Review on Chemical Stability of Lead Halide Perovskite Solar Cells
Corresponding Author: Feng Yan
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 84
Abstract
Lead halide perovskite solar cells (PSCs) have become a promising next-generation photovoltaic technology due to their skyrocketed power conversion efficiency. However, the device stability issues may restrict their commercial applications, which are dominated by various chemical reactions of perovskite layers. Hence, a comprehensive illustration on the stability of perovskite films in PSCs is urgently needed. In this review article, chemical reactions of perovskite films under different environmental conditions (e.g., moisture, oxygen, light) and with charge transfer materials and metal electrodes are systematically elucidated. Effective strategies for suppressing the degradation reactions of perovskites, such as buffer layer introduction and additives engineering, are specified. Finally, conclusions and outlooks for this field are proposed. The comprehensive review will provide a guideline on the material engineering and device design for PSCs.
Highlights:
1 A comprehensive review is presented on the chemical reactions of perovskite films under different environmental conditions and with charge transfer materials and metal electrodes in perovskite solar cells.
2 The influence of chemical reactions on device stability is elucidated.
3 Effective strategies for suppressing the degradation reactions are specified.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050 (2009). https://doi.org/10.1021/ja809598r
- J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, N.-G. Park, 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3, 4088 (2011). https://doi.org/10.1039/C1NR10867K
- M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643 (2012). https://doi.org/10.1126/science.1228604
- J.H. Heo, S.H. Im, J.H. Noh, T.N. Mandal, C.S. Lim et al., Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics 7, 487 (2013). https://doi.org/10.1038/Nphoton.2013.80
- H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee et al., Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598, 444 (2021). https://doi.org/10.1038/s41586-021-03964-8
- H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012). https://doi.org/10.1038/srep00591
- C. Jiang, J. Zhou, H. Li, L. Tan, M. Li et al., Double layer composite electrode strategy for efficient perovskite solar cells with excellent reverse-bias stability. Nano-Micro Lett. 15, 12 (2022). https://doi.org/10.1007/s40820-022-00985-4
- W. Travis, E.N.K. Glover, H. Bronstein, D.O. Scanlon, R.G. Palgrave, On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system. Chem. Sci. 7, 4548 (2016). https://doi.org/10.1039/C5SC04845A
- L. Qiu, S. He, L.K. Ono, Y. Qi, Progress of surface science studies on ABX3-based metal halide perovskite solar cells. Adv. Energy Mater. 10, 1902726 (2020). https://doi.org/10.1002/aenm.201902726
- M. Anaya, G. Lozano, M.E. Calvo, H. Míguez, ABX3 perovskites for tandem solar cells. Joule 1, 769 (2017). https://doi.org/10.1016/j.joule.2017.09.017
- C. Yi, J. Luo, S. Meloni, A. Boziki, N. Ashari-Astani et al., Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells. Energy Environ. Sci. 9, 656 (2016). https://doi.org/10.1039/C5EE03255E
- S. Wang, T. Sakurai, W. Wen, Y. Qi, Energy level alignment at interfaces in metal halide perovskite solar cells. Adv. Mater. Interfaces 5, 1800260 (2018). https://doi.org/10.1002/admi.201800260
- L. Meng, J. You, T.-F. Guo, Y. Yang, Recent advances in the inverted planar structure of perovskite solar cells. Acc. Chem. Res. 49, 155 (2016). https://doi.org/10.1021/acs.accounts.5b00404
- Z. Liu, A. Zhu, F. Cai, L. Tao, Y. Zhou et al., Nickel oxide nanops for efficient hole transport in p-i-n and n-i-p perovskite solar cells. J. Mater. Chem. A 5, 6597 (2017). https://doi.org/10.1039/C7TA01593C
- C. Momblona, L. Gil-Escrig, E. Bandiello, E.M. Hutter, M. Sessolo et al., Efficient vacuum deposited p-i-n and n-i-p perovskite solar cells employing doped charge transport layers. Energy Environ. Sci. 9, 3456 (2016). https://doi.org/10.1039/C6EE02100J
- Z. Zhang, J. Liang, J. Wang, Y. Zheng, X. Wu et al., Resolving mixed intermediate phases in methylammonium-free Sn–Pb alloyed perovskites for high-performance solar cells. Nano-Micro Lett. 14, 165 (2022). https://doi.org/10.1007/s40820-022-00918-1
- A. Polman, M. Knight, E.C. Garnett, B. Ehrler, W.C. Sinke, Photovoltaic materials: present efficiencies and future challenges. Science 352, aad4424 (2016). https://doi.org/10.1126/science.aad4424
- F. Huang, M. Li, P. Siffalovic, G. Cao, J. Tian, From scalable solution fabrication of perovskite films towards commercialization of solar cells. Energy Environ. Sci. 12, 518 (2019). https://doi.org/10.1039/C8EE03025A
- F. Yang, L. Dong, D. Jang, B. Saparov, K.C. Tam et al., Low temperature processed fully printed efficient planar structure carbon electrode perovskite solar cells and modules. Adv. Energy Mater. 11, 2101219 (2021). https://doi.org/10.1002/aenm.202101219
- A. Mei, X. Li, L. Liu, Z. Ku, T. Liu et al., A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability. Science 345, 295 (2014). https://doi.org/10.1126/science.1254763
- H. Zhou, Q. Chen, G. Li, S. Luo, T.-B. Song et al., Interface engineering of highly efficient perovskite solar cells. Science 345, 542 (2014). https://doi.org/10.1126/science.1254050
- J.-P. Correa-Baena, M. Saliba, T. Buonassisi, M. Grätzel, A. Abate et al., Promises and challenges of perovskite solar cells. Science 358, 739 (2017). https://doi.org/10.1126/science.aam6323
- X. Lin, Y. Wang, H. Su, Z. Qin, Z. Zhang et al., An in-situ formed tunneling layer enriches the options of anode for efficient and stable regular perovskite solar cells. Nano-Micro Lett. 15, 10 (2022). https://doi.org/10.1007/s40820-022-00975-6
- I. Massiot, A. Cattoni, S. Collin, Progress and prospects for ultrathin solar cells. Nat. Energy 5, 959 (2020). https://doi.org/10.1038/s41560-020-00714-4
- M.A. Green, E.D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis et al., Solar cell efficiency tables (version 59). Prog. Photovolt. 30, 3–12 (2022). https://doi.org/10.1002/pip.3506
- Japan Electrical Safety & Environment Technology Laboratories, Chinese Perovskite Tech Firm Wuxi Utmost Light Claims 20.5% ‘World Record’ Efficiency For Perovskite Solar Mini Module, Certified By Japan’s JET; Plans To Build Large Area Perovskite Solar Module Production Lines, http://taiyangnews.info/technology/20-5-world-record-efficiency-for-perovskite-solar-module/, 2021.
- L. Fu, H. Li, L. Wang, R. Yin, B. Li et al., Defect passivation strategies in perovskites for an enhanced photovoltaic performance. Energy Environ. Sci. 13, 4017 (2020). https://doi.org/10.1039/D0EE01767A
- W.E.I. Sha, X. Ren, L. Chen, W.C.H. Choy, The efficiency limit of CH3NH3PbI3 perovskite solar cells. Appl. Phys. Lett. 106, 221104 (2015). https://doi.org/10.1063/1.4922150
- S. Draguta, J.A. Christians, Y.V. Morozov, A. Mucunzi, J.S. Manser et al., A quantitative and spatially resolved analysis of the performance-bottleneck in high efficiency, planar hybrid perovskite solar cells. Energy Environ. Sci. 11, 960 (2018). https://doi.org/10.1039/C7EE03654J
- X. Ren, Z. Wang, W.E.I. Sha, W.C.H. Choy, Exploring the way to approach the efficiency limit of perovskite solar cells by drift-diffusion model. ACS Photonics 4, 934 (2017). https://doi.org/10.1021/acsphotonics.6b01043
- W.E.I. Sha, H. Zhang, Z.S. Wang, H.L. Zhu, X. Ren et al., Quantifying efficiency loss of perovskite solar cells by a modified detailed balance model. Adv. Energy Mater. 8, 1701586 (2018). https://doi.org/10.1002/aenm.201701586
- X. Zhao, N.-G. Park, Stability issues on perovskite solar cells. Photonics 2, 1139 (2015). https://doi.org/10.3390/photonics2041139
- A. Aftab, M.I. Ahmad, A review of stability and progress in tin halide perovskite solar cell. Sol. Energy 216, 26 (2021). https://doi.org/10.1016/j.solener.2020.12.065
- R. Wang, M. Mujahid, Y. Duan, Z.K. Wang, J. Xue et al., A review of perovskites solar cell stability. Adv. Funct. Mater. 29, 1808843 (2019). https://doi.org/10.1002/adfm.201808843
- J. Feng, X. Zhu, Z. Yang, X. Zhang, J. Niu et al., Record efficiency stable flexible perovskite solar cell using effective additive assistant strategy. Adv. Mater. 30, 1801418 (2018). https://doi.org/10.1002/adma.201801418
- M.M. Tavakoli, P. Yadav, R. Tavakoli, J. Kong, Surface engineering of TiO2 ETL for highly efficient and hysteresis-less planar perovskite solar cell (21.4%) with enhanced open-circuit voltage and stability. Adv. Energy Mater. 8, 1800794 (2018). https://doi.org/10.1002/aenm.201800794
- L. Meng, J. You, Y. Yang, Addressing the stability issue of perovskite solar cells for commercial applications. Nat. Commun. 9, 1 (2018). https://doi.org/10.1038/s41467-018-07255-1
- N. Sultana, N.J. Demarais, D. Shevchenko, P.J. Derrick, Laser desorption/ionization mass spectrometry of perovskite solar cells: identification of interface interactions and degradation reactions. Sol. RRL 2, 1800022 (2018). https://doi.org/10.1002/solr.201800022
- J. Wei, Q. Wang, J. Huo, F. Gao, Z. Gan et al., Mechanisms and suppression of photoinduced degradation in perovskite solar cells. Adv. Energy Mater. 11, 2002326 (2021). https://doi.org/10.1002/aenm.202002326
- N. Li, X. Niu, Q. Chen, H. Zhou, Towards commercialization: the operational stability of perovskite solar cells. Chem. Soc. Rev. 49, 8235 (2020). https://doi.org/10.1039/D0CS00573H
- J. Wang, X. Chen, F. Jiang, Q. Luo, L. Zhang et al., Electrochemical corrosion of Ag electrode in the silver grid electrode-based flexible perovskite solar cells and the suppression method. Sol. RRL 2, 1800118 (2018). https://doi.org/10.1002/solr.201800118
- X. Wang, K. Rakstys, K. Jack, H. Jin, J. Lai et al., Engineering fluorinated-cation containing inverted perovskite solar cells with an efficiency of >21% and improved stability towards humidity. Nat. Commun. 12, 52 (2021). https://doi.org/10.1038/s41467-020-20272-3
- Z. Liu, L. Qiu, L.K. Ono, S. He, Z. Hu et al., A holistic approach to interface stabilization for efficient perovskite solar modules with over 2,000-hour operational stability. Nat. Energy 5, 596 (2020). https://doi.org/10.1038/s41560-020-0653-2
- S. Yang, S. Chen, E. Mosconi, Y. Fang, X. Xiao et al., Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science 365, 473 (2019). https://doi.org/10.1126/science.aax3294
- P. Hang, J. Xie, C. Kan, B. Li, Y. Zhang et al., Stabilizing fullerene for burn-in-free and stable perovskite solar cells under ultraviolet preconditioning and light soaking. Adv. Mater. 33, 2006910 (2021). https://doi.org/10.1002/adma.202006910
- Y. Rong, Y. Hu, A. Mei, H. Tan, M.I. Saidaminov et al., Challenges for commercializing perovskite solar cells. Science 361, 8235 (2018). https://doi.org/10.1126/science.aat8235
- X. Ma, L. Yang, X. Shang, M. Li, D. Gao et al., Grain boundary defect passivation by in situ formed wide-bandgap lead sulfate for efficient and stable perovskite solar cells. Chem. Eng. J. 426, 130685 (2021). https://doi.org/10.1016/j.cej.2021.130685
- J.M. Frost, K.T. Butler, F. Brivio, C.H. Hendon, M. van Schilfgaarde et al., Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14, 2584 (2014). https://doi.org/10.1021/nl500390f
