zn metal anodes via natural protein additives enabling high-performance zinc ion batteries. ACS Nano 16(7), 11392–11404 (2022). https://doi.org/10.1021/acsnano.2c05285
- K. Wu, J. Yi, X. Liu, Y. Sun, J. Cui et al., Regulating Zn deposition via an artificial solid–electrolyte interface with aligned dipoles for long life Zn anode. Nano-Micro Lett. 13, 79 (2021). https://doi.org/10.1007/s40820-021-00599-2
- A. Chen, C. Zhao, Z. Guo, X. Lu, J. Zhang et al., Stabilized Zn anode based on SO42– trapping ability and high hydrogen evolution barrier. Adv. Funct. Mater. 32(32), 2203595 (2022). https://doi.org/10.1002/adfm.202203595
- M. Liu, J. Cai, H. Ao, Z. Hou, Y. Zhu et al., NaTi2(PO4)3 solid-state electrolyte protection layer on Zn metal anode for superior long-life aqueous zinc-ion batteries. Adv. Funct. Mater. 30(50), 2004885 (2020). https://doi.org/10.1002/adfm.202004885
- Z. Li, L. Wu, S. Dong, T. Xu, S. Li et al., Pencil drawing stable interface for reversible and durable aqueous zinc-ion batteries. Adv. Funct. Mater. 31(4), 2006495 (2020). https://doi.org/10.1002/adfm.202006495
- Y. Jiao, F. Li, X. Jin, Q. Lei, L. Li et al., Engineering polymer glue towards 90% zinc utilization for 1000 hours to make high-performance Zn-ion batteries. Adv. Funct. Mater. 31(49), 2107652 (2021). https://doi.org/10.1002/adfm.202107652
- J. Hao, X. Li, S. Zhang, F. Yang, X. Zeng et al., Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv. Funct. Mater. 30(30), 2001263 (2020). https://doi.org/10.1002/adfm.202001263
- J. Shin, J. Lee, Y. Kim, Y. Park, M. Kim et al., Highly reversible, grain-directed zinc deposition in aqueous zinc ion batteries. Adv. Energy Mater. 11(39), 2100676 (2021). https://doi.org/10.1002/aenm.202100676
- P. Chen, X. Yuan, Y. Xia, Y. Zhang, L. Fu et al., An artificial polyacrylonitrile coating layer confining zinc dendrite growth for highly reversible aqueous zinc-based batteries. Adv. Sci. 8(11), 2100309 (2021). https://doi.org/10.1002/advs.202100309
- H. Yang, Z. Chang, Y. Qiao, H. Deng, X. Mu et al., Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 59(24), 9377–9381 (2020). https://doi.org/10.1002/anie.202001844
- D. Kundu, S.H. Vajargah, L. Wan, B. Adams et al., Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface. Energy Environ. Sci. 11(4), 881–892 (2018). https://doi.org/10.1039/C8EE00378E
- H. Zhang, Q. Liu, D. Zheng, F. Yang, X. Liu et al., Oxygen-rich interface enables reversible stibium stripping/plating chemistry in aqueous alkaline batteries. Nat. Commun. 12, 14 (2021). https://doi.org/10.1038/s41467-020-20170-8
- J.S. Stevens, A.C. Luca, M. Pelendritis, G. Terenghi, S. Downes et al., Quantitative analysis of complex amino acids and RGD peptides by X-ray photoelectron spectroscopy (XPS). Surf. Interface Anal. 45(8), 1238–1246 (2013). https://doi.org/10.1002/sia.5261
- W. Chen, S. Guo, L. Qin, L. Li, X. Cao et al., Hydrogen bond-functionalized massive solvation modules stabilizing bilateral interfaces. Adv. Funct. Mater. 32(20), 2112609 (2022). https://doi.org/10.1002/adfm.202112609
- Y.Q. Li, H. Shi, S.B. Wang, Y.T. Zhou, Z. Wen et al., Dual-phase nanostructuring of layered metal oxides for high-performance aqueous rechargeable potassium ion microbatteries. Nat. Commun. 10, 4292 (2019). https://doi.org/10.1038/s41467-019-12274-7
