An Efficient Trap Passivator for Perovskite Solar Cells: Poly(propylene glycol) bis(2-aminopropyl ether)
Corresponding Author: Jizheng Wang
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 177
Abstract
Perovskite solar cells (PSCs) are regarded as promising candidates for future renewable energy production. High-density defects in the perovskite films, however, lead to unsatisfactory device performances. Here, poly(propylene glycol) bis(2-aminopropyl ether) (PEA) additive is utilized to passivate the trap states in perovskite. The PEA molecules chemically interact with lead ions in perovskite, considerably passivate surface and bulk defects, which is in favor of charge transfer and extraction. Furthermore, the PEA additive can efficiently block moisture and oxygen to prolong the device lifetime. As a result, PEA-treated MAPbI3 (MA: CH3NH3) solar cells show increased power conversion efficiency (PCE) (from 17.18 to 18.87%) and good long-term stability. When PEA is introduced to (FAPbI3)1-x(MAPbBr3)x (FA: HC(NH2)2) solar cells, the PCE is enhanced from 19.66 to 21.60%. For both perovskites, their severe device hysteresis is efficiently relieved by PEA.
Highlights:
1 Poly(propylene glycol) bis(2-aminopropyl ether) (PEA) additive is introduced into the perovskite solar cells to passivate both surface and grain boundary defects, and hence improve the device efficiency and stability.
2 MAPbI3 device with PEA exhibits significantly enhanced efficiency of 18.87%. (FAPbI3)1-x(MAPbBr3)x device with PEA exhibits enhanced efficiency of 21.60%.
3 The unsealed passivated device degrades only by 5% in PCE after being exposed to air (30 ± 5% relative humidity) for 30 days.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107), 643–647 (2012). https://doi.org/10.1126/science.1228604
- S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer et al., Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156), 341–344 (2013). https://doi.org/10.1126/science.1243982
- C. Wehrenfennig, G.E. Eperon, M.B. Johnston, H.J. Snaith, L.M. Herz, High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26(10), 1584–1589 (2014). https://doi.org/10.1002/adma.201305172
- H. Zhou, Q. Chen, G. Li, S. Luo, T.B. Song et al., Interface engineering of highly efficient perovskite solar cells. Science 345(6196), 542–546 (2014). https://doi.org/10.1126/science.1254050
- N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015). https://doi.org/10.1038/nature14133
- A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
- National renewable energy laboratory, Best research-cell efficiencies. www.nrel.gov/pv/assets/pdfs/best-research-cell-efciencies.20190802.pdf
- T. Matsui, H. Jia, M. Kondo, Thin film solar cells incorporating microcrystalline Si1–xGex as efficient infrared absorber: an application to double junction tandem solar cells. Prog. Photovoltaics Res. Appl. 18(1), 48–53 (2010). https://doi.org/10.1002/pip.922
- W. Ke, C. Xiao, C. Wang, B. Saparov, H.S. Duan et al., Employing lead thiocyanate additive to reduce the hysteresis and boost the fill Factor of planar perovskite solar cells. Adv. Mater. 28(26), 5214–5221 (2016). https://doi.org/10.1002/adma.201600594
- Y. Zhang, L. Tan, Q. Fu, L. Chen, T. Ji, X. Hu, Y. Chen, Enhancing the grain size of organic halide perovskites by sulfonate-carbon nanotube incorporation in high performance perovskite solar cells. Chem. Commun 52, 5674 (2016). https://doi.org/10.1039/c6cc00268d
- Q. Chen, H. Zhou, T. Bin Song, S. Luo, Z. Hong et al., Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett. 14(7), 4158–4163 (2014). https://doi.org/10.1021/nl501838y