- J. Carrillo, A. Guerrero, S. Rahimnejad, O. Almora, I. Zarazua et al., Ionic reactivity at contacts and aging of methylammonium lead triiodide perovskite solar cells. Adv. Energy Mater. 6, 1502246 (2016). https://doi.org/10.1002/aenm.201502246
- J.A. Christians, P.A. MirandaHerrera, P.V. Kamat, Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. J. Am. Chem. Soc. 137, 1530 (2015). https://doi.org/10.1021/ja511132a
- A.M.A. Leguy, Y. Hu, M. Campoy-Quiles, M.I. Alonso, O.J. Weber et al., Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells. Chem. Mater. 27, 3397 (2015). https://doi.org/10.1021/acs.chemmater.5b00660
- G. Ren, W. Han, Q. Zhang, Z. Li, Y. Deng et al., Overcoming perovskite corrosion and de-doping through chemical binding of halogen bonds toward efficient and stable perovskite solar cells. Nano-Micro Lett. 14, 175 (2022). https://doi.org/10.1007/s40820-022-00916-3
- G. Tong, L.K. Ono, Y. Liu, H. Zhang, T. Bu et al., Up-scalable fabrication of SnO2 with multifunctional interface for high performance perovskite solar modules. Nano-Micro Lett. 13, 155 (2021). https://doi.org/10.1007/s40820-021-00675-7
- T. Wu, Z. Qin, Y. Wang, Y. Wu, W. Chen et al., The main progress of perovskite solar cells in 2020–2021. Nano-Micro Lett. 13, 152 (2021). https://doi.org/10.1007/s40820-021-00672-w
- Z. Li, Y. Gao, Z. Zhang, Q. Xiong, L. Deng et al., cPCN-regulated SnO2 composites enables perovskite solar cell with efficiency beyond 23%. Nano-Micro Lett. 13, 101 (2021). https://doi.org/10.1007/s40820-021-00636-0
- D. Bryant, N. Aristidou, S. Pont, I. Sanchez-Molina, T. Chotchuangchutchaval et al., Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells. Energy Environ. Sci. 9, 1850 (2016). https://doi.org/10.1039/c6ee90023b
- D. Bryant, N. Aristidou, S. Pont, I. Sanchez-Molina, T. Chotchunangatchaval et al., Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells. Energy Environ. Sci. 9, 1655 (2016). https://doi.org/10.1039/C6EE00409A
- W. Chi, S.K. Banerjee, Achieving resistance against moisture and oxygen for perovskite solar cells with high efficiency and stability. Chem. Mater. 33, 4269–4303 (2021). https://doi.org/10.1021/acs.chemmater.1c00773
- G. Niu, X. Guo, L. Wang, Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 3, 8970 (2015). https://doi.org/10.1039/C4TA04994B
- F. Li, M. Liu, Recent efficient strategies for improving the moisture stability of perovskite solar cells. J. Mater. Chem. A 5, 15447 (2017). https://doi.org/10.1039/C7TA01325F
- J. Jiang, Q. Wang, Z. Jin, X. Zhang, J. Lei et al., Polymer doping for high-efficiency perovskite solar cells with improved moisture stability. Adv. Energy Mater. 8, 1701757 (2018). https://doi.org/10.1002/aenm.201701757
- I. Hwang, I. Jeong, J. Lee, M.J. Ko, K. Yong, Enhancing stability of perovskite solar cells to moisture by the facile hydrophobic passivation. ACS Appl. Mater. Interfaces 7, 17330 (2015). https://doi.org/10.1021/acsami.5b04490
- J. Yang, B.D. Siempelkamp, D. Liu, T.L. Kelly, Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS Nano 9, 1955 (2015). https://doi.org/10.1021/nn506864k
- J. Zhu, D.H. Kim, J.D. Kim, D.G. Lee, W.B. Kim et al., All-in-one Lewis base for enhanced precursor and device stability in highly efficient perovskite solar cells. ACS Energy Lett. 6, 3425 (2021). https://doi.org/10.1021/acsenergylett.1c01465
- L. Yu, T. Guo, H. Yuan, Z. Zhang, Z. Deng et al., Effective lewis base additive with S-donor for efficient and stable CsPbI2Br based perovskite solar cells. Chem. Eng. J. 420, 129931 (2021). https://doi.org/10.1016/j.cej.2021.129931
- W. Xiang, S. Liu, W. Tress, A review on the stability of inorganic metal halide perovskites: challenges and opportunities for stable solar cells. Energy Environ. Sci. 14, 2090 (2021). https://doi.org/10.1039/D1EE00157D
- S. Xiong, M. Yuan, J. Yang, J. Song, X. Guo et al., Engineering of the back contact between PCBM and metal electrode for planar perovskite solar cells with enhanced efficiency and stability. Adv. Opt. Mater. 7, 1900542 (2019). https://doi.org/10.1002/adom.201900542
- B. Rivkin, P. Fassl, Q. Sun, A.D. Taylor, Z. Chen et al., Effect of ion migration-induced electrode degradation on the operational stability of perovskite solar cells. ACS Omega 3, 10042 (2018). https://doi.org/10.1021/acsomega.8b01626
- Z. Yang, B.H. Babu, S. Wu, T. Liu, S. Fang et al., Review on practical interface engineering of perovskite solar cells: from efficiency to stability. Sol. RRL 4, 1900257 (2020). https://doi.org/10.1002/solr.201900257
- Y. Xu, Z. Lin, W. Wei, Y. Hao, S. Liu et al., Recent progress of electrode materials for flexible perovskite solar cells. Nano-Micro Lett. 14, 117 (2022). https://doi.org/10.1007/s40820-022-00859-9
- K.M.M. Salim, S. Masi, A.F. Gualdrón-Reyes, R.S. Sánchez, E.M. Barea et al., Boosting long-term stability of pure formamidinium perovskite solar cells by ambient air additive assisted fabrication. ACS Energy Lett. 6, 3511 (2021). https://doi.org/10.1021/acsenergylett.1c01311
- H. Zheng, X. Xu, S. Xu, G. Liu, S. Chen et al., The multiple effects of polyaniline additive to improve the efficiency and stability of perovskite solar cells. J. Mater. Chem. C 7, 4441 (2019). https://doi.org/10.1039/C8TC05975F
- L. Xie, J. Chen, P. Vashishtha, X. Zhao, G.S. Shin et al., Importance of functional groups in cross-linking methoxysilane additives for high-efficiency and stable perovskite solar cells. ACS Energy Lett. 4, 2192 (2019). https://doi.org/10.1021/acsenergylett.9b01356
- C. Park, H. Ko, D.H. Sin, K.C. Song, K. Cho, Organometal halide perovskite solar cells with improved thermal stability via grain boundary passivation using a molecular additive. Adv. Funct. Mater. 27, 1703546 (2017). https://doi.org/10.1002/adfm.201703546
- Y. Chen, X. Yang, P. Liu, W. Wang, R. Ran et al., Improving moisture/thermal stability and efficiency of CH3NH3PbI3-based perovskite solar cells via gentle butyl acrylate additive strategy. Sol. RRL 5, 2000621 (2021). https://doi.org/10.1002/solr.202000621
- J. Xu, J. Cui, S. Yang, Y. Han, X. Guo et al., Unraveling passivation mechanism of imidazolium-based ionic liquids on inorganic perovskite to achieve near-record-efficiency CsPbI2Br solar cells. Nano-Micro Lett. 14, 7 (2021). https://doi.org/10.1007/s40820-021-00763-8
- W. Zhao, J. Xu, K. He, Y. Cai, Y. Han et al., A special additive enables all cations and anions passivation for stable perovskite solar cells with efficiency over 23%. Nano-Micro Lett. 13, 169 (2021). https://doi.org/10.1007/s40820-021-00688-2
- S. Tang, Y. Deng, X. Zheng, Y. Bai, Y. Fang et al., Composition engineering in doctor-blading of perovskite solar cells. Adv. Energy Mater. 7, 1700302 (2017). https://doi.org/10.1002/aenm.201700302
- Y. Jiang, X. He, T. Liu, N. Zhao, M. Qin et al., Intralayer a-site compositional engineering of ruddlesden–popper perovskites for thermostable and efficient solar cells. ACS Energy Lett. 4, 1216 (2019). https://doi.org/10.1021/acsenergylett.9b00403
- T. Ozturk, E. Akman, A.E. Shalan, S. Akin, Composition engineering of operationally stable CsPbI2Br perovskite solar cells with a record efficiency over 17%. Nano Energy 87, 106157 (2021). https://doi.org/10.1016/j.nanoen.2021.106157
- X. Jin, L. Yang, X.-F. Wang, Efficient two-dimensional perovskite solar cells realized by incorporation of Ti3C2Tx MXene as nano-dopants. Nanomicro. Lett. 13, 68 (2021). https://doi.org/10.1007/s40820-021-00602-w
- J. Liu, S.K. Pathak, N. Sakai, R. Sheng, S. Bai et al., Identification and mitigation of a critical interfacial instability in perovskite solar cells employing copper thiocyanate hole-transporter. Adv. Mater. Interfaces 3, 1600571 (2016). https://doi.org/10.1002/admi.201600571
- J. Zhang, J. Long, Z. Huang, J. Yang, X. Li et al., Obstructing interfacial reaction between NiOx and perovskite to enable efficient and stable inverted perovskite solar cells. Chem. Eng. J. 426, 131357 (2021). https://doi.org/10.1016/j.cej.2021.131357
- S. Guarnera, A. Abate, W. Zhang, J.M. Foster, G. Richardson et al., Improving the long-term stability of perovskite solar cells with a porous Al2O3 buffer layer. J. Phys. Chem. Lett. 6, 432 (2015). https://doi.org/10.1021/jz502703p
- A. Capasso, F. Matteocci, L. Najafi, M. Prato, J. Buha et al., Few-layer MoS2 flakes as active buffer layer for stable perovskite solar cells. Adv. Energy Mater. 6, 1600920 (2016). https://doi.org/10.1002/aenm.201600920
- X. Zheng, H. Lei, G. Yang, W. Ke, Z. Chen et al., Enhancing efficiency and stability of perovskite solar cells via a high mobility p-type PbS buffer layer. Nano Energy 38, 1 (2017). https://doi.org/10.1016/j.nanoen.2017.05.040
- K. Chatzimanolis, K. Rogdakis, D. Tsikritzis, N. Tzoganakis, M. Tountas et al., Inverted perovskite solar cells with enhanced lifetime and thermal stability enabled by a metallic tantalum disulfide buffer layer. Nanoscale Adv. 3, 3124 (2021). https://doi.org/10.1039/D1NA00172H
- H. Zhong, W. Li, Y. Huang, D. Cao, C. Zhang et al., All-inorganic perovskite solar cells with tetrabutylammonium acetate as the buffer layer between the SnO2 electron transport film and CsPbI3. ACS Appl. Mater. Interfaces 14, 5183 (2022). https://doi.org/10.1021/acsami.1c18375
- W. Dong, W. Qiao, S. Xiong, J. Yang, X. Wang et al., Surface passivation and energetic modification suppress nonradiative recombination in perovskite solar cells. Nano-Micro Lett. 14, 108 (2022). https://doi.org/10.1007/s40820-022-00854-0
- L. Zhu, C. Chen, Y. Weng, F. Li, Q. Lou, Enhancing the performance of inverted perovskite solar cells by inserting a ZnO:TIPD film between PCBM layer and Ag electrode. Sol. Energy Mater. Sol. Cells 198, 11 (2019). https://doi.org/10.1016/j.solmat.2019.04.007
- C.-Y. Chang, C.-C. Wang, Enhanced stability and performance of air-processed perovskite solar cells via defect passivation with a thiazole-bridged diketopyrrolopyrrole-based π-conjugated polymer. J. Mater. Chem. A 8, 8593 (2020). https://doi.org/10.1039/D0TA00978D
- J. Chen, L. Zuo, Y. Zhang, X. Lian, W. Fu et al., High-performance thickness insensitive perovskite solar cells with enhanced moisture stability. Adv. Energy Mater. 8, 1800438 (2018). https://doi.org/10.1002/aenm.201800438
- Y. Han, S. Meyer, Y. Dkhissi, K. Weber, J.M. Pringle et al., Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. J. Mater. Chem. A 3, 8139 (2015). https://doi.org/10.1039/C5TA00358J
- G. Niu, W. Li, F. Meng, L. Wang, H. Dong et al., Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J. Mater. Chem. A 2, 705 (2014). https://doi.org/10.1039/C3TA13606J
- Q. Wang, B. Chen, Y. Liu, Y. Deng, Y. Bai et al., Scaling behavior of moisture-induced grain degradation in polycrystalline hybrid perovskite thin films. Energy Environ. Sci. 10, 516 (2017). https://doi.org/10.1039/C6EE02941H
- W. Huang, J.S. Manser, P.V. Kamat, S. Ptasinska, Evolution of chemical composition, morphology, and photovoltaic efficiency of CH3NH3PbI3 perovskite under ambient conditions. Chem. Mater. 28, 303 (2016). https://doi.org/10.1021/acs.chemmater.5b04122
- N. Ahn, K. Kwak, M.S. Jang, H. Yoon, B.Y. Lee et al., Trapped charge-driven degradation of perovskite solar cells. Nat. Commun. 7, 13422 (2016). https://doi.org/10.1038/ncomms13422