- Q. Zong, W. Du, C. Liu, H. Yang, Q. Zhang et al., Enhanced reversible zinc ion intercalation in deficient ammonium vanadate for high-performance aqueous zinc-ion battery. Nano-Micro Lett. 13, 116 (2021). https://doi.org/10.1007/s40820-021-00641-3
- S.B. Wang, Q. Ran, W.B. Wan, H. Shi, S.P. Zeng et al., Ultrahigh-energy and -power aqueous rechargeable zinc-ion microbatteries based on highly cation-compatible vanadium oxides. J. Mater. Sci. Technol. 120, 159–166 (2022). https://doi.org/10.1016/j.jmst.2022.01.007
- D. Xie, Z.W. Wang, Z.Y. Gu, W.Y. Diao, F.Y. Tao et al., Polymeric molecular design towards horizontal Zn electrodeposits at constrained 2D Zn2+ diffusion: dendrite-free Zn anode for long-life and high-rate aqueous zinc metal battery. Adv. Funct. Mater. 32(32), 2204066 (2022). https://doi.org/10.1002/adfm.202204066
- Y. Chen, S. Guo, L. Qin, Q. Wan, Y. Pan et al., Low current-density stable zinc-metal batteries via aqueous/organic hybrid electrolyte. Batt. Supercaps 5(5), e202200001 (2022). https://doi.org/10.1002/batt.202200001
- S. Zhang, S. Li, H. Zhang, D. Wen, S. Zhang et al., Phosphate interphase reinforced amorphous vanadium oxide cathode materials for aqueous zinc ion batteries. Chem. Commun. 58(58), 8089–8092 (2022). https://doi.org/10.1039/D2CC01864K
- Z. Wang, M. Zhou, L. Qin, M. Chen, Z. Chen et al., Simultaneous regulation of cations and anions in an electrolyte for high-capacity, high-stability aqueous zinc–vanadium batteries. Science 2(2), 209–218 (2022). https://doi.org/10.1016/j.esci.2022.03.002
- Z. Zhao, R. Wang, C. Peng, W. Chen, T. Wu et al., Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries. Nat. Commun. 1, 6606 (2021). https://doi.org/10.1038/s41467-021-26947-9
- Q. Ran, H. Shi, H. Meng, S.P. Zeng, W.B. Wan et al., Aluminum-copper alloy anode materials for high-energy aqueous aluminum batteries. Nat. Commun. 13, 576 (2022). https://doi.org/10.1038/s41467-022-28238-3
References
H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1(5), 16039 (2016). https://doi.org/10.1038/nenergy.2016.39
F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17(6), 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z
F.P. Joseph, N.C. Christopher, R.P. Irina, M. Machler, F.B. Michael et al., Rechargeable nickel–3D zinc batteries: an energy-dense, safer alternative to lithium-ion. Science 356(6336), 415–418 (2017). https://doi.org/10.1126/science.aak9991
Z. Yi, G. Chen, F. Hou, L. Wang, J. Liang, Strategies for the stabilization of Zn metal anodes for Zn-ion batteries. Adv. Energy Mater. 11(1), 2003065 (2020). https://doi.org/10.1002/aenm.202003065
Q. Zhang, J. Luan, Y. Tang, X. Ji, H. Wang, Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 59(32), 13180–13191 (2020). https://doi.org/10.1002/anie.202000162
C.C. Hou, L. Zou, Q. Xu, A hydrangea-like superstructure of open carbon cages with hierarchical porosity and highly active metal sites. Adv. Mater. 31(46), 1904689 (2019). https://doi.org/10.1002/adma.201904689
S.B. Wang, Q. Ran, R.Q. Yao, H. Shi, Z. Wen et al., Lamella-nanostructured eutectic zinc–aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries. Nat. Commun. 11, 1634 (2020). https://doi.org/10.1038/s41467-020-15478-4
J. Hao, J. Long, B. Li, X. Li, S. Zhang et al., Toward high-performance hybrid Zn-based batteries via deeply understanding their mechanism and using electrolyte additive. Adv. Funct. Mater. 29(34), 1903605 (2019). https://doi.org/10.1002/adfm.201903605