- M. Saliba, T. Matsui, K. Domanski, J.Y. Seo, A. Ummadisingu et al., Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354(6309), 206–209 (2016). https://doi.org/10.1126/science.aah5557
- M. Kot, C. Das, Z. Wang, K. Henkel, Z. Rouissi et al., Room-temperature atomic layer deposition of Al2O3: impact on efficiency, stability and surface properties in perovskite solar cells. Chemsuschem 9(24), 3401–3406 (2016). https://doi.org/10.1002/cssc.201601186
- L. Chu, W. Ahmad, W. Liu, J. Yang, R. Zhang et al., Lead-free halide double perovskite materials: a new superstar towards green and stable optoelectronic applications. Nano-Micro Lett. 11, 16 (2019). https://doi.org/10.1007/s40820-019-0244-6
- F. Wang, W. Geng, Y. Zhou, H.-H. Fang, C.-J. Tong et al., Perovskites enabling high-efficiency and air-stable photovoltaic cells. Adv. Mater. 28, 9986–9992 (2016). https://doi.org/10.1002/adma.201603062
- F. Wang, A. Shimazaki, F. Yang, K. Kanahashi, K. Matsuki et al., Highly efficient and stable perovskite solar cells by interfacial engineering using solution-processed polymer layer. J. Phys. Chem. C 121, 1562–1568 (2017). https://doi.org/10.1021/acs.jpcc.6b12137
- W. Liu, N. Liu, S. Ji, H. Hua, Y. Ma et al., Perfection of perovskite grain boundary passivation by rhodium incorporation for efficient and stable solar cells. Nano-Micro Lett. 12, 119 (2020). https://doi.org/10.1007/s40820-020-00457-7
- M.E. Kayesh, T.H. Chowdhury, K. Matsuishi, R. Kaneko, S. Kazaoui et al., Enhanced photovoltaic performance of FASnI3-based perovskite solar cells with hydrazinium chloride coadditive. ACS Energy Lett. 3(7), 1584–1589 (2018). https://doi.org/10.1021/acsenergylett.8b00645
- L. Liu, S. Huang, Y. Lu, P. Liu, Y. Zhao et al., Grain-boundary ”patches” by in situ conversion to enhance perovskite solar cells stability. Adv. Mater. 30(29), 1800544 (2018). https://doi.org/10.1002/adma.201800544
- J. Jiang, Q. Wang, Z. Jin, X. Zhang, J. Lei et al., Polymer doping for high-efficiency perovskite solar cells with improved moisture stability. Adv. Energy Mater. 8(3), 1701757 (2018). https://doi.org/10.1002/aenm.201701757
- L. Meng, C. Sun, R. Wang, W. Huang, Z. Zhao et al., Tailored phase conversion under conjugated polymer enables thermally stable perovskite solar cells with efficiency exceeding 21%. J. Am. Chem. Soc. 140(49), 17255–17262 (2018). https://doi.org/10.1021/jacs.8b10520
- J. Wei, H. Li, Y. Zhao, W. Zhou, R. Fu et al., Suppressed hysteresis and improved stability in perovskite solar cells with conductive organic network. Nano Energy 26, 139–147 (2016). https://doi.org/10.1016/j.nanoen.2016.05.023
- L. Zuo, H. Guo, D.W. deQuilettes, S. Jariwala, N. De Marco et al., Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells. Sci. Adv. 3, e1700106 (2017). https://doi.org/10.1126/sciadv.1700106
- P.-L. Qin, G. Yang, Z.-W. Ren, S.H. Cheung, S.K. So et al., Stable and efficient organo-metal halide hybrid perovskite solar cells via π-conjugated Lewis base polymer induced trap passivation and charge extraction. Adv. Mater. 30(12), 1706126 (2018). https://doi.org/10.1002/adma.201706126
- A. Ng, Z. Ren, Q. Shen, S.H. Cheung, H.C. Gokkaya et al., Crystal engineering for low defect density and high efficiency hybrid chemical vapor deposition grown perovskite solar cells. ACS Appl. Mater. Interfaces 8(48), 32805–32814 (2016). https://doi.org/10.1021/acsami.6b07513
- W.-J. Yin, H. Chen, T. Shi, S.-H. Wei, Y. Yan, Origin of high electronic quality in structurally disordered CH3NH3PbI3 and the passivation effect of Cl and O at grain boundaries. Adv. Electron. Mater. 1(6), 1500044 (2015). https://doi.org/10.1002/aelm.201500044
