A Rational Design of Metal–Organic Framework Nanozyme with High-Performance Copper Active Centers for Alleviating Chemical Corneal Burns
Corresponding Author: Youhui Lin
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 112
Abstract
Metal–organic frameworks (MOFs) have attracted significant research interest in biomimetic catalysis. However, the modulation of the activity of MOFs by precisely tuning the coordination of metal nodes is still a significant challenge. Inspired by metalloenzymes with well-defined coordination structures, a series of MOFs containing halogen-coordinated copper nodes (Cu-X MOFs, X = Cl, Br, I) are employed to elucidate their structure–activity relationship. Intriguingly, experimental and theoretical results strongly support that precisely tuning the coordination of halogen atoms directly regulates the enzyme-like activities of Cu-X MOFs by influencing the spatial configuration and electronic structure of the Cu active center. The optimal Cu–Cl MOF exhibits excellent superoxide dismutase-like activity with a specific activity one order of magnitude higher than the reported Cu-based nanozymes. More importantly, by performing enzyme-mimicking catalysis, the Cu–Cl MOF nanozyme can significantly scavenge reactive oxygen species and alleviate oxidative stress, thus effectively relieving ocular chemical burns. Mechanistically, the antioxidant and antiapoptotic properties of Cu–Cl MOF are achieved by regulating the NRF2 and JNK or P38 MAPK pathways. Our work provides a novel way to refine MOF nanozymes by directly engineering the coordination microenvironment and, more significantly, demonstrating their potential therapeutic effect in ophthalmic disease.
Highlights:
1 Inspired by metalloenzymes with well-defined coordination structures, a series of Cu-X metal–organic frameworks (MOFs) nanozymes with tunable copper active centers were successfully constructed.
2 Experimental and theoretical results strongly supported that precisely tuning the coordination of halogen atoms could directly regulate the enzyme-like activities of Cu-X MOFs by influencing their spatial configuration and electronic structure.
3 The optimal Cu–Cl MOF with excellent enzyme-mimicking activities could effectively relieve ocular chemical burns by possible antioxidant and antiapoptotic mechanisms.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Bizrah, A. Yusuf, S. Ahmad, An update on chemical eye burns. Eye 33, 1362 (2019). https://doi.org/10.1038/s41433-019-0456-5
- X.-J. Gu, X. Liu, Y.-Y. Chen, Y. Zhao, M. Xu et al., Involvement of NADPH oxidases in alkali burn-induced corneal injury. Int. J. Mol. Med. 38, 75 (2016). https://doi.org/10.3892/ijmm.2016.2594
- C. Cejka, J. Cejkova, Oxidative stress to the cornea, changes in corneal optical properties, and advances in treatment of corneal oxidative injuries. Oxidative Med. Cell. Longev. 2015, 591530 (2015). https://doi.org/10.1155/2015/591530
- S. Ji, B. Jiang, H. Hao, Y. Chen, J. Dong et al., Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 4, 407 (2021). https://doi.org/10.1038/s41929-021-00609-x
- Q. Liu, A. Zhang, R. Wang, Q. Zhang, D. Cui, A review on metal-and metal oxide-based nanozymes: Properties, mechanisms, and applications. Nano-Micro Lett. 13, 154 (2021). https://doi.org/10.1007/s40820-021-00674-8
- F. Li, H. Sun, J. Ren, B. Zhang, X. Hu et al., A nuclease-mimetic platinum nanozyme induces concurrent DNA platination and oxidative cleavage to overcome cancer drug resistance. Nat. Commun. 13, 7361 (2022). https://doi.org/10.1038/s41467-022-35022-w