Y. Chen, D. Ma, K. Ouyang, M. Yang, S. Shen et al., A multifunctional anti-proton electrolyte for high-rate and super-stable aqueous Zn-vanadium oxide battery. Nano-Micro Lett. 14, 154 (2022). https://doi.org/10.1007/s40820-022-00907-4
K. Zhao, G. Fan, J. Liu, F. Liu, J. Li et al., Boosting the kinetics and stability of Zn anodes in aqueous electrolytes with supramolecular cyclodextrin additives. J. Am. Chem. Soc. 144(25), 11129–11137 (2022). https://doi.org/10.1021/jacs.2c00551
Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12(6), 1938–1949 (2019). https://doi.org/10.1039/c9ee00596j
B. Li, X. Zhang, T. Wang, Z. He, B. Lu et al., Interfacial engineering strategy for high-performance Zn metal anodes. Nano-Micro Lett. 14, 6 (2022). https://doi.org/10.1007/s40820-021-00764-7
R. Chen, Q. Liu, L. Xu, X. Zuo, F. Liu et al., Zwitterionic bifunctional layer for reversible Zn anode. ACS Energy Lett. 7(5), 1719–1727 (2022). https://doi.org/10.1021/acsenergylett.2c00124
X. He, Y. Cui, Y. Qian, Y. Wu, H. Ling et al., Anion concentration gradient-assisted construction of a solid–electrolyte interphase for a stable zinc metal anode at high rates. J. Am. Chem. Soc. 144(25), 11168–11177 (2022). https://doi.org/10.1021/jacs.2c01815
H. Meng, Q. Ran, T.Y. Dai, H. Shi, S.P. Zeng et al., Surface-alloyed nanoporous zinc as reversible and stable anodes for high-performance aqueous zinc-ion battery. Nano-Micro Lett. 14, 128 (2022). https://doi.org/10.1007/s40820-022-00867-9
M. Kwon, J. Lee, S. Ko, G. Lim, S.H. Yu et al., Stimulating Cu–Zn alloying for compact Zn metal growth towards high energy aqueous batteries and hybrid supercapacitors. Energy Environ. Sci. 15(7), 2889–2899 (2022). https://doi.org/10.1039/D2EE00617K
J. Zheng, Z. Cao, F. Ming, H. Liang, Z. Qi et al., Preferred orientation of tin coatings enables stable zinc anodes. ACS Energy Lett. 7(1), 197–203 (2021). https://doi.org/10.1021/acsenergylett.1c02299
L. Kang, M. Cui, F. Jiang, Y. Gao, H. Luo et al., Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv. Energy Mater. 8(25), 1801090 (2018). https://doi.org/10.1002/aenm.201801090
N. Zhang, S. Huang, Z. Yuan, J. Zhu, Z. Zhao et al., Direct self-assembly of MXene on Zn anodes for dendrite-free aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 60(6), 2861–2865 (2021). https://doi.org/10.1002/anie.202012322
S. Jiao, J. Fu, M. Wu, T. Hua, H. Hu, Ion sieve: tailoring Zn2+ desolvation kinetics and flux toward dendrite-free metallic zinc anodes. ACS Nano 16(1), 1013–1024 (2021). https://doi.org/10.1021/acsnano.1c08638
L. Hong, X. Wu, L.Y. Wang, M. Zhong, P. Zhang et al., Highly reversible zinc anode enabled by a cation-exchange coating with Zn-ion selective channels. ACS Nano 16(4), 6906–6915 (2022). https://doi.org/10.1021/acsnano.2c02370
M. Zhu, J. Hu, Q. Lu, H. Dong, D.D. Karnaushenko et al., A patternable and in situ formed polymeric zinc blanket for a reversible zinc anode in a skin-mountable microbattery. Adv. Mater. 33(8), 2007497 (2021). https://doi.org/10.1002/adma.202007497
G. Wang, B. Kohn, U. Scheler, F. Wang, S. Oswald et al., A high-voltage, dendrite-free, and durable Zn–graphite battery. Adv. Mater. 32(4), 1905681 (2020). https://doi.org/10.1002/adma.201905681