- P. Qin, T. Wu, Z. Wang, X. Zheng, X. Yu, G. Fang, G. Li, Vitrification transformation of poly(ethylene oxide) activating interface passivation for high-efficiency perovskite solar cells. Sol. RRL 3, 1900134 (2019). https://doi.org/10.1002/solr.201900134
- M. Kim, S.G. Motti, R. Sorrentino, A. Petrozza, Enhanced solar cell stability by hygroscopic polymer passivation of metal halide perovskite thin film. Energy Environ. Sci. 11, 2609–2619 (2018). https://doi.org/10.1039/C8EE01101J
- P. Guo, Q. Ye, X. Yang, J. Zhang, F. Xu et al., Surface & grain boundary co-passivation by fluorocarbon based bifunctional molecules for perovskite solar cells with efficiency over 21%. J. Mater. Chem. A 7, 2497–2506 (2019). https://doi.org/10.1039/c8ta11524a
- P. Qin, Q. He, G. Yang, X. Yu, L. Xiong, G. Fang, Metal ions diffusion at heterojunction chromium Oxide/CH3NH3PbI3 interface on the stability of perovskite solar cells. Surf. Interfaces 10, 93–99 (2018). https://doi.org/10.1016/j.surfin.2017.12.006
- R. Morent, N. De Geyter, C. Leys, L. Gengembreb, Comparison between XPS- and FTIR- analysis of plasma-treated polypropylene film surfaces. E. Payenb. Surf. Interface Anal. 40, 597–600 (2008). https://doi.org/10.1002/sia.2619
- W. Zhou, D. Li, Z. Xiao, Z. Wen, M. Zhang et al., Zwitterion coordination induced highly orientational order of CH3NH3PbI3 perovskite film delivers a high open circuit voltage exceeding 1.2 V. Adv. Funct. Mater. 29(23), 1901026 (2019). https://doi.org/10.1002/adfm.201901026
- S. Yang, S. Chen, E. Mosconi, Y. Fang, X. Xiao et al., Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science 365(6452), 473–478 (2019). https://doi.org/10.1126/science.aax3294
- J.-W. Lee, D.-H. Kim, H.-S. Kim, S.-W. Seo, S.M. Cho, N.-G. Park, Formamidinium and cesium hybridization for photo- and moisture- stable perovskite solar cell. Adv. Energy Mater. 5(20), 1501310 (2015). https://doi.org/10.1002/aenm.201501310
- B. Li, J. Zhen, Y. Wan, X. Lei, Q. Liu et al., Anchoring fullerene onto perovskite film via grafting pyridine toward enhanced electron transport in high-efficiency solar cells. ACS Appl. Mater. Interfaces 10(38), 32471–32482 (2018). https://doi.org/10.1021/acsami.8b11459
- R. Lindblad, D. Bi, B.W. Park, J. Oscarsson, M. Gorgoi et al., Electronic structure of TiO2/CH3NH3PbI3 perovskite solar cell interfaces. J. Phys. Chem. Lett. 5(4), 648–653 (2014). https://doi.org/10.1021/jz402749f
- D. Bi, C. Yi, J. Luo, J.D. Décoppet, F. Zhang et al., Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy 1, 16142 (2016). https://doi.org/10.1038/nenergy.2016.142
- Y. Wu, X. Yang, W. Chen, Y. Yue, M. Cai et al., Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering. Nat. Energy 1, 16148 (2016). https://doi.org/10.1038/nenergy.2016.148
- T. Niu, J. Liu, R. Munir, J. Li, D. Barrit et al., Stable high-performance perovskite solar cells via grain boundary passivation. Adv. Mater. 30(16), 1706576 (2018). https://doi.org/10.1002/adma.201706576
- W. Chen, Y. Wang, G. Pang, C.W. Koh, A.B. Djurišxić et al., Conjugated polymer–assisted grain boundary passivation for efficient inverted planar perovskite solar cells. Adv. Funct. Mater. 29(27), 1808855 (2019). https://doi.org/10.1002/adfm.201808855
- C. Sun, Y. Guo, B. Fang, J. Yang, B. Qin et al., Enhanced photovoltaic performance of perovskite solar cells using polymer P(VDF-TrFE) as a processed additive. J. Phys. Chem. C 120(24), 12980–12988 (2016). https://doi.org/10.1021/acs.jpcc.6b05255
- H. Cho, S.H. Jeong, M.H. Park, Y.H. Kim, C. Wolf et al., Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350(6265), 1222–1225 (2015). https://doi.org/10.1126/science.aad1818
- X. Dong, X. Fang, M. Lv, B. Lin, S. Zhang, J. Ding, N. Yuan, Improvement of the humidity stability of organic–inorganic perovskite solar cells using ultrathin Al2O3 layers prepared by atomic layer deposition. J. Mater. Chem. A 3, 5360–5367 (2015). https://doi.org/10.1039/c4ta06128d