- A.J. Pearson, G.E. Eperon, P.E. Hopkinson, S.N. Habisreutinger, J.T.-W. Wang et al., Oxygen degradation in mesoporous Al2O3/CH3NH3PbI3-xClx perovskite solar cells: kinetics and mechanisms. Adv. Energy Mater. 6, 1600014 (2016). https://doi.org/10.1002/aenm.201600014
- L. Zhang, P.H.L. Sit, Ab initio study of the role of oxygen and excess electrons in the degradation of CH3NH3PbI3. J. Mater. Chem. A 5, 9042 (2017). https://doi.org/10.1039/C7TA01091E
- N. Aristidou, I. Sanchez-Molina, T. Chotchuangchutchaval, M. Brown, L. Martinez et al., The role of oxygen in the degradation of methylammonium lead trihalide perovskite photoactive layers. Angew. Chem. Int. Ed. 54, 8208 (2015). https://doi.org/10.1002/anie.201503153
- N. Aristidou, C. Eames, I. Sanchez-Molina, X. Bu, J. Kosco et al., Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nat. Commun. 8, 15218 (2017). https://doi.org/10.1038/ncomms15218
- J.S.W. Godding, A.J. Ramadan, Y.-H. Lin, K. Schutt, H.J. Snaith et al., Oxidative passivation of metal halide perovskites. Joule 3, 2716 (2019). https://doi.org/10.1016/j.joule.2019.08.006
- F. Lang, O. Shargaieva, V.V. Brus, H.C. Neitzert, J. Rappich et al., Influence of radiation on the properties and the stability of hybrid perovskites. Adv. Mater. 30, 1702905 (2018). https://doi.org/10.1002/adma.201702905
- T.D. Siegler, W.A. Dunlap-Shohl, Y. Meng, Y. Yang, W.F. Kau et al., Water-accelerated photooxidation of CH3NH3PbI3 perovskite. J. Am. Chem. Soc. 144, 5552 (2022). https://doi.org/10.1021/jacs.2c00391
- A.J. Ramadan, L.A. Rochford, S. Fearn, H.J. Snaith, Processing solvent-dependent electronic and structural properties of cesium lead triiodide thin films. J. Phys. Chem. Lett. 8, 4172 (2017). https://doi.org/10.1021/acs.jpclett.7b01677
- Q. Sun, P. Fassl, D. Becker-Koch, A. Bausch, B. Rivkin et al., Role of microstructure in oxygen induced photodegradation of methylammonium lead triiodide perovskite films. Adv. Energy Mater. 7, 1700977 (2017). https://doi.org/10.1002/aenm.201700977
- Y. Ouyang, Y. Li, P. Zhu, Q. Li, Y. Gao et al., Photo-oxidative degradation of methylammonium lead iodide perovskite: mechanism and protection. J. Mater. Chem. A 7, 2275 (2019). https://doi.org/10.1039/C8TA12193A
- W. Li, W. Zhang, S. Van Reenen, R.J. Sutton, J. Fan et al., Enhanced UV-light stability of planar heterojunction perovskite solar cells with caesium bromide interface modification. Energy Environ. Sci. 9, 490 (2016). https://doi.org/10.1039/C5EE03522H
- T. Leijtens, G.E. Eperon, S. Pathak, A. Abate, M.M. Lee et al., Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat. Commun. 4, 2885 (2013). https://doi.org/10.1038/ncomms3885
- Y. Li, X. Xu, C. Wang, B. Ecker, J. Yang et al., Light-induced degradation of CH3NH3PbI3 hybrid perovskite thin film. J. Phys. Chem. C 121, 3904 (2017). https://doi.org/10.1021/acs.jpcc.6b11853
- Z. Song, C. Wang, A.B. Phillips, C.R. Grice, D. Zhao et al., Probing the origins of photodegradation in organic–inorganic metal halide perovskites with time-resolved mass spectrometry. Sustain. Energy Fuels 2, 2460 (2018). https://doi.org/10.1039/C8SE00358K
- S.G. Motti, D. Meggiolaro, A.J. Barker, E. Mosconi, C.A.R. Perini et al., Controlling competing photochemical reactions stabilizes perovskite solar cells. Nat. Photonics 13, 532–539 (2019). https://doi.org/10.1038/s41566-019-0435-1
- J.M. Azpiroz, E. Mosconi, J. Bisquert, F. De Angelis, Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ. Sci. 8, 2118 (2015). https://doi.org/10.1039/C5EE01265A
- R. Gottesman, E. Haltzi, L. Gouda, S. Tirosh, Y. Bouhadana et al., Extremely slow photoconductivity response of CH3NH3PbI3 perovskites suggesting structural changes under working conditions. J. Phys. Chem. Lett. 5, 2662 (2014). https://doi.org/10.1021/jz501373f
- Y. You, W. Tian, L. Min, F. Cao, K. Deng et al., TiO2/WO3 bilayer as electron transport layer for efficient planar perovskite solar cell with efficiency exceeding 20%. Adv. Mater. Interfaces 7, 1901406 (2020). https://doi.org/10.1002/admi.201901406
- M.M. Byranvand, T. Kim, S. Song, G. Kang, S.U. Ryu et al., p-type CuI islands on TiO2 electron transport layer for a highly efficient planar-perovskite solar cell with negligible hysteresis. Adv. Energy Mater. 8, 1702235 (2018). https://doi.org/10.1002/aenm.201702235
- M. Kim, I.-W. Choi, S.J. Choi, J.W. Song, S.-I. Mo et al., Enhanced electrical properties of Li-salts doped mesoporous TiO2 in perovskite solar cells. Joule 5, 659 (2021). https://doi.org/10.1016/j.joule.2021.02.007
- B. Wang, J. Yang, L. Lu, W. Xiao, H. Wu et al., Interface engineering of air-stable n-doping fullerene-modified TiO2 electron transport layer for highly efficient and stable perovskite solar cells. Adv. Mater. Interfaces 7, 1901964 (2020). https://doi.org/10.1002/admi.201901964
- S. Haque, M.J. Mendes, O. Sanchez-Sobrado, H. Águas, E. Fortunato et al., Photonic-structured TiO2 for high-efficiency, flexible and stable perovskite solar cells. Nano Energy 59, 91 (2019). https://doi.org/10.1016/j.nanoen.2019.02.023
- T. Leijtens, G.E. Eperon, S. Pathak, A. Abate, M.M. Lee et al., Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat. Commun. 4, 1 (2013). https://doi.org/10.1038/ncomms3885
- M. Shahiduzzaman, M.I. Hossain, S. Visal, T. Kaneko, W. Qarony et al., Spray pyrolyzed TiO2 embedded multi-layer front contact design for high-efficiency perovskite solar cells. Nano-Micro. Lett. 13, 36 (2021). https://doi.org/10.1007/s40820-020-00559-2
- V. Roiati, E. Mosconi, A. Listorti, S. Colella, G. Gigli et al., Stark effect in perovskite/TiO2 solar cells: evidence of local interfacial order. Nano Lett. 14, 2168 (2014). https://doi.org/10.1021/nl500544c
- R.A. Kerner, B.P. Rand, Linking chemistry at the TiO2/CH3NH3PbI3 interface to current–voltage hysteresis. J. Phys. Chem. Lett. 8, 2298 (2017). https://doi.org/10.1021/acs.jpclett.7b00712
- S. Ito, S. Tanaka, K. Manabe, H. Nishino, Effects of surface blocking layer of Sb2S3 on nanocrystalline TiO2 for CH3NH3PbI3 perovskite solar cells. J. Phys. Chem. C 118, 16995 (2014). https://doi.org/10.1021/jp500449z
- J. Zhang, T. Pauporté, Effects of oxide contact layer on the preparation and properties of CH3NH3PbI3 for perovskite solar cell application. J. Phys. Chem. C 119, 14919 (2015). https://doi.org/10.1021/acs.jpcc.5b02984
- M.M. Tavakoli, R. Tavakoli, Z. Nourbakhsh, A. Waleed, U.S. Virk et al., High efficiency and stable perovskite solar cell using ZnO/rGO QDs as an electron transfer layer. Adv. Mater. Interfaces 3, 1500790 (2016). https://doi.org/10.1002/admi.201500790
- H. Si, Q. Liao, Z. Zhang, Y. Li, X. Yang et al., An innovative design of perovskite solar cells with Al2O3 inserting at ZnO/perovskite interface for improving the performance and stability. Nano Energy 22, 223 (2016). https://doi.org/10.1016/j.nanoen.2016.02.025
- R. Azmi, S. Hwang, W. Yin, T.-W. Kim, T.K. Ahn et al., High efficiency low-temperature processed perovskite solar cells integrated with alkali metal doped ZnO electron transport layers. ACS Energy Lett. 3, 1241 (2018). https://doi.org/10.1021/acsenergylett.8b00493
- Z. Wang, X. Zhu, J. Feng, C. Wang, C. Zhang et al., Antisolvent-and annealing-free deposition for highly stable efficient perovskite solar cells via modified ZnO. Adv. Sci. 8, 2002860 (2021). https://doi.org/10.1002/advs.202002860
- J. Idígoras, A. Todinova, J.R. Sánchez-Valencia, A. Barranco, A. Borrás et al., The interaction between hybrid organic–inorganic halide perovskite and selective contacts in perovskite solar cells: an infrared spectroscopy study. Phys. Chem. Chem. Phys. 18, 13583 (2016). https://doi.org/10.1039/C6CP01265E
- J. Yang, B.D. Siempelkamp, E. Mosconi, F. De Angelis, T.L. Kelly, Origin of the thermal instability in CH3NH3PbI3 thin films deposited on ZnO. Chem. Mater. 27, 4229 (2015). https://doi.org/10.1021/acs.chemmater.5b01598
- Y. Cheng, Q.-D. Yang, J. Xiao, Q. Xue, H.-W. Li et al., Decomposition of organometal halide perovskite films on zinc oxide nanops. ACS Appl. Mater. Interfaces 7, 36 (2015). https://doi.org/10.1021/acsami.5b04695
- F. Hao, C.C. Stoumpos, D.H. Cao, R.P.H. Chang, M.G. Kanatzidis, Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics 8, 489 (2014). https://doi.org/10.1038/nphoton.2014.82
- F. Giustino, H.J. Snaith, Toward lead-free perovskite solar cells. ACS Energy Lett. 1, 1233 (2016). https://doi.org/10.1021/acsenergylett.6b00499
- Z. Li, L. Wang, R. Liu, Y. Fan, H. Meng et al., Spontaneous interface ion exchange: passivating surface defects of perovskite solar cells with enhanced photovoltage. Adv. Energy Mater. 9, 1902142 (2019). https://doi.org/10.1002/aenm.201902142
- J. You, L. Meng, T.-B. Song, T.-F. Guo, Y. Yang et al., Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 11, 75 (2016). https://doi.org/10.1038/nnano.2015.230
- H. Lee, C. Lee, Analysis of ion-diffusion-induced interface degradation in inverted perovskite solar cells via restoration of the Ag electrode. Adv. Energy Mater. 8, 1702197 (2018). https://doi.org/10.1002/aenm.201702197
- J. Xu, A. Buin, A.H. Ip, W. Li, O. Voznyy et al., Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes. Nat. Commun. 6, 7081 (2015). https://doi.org/10.1038/ncomms8081
- Q. Wang, C.-C. Chueh, M. Eslamian, A.K.-Y. Jen, Modulation of PEDOT: PSS pH for efficient inverted perovskite solar cells with reduced potential loss and enhanced stability. ACS Appl. Mater. Interfaces 8, 32068 (2016). https://doi.org/10.1021/acsami.6b11757
- W. Sun, Y. Li, Y. Xiao, Z. Zhao, S. Ye et al., An ammonia modified PEDOT: PSS for interfacial engineering in inverted planar perovskite solar cells. Org. Electron. 46, 22 (2017). https://doi.org/10.1016/j.orgel.2017.03.019
- Y. Jiang, S.-C. Yang, Q. Jeangros, S. Pisoni, T. Moser et al., Mitigation of vacuum and illumination-induced degradation in perovskite solar cells by structure engineering. Joule 4, 1087 (2020). https://doi.org/10.1016/j.joule.2020.03.017
- Y. Li, B. Wang, T. Liu, Q. Zeng, D. Cao et al., Interfacial engineering of PTAA/perovskites for improved crystallinity and hole extraction in inverted perovskite solar cells. ACS Appl. Mater. Interfaces 14, 3284 (2022). https://doi.org/10.1021/acsami.1c21000
- T. Liu, K. Chen, Q. Hu, R. Zhu, Q. Gong, Inverted perovskite solar cells: progresses and perspectives. Adv. Energy Mater. 6, 1600457 (2016). https://doi.org/10.1002/aenm.201600457
- H. Wang, Z. Huang, S. Xiao, X. Meng, Z. Xing et al., An in situ bifacial passivation strategy for flexible perovskite solar module with mechanical robustness by roll-to-roll fabrication. J. Mater. Chem. A 9, 5759 (2021). https://doi.org/10.1039/D0TA12067G
- M. Du, S. Zhao, L. Duan, Y. Cao, H. Wang et al., Surface redox engineering of vacuum-deposited NiOx for top-performance perovskite solar cells and modules. Joule 6, 1931 (2022). https://doi.org/10.1016/j.joule.2022.06.026
- W. Chen, F.Z. Liu, X.Y. Feng, A.B. Djurišić, W.K. Chan et al., Cesium doped NiOx as an efficient hole extraction layer for inverted planar perovskite solar cells. Adv. Energy Mater. 7, 1700722 (2017). https://doi.org/10.1002/aenm.201700722
- J.R. Manders, S.W. Tsang, M.J. Hartel, T.H. Lai, S. Chen et al., Solution-processed nickel oxide hole transport layers in high efficiency polymer photovoltaic cells. Adv. Funct. Mater. 23, 2993 (2013). https://doi.org/10.1002/adfm.201202269
- C.C. Boyd, R.C. Shallcross, T. Moot, R. Kerner, L. Bertoluzzi et al., Overcoming redox reactions at perovskite-nickel oxide interfaces to boost voltages in perovskite solar cells. Joule 4, 1759 (2020). https://doi.org/10.1016/j.joule.2020.06.004