H. Liu, J.G. Wang, W. Hua, H. Sun, Y. Huyan et al., Building ohmic contact interfaces toward ultrastable Zn metal anodes. Adv. Sci. 8(23), 2102612 (2021). https://doi.org/10.1002/advs.202102612
Y. Liang, D. Ma, N. Zhao, Y. Wang, M. Yang et al., Novel concept of separator design: efficient ions transport modulator enabled by dual-interface engineering toward ultra-stable Zn metal anodes. Adv. Funct. Mater. 32(25), 2112936 (2022). https://doi.org/10.1002/adfm.202112936
T. Chen, F. Huang, Y. Wang, Y. Yang, H. Tian et al., Unveiling the synergistic effect of ferroelectric polarization and domain configuration for reversible zinc metal anodes. Adv. Sci. 9(14), 2105980 (2022). https://doi.org/10.1002/advs.202105980
Z. Cao, B. Li, S. Yang, Dendrite-free lithium anodes with ultra-deep stripping and plating properties based on vertically oriented lithium-copper-lithium arrays. Adv. Mater. 31(29), 1901310 (2019). https://doi.org/10.1002/adma.201901310
Q. Liu, Y. Wang, X. Hong, R. Zhou, Z. Hou et al., Elastomer–alginate interface for high-power and high-energy Zn metal anodes. Adv. Energy Mater. 12(20), 2200318 (2022). https://doi.org/10.1002/aenm.202200318
B. Wang, R. Zheng, W. Yang, X. Han, C. Hou et al., Synergistic solvation and interface regulations of eco-friendly silk peptide additive enabling stable aqueous zinc-ion batteries. Adv. Funct. Mater. 32(23), 2112693 (2022). https://doi.org/10.1002/adfm.202112693
D. Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark et al., Gromacs: fast, flexible, and free. J. Comput. Chem. 26(16), 1701–1718 (2005). https://doi.org/10.1002/jcc.20291
V. Hornak, R. Abel, A. Okur, B. Strockbine, A. Roitberg et al., Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins 65(3), 712–725 (2006). https://doi.org/10.1002/prot.21123
H.J.C. Berendsen, J.R. Grigera, T.P. Straatsma, The missing term in effective pair potentials. J. Phys. Chem. 91(24), 6269–6271 (1987). https://doi.org/10.1021/j100308a038
B. Hess, H. Bekker, H.J.C. Berendsen, J.G.E.M. Fraaije, Lincs: a linear constraint solver for molecular simulations. J. Comput. Chem. 18(12), 1463–1472 (1997). https://doi.org/10.1002/(SICI)1096-987X(199709)18:12%3c1463::AID-JCC4%3e3.0.CO;2-H
G. Bussi, D. Donadio, M. Parrinello, Canonical sampling through velocity rescaling. J. Chem. Phys. 126(1), 014101 (2007). https://doi.org/10.1063/1.2408420
U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee et al., A smooth p mesh Ewald method. J. Chem. Phys. 103(19), 8577–8593 (1995). https://doi.org/10.1063/1.470117
W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133–A1138 (1965). https://doi.org/10.1103/PhysRev.140.A1133
S. Keten, Z. Xu, B. Ihle, M.J. Buehler, Nanoconfinement controls stiffness, strength and mechanical toughness of β-sheet crystals in silk. Nat. Mater. 9(4), 359–367 (2010). https://doi.org/10.1038/nmat2704
F. Zhang, X. You, H. Dou, Z. Liu, B. Zuo et al., Facile fabrication of robust silk nanofibril films via direct dissolution of silk in CaCl2-formic acid solution. ACS Appl. Mater. Interfaces 7(5), 3352–3361 (2015). https://doi.org/10.1021/am508319h
Z. Lin, Z. Meng, H. Miao, R. Wu, W. Qiu et al., Biomimetic salinity power generation based on silk fibroin ion-exchange membranes. ACS Nano 15(3), 5649–5660 (2021). https://doi.org/10.1021/acsnano.1c00820