- Y. Yuan, J. Huang, Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc. Chem. Res. 49(2), 286–293 (2016). https://doi.org/10.1021/acs.accounts.5b00420
- X. Yi, Z. Zhang, A. Chang, Y. Mao, Y. Luan et al., Incorporating CsF into the PbI2 film for stable mixed cation-halide perovskite solar cells. Adv. Energy Mater. 9, 1901726 (2019). https://doi.org/10.1002/aenm.201901726
- J. Yang, C. Liu, C. Cai, X. Hu, Z. Huang et al., High-performance perovskite solar cells with excellent humidity and thermo-stability via fluorinated perylenediimide. Adv. Energy Mater. 9, 190019810 (2019). https://doi.org/10.1002/aenm.201900198
- R. Wang, J. Xue, L. Meng, J.-W. Lee, Z. Zhao et al., Caffeine improves the performance and thermal stability of perovskite solar cells. Joule 3, 1464–1477 (2019). https://doi.org/10.1016/j.joule.2019.04.005
- L. Zhou, Z. Lin, Z. Ning, T. Li, X. Guo et al., Highly efficient and stable planar perovskite solar cells with modulated diffusion passivation toward high power conversion efficiency and ultrahigh fill factor. Sol. RRL 3, 1900293 (2019). https://doi.org/10.1002/solr.201900293
- A. Guerrero, G. Garcia-Belmonte, I. Mora-Sero, J. Bisquert, Y.S. Kang et al., Properties of contact and bulk impedances in hybrid lead halide perovskite solar cells including inductive loop elements. J. Phys. Chem. C 120(15), 8023–8032 (2016). https://doi.org/10.1021/acs.jpcc.6b01728
- S.R. Cowan, A. Roy, A.J. Heeger, Recombination in polymer-fullerene bulk heterojunction solar cells. Phys. Rev. B 82, 245207 (2010). https://doi.org/10.1103/PhysRevB.82.245207
- J. Chen, Z. Wan, J. Liu, S.Q. Fu, F. Zhang et al., Growth of compact CH3NH3PbI3 thin films governed by the crystallization in PbI2 matrix for efficient planar perovskite solar cells. ACS Appl. Mater. Interfaces 10(10), 8649–8658 (2018). https://doi.org/10.1021/acsami.7b18667
- Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Electron-hole diffusion lengths>175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347(6225), 967–970 (2015). https://doi.org/10.1126/science.aaa5760
- S.M. Ali, S.M. Ramay, M.H. Aziz, N. ur-Rehman, M.S. AlGarawi et al., Efficiency enhancement of perovskite solar cells by incorporation of CdS quantum dot through fast electron injection. Org. Electron. 62, 21–25 (2018). https://doi.org/10.1016/j.orgel.2018.07.012
- P. Li, Y. Zhang, C. Liang, G. Xing, X. Liu et al., Phase pure 2D perovskite for high-performance 2D–3D heterostructured perovskite solar cells. Adv. Mater. 30, 1805323 (2018). https://doi.org/10.1002/adma.201805323
- A.K.K. Kyaw, D.H. Wang, D. Wynands, J. Zhang, T.Q. Nguyen, G.C. Bazan, A.J. Heeger, Improved light harvesting and improved efficiency by insertion of an optical spacer (ZnO) in solution-processed small-molecule solar cells. Nano Lett. 13(8), 3796–3801 (2013). https://doi.org/10.1021/nl401758g
- H. Li, J. Cao, Q. Zhou, L. Ding, J. Wang, High-performance inverted PThTPTI: PC71BM solar cells. Nano Energy 15, 125 (2015). https://doi.org/10.1016/j.nanoen.2015.04.016s
- D. Bi, L. Yang, G. Boschloo, A. Hagfeldt, E.M.J. Johansson, Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells. J. Phys. Chem. Lett. 4(9), 1532–1536 (2013). https://doi.org/10.1021/jz400638x
- L.J.A. Koster, V.D. Mihailetchi, H. Xie, P.W.M. Blom, Origin of the light intensity dependence of the short-circuit current of polymer/fullerene solar cells. Appl. Phys. Lett. 87, 203502 (2005). https://doi.org/10.1063/1.2130396
- V.D. Mihailetchi, J. Wildeman, P.W.M. Blom, Space-charge limited photocurrent. Phys. Rev. Lett. 94, 126602 (2005). https://doi.org/10.1103/PhysRevLett.94.126602