- F. Hou, Z. Su, F. Jin, X. Yan, L. Wang et al., Efficient and stable planar heterojunction perovskite solar cells with an MoO3/PEDOT: PSS hole transporting layer. Nanoscale 7, 9427 (2015). https://doi.org/10.1039/C5NR01864A
- J.W. Jo, M.S. Seo, M. Park, J.Y. Kim, J.S. Park et al., Improving performance and stability of flexible planar-heterojunction perovskite solar cells using polymeric hole-transport material. Adv. Funct. Mater. 26, 4464 (2016). https://doi.org/10.1002/adfm.201600746
- Y. Meng, Z. Hu, N. Ai, Z. Jiang, J. Wang et al., Improving the stability of bulk heterojunction solar cells by incorporating pH-neutral PEDOT: PSS as the hole transport layer. ACS Appl. Mater. Interfaces 6, 5122 (2014). https://doi.org/10.1021/am500336s
- C. Redondo-Obispo, T.S. Ripolles, S. Cortijo-Campos, A.L. Alvarez, E. Climent-Pascual et al., Enhanced stability and efficiency in inverted perovskite solar cells through graphene doping of PEDOT: PSS hole transport layer. Mater. Design. 191, 108587 (2020). https://doi.org/10.1016/j.matdes.2020.108587
- C. Liu, L. Zhang, Y. Li, X. Zhou, S. She et al., Highly stable and efficient perovskite solar cells with 22.0% efficiency based on inorganic–organic dopant-free double hole transporting layers. Adv. Funct. Mater. 30, 1908462 (2020). https://doi.org/10.1002/adfm.201908462
- S. Kim, S. Bae, S.-W. Lee, K. Cho, K.D. Lee et al., Relationship between ion migration and interfacial degradation of CH3NH3PbI3 perovskite solar cells under thermal conditions. Sci. Rep. 7, 1 (2017). https://doi.org/10.1038/s41598-017-00866-6
- T. Wu, R. Zhuang, R. Zhao, R. Zhao, L. Zhu et al., Understanding the effects of fluorine substitution in lithium salt on photovoltaic properties and stability of perovskite solar cells. ACS Energy Lett. 6, 2218–2228 (2021). https://doi.org/10.1021/acsenergylett.1c00685
- Y. Liu, Y. Hu, X. Zhang, P. Zeng, F. Li et al., Inhibited aggregation of lithium salt in spiro-OMeTAD toward highly efficient perovskite solar cells. Nano Energy 70, 104483 (2020). https://doi.org/10.1016/j.nanoen.2020.104483
- W. Li, H. Dong, L. Wang, N. Li, X. Guo et al., Montmorillonite as bifunctional buffer layer material for hybrid perovskite solar cells with protection from corrosion and retarding recombination. J. Mater. Chem. A 2, 13587 (2014). https://doi.org/10.1039/C4TA01550A
- Y. Yue, N. Salim, Y. Wu, X. Yang, A. Islam et al., Enhanced stability of perovskite solar cells through corrosion-free pyridine derivatives in hole-transporting materials. Adv. Mater. 28, 10738 (2016). https://doi.org/10.1002/adma.201602822
- B.-A. Chen, J.-T. Lin, N.-T. Suen, C.-W. Tsao, T.-C. Chu et al., In situ identification of photo- and moisture-dependent phase evolution of perovskite solar cells. ACS Energy Lett. 2, 342 (2017). https://doi.org/10.1021/acsenergylett.6b00698
- Q. Wu, C. Xue, Y. Li, P. Zhou, W. Liu et al., Kesterite Cu2ZnSnS4 as a low-cost inorganic hole-transporting material for high-efficiency perovskite solar cells. ACS Appl. Mater. Interfaces 7, 28466 (2015). https://doi.org/10.1021/acsami.5b09572
- Y. Yang, H. Chen, X. Zheng, X. Meng, T. Zhang et al., Ultrasound-spray deposition of multi-walled carbon nanotubes on NiO nanops-embedded perovskite layers for high-performance carbon-based perovskite solar cells. Nano Energy 42, 322 (2017). https://doi.org/10.1016/j.nanoen.2017.11.003
- C. Liu, X. Zhou, S. Chen, X. Zhao, S. Dai et al., Hydrophobic Cu2O quantum dots enabled by surfactant modification as top hole-transport materials for efficient perovskite solar cells. Adv. Sci. 6, 1801169 (2019). https://doi.org/10.1002/advs.201801169
- I.S. Yang, S. Lee, J. Choi, M.T. Jung, J. Kim et al., Enhancement of open circuit voltage for CuSCN-based perovskite solar cells by controlling the perovskite/CuSCN interface with functional molecules. J. Mater. Chem. A 7, 6028 (2019). https://doi.org/10.1039/C8TA12217B
- B. Lee, A.J. Yun, J. Kim, B. Gil, B. Shin et al., Aminosilane-modified CuGaO2 nanops incorporated with CuSCN as a hole-transport layer for efficient and stable perovskite solar cells. Adv. Mater. Interfaces 6, 1901372 (2019). https://doi.org/10.1002/admi.201901372
- N. Arora, M.I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber et al., Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science 358, 768 (2017). https://doi.org/10.1126/science.aam5655
- G.A. Sepalage, S. Meyer, A.R. Pascoe, A.D. Scully, U. Bach et al., A facile deposition method for CuSCN: exploring the influence of CuSCN on JV hysteresis in planar perovskite solar cells. Nano Energy 32, 310 (2017). https://doi.org/10.1016/j.nanoen.2016.12.043
- P. Xu, J. Liu, J. Huang, F. Yu, C.-H. Li et al., Interfacial engineering of CuSCN-based perovskite solar cells via PMMA interlayer toward enhanced efficiency and stability. New J. Chem. 45, 13168 (2021). https://doi.org/10.1039/D1NJ02454J
- L. Kavan, Z.V. Živcová, P. Hubík, N. Arora, M.I. Dar et al., Electrochemical characterization of CuSCN hole-extracting thin films for perovskite photovoltaics. ACS Appl. Energy Mater. 2, 4264 (2019). https://doi.org/10.1021/acsaem.9b00496
- H.-S. Kim, I.-H. Jang, N. Ahn, M. Choi, A. Guerrero et al., Control of I-V hysteresis in CH3NH3PbI3 perovskite solar cell. J. Phys. Chem. Lett. 6, 4633 (2015). https://doi.org/10.1021/acs.jpclett.5b02273
- T. Zhang, X. Meng, Y. Bai, S. Xiao, C. Hu et al., Profiling the organic cation-dependent degradation of organolead halide perovskite solar cells. J. Mater. Chem. A 5, 1103 (2017). https://doi.org/10.1039/C6TA09687E
- Y. Kato, L.K. Ono, M.V. Lee, S. Wang, S.R. Raga et al., Silver iodide formation in methyl ammonium lead iodide perovskite solar cells with silver top electrodes. Adv. Mater. Interfaces 2, 1500195 (2015). https://doi.org/10.1002/admi.201500195
- J. Li, Q. Dong, N. Li, L. Wang, Direct evidence of ion diffusion for the silver-electrode-induced thermal degradation of inverted perovskite solar cells. Adv. Energy Mater. 7, 1602922 (2017). https://doi.org/10.1002/aenm.201602922
- E. Lee, J. Ahn, H.C. Kwon, S. Ma, K. Kim et al., All-solution-processed silver nanowire window electrode-based flexible perovskite solar cells enabled with amorphous metal oxide protection. Adv. Energy Mater. 8, 1702182 (2018). https://doi.org/10.1002/aenm.201702182
- Y. Cheng, X. Liu, Z. Guan, M. Li, Z. Zeng et al., Revealing the degradation and self-healing mechanisms in perovskite solar cells by sub-bandgap external quantum efficiency spectroscopy. Adv. Mater. 33, 2006170 (2021). https://doi.org/10.1002/adma.202006170
- C.C. Boyd, R. Cheacharoen, K.A. Bush, R. Prasanna, T. Leijtens et al., Barrier design to prevent metal-induced degradation and improve thermal stability in perovskite solar cells. ACS Energy Lett. 3, 1772 (2018). https://doi.org/10.1021/acsenergylett.8b00926
- J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat et al., Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 592, 381–385 (2021). https://doi.org/10.1038/s41586-021-03406-5
- A. Guerrero, J. You, C. Aranda, Y.S. Kang, G. Garcia-Belmonte et al., Interfacial degradation of planar lead halide perovskite solar cells. ACS Nano 10, 218 (2016). https://doi.org/10.1021/acsnano.5b03687
- P. Qin, T. Wu, Z. Wang, L. Xiao, L. Ma et al., Grain boundary and interface passivation with Core-Shell Au@CdS nanospheres for high-efficiency perovskite solar cells. Adv. Funct. Mater. 30, 1908408 (2020). https://doi.org/10.1002/adfm.201908408
- A. Davis, T. Tran, D. Young, Solution chemistry of iodide leaching of gold. Hydrometallurgy 32, 143 (1993). https://doi.org/10.1016/0304-386X(93)90020-E
- L. Liang, Y. Cai, X. Li, M.K. Nazeeruddin, P. Gao, All that glitters is not gold: recent progress of alternative counter electrodes for perovskite solar cells. Nano Energy 52, 211 (2018). https://doi.org/10.1016/j.nanoen.2018.07.049
- M. Kaltenbrunner, G. Adam, E.D. Głowacki, M. Drack, R. Schwödiauer et al., Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air. Nat. Mater. 14, 1032 (2015). https://doi.org/10.1038/nmat4388
- S. Cacovich, L. Ciná, F. Matteocci, G. Divitini, P.A. Midgley et al., Gold and iodine diffusion in large area perovskite solar cells under illumination. Nanoscale 9, 4700 (2017). https://doi.org/10.1039/C7NR00784A
- K. Domanski, J.-P. Correa-Baena, N. Mine, M.K. Nazeeruddin, A. Abate et al., Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells. ACS Nano 10, 6306 (2016). https://doi.org/10.1021/acsnano.6b02613
- N.N. Shlenskaya, N.A. Belich, M. Grätzel, E.A. Goodilin, A.B. Tarasov, Light-induced reactivity of gold and hybrid perovskite as a new possible degradation mechanism in perovskite solar cells. J. Mater. Chem. A 6, 1780 (2018). https://doi.org/10.1039/C7TA10217H
- R.A. Kerner, P. Schulz, J.A. Christians, S.P. Dunfield, B. Dou et al., Reactions at noble metal contacts with methylammonium lead triiodide perovskites: role of underpotential deposition and electrochemistry. APL Mater. 7, 041103 (2019). https://doi.org/10.1063/1.5083812
- Y. Xu, Y. Tian, M. Hou, Y. Wu, Y. Ding et al., Performance promotion through dual-interface engineering of CuSCN layers in planar perovskite solar cells. J. Phys. Chem. C 124, 27977 (2020). https://doi.org/10.1021/acs.jpcc.0c09794
- Y. Yang, M.T. Hoang, D. Yao, N.D. Pham, V.T. Tiong et al., Spiro-OMeTAD or CuSCN as a preferable hole transport material for carbon-based planar perovskite solar cells. J. Mater. Chem. A 8, 12723 (2020). https://doi.org/10.1039/D0TA03951A
- M. Jørgensen, K. Norrman, F.C. Krebs, Stability/degradation of polymer solar cells. Sol. Energy Mater. Sol. Cells 92, 686 (2008). https://doi.org/10.1016/j.solmat.2008.01.005
- S. Guo, X. Sun, C. Ding, R. Huang, M. Tan et al., Non-uniform chemical corrosion of metal electrode of p–i–n type of perovskite solar cells caused by the diffusion of CH3NH3I. Energy Technol. 8, 2000250 (2020). https://doi.org/10.1002/ente.202000250
- L. Zhao, R.A. Kerner, Z. Xiao, Y.L. Lin, K.M. Lee et al., Redox chemistry dominates the degradation and decomposition of metal halide perovskite optoelectronic devices. ACS Energy Lett. 1, 595 (2016). https://doi.org/10.1021/acsenergylett.6b00320
- Y.-H. Lin, N. Sakai, P. Da, J. Wu, C. Sansom Harry et al., A piperidinium salt stabilizes efficient metal-halide perovskite solar cells. Science 369, 96 (2020). https://doi.org/10.1126/science.aba1628
- M. Kim, S.G. Motti, R. Sorrentino, A. Petrozza, Enhanced solar cell stability by hygroscopic polymer passivation of metal halide perovskite thin film. Energy Environ. Sci. 11, 2609 (2018). https://doi.org/10.1039/C8EE01101J
- Q. Wang, Q. Dong, T. Li, A. Gruverman, J. Huang, Thin insulating tunneling contacts for efficient and water-resistant perovskite solar cells. Adv. Mater. 28, 6734 (2016). https://doi.org/10.1002/adma.201600969
- Z. Wu, T. Song, B. Sun, Carbon-based materials used for perovskite solar cells. ChemNanoMat 3, 75 (2017). https://doi.org/10.1002/cnma.201600312
- L. Gao, I. Spanopoulos, W. Ke, S. Huang, I. Hadar et al., Improved environmental stability and solar cell efficiency of (MA, FA) PbI3 perovskite using a wide-band-gap 1D thiazolium lead iodide capping layer strategy. ACS Energy Lett. 4, 1763 (2019). https://doi.org/10.1021/acsenergylett.9b00930