- Z. Zhang, X. Zhang, B. Liu, J. Liu, Molecular imprinting on inorganic nanozymes for hundred-fold enzyme specificity. J. Am. Chem. Soc. 139, 5412 (2017). https://doi.org/10.1021/jacs.7b00601
- H. Wei, L. Gao, K. Fan, J. Liu, J. He et al., Nanozymes: A clear definition with fuzzy edges. Nano Today 40, 101269 (2021). https://doi.org/10.1016/j.nantod.2021.101269
- X. Zhang, L. Cheng, Y. Lu, J. Tang, Q. Lv et al., A mxene-based bionic cascaded-enzyme nanoreactor for tumor phototherapy/enzyme dynamic therapy and hypoxia-activated chemotherapy. Nano-Micro Lett. 14, 22 (2022). https://doi.org/10.1007/s40820-021-00761-w
- L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang et al., Intrinsic peroxidase-like activity of ferromagnetic nanops. Nat. Nanotechnol. 2, 577 (2007). https://doi.org/10.1038/nnano.2007.260
- J. Chen, Y. Liu, G. Cheng, J. Guo, S. Du et al., Tailored hydrogel delivering niobium carbide boosts ROS-scavenging and antimicrobial activities for diabetic wound healing. Small (2022). https://doi.org/10.1002/smll.202201300
- J. Li, S. Wang, X. Lin, Y. Cao, Z. Cai et al., Red blood cell-mimic nanocatalyst triggering radical storm to augment cancer immunotherapy. Nano-Micro Lett. 14, 57 (2022). https://doi.org/10.1007/s40820-022-00801-z
- Y. Song, K. Qu, C. Zhao, J. Ren, X. Qu, Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater. 22, 2206 (2010). https://doi.org/10.1002/adma.200903783
- B. Das, J.L. Franco, N. Logan, P. Balasubramanian, M.I. Kim et al., Nanozymes in point-of-care diagnosis: An emerging futuristic approach for biosensing. Nano-Micro Lett. 13, 193 (2021). https://doi.org/10.1007/s40820-021-00717-0
- Q. Zeng, X. Qi, G. Shi, M. Zhang, H. Haick, Wound dressing: from nanomaterials to diagnostic dressings and healing evaluations. ACS Nano 16, 1708 (2022). https://doi.org/10.1021/acsnano.1c08411
- B. Jiang, M. Liang, Advances in single-atom nanozymes research. Chin. J. Chem. 39, 174 (2021). https://doi.org/10.1002/cjoc.202000383
- Y. Liu, Y. Cheng, H. Zhang, M. Zhou, Y. Yu et al., Integrated cascade nanozyme catalyzes in vivo ROS scavenging for anti-inflammatory therapy. Sci. Adv. 6, eabb2695 (2020). https://doi.org/10.1126/sciadv.abb2695
- D. Wang, I.W. He, J. Liu, D. Jana, Y. Wu et al., Ligand-dependent activity engineering of glutathione peroxidase-mimicking MIL-47(V) metal-organic framework nanozyme for therapy. Angew. Chem. Int. Ed. 60, 26254 (2021). https://doi.org/10.1002/ange.202010714
- M. Chen, L. Lang, L. Chen, X. Wang, C. Shi et al., Improving in vivo uranyl removal efficacy of a nano-metal organic framework by interior functionalization with 3-Hydroxy-2-pyridinone. Chin. J. Chem. 40, 2054 (2022). https://doi.org/10.1002/cjoc.202200206
- W. Xu, Y. Kang, L. Jiao, Y. Wu, H. Yan et al., Tuning atomically dispersed Fe sites in metal-organic frameworks boosts peroxidase-like activity for sensitive biosensing. Nano-Micro Lett. 12, 184 (2020). https://doi.org/10.1007/s40820-020-00520-3
- J. Wu, Z. Wang, X. Jin, S. Zhang, T. Li, Y. Zhang et al., Hammett relationship in oxidase-mimicking metal-organic frameworks revealed through a protein-engineering-inspired strategy. Adv. Mater. 33, 2005024 (2021). https://doi.org/10.1002/adma.202005024
- W. Lu, Z. Wei, Z.-Y. Gu, T.-F. Liu, J. Park et al., Tuning the structure and function of metal–organic frameworks via linker design. Chem. Soc. Rev. 43, 5561 (2014). https://doi.org/10.1039/C4CS00003J