- H. Li, Z.G. Zhang, Y. Li, J. Wang, Tunable open-circuit voltage in ternary organic solar cells. Appl. Phys. Lett. 101, 163302 (2012). https://doi.org/10.1063/1.4761246
- B. Qi, J. Wang, Open-circuit voltage in organic solar cells. J. Mater. Chem. 22, 24315–24325 (2012). https://doi.org/10.1039/C2JM33719C
- M.M. Mandoc, F.B. Kooistra, J.C. Hummelen, B. De Boer, P.W.M. Blom, Effect of traps on the performance of bulk heterojunction organic solar cells. Appl. Phys. Lett. 91, 263505 (2007). https://doi.org/10.1063/1.2821368
- S.R. Cowan, W.L. Leong, N. Banerji, G. Dennler, A.J. Heeger, Identifying a threshold impurity level for organic solar cells: enhanced first-order recombination via well-defined PC84BM traps in organic bulk Heterojunction solar cells. Adv. Funct. Mater. 21(16), 3083–3092 (2011). https://doi.org/10.1039/C2JM33719C
References
M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107), 643–647 (2012). https://doi.org/10.1126/science.1228604
S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer et al., Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156), 341–344 (2013). https://doi.org/10.1126/science.1243982
C. Wehrenfennig, G.E. Eperon, M.B. Johnston, H.J. Snaith, L.M. Herz, High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26(10), 1584–1589 (2014). https://doi.org/10.1002/adma.201305172
H. Zhou, Q. Chen, G. Li, S. Luo, T.B. Song et al., Interface engineering of highly efficient perovskite solar cells. Science 345(6196), 542–546 (2014). https://doi.org/10.1126/science.1254050
N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015). https://doi.org/10.1038/nature14133
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
National renewable energy laboratory, Best research-cell efficiencies. www.nrel.gov/pv/assets/pdfs/best-research-cell-efciencies.20190802.pdf
T. Matsui, H. Jia, M. Kondo, Thin film solar cells incorporating microcrystalline Si1–xGex as efficient infrared absorber: an application to double junction tandem solar cells. Prog. Photovoltaics Res. Appl. 18(1), 48–53 (2010). https://doi.org/10.1002/pip.922
W. Ke, C. Xiao, C. Wang, B. Saparov, H.S. Duan et al., Employing lead thiocyanate additive to reduce the hysteresis and boost the fill Factor of planar perovskite solar cells. Adv. Mater. 28(26), 5214–5221 (2016). https://doi.org/10.1002/adma.201600594
Y. Zhang, L. Tan, Q. Fu, L. Chen, T. Ji, X. Hu, Y. Chen, Enhancing the grain size of organic halide perovskites by sulfonate-carbon nanotube incorporation in high performance perovskite solar cells. Chem. Commun 52, 5674 (2016). https://doi.org/10.1039/c6cc00268d
Q. Chen, H. Zhou, T. Bin Song, S. Luo, Z. Hong et al., Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett. 14(7), 4158–4163 (2014). https://doi.org/10.1021/nl501838y
M. Saliba, T. Matsui, K. Domanski, J.Y. Seo, A. Ummadisingu et al., Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354(6309), 206–209 (2016). https://doi.org/10.1126/science.aah5557
M. Kot, C. Das, Z. Wang, K. Henkel, Z. Rouissi et al., Room-temperature atomic layer deposition of Al2O3: impact on efficiency, stability and surface properties in perovskite solar cells. Chemsuschem 9(24), 3401–3406 (2016). https://doi.org/10.1002/cssc.201601186
L. Chu, W. Ahmad, W. Liu, J. Yang, R. Zhang et al., Lead-free halide double perovskite materials: a new superstar towards green and stable optoelectronic applications. Nano-Micro Lett. 11, 16 (2019). https://doi.org/10.1007/s40820-019-0244-6
F. Wang, W. Geng, Y. Zhou, H.-H. Fang, C.-J. Tong et al., Perovskites enabling high-efficiency and air-stable photovoltaic cells. Adv. Mater. 28, 9986–9992 (2016). https://doi.org/10.1002/adma.201603062