- Y. Hou, X. Du, S. Scheiner, D.P. McMeekin, Z. Wang et al., A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells. Science 358, 1192 (2017). https://doi.org/10.1126/science.aao5561
- J. Kim, Y. Lee, B. Gil, A.J. Yun, J. Kim et al., A Cu2O–CuSCN nanocomposite as a hole-transport material of perovskite solar cells for enhanced carrier transport and suppressed interfacial degradation. ACS Appl. Energy Mater. 3, 7572 (2020). https://doi.org/10.1021/acsaem.0c01001
- S.S. Mali, J.V. Patil, H. Kim, R. Luque, C.K. Hong, Highly efficient thermally stable perovskite solar cells via Cs:NiOx/CuSCN double-inorganic hole extraction layer interface engineering. Mater. Today 26, 8 (2019). https://doi.org/10.1016/j.mattod.2019.01.017
- J. Cao, B. Wu, R. Chen, Y. Wu, Y. Hui et al., Efficient, hysteresis-free, and stable perovskite solar cells with ZnO as electron-transport layer: effect of surface passivation. Adv. Mater. 30, 1705596 (2018). https://doi.org/10.1002/adma.201705596
- R. Azmi, C.-L. Lee, I.H. Jung, S.-Y. Jang, Simultaneous improvement in efficiency and stability of low-temperature-processed perovskite solar cells by interfacial control. Adv. Energy Mater. 8, 1702934 (2018). https://doi.org/10.1002/aenm.201702934
- W. Qiu, M. Buffière, G. Brammertz, U.W. Paetzold, L. Froyen et al., High efficiency perovskite solar cells using a PCBM/ZnO double electron transport layer and a short air-aging step. Org. Electron. 26, 30 (2015). https://doi.org/10.1016/j.orgel.2015.06.046
- S. Zheng, W. Li, T. Su, F. Xie, J. Chen et al., Metal oxide crox as a promising bilayer electron transport material for enhancing the performance stability of planar perovskite solar cells. Sol. RRL 2, 1700245 (2018). https://doi.org/10.1002/solr.201700245
- Z. Jiang, X. Chen, X. Lin, X. Jia, J. Wang et al., Amazing stable open-circuit voltage in perovskite solar cells using AgAl alloy electrode. Sol. Energy Mater. Sol. Cells 146, 35 (2016). https://doi.org/10.1016/j.solmat.2015.11.026
- E. Bi, H. Chen, F. Xie, Y. Wu, W. Chen et al., Diffusion engineering of ions and charge carriers for stable efficient perovskite solar cells. Nat. Commun. 8, 15330 (2017). https://doi.org/10.1038/ncomms15330
- J. Lee, S. Singh, S. Kim, S. Baik, Graphene interfacial diffusion barrier between CuSCN and Au layers for stable perovskite solar cells. Carbon 157, 731 (2020). https://doi.org/10.1016/j.carbon.2019.10.101
- Q. Jiang, J. Tong, Y. Xian, R.A. Kerner, S.P. Dunfield et al., Surface reaction for efficient and stable inverted perovskite solar cells. Nature 611, 278 (2022). https://doi.org/10.1038/s41586-022-05268-x
- X. Li, W. Zhang, X. Guo, C. Lu, J. Wei et al., Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science 375, 434 (2022). https://doi.org/10.1126/science.abl5676
- F. Zhang, K. Zhu, Additive engineering for efficient and stable perovskite solar cells. Adv. Energy Mater. 10, 1902579 (2020). https://doi.org/10.1002/aenm.201902579
- D. Bi, P. Gao, R. Scopelliti, E. Oveisi, J. Luo et al., High-performance perovskite solar cells with enhanced environmental stability based on amphiphile-modified CH3NH3PbI3. Adv. Mater. 28, 2910 (2016). https://doi.org/10.1002/adma.201505255
- Y. Zhao, J. Wei, H. Li, Y. Yan, W. Zhou et al., A polymer scaffold for self-healing perovskite solar cells. Nat. Commun. 7, 1 (2016). https://doi.org/10.1038/ncomms10228
- X. Li, W. Zhang, W. Zhang, H.-Q. Wang, J. Fang, Spontaneous grain polymerization for efficient and stable perovskite solar cells. Nano Energy 58, 825 (2019). https://doi.org/10.1016/j.nanoen.2019.02.009
- L. Zuo, H. Guo, D.W. deQuilettes, S. Jariwala, N. deMarco et al., Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells. Sci. Adv. 3, e1700106 (2017)
- X. Li, W. Zhang, Y.-C. Wang, W. Zhang, H.-Q. Wang et al., In-situ cross-linking strategy for efficient and operationally stable methylammoniun lead iodide solar cells. Nat. Commun. 9, 1 (2018). https://doi.org/10.1038/s41467-018-06204-2
- S. Bai, P. Da, C. Li, Z. Wang, Z. Yuan et al., Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 571, 245 (2019). https://doi.org/10.1038/s41586-019-1357-2
- L. Gao, S. Huang, L. Chen, X. Li, B. Ding et al., Excellent stability of perovskite solar cells by passivation engineering. Sol. RRL 2, 1800088 (2018). https://doi.org/10.1002/solr.201800088
- G.Y. Kim, A. Senocrate, T.-Y. Yang, G. Gregori, M. Grätzel et al., Large tunable photoeffect on ion conduction in halide perovskites and implications for photodecomposition. Nat. Mater. 17, 445 (2018). https://doi.org/10.1038/s41563-018-0038-0
- Q. Lou, H. Li, Q. Huang, Z. Shen, F. Li et al., Multifunctional CNT: TiO2 additives in spiro-OMeTAD layer for highly efficient and stable perovskite solar cells. EcoMat 3, e12099 (2021). https://doi.org/10.1002/eom2.12099
- Q. Luo, Y. Zhang, C. Liu, J. Li, N. Wang et al., Iodide-reduced graphene oxide with dopant-free spiro-OMeTAD for ambient stable and high-efficiency perovskite solar cells. J. Mater. Chem. A 3, 15996 (2015). https://doi.org/10.1039/C5TA02710A
- Y. Han, G. Zhang, H. Xie, T. Kong, Y. Li et al., Azide additive acting as a powerful locker for Li+ and TBP in spiro-OMeTAD toward highly efficient and stable perovskite solar cells. Nano Energy (2022). https://doi.org/10.1016/j.nanoen.2022.107072
- Y. Shao, Y. Fang, T. Li, Q. Wang, Q. Dong et al., Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films. Energy Environ. Sci. 9, 1752 (2016). https://doi.org/10.1039/C6EE00413J
- R. Wang, J. Xue, L. Meng, J.-W. Lee, Z. Zhao et al., Caffeine improves the performance and thermal stability of perovskite solar cells. Joule 3, 1464 (2019). https://doi.org/10.1016/j.joule.2019.04.005
- L. Liu, S. Huang, Y. Lu, P. Liu, Y. Zhao et al., Grain-boundary “patches” by in situ conversion to enhance perovskite solar cells stability. Adv. Mater. 30, 1800544 (2018). https://doi.org/10.1002/adma.201800544
- X. Li, S. Ke, X. Feng, X. Zhao, W. Zhang et al., Enhancing the stability of perovskite solar cells through cross-linkable and hydrogen bonding multifunctional additives. J. Mater. Chem. A 9, 12684 (2021). https://doi.org/10.1039/D1TA01572A
- Y. Ma, Y. Cheng, X. Xu, M. Li, C. Zhang et al., Suppressing ion migration across perovskite grain boundaries by polymer additives. Adv. Funct. Mater. 31, 2006802 (2021). https://doi.org/10.1002/adfm.202006802
References
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050 (2009). https://doi.org/10.1021/ja809598r
J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, N.-G. Park, 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3, 4088 (2011). https://doi.org/10.1039/C1NR10867K
M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643 (2012). https://doi.org/10.1126/science.1228604
J.H. Heo, S.H. Im, J.H. Noh, T.N. Mandal, C.S. Lim et al., Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics 7, 487 (2013). https://doi.org/10.1038/Nphoton.2013.80
H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee et al., Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598, 444 (2021). https://doi.org/10.1038/s41586-021-03964-8
H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012). https://doi.org/10.1038/srep00591
C. Jiang, J. Zhou, H. Li, L. Tan, M. Li et al., Double layer composite electrode strategy for efficient perovskite solar cells with excellent reverse-bias stability. Nano-Micro Lett. 15, 12 (2022). https://doi.org/10.1007/s40820-022-00985-4
W. Travis, E.N.K. Glover, H. Bronstein, D.O. Scanlon, R.G. Palgrave, On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system. Chem. Sci. 7, 4548 (2016). https://doi.org/10.1039/C5SC04845A
L. Qiu, S. He, L.K. Ono, Y. Qi, Progress of surface science studies on ABX3-based metal halide perovskite solar cells. Adv. Energy Mater. 10, 1902726 (2020). https://doi.org/10.1002/aenm.201902726
M. Anaya, G. Lozano, M.E. Calvo, H. Míguez, ABX3 perovskites for tandem solar cells. Joule 1, 769 (2017). https://doi.org/10.1016/j.joule.2017.09.017
C. Yi, J. Luo, S. Meloni, A. Boziki, N. Ashari-Astani et al., Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells. Energy Environ. Sci. 9, 656 (2016). https://doi.org/10.1039/C5EE03255E
S. Wang, T. Sakurai, W. Wen, Y. Qi, Energy level alignment at interfaces in metal halide perovskite solar cells. Adv. Mater. Interfaces 5, 1800260 (2018). https://doi.org/10.1002/admi.201800260
L. Meng, J. You, T.-F. Guo, Y. Yang, Recent advances in the inverted planar structure of perovskite solar cells. Acc. Chem. Res. 49, 155 (2016). https://doi.org/10.1021/acs.accounts.5b00404
Z. Liu, A. Zhu, F. Cai, L. Tao, Y. Zhou et al., Nickel oxide nanops for efficient hole transport in p-i-n and n-i-p perovskite solar cells. J. Mater. Chem. A 5, 6597 (2017). https://doi.org/10.1039/C7TA01593C
C. Momblona, L. Gil-Escrig, E. Bandiello, E.M. Hutter, M. Sessolo et al., Efficient vacuum deposited p-i-n and n-i-p perovskite solar cells employing doped charge transport layers. Energy Environ. Sci. 9, 3456 (2016). https://doi.org/10.1039/C6EE02100J
Z. Zhang, J. Liang, J. Wang, Y. Zheng, X. Wu et al., Resolving mixed intermediate phases in methylammonium-free Sn–Pb alloyed perovskites for high-performance solar cells. Nano-Micro Lett. 14, 165 (2022). https://doi.org/10.1007/s40820-022-00918-1
A. Polman, M. Knight, E.C. Garnett, B. Ehrler, W.C. Sinke, Photovoltaic materials: present efficiencies and future challenges. Science 352, aad4424 (2016). https://doi.org/10.1126/science.aad4424
F. Huang, M. Li, P. Siffalovic, G. Cao, J. Tian, From scalable solution fabrication of perovskite films towards commercialization of solar cells. Energy Environ. Sci. 12, 518 (2019). https://doi.org/10.1039/C8EE03025A
F. Yang, L. Dong, D. Jang, B. Saparov, K.C. Tam et al., Low temperature processed fully printed efficient planar structure carbon electrode perovskite solar cells and modules. Adv. Energy Mater. 11, 2101219 (2021). https://doi.org/10.1002/aenm.202101219
A. Mei, X. Li, L. Liu, Z. Ku, T. Liu et al., A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability. Science 345, 295 (2014). https://doi.org/10.1126/science.1254763
H. Zhou, Q. Chen, G. Li, S. Luo, T.-B. Song et al., Interface engineering of highly efficient perovskite solar cells. Science 345, 542 (2014). https://doi.org/10.1126/science.1254050
J.-P. Correa-Baena, M. Saliba, T. Buonassisi, M. Grätzel, A. Abate et al., Promises and challenges of perovskite solar cells. Science 358, 739 (2017). https://doi.org/10.1126/science.aam6323
X. Lin, Y. Wang, H. Su, Z. Qin, Z. Zhang et al., An in-situ formed tunneling layer enriches the options of anode for efficient and stable regular perovskite solar cells. Nano-Micro Lett. 15, 10 (2022). https://doi.org/10.1007/s40820-022-00975-6
I. Massiot, A. Cattoni, S. Collin, Progress and prospects for ultrathin solar cells. Nat. Energy 5, 959 (2020). https://doi.org/10.1038/s41560-020-00714-4
M.A. Green, E.D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis et al., Solar cell efficiency tables (version 59). Prog. Photovolt. 30, 3–12 (2022). https://doi.org/10.1002/pip.3506
Japan Electrical Safety & Environment Technology Laboratories, Chinese Perovskite Tech Firm Wuxi Utmost Light Claims 20.5% ‘World Record’ Efficiency For Perovskite Solar Mini Module, Certified By Japan’s JET; Plans To Build Large Area Perovskite Solar Module Production Lines, http://taiyangnews.info/technology/20-5-world-record-efficiency-for-perovskite-solar-module/, 2021.