- Z. Xue, K. Liu, Q. Liu, Y. Li, M. Li et al., Missing-linker metal-organic frameworks for oxygen evolution reaction. Nat. Commun. 10, 5048 (2019). https://doi.org/10.1038/s41467-019-13051-2
- Y. Wang, J. Li, Z. Zhou, R. Zhou, Q. Sun et al., Halo-fluorescein for photodynamic bacteria inactivation in extremely acidic conditions. Nat. Commun. 12, 526 (2021). https://doi.org/10.1038/s41467-020-20869-8
- G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
- G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994). https://doi.org/10.1103/PhysRevB.50.17953
- S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010). https://doi.org/10.1063/1.3382344
- N. Masciocchi, P. Cairati, L. Carlucci, G. Mezza, G. Ciani et al., 1996) Ab-initio X-ray powder diffraction structural characterization of co-ordination compounds: Polymeric [{MX2 (bipy)}n] complexes (M= Ni or Cu; X= Cl or Br; bipy= 4, 4’-bipyridyl. J. Chem. Soc Dalton Trans. (1996). https://doi.org/10.1039/DT9960002739
- Y. Sheng, I.A. Abreu, D.E. Cabelli, M.J. Maroney, A.-F. Miller et al., Superoxide dismutases and superoxide reductases. Chem. Rev. 114, 3854 (2014). https://doi.org/10.1021/cr4005296
- B. Hammer, J.K. Norskov, Why gold is the noblest of all the metals. Nature 376, 238 (1995). https://doi.org/10.1038/376238a0
- J.K. Nørskov, F. Abild-Pedersen, F. Studt, T. Bligaard, Density functional theory in surface chemistry and catalysis. Proc. Natl. Acad. Sci. 108, 937 (2011). https://doi.org/10.1073/pnas.1006652108
- X. Shen, W. Liu, X. Gao, Z. Lu, X. Wu et al., Mechanisms of oxidase and superoxide dismutation-like activities of gold, silver, platinum, and palladium, and their alloys: a general way to the activation of molecular oxygen. J. Am. Chem. Soc. 137, 15882 (2015). https://doi.org/10.1021/jacs.5b10346
- Z. Wang, J. Wu, J.-J. Zheng, X. Shen, L. Yan et al., Accelerated discovery of superoxide-dismutase nanozymes via high-throughput computational screening. Nat. Commun. 12, 6866 (2021). https://doi.org/10.1038/s41467-021-27194-8
- J. Liu, S. Zou, L. Xiao, J. Fan, Well-dispersed bimetallic nanops confined in mesoporous metal oxides and their optimized catalytic activity for nitrobenzene hydrogenation. Catal. Sci. Technol. 4, 441 (2014). https://doi.org/10.1039/C3CY00689A
- R. Zhang, B. Xue, Y. Tao, H. Zhao, Z. Zhang et al., Edge-site engineering of defective Fe-N4 nanozymes with boosted catalase-like performance for retinal vasculopathies. Adv. Mater. 34, 13 (2022). https://doi.org/10.1002/adma.202205324
- P.D. Ray, B.-W. Huang, Y. Tsuji, Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal. 24, 981 (2012). https://doi.org/10.1016/j.cellsig.2012.01.008
- Y. Fuse, M. Kobayashi, Conservation of the Keap1-Nrf2 system: an evolutionary journey through stressful space and time. Molecules 22, 436 (2017). https://doi.org/10.3390/molecules22030436
- H.-U. Simon, A. Haj-Yehia, F. Levi-Schaffer, Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5, 415 (2000). https://doi.org/10.1023/A:1009616228304
- E.H. Shroff, C. Snyder, N.S. Chandel, Bcl-2 family members regulate anoxia-induced cell death. Antioxid. Redox Signal. 9, 1405 (2007). https://doi.org/10.1089/ars.2007.1731
- M.S. Ola, M. Nawaz, H. Ahsan, Mol. Cell. Biochem. 351, 41 (2011). https://doi.org/10.1007/s11010-010-0709-x
- J. Yue, J.M. López, Understanding MAPK signaling pathways in apoptosis. Int. J. Mol. Sci. 21, 2346 (2020). https://doi.org/10.3390/ijms21072346