F. Wang, A. Shimazaki, F. Yang, K. Kanahashi, K. Matsuki et al., Highly efficient and stable perovskite solar cells by interfacial engineering using solution-processed polymer layer. J. Phys. Chem. C 121, 1562–1568 (2017). https://doi.org/10.1021/acs.jpcc.6b12137
W. Liu, N. Liu, S. Ji, H. Hua, Y. Ma et al., Perfection of perovskite grain boundary passivation by rhodium incorporation for efficient and stable solar cells. Nano-Micro Lett. 12, 119 (2020). https://doi.org/10.1007/s40820-020-00457-7
M.E. Kayesh, T.H. Chowdhury, K. Matsuishi, R. Kaneko, S. Kazaoui et al., Enhanced photovoltaic performance of FASnI3-based perovskite solar cells with hydrazinium chloride coadditive. ACS Energy Lett. 3(7), 1584–1589 (2018). https://doi.org/10.1021/acsenergylett.8b00645
L. Liu, S. Huang, Y. Lu, P. Liu, Y. Zhao et al., Grain-boundary ”patches” by in situ conversion to enhance perovskite solar cells stability. Adv. Mater. 30(29), 1800544 (2018). https://doi.org/10.1002/adma.201800544
J. Jiang, Q. Wang, Z. Jin, X. Zhang, J. Lei et al., Polymer doping for high-efficiency perovskite solar cells with improved moisture stability. Adv. Energy Mater. 8(3), 1701757 (2018). https://doi.org/10.1002/aenm.201701757
L. Meng, C. Sun, R. Wang, W. Huang, Z. Zhao et al., Tailored phase conversion under conjugated polymer enables thermally stable perovskite solar cells with efficiency exceeding 21%. J. Am. Chem. Soc. 140(49), 17255–17262 (2018). https://doi.org/10.1021/jacs.8b10520
J. Wei, H. Li, Y. Zhao, W. Zhou, R. Fu et al., Suppressed hysteresis and improved stability in perovskite solar cells with conductive organic network. Nano Energy 26, 139–147 (2016). https://doi.org/10.1016/j.nanoen.2016.05.023
L. Zuo, H. Guo, D.W. deQuilettes, S. Jariwala, N. De Marco et al., Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells. Sci. Adv. 3, e1700106 (2017). https://doi.org/10.1126/sciadv.1700106
P.-L. Qin, G. Yang, Z.-W. Ren, S.H. Cheung, S.K. So et al., Stable and efficient organo-metal halide hybrid perovskite solar cells via π-conjugated Lewis base polymer induced trap passivation and charge extraction. Adv. Mater. 30(12), 1706126 (2018). https://doi.org/10.1002/adma.201706126
A. Ng, Z. Ren, Q. Shen, S.H. Cheung, H.C. Gokkaya et al., Crystal engineering for low defect density and high efficiency hybrid chemical vapor deposition grown perovskite solar cells. ACS Appl. Mater. Interfaces 8(48), 32805–32814 (2016). https://doi.org/10.1021/acsami.6b07513
W.-J. Yin, H. Chen, T. Shi, S.-H. Wei, Y. Yan, Origin of high electronic quality in structurally disordered CH3NH3PbI3 and the passivation effect of Cl and O at grain boundaries. Adv. Electron. Mater. 1(6), 1500044 (2015). https://doi.org/10.1002/aelm.201500044
P. Qin, T. Wu, Z. Wang, X. Zheng, X. Yu, G. Fang, G. Li, Vitrification transformation of poly(ethylene oxide) activating interface passivation for high-efficiency perovskite solar cells. Sol. RRL 3, 1900134 (2019). https://doi.org/10.1002/solr.201900134
M. Kim, S.G. Motti, R. Sorrentino, A. Petrozza, Enhanced solar cell stability by hygroscopic polymer passivation of metal halide perovskite thin film. Energy Environ. Sci. 11, 2609–2619 (2018). https://doi.org/10.1039/C8EE01101J
P. Guo, Q. Ye, X. Yang, J. Zhang, F. Xu et al., Surface & grain boundary co-passivation by fluorocarbon based bifunctional molecules for perovskite solar cells with efficiency over 21%. J. Mater. Chem. A 7, 2497–2506 (2019). https://doi.org/10.1039/c8ta11524a
P. Qin, Q. He, G. Yang, X. Yu, L. Xiong, G. Fang, Metal ions diffusion at heterojunction chromium Oxide/CH3NH3PbI3 interface on the stability of perovskite solar cells. Surf. Interfaces 10, 93–99 (2018). https://doi.org/10.1016/j.surfin.2017.12.006