L. Fu, H. Li, L. Wang, R. Yin, B. Li et al., Defect passivation strategies in perovskites for an enhanced photovoltaic performance. Energy Environ. Sci. 13, 4017 (2020). https://doi.org/10.1039/D0EE01767A
W.E.I. Sha, X. Ren, L. Chen, W.C.H. Choy, The efficiency limit of CH3NH3PbI3 perovskite solar cells. Appl. Phys. Lett. 106, 221104 (2015). https://doi.org/10.1063/1.4922150
S. Draguta, J.A. Christians, Y.V. Morozov, A. Mucunzi, J.S. Manser et al., A quantitative and spatially resolved analysis of the performance-bottleneck in high efficiency, planar hybrid perovskite solar cells. Energy Environ. Sci. 11, 960 (2018). https://doi.org/10.1039/C7EE03654J
X. Ren, Z. Wang, W.E.I. Sha, W.C.H. Choy, Exploring the way to approach the efficiency limit of perovskite solar cells by drift-diffusion model. ACS Photonics 4, 934 (2017). https://doi.org/10.1021/acsphotonics.6b01043
W.E.I. Sha, H. Zhang, Z.S. Wang, H.L. Zhu, X. Ren et al., Quantifying efficiency loss of perovskite solar cells by a modified detailed balance model. Adv. Energy Mater. 8, 1701586 (2018). https://doi.org/10.1002/aenm.201701586
X. Zhao, N.-G. Park, Stability issues on perovskite solar cells. Photonics 2, 1139 (2015). https://doi.org/10.3390/photonics2041139
A. Aftab, M.I. Ahmad, A review of stability and progress in tin halide perovskite solar cell. Sol. Energy 216, 26 (2021). https://doi.org/10.1016/j.solener.2020.12.065
R. Wang, M. Mujahid, Y. Duan, Z.K. Wang, J. Xue et al., A review of perovskites solar cell stability. Adv. Funct. Mater. 29, 1808843 (2019). https://doi.org/10.1002/adfm.201808843
J. Feng, X. Zhu, Z. Yang, X. Zhang, J. Niu et al., Record efficiency stable flexible perovskite solar cell using effective additive assistant strategy. Adv. Mater. 30, 1801418 (2018). https://doi.org/10.1002/adma.201801418
M.M. Tavakoli, P. Yadav, R. Tavakoli, J. Kong, Surface engineering of TiO2 ETL for highly efficient and hysteresis-less planar perovskite solar cell (21.4%) with enhanced open-circuit voltage and stability. Adv. Energy Mater. 8, 1800794 (2018). https://doi.org/10.1002/aenm.201800794
L. Meng, J. You, Y. Yang, Addressing the stability issue of perovskite solar cells for commercial applications. Nat. Commun. 9, 1 (2018). https://doi.org/10.1038/s41467-018-07255-1
N. Sultana, N.J. Demarais, D. Shevchenko, P.J. Derrick, Laser desorption/ionization mass spectrometry of perovskite solar cells: identification of interface interactions and degradation reactions. Sol. RRL 2, 1800022 (2018). https://doi.org/10.1002/solr.201800022
J. Wei, Q. Wang, J. Huo, F. Gao, Z. Gan et al., Mechanisms and suppression of photoinduced degradation in perovskite solar cells. Adv. Energy Mater. 11, 2002326 (2021). https://doi.org/10.1002/aenm.202002326
N. Li, X. Niu, Q. Chen, H. Zhou, Towards commercialization: the operational stability of perovskite solar cells. Chem. Soc. Rev. 49, 8235 (2020). https://doi.org/10.1039/D0CS00573H
J. Wang, X. Chen, F. Jiang, Q. Luo, L. Zhang et al., Electrochemical corrosion of Ag electrode in the silver grid electrode-based flexible perovskite solar cells and the suppression method. Sol. RRL 2, 1800118 (2018). https://doi.org/10.1002/solr.201800118
X. Wang, K. Rakstys, K. Jack, H. Jin, J. Lai et al., Engineering fluorinated-cation containing inverted perovskite solar cells with an efficiency of >21% and improved stability towards humidity. Nat. Commun. 12, 52 (2021). https://doi.org/10.1038/s41467-020-20272-3
Z. Liu, L. Qiu, L.K. Ono, S. He, Z. Hu et al., A holistic approach to interface stabilization for efficient perovskite solar modules with over 2,000-hour operational stability. Nat. Energy 5, 596 (2020). https://doi.org/10.1038/s41560-020-0653-2
S. Yang, S. Chen, E. Mosconi, Y. Fang, X. Xiao et al., Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science 365, 473 (2019). https://doi.org/10.1126/science.aax3294
P. Hang, J. Xie, C. Kan, B. Li, Y. Zhang et al., Stabilizing fullerene for burn-in-free and stable perovskite solar cells under ultraviolet preconditioning and light soaking. Adv. Mater. 33, 2006910 (2021). https://doi.org/10.1002/adma.202006910
Y. Rong, Y. Hu, A. Mei, H. Tan, M.I. Saidaminov et al., Challenges for commercializing perovskite solar cells. Science 361, 8235 (2018). https://doi.org/10.1126/science.aat8235
X. Ma, L. Yang, X. Shang, M. Li, D. Gao et al., Grain boundary defect passivation by in situ formed wide-bandgap lead sulfate for efficient and stable perovskite solar cells. Chem. Eng. J. 426, 130685 (2021). https://doi.org/10.1016/j.cej.2021.130685
J.M. Frost, K.T. Butler, F. Brivio, C.H. Hendon, M. van Schilfgaarde et al., Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14, 2584 (2014). https://doi.org/10.1021/nl500390f
J. Carrillo, A. Guerrero, S. Rahimnejad, O. Almora, I. Zarazua et al., Ionic reactivity at contacts and aging of methylammonium lead triiodide perovskite solar cells. Adv. Energy Mater. 6, 1502246 (2016). https://doi.org/10.1002/aenm.201502246
J.A. Christians, P.A. MirandaHerrera, P.V. Kamat, Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. J. Am. Chem. Soc. 137, 1530 (2015). https://doi.org/10.1021/ja511132a
A.M.A. Leguy, Y. Hu, M. Campoy-Quiles, M.I. Alonso, O.J. Weber et al., Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells. Chem. Mater. 27, 3397 (2015). https://doi.org/10.1021/acs.chemmater.5b00660
G. Ren, W. Han, Q. Zhang, Z. Li, Y. Deng et al., Overcoming perovskite corrosion and de-doping through chemical binding of halogen bonds toward efficient and stable perovskite solar cells. Nano-Micro Lett. 14, 175 (2022). https://doi.org/10.1007/s40820-022-00916-3
G. Tong, L.K. Ono, Y. Liu, H. Zhang, T. Bu et al., Up-scalable fabrication of SnO2 with multifunctional interface for high performance perovskite solar modules. Nano-Micro Lett. 13, 155 (2021). https://doi.org/10.1007/s40820-021-00675-7
T. Wu, Z. Qin, Y. Wang, Y. Wu, W. Chen et al., The main progress of perovskite solar cells in 2020–2021. Nano-Micro Lett. 13, 152 (2021). https://doi.org/10.1007/s40820-021-00672-w
Z. Li, Y. Gao, Z. Zhang, Q. Xiong, L. Deng et al., cPCN-regulated SnO2 composites enables perovskite solar cell with efficiency beyond 23%. Nano-Micro Lett. 13, 101 (2021). https://doi.org/10.1007/s40820-021-00636-0
D. Bryant, N. Aristidou, S. Pont, I. Sanchez-Molina, T. Chotchuangchutchaval et al., Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells. Energy Environ. Sci. 9, 1850 (2016). https://doi.org/10.1039/c6ee90023b
D. Bryant, N. Aristidou, S. Pont, I. Sanchez-Molina, T. Chotchunangatchaval et al., Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells. Energy Environ. Sci. 9, 1655 (2016). https://doi.org/10.1039/C6EE00409A
W. Chi, S.K. Banerjee, Achieving resistance against moisture and oxygen for perovskite solar cells with high efficiency and stability. Chem. Mater. 33, 4269–4303 (2021). https://doi.org/10.1021/acs.chemmater.1c00773
G. Niu, X. Guo, L. Wang, Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 3, 8970 (2015). https://doi.org/10.1039/C4TA04994B
F. Li, M. Liu, Recent efficient strategies for improving the moisture stability of perovskite solar cells. J. Mater. Chem. A 5, 15447 (2017). https://doi.org/10.1039/C7TA01325F
J. Jiang, Q. Wang, Z. Jin, X. Zhang, J. Lei et al., Polymer doping for high-efficiency perovskite solar cells with improved moisture stability. Adv. Energy Mater. 8, 1701757 (2018). https://doi.org/10.1002/aenm.201701757
I. Hwang, I. Jeong, J. Lee, M.J. Ko, K. Yong, Enhancing stability of perovskite solar cells to moisture by the facile hydrophobic passivation. ACS Appl. Mater. Interfaces 7, 17330 (2015). https://doi.org/10.1021/acsami.5b04490
J. Yang, B.D. Siempelkamp, D. Liu, T.L. Kelly, Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS Nano 9, 1955 (2015). https://doi.org/10.1021/nn506864k
J. Zhu, D.H. Kim, J.D. Kim, D.G. Lee, W.B. Kim et al., All-in-one Lewis base for enhanced precursor and device stability in highly efficient perovskite solar cells. ACS Energy Lett. 6, 3425 (2021). https://doi.org/10.1021/acsenergylett.1c01465
L. Yu, T. Guo, H. Yuan, Z. Zhang, Z. Deng et al., Effective lewis base additive with S-donor for efficient and stable CsPbI2Br based perovskite solar cells. Chem. Eng. J. 420, 129931 (2021). https://doi.org/10.1016/j.cej.2021.129931
W. Xiang, S. Liu, W. Tress, A review on the stability of inorganic metal halide perovskites: challenges and opportunities for stable solar cells. Energy Environ. Sci. 14, 2090 (2021). https://doi.org/10.1039/D1EE00157D
S. Xiong, M. Yuan, J. Yang, J. Song, X. Guo et al., Engineering of the back contact between PCBM and metal electrode for planar perovskite solar cells with enhanced efficiency and stability. Adv. Opt. Mater. 7, 1900542 (2019). https://doi.org/10.1002/adom.201900542
B. Rivkin, P. Fassl, Q. Sun, A.D. Taylor, Z. Chen et al., Effect of ion migration-induced electrode degradation on the operational stability of perovskite solar cells. ACS Omega 3, 10042 (2018). https://doi.org/10.1021/acsomega.8b01626
Z. Yang, B.H. Babu, S. Wu, T. Liu, S. Fang et al., Review on practical interface engineering of perovskite solar cells: from efficiency to stability. Sol. RRL 4, 1900257 (2020). https://doi.org/10.1002/solr.201900257
Y. Xu, Z. Lin, W. Wei, Y. Hao, S. Liu et al., Recent progress of electrode materials for flexible perovskite solar cells. Nano-Micro Lett. 14, 117 (2022). https://doi.org/10.1007/s40820-022-00859-9
K.M.M. Salim, S. Masi, A.F. Gualdrón-Reyes, R.S. Sánchez, E.M. Barea et al., Boosting long-term stability of pure formamidinium perovskite solar cells by ambient air additive assisted fabrication. ACS Energy Lett. 6, 3511 (2021). https://doi.org/10.1021/acsenergylett.1c01311
H. Zheng, X. Xu, S. Xu, G. Liu, S. Chen et al., The multiple effects of polyaniline additive to improve the efficiency and stability of perovskite solar cells. J. Mater. Chem. C 7, 4441 (2019). https://doi.org/10.1039/C8TC05975F
L. Xie, J. Chen, P. Vashishtha, X. Zhao, G.S. Shin et al., Importance of functional groups in cross-linking methoxysilane additives for high-efficiency and stable perovskite solar cells. ACS Energy Lett. 4, 2192 (2019). https://doi.org/10.1021/acsenergylett.9b01356