M.C. Krecker, D. Bukharina, C.B. Hatter, Y. Gogotsi, V.V. Tsukruk, Bioencapsulated MXene flakes for enhanced stability and composite precursors. Adv. Funct. Mater. 30(43), 2004554 (2020). https://doi.org/10.1002/adfm.202004554
L.D. Koh, Y. Cheng, C.P. Teng, Y.W. Khin, X.J. Loh et al., Structures, mechanical properties and applications of silk fibroin materials. Prog. Polym. Sci. 46, 86–110 (2015). https://doi.org/10.1016/j.progpolymsci.2015.02.001
J. Zhong, Y. Liu, J. Ren, Y. Tang, Z. Qi et al., Understanding secondary structures of silk materials via micro- and nano-infrared spectroscopies. ACS Biomater. Sci. Eng. 7(5), 3161–3183 (2019). https://doi.org/10.1021/acsbiomaterials.9b00305
X. Zeng, K. Xie, S. Liu, S. Zhang, J. Hao et al., Bio-inspired design of an in situ multifunctional polymeric solid–electrolyte interphase for Zn metal anode cycling at 30 mA cm−2 and 30 mA h cm−2. Energy Environ. Sci. 14(11), 5947–5957 (2021). https://doi.org/10.1039/D1EE01851E
Q. Yang, L. Li, T. Hussain, D. Wang, L. Hui et al., Stabilizing interface pH by N-modified graphdiyne for dendrite-free and high-rate aqueous Zn-ion batteries. Angew. Chem. Int. Ed. 61(6), e202112304 (2022). https://doi.org/10.1002/anie.202112304
Y. Hu, X. Jiang, Y. Ding, H. Ge, Y. Yuan et al., Synthesis and characterization of chitosan–poly(acrylic acid) nanops. Biomaterials 23(15), 3193–3201 (2002). https://doi.org/10.1016/S0142-9612(02)00071-6
J. Xu, W. Lv, W. Yang, Y. Jin, Q. Jin et al., In situ construction of protective films on Zn metal anodes via natural protein additives enabling high-performance zinc ion batteries. ACS Nano 16(7), 11392–11404 (2022). https://doi.org/10.1021/acsnano.2c05285
K. Wu, J. Yi, X. Liu, Y. Sun, J. Cui et al., Regulating Zn deposition via an artificial solid–electrolyte interface with aligned dipoles for long life Zn anode. Nano-Micro Lett. 13, 79 (2021). https://doi.org/10.1007/s40820-021-00599-2
A. Chen, C. Zhao, Z. Guo, X. Lu, J. Zhang et al., Stabilized Zn anode based on SO42– trapping ability and high hydrogen evolution barrier. Adv. Funct. Mater. 32(32), 2203595 (2022). https://doi.org/10.1002/adfm.202203595
M. Liu, J. Cai, H. Ao, Z. Hou, Y. Zhu et al., NaTi2(PO4)3 solid-state electrolyte protection layer on Zn metal anode for superior long-life aqueous zinc-ion batteries. Adv. Funct. Mater. 30(50), 2004885 (2020). https://doi.org/10.1002/adfm.202004885
Z. Li, L. Wu, S. Dong, T. Xu, S. Li et al., Pencil drawing stable interface for reversible and durable aqueous zinc-ion batteries. Adv. Funct. Mater. 31(4), 2006495 (2020). https://doi.org/10.1002/adfm.202006495
Y. Jiao, F. Li, X. Jin, Q. Lei, L. Li et al., Engineering polymer glue towards 90% zinc utilization for 1000 hours to make high-performance Zn-ion batteries. Adv. Funct. Mater. 31(49), 2107652 (2021). https://doi.org/10.1002/adfm.202107652
J. Hao, X. Li, S. Zhang, F. Yang, X. Zeng et al., Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv. Funct. Mater. 30(30), 2001263 (2020). https://doi.org/10.1002/adfm.202001263
J. Shin, J. Lee, Y. Kim, Y. Park, M. Kim et al., Highly reversible, grain-directed zinc deposition in aqueous zinc ion batteries. Adv. Energy Mater. 11(39), 2100676 (2021). https://doi.org/10.1002/aenm.202100676
P. Chen, X. Yuan, Y. Xia, Y. Zhang, L. Fu et al., An artificial polyacrylonitrile coating layer confining zinc dendrite growth for highly reversible aqueous zinc-based batteries. Adv. Sci. 8(11), 2100309 (2021). https://doi.org/10.1002/advs.202100309