R. Morent, N. De Geyter, C. Leys, L. Gengembreb, Comparison between XPS- and FTIR- analysis of plasma-treated polypropylene film surfaces. E. Payenb. Surf. Interface Anal. 40, 597–600 (2008). https://doi.org/10.1002/sia.2619
W. Zhou, D. Li, Z. Xiao, Z. Wen, M. Zhang et al., Zwitterion coordination induced highly orientational order of CH3NH3PbI3 perovskite film delivers a high open circuit voltage exceeding 1.2 V. Adv. Funct. Mater. 29(23), 1901026 (2019). https://doi.org/10.1002/adfm.201901026
S. Yang, S. Chen, E. Mosconi, Y. Fang, X. Xiao et al., Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science 365(6452), 473–478 (2019). https://doi.org/10.1126/science.aax3294
J.-W. Lee, D.-H. Kim, H.-S. Kim, S.-W. Seo, S.M. Cho, N.-G. Park, Formamidinium and cesium hybridization for photo- and moisture- stable perovskite solar cell. Adv. Energy Mater. 5(20), 1501310 (2015). https://doi.org/10.1002/aenm.201501310
B. Li, J. Zhen, Y. Wan, X. Lei, Q. Liu et al., Anchoring fullerene onto perovskite film via grafting pyridine toward enhanced electron transport in high-efficiency solar cells. ACS Appl. Mater. Interfaces 10(38), 32471–32482 (2018). https://doi.org/10.1021/acsami.8b11459
R. Lindblad, D. Bi, B.W. Park, J. Oscarsson, M. Gorgoi et al., Electronic structure of TiO2/CH3NH3PbI3 perovskite solar cell interfaces. J. Phys. Chem. Lett. 5(4), 648–653 (2014). https://doi.org/10.1021/jz402749f
D. Bi, C. Yi, J. Luo, J.D. Décoppet, F. Zhang et al., Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy 1, 16142 (2016). https://doi.org/10.1038/nenergy.2016.142
Y. Wu, X. Yang, W. Chen, Y. Yue, M. Cai et al., Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering. Nat. Energy 1, 16148 (2016). https://doi.org/10.1038/nenergy.2016.148
T. Niu, J. Liu, R. Munir, J. Li, D. Barrit et al., Stable high-performance perovskite solar cells via grain boundary passivation. Adv. Mater. 30(16), 1706576 (2018). https://doi.org/10.1002/adma.201706576
W. Chen, Y. Wang, G. Pang, C.W. Koh, A.B. Djurišxić et al., Conjugated polymer–assisted grain boundary passivation for efficient inverted planar perovskite solar cells. Adv. Funct. Mater. 29(27), 1808855 (2019). https://doi.org/10.1002/adfm.201808855
C. Sun, Y. Guo, B. Fang, J. Yang, B. Qin et al., Enhanced photovoltaic performance of perovskite solar cells using polymer P(VDF-TrFE) as a processed additive. J. Phys. Chem. C 120(24), 12980–12988 (2016). https://doi.org/10.1021/acs.jpcc.6b05255
H. Cho, S.H. Jeong, M.H. Park, Y.H. Kim, C. Wolf et al., Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350(6265), 1222–1225 (2015). https://doi.org/10.1126/science.aad1818
X. Dong, X. Fang, M. Lv, B. Lin, S. Zhang, J. Ding, N. Yuan, Improvement of the humidity stability of organic–inorganic perovskite solar cells using ultrathin Al2O3 layers prepared by atomic layer deposition. J. Mater. Chem. A 3, 5360–5367 (2015). https://doi.org/10.1039/c4ta06128d
Y. Yuan, J. Huang, Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc. Chem. Res. 49(2), 286–293 (2016). https://doi.org/10.1021/acs.accounts.5b00420
X. Yi, Z. Zhang, A. Chang, Y. Mao, Y. Luan et al., Incorporating CsF into the PbI2 film for stable mixed cation-halide perovskite solar cells. Adv. Energy Mater. 9, 1901726 (2019). https://doi.org/10.1002/aenm.201901726
J. Yang, C. Liu, C. Cai, X. Hu, Z. Huang et al., High-performance perovskite solar cells with excellent humidity and thermo-stability via fluorinated perylenediimide. Adv. Energy Mater. 9, 190019810 (2019). https://doi.org/10.1002/aenm.201900198