- W. Liu, K.M. Schultz, K. Zhang, A. Sasman, F. Gao et al., In vivo corneal neovascularization imaging by optical-resolution photoacoustic microscopy. Photoacoustics 2, 81 (2014). https://doi.org/10.1016/j.pacs.2014.04.003
- H.S. Dua, D.S.J. Ting, A. Al Saadi, D.G. Said, Chemical eye injury: Pathophysiology, assessment and management. Eye 34, 2001 (2020). https://doi.org/10.1038/s41433-020-1026-6
- Y. Chen, W. Yang, X. Zhang, S. Yang, G. Peng et al., MK2 inhibitor reduces alkali burn-induced inflammation in rat cornea. Sci. Rep. 6, 28145 (2016). https://doi.org/10.1038/srep28145
- S. Gordon, J. Hamann, H.-H. Lin, M. Stacey, F4/80 and the related adhesion-GPCRs. Eur. J. Immunol. 41, 2472 (2011). https://doi.org/10.1002/eji.201141715
- J.J. Tomasek, J. McRae, G.K. Owens, C.J. Haaksma, Regulation of α-smooth muscle actin expression in granulation tissue myofibroblasts is dependent on the intronic CArG element and the transforming growth factor-β1 control element. Am. J. Pathol. 166, 1343 (2005). https://doi.org/10.1016/S0002-9440(10)62353-X
- S. Zhu, L. Gong, Y. Li, H. Xu, Z. Gu et al., Safety assessment of nanomaterials to eyes: An important but neglected issue. Adv. Sci. 6, 1802289 (2019). https://doi.org/10.1002/advs.201802289
References
M. Bizrah, A. Yusuf, S. Ahmad, An update on chemical eye burns. Eye 33, 1362 (2019). https://doi.org/10.1038/s41433-019-0456-5
X.-J. Gu, X. Liu, Y.-Y. Chen, Y. Zhao, M. Xu et al., Involvement of NADPH oxidases in alkali burn-induced corneal injury. Int. J. Mol. Med. 38, 75 (2016). https://doi.org/10.3892/ijmm.2016.2594
C. Cejka, J. Cejkova, Oxidative stress to the cornea, changes in corneal optical properties, and advances in treatment of corneal oxidative injuries. Oxidative Med. Cell. Longev. 2015, 591530 (2015). https://doi.org/10.1155/2015/591530
S. Ji, B. Jiang, H. Hao, Y. Chen, J. Dong et al., Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 4, 407 (2021). https://doi.org/10.1038/s41929-021-00609-x
Q. Liu, A. Zhang, R. Wang, Q. Zhang, D. Cui, A review on metal-and metal oxide-based nanozymes: Properties, mechanisms, and applications. Nano-Micro Lett. 13, 154 (2021). https://doi.org/10.1007/s40820-021-00674-8
F. Li, H. Sun, J. Ren, B. Zhang, X. Hu et al., A nuclease-mimetic platinum nanozyme induces concurrent DNA platination and oxidative cleavage to overcome cancer drug resistance. Nat. Commun. 13, 7361 (2022). https://doi.org/10.1038/s41467-022-35022-w
Z. Zhang, X. Zhang, B. Liu, J. Liu, Molecular imprinting on inorganic nanozymes for hundred-fold enzyme specificity. J. Am. Chem. Soc. 139, 5412 (2017). https://doi.org/10.1021/jacs.7b00601
H. Wei, L. Gao, K. Fan, J. Liu, J. He et al., Nanozymes: A clear definition with fuzzy edges. Nano Today 40, 101269 (2021). https://doi.org/10.1016/j.nantod.2021.101269
X. Zhang, L. Cheng, Y. Lu, J. Tang, Q. Lv et al., A mxene-based bionic cascaded-enzyme nanoreactor for tumor phototherapy/enzyme dynamic therapy and hypoxia-activated chemotherapy. Nano-Micro Lett. 14, 22 (2022). https://doi.org/10.1007/s40820-021-00761-w
L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang et al., Intrinsic peroxidase-like activity of ferromagnetic nanops. Nat. Nanotechnol. 2, 577 (2007). https://doi.org/10.1038/nnano.2007.260
J. Chen, Y. Liu, G. Cheng, J. Guo, S. Du et al., Tailored hydrogel delivering niobium carbide boosts ROS-scavenging and antimicrobial activities for diabetic wound healing. Small (2022). https://doi.org/10.1002/smll.202201300