H. Yang, Z. Chang, Y. Qiao, H. Deng, X. Mu et al., Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 59(24), 9377–9381 (2020). https://doi.org/10.1002/anie.202001844
D. Kundu, S.H. Vajargah, L. Wan, B. Adams et al., Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface. Energy Environ. Sci. 11(4), 881–892 (2018). https://doi.org/10.1039/C8EE00378E
H. Zhang, Q. Liu, D. Zheng, F. Yang, X. Liu et al., Oxygen-rich interface enables reversible stibium stripping/plating chemistry in aqueous alkaline batteries. Nat. Commun. 12, 14 (2021). https://doi.org/10.1038/s41467-020-20170-8
J.S. Stevens, A.C. Luca, M. Pelendritis, G. Terenghi, S. Downes et al., Quantitative analysis of complex amino acids and RGD peptides by X-ray photoelectron spectroscopy (XPS). Surf. Interface Anal. 45(8), 1238–1246 (2013). https://doi.org/10.1002/sia.5261
W. Chen, S. Guo, L. Qin, L. Li, X. Cao et al., Hydrogen bond-functionalized massive solvation modules stabilizing bilateral interfaces. Adv. Funct. Mater. 32(20), 2112609 (2022). https://doi.org/10.1002/adfm.202112609
Y.Q. Li, H. Shi, S.B. Wang, Y.T. Zhou, Z. Wen et al., Dual-phase nanostructuring of layered metal oxides for high-performance aqueous rechargeable potassium ion microbatteries. Nat. Commun. 10, 4292 (2019). https://doi.org/10.1038/s41467-019-12274-7
Q. Zong, W. Du, C. Liu, H. Yang, Q. Zhang et al., Enhanced reversible zinc ion intercalation in deficient ammonium vanadate for high-performance aqueous zinc-ion battery. Nano-Micro Lett. 13, 116 (2021). https://doi.org/10.1007/s40820-021-00641-3
S.B. Wang, Q. Ran, W.B. Wan, H. Shi, S.P. Zeng et al., Ultrahigh-energy and -power aqueous rechargeable zinc-ion microbatteries based on highly cation-compatible vanadium oxides. J. Mater. Sci. Technol. 120, 159–166 (2022). https://doi.org/10.1016/j.jmst.2022.01.007
D. Xie, Z.W. Wang, Z.Y. Gu, W.Y. Diao, F.Y. Tao et al., Polymeric molecular design towards horizontal Zn electrodeposits at constrained 2D Zn2+ diffusion: dendrite-free Zn anode for long-life and high-rate aqueous zinc metal battery. Adv. Funct. Mater. 32(32), 2204066 (2022). https://doi.org/10.1002/adfm.202204066
Y. Chen, S. Guo, L. Qin, Q. Wan, Y. Pan et al., Low current-density stable zinc-metal batteries via aqueous/organic hybrid electrolyte. Batt. Supercaps 5(5), e202200001 (2022). https://doi.org/10.1002/batt.202200001
S. Zhang, S. Li, H. Zhang, D. Wen, S. Zhang et al., Phosphate interphase reinforced amorphous vanadium oxide cathode materials for aqueous zinc ion batteries. Chem. Commun. 58(58), 8089–8092 (2022). https://doi.org/10.1039/D2CC01864K
Z. Wang, M. Zhou, L. Qin, M. Chen, Z. Chen et al., Simultaneous regulation of cations and anions in an electrolyte for high-capacity, high-stability aqueous zinc–vanadium batteries. Science 2(2), 209–218 (2022). https://doi.org/10.1016/j.esci.2022.03.002
Z. Zhao, R. Wang, C. Peng, W. Chen, T. Wu et al., Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries. Nat. Commun. 1, 6606 (2021). https://doi.org/10.1038/s41467-021-26947-9
Q. Ran, H. Shi, H. Meng, S.P. Zeng, W.B. Wan et al., Aluminum-copper alloy anode materials for high-energy aqueous aluminum batteries. Nat. Commun. 13, 576 (2022). https://doi.org/10.1038/s41467-022-28238-3