R. Wang, J. Xue, L. Meng, J.-W. Lee, Z. Zhao et al., Caffeine improves the performance and thermal stability of perovskite solar cells. Joule 3, 1464–1477 (2019). https://doi.org/10.1016/j.joule.2019.04.005
L. Zhou, Z. Lin, Z. Ning, T. Li, X. Guo et al., Highly efficient and stable planar perovskite solar cells with modulated diffusion passivation toward high power conversion efficiency and ultrahigh fill factor. Sol. RRL 3, 1900293 (2019). https://doi.org/10.1002/solr.201900293
A. Guerrero, G. Garcia-Belmonte, I. Mora-Sero, J. Bisquert, Y.S. Kang et al., Properties of contact and bulk impedances in hybrid lead halide perovskite solar cells including inductive loop elements. J. Phys. Chem. C 120(15), 8023–8032 (2016). https://doi.org/10.1021/acs.jpcc.6b01728
S.R. Cowan, A. Roy, A.J. Heeger, Recombination in polymer-fullerene bulk heterojunction solar cells. Phys. Rev. B 82, 245207 (2010). https://doi.org/10.1103/PhysRevB.82.245207
J. Chen, Z. Wan, J. Liu, S.Q. Fu, F. Zhang et al., Growth of compact CH3NH3PbI3 thin films governed by the crystallization in PbI2 matrix for efficient planar perovskite solar cells. ACS Appl. Mater. Interfaces 10(10), 8649–8658 (2018). https://doi.org/10.1021/acsami.7b18667
Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Electron-hole diffusion lengths>175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347(6225), 967–970 (2015). https://doi.org/10.1126/science.aaa5760
S.M. Ali, S.M. Ramay, M.H. Aziz, N. ur-Rehman, M.S. AlGarawi et al., Efficiency enhancement of perovskite solar cells by incorporation of CdS quantum dot through fast electron injection. Org. Electron. 62, 21–25 (2018). https://doi.org/10.1016/j.orgel.2018.07.012
P. Li, Y. Zhang, C. Liang, G. Xing, X. Liu et al., Phase pure 2D perovskite for high-performance 2D–3D heterostructured perovskite solar cells. Adv. Mater. 30, 1805323 (2018). https://doi.org/10.1002/adma.201805323
A.K.K. Kyaw, D.H. Wang, D. Wynands, J. Zhang, T.Q. Nguyen, G.C. Bazan, A.J. Heeger, Improved light harvesting and improved efficiency by insertion of an optical spacer (ZnO) in solution-processed small-molecule solar cells. Nano Lett. 13(8), 3796–3801 (2013). https://doi.org/10.1021/nl401758g
H. Li, J. Cao, Q. Zhou, L. Ding, J. Wang, High-performance inverted PThTPTI: PC71BM solar cells. Nano Energy 15, 125 (2015). https://doi.org/10.1016/j.nanoen.2015.04.016s
D. Bi, L. Yang, G. Boschloo, A. Hagfeldt, E.M.J. Johansson, Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells. J. Phys. Chem. Lett. 4(9), 1532–1536 (2013). https://doi.org/10.1021/jz400638x
L.J.A. Koster, V.D. Mihailetchi, H. Xie, P.W.M. Blom, Origin of the light intensity dependence of the short-circuit current of polymer/fullerene solar cells. Appl. Phys. Lett. 87, 203502 (2005). https://doi.org/10.1063/1.2130396
V.D. Mihailetchi, J. Wildeman, P.W.M. Blom, Space-charge limited photocurrent. Phys. Rev. Lett. 94, 126602 (2005). https://doi.org/10.1103/PhysRevLett.94.126602
H. Li, Z.G. Zhang, Y. Li, J. Wang, Tunable open-circuit voltage in ternary organic solar cells. Appl. Phys. Lett. 101, 163302 (2012). https://doi.org/10.1063/1.4761246
B. Qi, J. Wang, Open-circuit voltage in organic solar cells. J. Mater. Chem. 22, 24315–24325 (2012). https://doi.org/10.1039/C2JM33719C
M.M. Mandoc, F.B. Kooistra, J.C. Hummelen, B. De Boer, P.W.M. Blom, Effect of traps on the performance of bulk heterojunction organic solar cells. Appl. Phys. Lett. 91, 263505 (2007). https://doi.org/10.1063/1.2821368
S.R. Cowan, W.L. Leong, N. Banerji, G. Dennler, A.J. Heeger, Identifying a threshold impurity level for organic solar cells: enhanced first-order recombination via well-defined PC84BM traps in organic bulk Heterojunction solar cells. Adv. Funct. Mater. 21(16), 3083–3092 (2011). https://doi.org/10.1039/C2JM33719C