J. Li, S. Wang, X. Lin, Y. Cao, Z. Cai et al., Red blood cell-mimic nanocatalyst triggering radical storm to augment cancer immunotherapy. Nano-Micro Lett. 14, 57 (2022). https://doi.org/10.1007/s40820-022-00801-z
Y. Song, K. Qu, C. Zhao, J. Ren, X. Qu, Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater. 22, 2206 (2010). https://doi.org/10.1002/adma.200903783
B. Das, J.L. Franco, N. Logan, P. Balasubramanian, M.I. Kim et al., Nanozymes in point-of-care diagnosis: An emerging futuristic approach for biosensing. Nano-Micro Lett. 13, 193 (2021). https://doi.org/10.1007/s40820-021-00717-0
Q. Zeng, X. Qi, G. Shi, M. Zhang, H. Haick, Wound dressing: from nanomaterials to diagnostic dressings and healing evaluations. ACS Nano 16, 1708 (2022). https://doi.org/10.1021/acsnano.1c08411
B. Jiang, M. Liang, Advances in single-atom nanozymes research. Chin. J. Chem. 39, 174 (2021). https://doi.org/10.1002/cjoc.202000383
Y. Liu, Y. Cheng, H. Zhang, M. Zhou, Y. Yu et al., Integrated cascade nanozyme catalyzes in vivo ROS scavenging for anti-inflammatory therapy. Sci. Adv. 6, eabb2695 (2020). https://doi.org/10.1126/sciadv.abb2695
D. Wang, I.W. He, J. Liu, D. Jana, Y. Wu et al., Ligand-dependent activity engineering of glutathione peroxidase-mimicking MIL-47(V) metal-organic framework nanozyme for therapy. Angew. Chem. Int. Ed. 60, 26254 (2021). https://doi.org/10.1002/ange.202010714
M. Chen, L. Lang, L. Chen, X. Wang, C. Shi et al., Improving in vivo uranyl removal efficacy of a nano-metal organic framework by interior functionalization with 3-Hydroxy-2-pyridinone. Chin. J. Chem. 40, 2054 (2022). https://doi.org/10.1002/cjoc.202200206
W. Xu, Y. Kang, L. Jiao, Y. Wu, H. Yan et al., Tuning atomically dispersed Fe sites in metal-organic frameworks boosts peroxidase-like activity for sensitive biosensing. Nano-Micro Lett. 12, 184 (2020). https://doi.org/10.1007/s40820-020-00520-3
J. Wu, Z. Wang, X. Jin, S. Zhang, T. Li, Y. Zhang et al., Hammett relationship in oxidase-mimicking metal-organic frameworks revealed through a protein-engineering-inspired strategy. Adv. Mater. 33, 2005024 (2021). https://doi.org/10.1002/adma.202005024
W. Lu, Z. Wei, Z.-Y. Gu, T.-F. Liu, J. Park et al., Tuning the structure and function of metal–organic frameworks via linker design. Chem. Soc. Rev. 43, 5561 (2014). https://doi.org/10.1039/C4CS00003J
Z. Xue, K. Liu, Q. Liu, Y. Li, M. Li et al., Missing-linker metal-organic frameworks for oxygen evolution reaction. Nat. Commun. 10, 5048 (2019). https://doi.org/10.1038/s41467-019-13051-2
Y. Wang, J. Li, Z. Zhou, R. Zhou, Q. Sun et al., Halo-fluorescein for photodynamic bacteria inactivation in extremely acidic conditions. Nat. Commun. 12, 526 (2021). https://doi.org/10.1038/s41467-020-20869-8
G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994). https://doi.org/10.1103/PhysRevB.50.17953
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010). https://doi.org/10.1063/1.3382344
N. Masciocchi, P. Cairati, L. Carlucci, G. Mezza, G. Ciani et al., 1996) Ab-initio X-ray powder diffraction structural characterization of co-ordination compounds: Polymeric [{MX2 (bipy)}n] complexes (M= Ni or Cu; X= Cl or Br; bipy= 4, 4’-bipyridyl. J. Chem. Soc Dalton Trans. (1996). https://doi.org/10.1039/DT9960002739
Y. Sheng, I.A. Abreu, D.E. Cabelli, M.J. Maroney, A.-F. Miller et al., Superoxide dismutases and superoxide reductases. Chem. Rev. 114, 3854 (2014). https://doi.org/10.1021/cr4005296