C. Park, H. Ko, D.H. Sin, K.C. Song, K. Cho, Organometal halide perovskite solar cells with improved thermal stability via grain boundary passivation using a molecular additive. Adv. Funct. Mater. 27, 1703546 (2017). https://doi.org/10.1002/adfm.201703546
Y. Chen, X. Yang, P. Liu, W. Wang, R. Ran et al., Improving moisture/thermal stability and efficiency of CH3NH3PbI3-based perovskite solar cells via gentle butyl acrylate additive strategy. Sol. RRL 5, 2000621 (2021). https://doi.org/10.1002/solr.202000621
J. Xu, J. Cui, S. Yang, Y. Han, X. Guo et al., Unraveling passivation mechanism of imidazolium-based ionic liquids on inorganic perovskite to achieve near-record-efficiency CsPbI2Br solar cells. Nano-Micro Lett. 14, 7 (2021). https://doi.org/10.1007/s40820-021-00763-8
W. Zhao, J. Xu, K. He, Y. Cai, Y. Han et al., A special additive enables all cations and anions passivation for stable perovskite solar cells with efficiency over 23%. Nano-Micro Lett. 13, 169 (2021). https://doi.org/10.1007/s40820-021-00688-2
S. Tang, Y. Deng, X. Zheng, Y. Bai, Y. Fang et al., Composition engineering in doctor-blading of perovskite solar cells. Adv. Energy Mater. 7, 1700302 (2017). https://doi.org/10.1002/aenm.201700302
Y. Jiang, X. He, T. Liu, N. Zhao, M. Qin et al., Intralayer a-site compositional engineering of ruddlesden–popper perovskites for thermostable and efficient solar cells. ACS Energy Lett. 4, 1216 (2019). https://doi.org/10.1021/acsenergylett.9b00403
T. Ozturk, E. Akman, A.E. Shalan, S. Akin, Composition engineering of operationally stable CsPbI2Br perovskite solar cells with a record efficiency over 17%. Nano Energy 87, 106157 (2021). https://doi.org/10.1016/j.nanoen.2021.106157
X. Jin, L. Yang, X.-F. Wang, Efficient two-dimensional perovskite solar cells realized by incorporation of Ti3C2Tx MXene as nano-dopants. Nanomicro. Lett. 13, 68 (2021). https://doi.org/10.1007/s40820-021-00602-w
J. Liu, S.K. Pathak, N. Sakai, R. Sheng, S. Bai et al., Identification and mitigation of a critical interfacial instability in perovskite solar cells employing copper thiocyanate hole-transporter. Adv. Mater. Interfaces 3, 1600571 (2016). https://doi.org/10.1002/admi.201600571
J. Zhang, J. Long, Z. Huang, J. Yang, X. Li et al., Obstructing interfacial reaction between NiOx and perovskite to enable efficient and stable inverted perovskite solar cells. Chem. Eng. J. 426, 131357 (2021). https://doi.org/10.1016/j.cej.2021.131357
S. Guarnera, A. Abate, W. Zhang, J.M. Foster, G. Richardson et al., Improving the long-term stability of perovskite solar cells with a porous Al2O3 buffer layer. J. Phys. Chem. Lett. 6, 432 (2015). https://doi.org/10.1021/jz502703p
A. Capasso, F. Matteocci, L. Najafi, M. Prato, J. Buha et al., Few-layer MoS2 flakes as active buffer layer for stable perovskite solar cells. Adv. Energy Mater. 6, 1600920 (2016). https://doi.org/10.1002/aenm.201600920
X. Zheng, H. Lei, G. Yang, W. Ke, Z. Chen et al., Enhancing efficiency and stability of perovskite solar cells via a high mobility p-type PbS buffer layer. Nano Energy 38, 1 (2017). https://doi.org/10.1016/j.nanoen.2017.05.040
K. Chatzimanolis, K. Rogdakis, D. Tsikritzis, N. Tzoganakis, M. Tountas et al., Inverted perovskite solar cells with enhanced lifetime and thermal stability enabled by a metallic tantalum disulfide buffer layer. Nanoscale Adv. 3, 3124 (2021). https://doi.org/10.1039/D1NA00172H
H. Zhong, W. Li, Y. Huang, D. Cao, C. Zhang et al., All-inorganic perovskite solar cells with tetrabutylammonium acetate as the buffer layer between the SnO2 electron transport film and CsPbI3. ACS Appl. Mater. Interfaces 14, 5183 (2022). https://doi.org/10.1021/acsami.1c18375
W. Dong, W. Qiao, S. Xiong, J. Yang, X. Wang et al., Surface passivation and energetic modification suppress nonradiative recombination in perovskite solar cells. Nano-Micro Lett. 14, 108 (2022). https://doi.org/10.1007/s40820-022-00854-0
L. Zhu, C. Chen, Y. Weng, F. Li, Q. Lou, Enhancing the performance of inverted perovskite solar cells by inserting a ZnO:TIPD film between PCBM layer and Ag electrode. Sol. Energy Mater. Sol. Cells 198, 11 (2019). https://doi.org/10.1016/j.solmat.2019.04.007
C.-Y. Chang, C.-C. Wang, Enhanced stability and performance of air-processed perovskite solar cells via defect passivation with a thiazole-bridged diketopyrrolopyrrole-based π-conjugated polymer. J. Mater. Chem. A 8, 8593 (2020). https://doi.org/10.1039/D0TA00978D
J. Chen, L. Zuo, Y. Zhang, X. Lian, W. Fu et al., High-performance thickness insensitive perovskite solar cells with enhanced moisture stability. Adv. Energy Mater. 8, 1800438 (2018). https://doi.org/10.1002/aenm.201800438
Y. Han, S. Meyer, Y. Dkhissi, K. Weber, J.M. Pringle et al., Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. J. Mater. Chem. A 3, 8139 (2015). https://doi.org/10.1039/C5TA00358J
G. Niu, W. Li, F. Meng, L. Wang, H. Dong et al., Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J. Mater. Chem. A 2, 705 (2014). https://doi.org/10.1039/C3TA13606J
Q. Wang, B. Chen, Y. Liu, Y. Deng, Y. Bai et al., Scaling behavior of moisture-induced grain degradation in polycrystalline hybrid perovskite thin films. Energy Environ. Sci. 10, 516 (2017). https://doi.org/10.1039/C6EE02941H
W. Huang, J.S. Manser, P.V. Kamat, S. Ptasinska, Evolution of chemical composition, morphology, and photovoltaic efficiency of CH3NH3PbI3 perovskite under ambient conditions. Chem. Mater. 28, 303 (2016). https://doi.org/10.1021/acs.chemmater.5b04122
N. Ahn, K. Kwak, M.S. Jang, H. Yoon, B.Y. Lee et al., Trapped charge-driven degradation of perovskite solar cells. Nat. Commun. 7, 13422 (2016). https://doi.org/10.1038/ncomms13422
A.J. Pearson, G.E. Eperon, P.E. Hopkinson, S.N. Habisreutinger, J.T.-W. Wang et al., Oxygen degradation in mesoporous Al2O3/CH3NH3PbI3-xClx perovskite solar cells: kinetics and mechanisms. Adv. Energy Mater. 6, 1600014 (2016). https://doi.org/10.1002/aenm.201600014
L. Zhang, P.H.L. Sit, Ab initio study of the role of oxygen and excess electrons in the degradation of CH3NH3PbI3. J. Mater. Chem. A 5, 9042 (2017). https://doi.org/10.1039/C7TA01091E
N. Aristidou, I. Sanchez-Molina, T. Chotchuangchutchaval, M. Brown, L. Martinez et al., The role of oxygen in the degradation of methylammonium lead trihalide perovskite photoactive layers. Angew. Chem. Int. Ed. 54, 8208 (2015). https://doi.org/10.1002/anie.201503153
N. Aristidou, C. Eames, I. Sanchez-Molina, X. Bu, J. Kosco et al., Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nat. Commun. 8, 15218 (2017). https://doi.org/10.1038/ncomms15218
J.S.W. Godding, A.J. Ramadan, Y.-H. Lin, K. Schutt, H.J. Snaith et al., Oxidative passivation of metal halide perovskites. Joule 3, 2716 (2019). https://doi.org/10.1016/j.joule.2019.08.006
F. Lang, O. Shargaieva, V.V. Brus, H.C. Neitzert, J. Rappich et al., Influence of radiation on the properties and the stability of hybrid perovskites. Adv. Mater. 30, 1702905 (2018). https://doi.org/10.1002/adma.201702905
T.D. Siegler, W.A. Dunlap-Shohl, Y. Meng, Y. Yang, W.F. Kau et al., Water-accelerated photooxidation of CH3NH3PbI3 perovskite. J. Am. Chem. Soc. 144, 5552 (2022). https://doi.org/10.1021/jacs.2c00391
A.J. Ramadan, L.A. Rochford, S. Fearn, H.J. Snaith, Processing solvent-dependent electronic and structural properties of cesium lead triiodide thin films. J. Phys. Chem. Lett. 8, 4172 (2017). https://doi.org/10.1021/acs.jpclett.7b01677
Q. Sun, P. Fassl, D. Becker-Koch, A. Bausch, B. Rivkin et al., Role of microstructure in oxygen induced photodegradation of methylammonium lead triiodide perovskite films. Adv. Energy Mater. 7, 1700977 (2017). https://doi.org/10.1002/aenm.201700977
Y. Ouyang, Y. Li, P. Zhu, Q. Li, Y. Gao et al., Photo-oxidative degradation of methylammonium lead iodide perovskite: mechanism and protection. J. Mater. Chem. A 7, 2275 (2019). https://doi.org/10.1039/C8TA12193A
W. Li, W. Zhang, S. Van Reenen, R.J. Sutton, J. Fan et al., Enhanced UV-light stability of planar heterojunction perovskite solar cells with caesium bromide interface modification. Energy Environ. Sci. 9, 490 (2016). https://doi.org/10.1039/C5EE03522H
T. Leijtens, G.E. Eperon, S. Pathak, A. Abate, M.M. Lee et al., Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat. Commun. 4, 2885 (2013). https://doi.org/10.1038/ncomms3885
Y. Li, X. Xu, C. Wang, B. Ecker, J. Yang et al., Light-induced degradation of CH3NH3PbI3 hybrid perovskite thin film. J. Phys. Chem. C 121, 3904 (2017). https://doi.org/10.1021/acs.jpcc.6b11853
Z. Song, C. Wang, A.B. Phillips, C.R. Grice, D. Zhao et al., Probing the origins of photodegradation in organic–inorganic metal halide perovskites with time-resolved mass spectrometry. Sustain. Energy Fuels 2, 2460 (2018). https://doi.org/10.1039/C8SE00358K
S.G. Motti, D. Meggiolaro, A.J. Barker, E. Mosconi, C.A.R. Perini et al., Controlling competing photochemical reactions stabilizes perovskite solar cells. Nat. Photonics 13, 532–539 (2019). https://doi.org/10.1038/s41566-019-0435-1
J.M. Azpiroz, E. Mosconi, J. Bisquert, F. De Angelis, Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ. Sci. 8, 2118 (2015). https://doi.org/10.1039/C5EE01265A
R. Gottesman, E. Haltzi, L. Gouda, S. Tirosh, Y. Bouhadana et al., Extremely slow photoconductivity response of CH3NH3PbI3 perovskites suggesting structural changes under working conditions. J. Phys. Chem. Lett. 5, 2662 (2014). https://doi.org/10.1021/jz501373f
Y. You, W. Tian, L. Min, F. Cao, K. Deng et al., TiO2/WO3 bilayer as electron transport layer for efficient planar perovskite solar cell with efficiency exceeding 20%. Adv. Mater. Interfaces 7, 1901406 (2020). https://doi.org/10.1002/admi.201901406
M.M. Byranvand, T. Kim, S. Song, G. Kang, S.U. Ryu et al., p-type CuI islands on TiO2 electron transport layer for a highly efficient planar-perovskite solar cell with negligible hysteresis. Adv. Energy Mater. 8, 1702235 (2018). https://doi.org/10.1002/aenm.201702235