B. Hammer, J.K. Norskov, Why gold is the noblest of all the metals. Nature 376, 238 (1995). https://doi.org/10.1038/376238a0
J.K. Nørskov, F. Abild-Pedersen, F. Studt, T. Bligaard, Density functional theory in surface chemistry and catalysis. Proc. Natl. Acad. Sci. 108, 937 (2011). https://doi.org/10.1073/pnas.1006652108
X. Shen, W. Liu, X. Gao, Z. Lu, X. Wu et al., Mechanisms of oxidase and superoxide dismutation-like activities of gold, silver, platinum, and palladium, and their alloys: a general way to the activation of molecular oxygen. J. Am. Chem. Soc. 137, 15882 (2015). https://doi.org/10.1021/jacs.5b10346
Z. Wang, J. Wu, J.-J. Zheng, X. Shen, L. Yan et al., Accelerated discovery of superoxide-dismutase nanozymes via high-throughput computational screening. Nat. Commun. 12, 6866 (2021). https://doi.org/10.1038/s41467-021-27194-8
J. Liu, S. Zou, L. Xiao, J. Fan, Well-dispersed bimetallic nanops confined in mesoporous metal oxides and their optimized catalytic activity for nitrobenzene hydrogenation. Catal. Sci. Technol. 4, 441 (2014). https://doi.org/10.1039/C3CY00689A
R. Zhang, B. Xue, Y. Tao, H. Zhao, Z. Zhang et al., Edge-site engineering of defective Fe-N4 nanozymes with boosted catalase-like performance for retinal vasculopathies. Adv. Mater. 34, 13 (2022). https://doi.org/10.1002/adma.202205324
P.D. Ray, B.-W. Huang, Y. Tsuji, Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal. 24, 981 (2012). https://doi.org/10.1016/j.cellsig.2012.01.008
Y. Fuse, M. Kobayashi, Conservation of the Keap1-Nrf2 system: an evolutionary journey through stressful space and time. Molecules 22, 436 (2017). https://doi.org/10.3390/molecules22030436
H.-U. Simon, A. Haj-Yehia, F. Levi-Schaffer, Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5, 415 (2000). https://doi.org/10.1023/A:1009616228304
E.H. Shroff, C. Snyder, N.S. Chandel, Bcl-2 family members regulate anoxia-induced cell death. Antioxid. Redox Signal. 9, 1405 (2007). https://doi.org/10.1089/ars.2007.1731
M.S. Ola, M. Nawaz, H. Ahsan, Mol. Cell. Biochem. 351, 41 (2011). https://doi.org/10.1007/s11010-010-0709-x
J. Yue, J.M. López, Understanding MAPK signaling pathways in apoptosis. Int. J. Mol. Sci. 21, 2346 (2020). https://doi.org/10.3390/ijms21072346
W. Liu, K.M. Schultz, K. Zhang, A. Sasman, F. Gao et al., In vivo corneal neovascularization imaging by optical-resolution photoacoustic microscopy. Photoacoustics 2, 81 (2014). https://doi.org/10.1016/j.pacs.2014.04.003
H.S. Dua, D.S.J. Ting, A. Al Saadi, D.G. Said, Chemical eye injury: Pathophysiology, assessment and management. Eye 34, 2001 (2020). https://doi.org/10.1038/s41433-020-1026-6
Y. Chen, W. Yang, X. Zhang, S. Yang, G. Peng et al., MK2 inhibitor reduces alkali burn-induced inflammation in rat cornea. Sci. Rep. 6, 28145 (2016). https://doi.org/10.1038/srep28145
S. Gordon, J. Hamann, H.-H. Lin, M. Stacey, F4/80 and the related adhesion-GPCRs. Eur. J. Immunol. 41, 2472 (2011). https://doi.org/10.1002/eji.201141715
J.J. Tomasek, J. McRae, G.K. Owens, C.J. Haaksma, Regulation of α-smooth muscle actin expression in granulation tissue myofibroblasts is dependent on the intronic CArG element and the transforming growth factor-β1 control element. Am. J. Pathol. 166, 1343 (2005). https://doi.org/10.1016/S0002-9440(10)62353-X
S. Zhu, L. Gong, Y. Li, H. Xu, Z. Gu et al., Safety assessment of nanomaterials to eyes: An important but neglected issue. Adv. Sci. 6, 1802289 (2019). https://doi.org/10.1002/advs.201802289