M. Kim, I.-W. Choi, S.J. Choi, J.W. Song, S.-I. Mo et al., Enhanced electrical properties of Li-salts doped mesoporous TiO2 in perovskite solar cells. Joule 5, 659 (2021). https://doi.org/10.1016/j.joule.2021.02.007
B. Wang, J. Yang, L. Lu, W. Xiao, H. Wu et al., Interface engineering of air-stable n-doping fullerene-modified TiO2 electron transport layer for highly efficient and stable perovskite solar cells. Adv. Mater. Interfaces 7, 1901964 (2020). https://doi.org/10.1002/admi.201901964
S. Haque, M.J. Mendes, O. Sanchez-Sobrado, H. Águas, E. Fortunato et al., Photonic-structured TiO2 for high-efficiency, flexible and stable perovskite solar cells. Nano Energy 59, 91 (2019). https://doi.org/10.1016/j.nanoen.2019.02.023
T. Leijtens, G.E. Eperon, S. Pathak, A. Abate, M.M. Lee et al., Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat. Commun. 4, 1 (2013). https://doi.org/10.1038/ncomms3885
M. Shahiduzzaman, M.I. Hossain, S. Visal, T. Kaneko, W. Qarony et al., Spray pyrolyzed TiO2 embedded multi-layer front contact design for high-efficiency perovskite solar cells. Nano-Micro. Lett. 13, 36 (2021). https://doi.org/10.1007/s40820-020-00559-2
V. Roiati, E. Mosconi, A. Listorti, S. Colella, G. Gigli et al., Stark effect in perovskite/TiO2 solar cells: evidence of local interfacial order. Nano Lett. 14, 2168 (2014). https://doi.org/10.1021/nl500544c
R.A. Kerner, B.P. Rand, Linking chemistry at the TiO2/CH3NH3PbI3 interface to current–voltage hysteresis. J. Phys. Chem. Lett. 8, 2298 (2017). https://doi.org/10.1021/acs.jpclett.7b00712
S. Ito, S. Tanaka, K. Manabe, H. Nishino, Effects of surface blocking layer of Sb2S3 on nanocrystalline TiO2 for CH3NH3PbI3 perovskite solar cells. J. Phys. Chem. C 118, 16995 (2014). https://doi.org/10.1021/jp500449z
J. Zhang, T. Pauporté, Effects of oxide contact layer on the preparation and properties of CH3NH3PbI3 for perovskite solar cell application. J. Phys. Chem. C 119, 14919 (2015). https://doi.org/10.1021/acs.jpcc.5b02984
M.M. Tavakoli, R. Tavakoli, Z. Nourbakhsh, A. Waleed, U.S. Virk et al., High efficiency and stable perovskite solar cell using ZnO/rGO QDs as an electron transfer layer. Adv. Mater. Interfaces 3, 1500790 (2016). https://doi.org/10.1002/admi.201500790
H. Si, Q. Liao, Z. Zhang, Y. Li, X. Yang et al., An innovative design of perovskite solar cells with Al2O3 inserting at ZnO/perovskite interface for improving the performance and stability. Nano Energy 22, 223 (2016). https://doi.org/10.1016/j.nanoen.2016.02.025
R. Azmi, S. Hwang, W. Yin, T.-W. Kim, T.K. Ahn et al., High efficiency low-temperature processed perovskite solar cells integrated with alkali metal doped ZnO electron transport layers. ACS Energy Lett. 3, 1241 (2018). https://doi.org/10.1021/acsenergylett.8b00493
Z. Wang, X. Zhu, J. Feng, C. Wang, C. Zhang et al., Antisolvent-and annealing-free deposition for highly stable efficient perovskite solar cells via modified ZnO. Adv. Sci. 8, 2002860 (2021). https://doi.org/10.1002/advs.202002860
J. Idígoras, A. Todinova, J.R. Sánchez-Valencia, A. Barranco, A. Borrás et al., The interaction between hybrid organic–inorganic halide perovskite and selective contacts in perovskite solar cells: an infrared spectroscopy study. Phys. Chem. Chem. Phys. 18, 13583 (2016). https://doi.org/10.1039/C6CP01265E
J. Yang, B.D. Siempelkamp, E. Mosconi, F. De Angelis, T.L. Kelly, Origin of the thermal instability in CH3NH3PbI3 thin films deposited on ZnO. Chem. Mater. 27, 4229 (2015). https://doi.org/10.1021/acs.chemmater.5b01598
Y. Cheng, Q.-D. Yang, J. Xiao, Q. Xue, H.-W. Li et al., Decomposition of organometal halide perovskite films on zinc oxide nanops. ACS Appl. Mater. Interfaces 7, 36 (2015). https://doi.org/10.1021/acsami.5b04695
F. Hao, C.C. Stoumpos, D.H. Cao, R.P.H. Chang, M.G. Kanatzidis, Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics 8, 489 (2014). https://doi.org/10.1038/nphoton.2014.82
F. Giustino, H.J. Snaith, Toward lead-free perovskite solar cells. ACS Energy Lett. 1, 1233 (2016). https://doi.org/10.1021/acsenergylett.6b00499
Z. Li, L. Wang, R. Liu, Y. Fan, H. Meng et al., Spontaneous interface ion exchange: passivating surface defects of perovskite solar cells with enhanced photovoltage. Adv. Energy Mater. 9, 1902142 (2019). https://doi.org/10.1002/aenm.201902142
J. You, L. Meng, T.-B. Song, T.-F. Guo, Y. Yang et al., Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 11, 75 (2016). https://doi.org/10.1038/nnano.2015.230
H. Lee, C. Lee, Analysis of ion-diffusion-induced interface degradation in inverted perovskite solar cells via restoration of the Ag electrode. Adv. Energy Mater. 8, 1702197 (2018). https://doi.org/10.1002/aenm.201702197
J. Xu, A. Buin, A.H. Ip, W. Li, O. Voznyy et al., Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes. Nat. Commun. 6, 7081 (2015). https://doi.org/10.1038/ncomms8081
Q. Wang, C.-C. Chueh, M. Eslamian, A.K.-Y. Jen, Modulation of PEDOT: PSS pH for efficient inverted perovskite solar cells with reduced potential loss and enhanced stability. ACS Appl. Mater. Interfaces 8, 32068 (2016). https://doi.org/10.1021/acsami.6b11757
W. Sun, Y. Li, Y. Xiao, Z. Zhao, S. Ye et al., An ammonia modified PEDOT: PSS for interfacial engineering in inverted planar perovskite solar cells. Org. Electron. 46, 22 (2017). https://doi.org/10.1016/j.orgel.2017.03.019
Y. Jiang, S.-C. Yang, Q. Jeangros, S. Pisoni, T. Moser et al., Mitigation of vacuum and illumination-induced degradation in perovskite solar cells by structure engineering. Joule 4, 1087 (2020). https://doi.org/10.1016/j.joule.2020.03.017
Y. Li, B. Wang, T. Liu, Q. Zeng, D. Cao et al., Interfacial engineering of PTAA/perovskites for improved crystallinity and hole extraction in inverted perovskite solar cells. ACS Appl. Mater. Interfaces 14, 3284 (2022). https://doi.org/10.1021/acsami.1c21000
T. Liu, K. Chen, Q. Hu, R. Zhu, Q. Gong, Inverted perovskite solar cells: progresses and perspectives. Adv. Energy Mater. 6, 1600457 (2016). https://doi.org/10.1002/aenm.201600457
H. Wang, Z. Huang, S. Xiao, X. Meng, Z. Xing et al., An in situ bifacial passivation strategy for flexible perovskite solar module with mechanical robustness by roll-to-roll fabrication. J. Mater. Chem. A 9, 5759 (2021). https://doi.org/10.1039/D0TA12067G
M. Du, S. Zhao, L. Duan, Y. Cao, H. Wang et al., Surface redox engineering of vacuum-deposited NiOx for top-performance perovskite solar cells and modules. Joule 6, 1931 (2022). https://doi.org/10.1016/j.joule.2022.06.026
W. Chen, F.Z. Liu, X.Y. Feng, A.B. Djurišić, W.K. Chan et al., Cesium doped NiOx as an efficient hole extraction layer for inverted planar perovskite solar cells. Adv. Energy Mater. 7, 1700722 (2017). https://doi.org/10.1002/aenm.201700722
J.R. Manders, S.W. Tsang, M.J. Hartel, T.H. Lai, S. Chen et al., Solution-processed nickel oxide hole transport layers in high efficiency polymer photovoltaic cells. Adv. Funct. Mater. 23, 2993 (2013). https://doi.org/10.1002/adfm.201202269
C.C. Boyd, R.C. Shallcross, T. Moot, R. Kerner, L. Bertoluzzi et al., Overcoming redox reactions at perovskite-nickel oxide interfaces to boost voltages in perovskite solar cells. Joule 4, 1759 (2020). https://doi.org/10.1016/j.joule.2020.06.004
F. Hou, Z. Su, F. Jin, X. Yan, L. Wang et al., Efficient and stable planar heterojunction perovskite solar cells with an MoO3/PEDOT: PSS hole transporting layer. Nanoscale 7, 9427 (2015). https://doi.org/10.1039/C5NR01864A
J.W. Jo, M.S. Seo, M. Park, J.Y. Kim, J.S. Park et al., Improving performance and stability of flexible planar-heterojunction perovskite solar cells using polymeric hole-transport material. Adv. Funct. Mater. 26, 4464 (2016). https://doi.org/10.1002/adfm.201600746
Y. Meng, Z. Hu, N. Ai, Z. Jiang, J. Wang et al., Improving the stability of bulk heterojunction solar cells by incorporating pH-neutral PEDOT: PSS as the hole transport layer. ACS Appl. Mater. Interfaces 6, 5122 (2014). https://doi.org/10.1021/am500336s
C. Redondo-Obispo, T.S. Ripolles, S. Cortijo-Campos, A.L. Alvarez, E. Climent-Pascual et al., Enhanced stability and efficiency in inverted perovskite solar cells through graphene doping of PEDOT: PSS hole transport layer. Mater. Design. 191, 108587 (2020). https://doi.org/10.1016/j.matdes.2020.108587
C. Liu, L. Zhang, Y. Li, X. Zhou, S. She et al., Highly stable and efficient perovskite solar cells with 22.0% efficiency based on inorganic–organic dopant-free double hole transporting layers. Adv. Funct. Mater. 30, 1908462 (2020). https://doi.org/10.1002/adfm.201908462
S. Kim, S. Bae, S.-W. Lee, K. Cho, K.D. Lee et al., Relationship between ion migration and interfacial degradation of CH3NH3PbI3 perovskite solar cells under thermal conditions. Sci. Rep. 7, 1 (2017). https://doi.org/10.1038/s41598-017-00866-6
T. Wu, R. Zhuang, R. Zhao, R. Zhao, L. Zhu et al., Understanding the effects of fluorine substitution in lithium salt on photovoltaic properties and stability of perovskite solar cells. ACS Energy Lett. 6, 2218–2228 (2021). https://doi.org/10.1021/acsenergylett.1c00685
Y. Liu, Y. Hu, X. Zhang, P. Zeng, F. Li et al., Inhibited aggregation of lithium salt in spiro-OMeTAD toward highly efficient perovskite solar cells. Nano Energy 70, 104483 (2020). https://doi.org/10.1016/j.nanoen.2020.104483
W. Li, H. Dong, L. Wang, N. Li, X. Guo et al., Montmorillonite as bifunctional buffer layer material for hybrid perovskite solar cells with protection from corrosion and retarding recombination. J. Mater. Chem. A 2, 13587 (2014). https://doi.org/10.1039/C4TA01550A
Y. Yue, N. Salim, Y. Wu, X. Yang, A. Islam et al., Enhanced stability of perovskite solar cells through corrosion-free pyridine derivatives in hole-transporting materials. Adv. Mater. 28, 10738 (2016). https://doi.org/10.1002/adma.201602822
B.-A. Chen, J.-T. Lin, N.-T. Suen, C.-W. Tsao, T.-C. Chu et al., In situ identification of photo- and moisture-dependent phase evolution of perovskite solar cells. ACS Energy Lett. 2, 342 (2017). https://doi.org/10.1021/acsenergylett.6b00698
Q. Wu, C. Xue, Y. Li, P. Zhou, W. Liu et al., Kesterite Cu2ZnSnS4 as a low-cost inorganic hole-transporting material for high-efficiency perovskite solar cells. ACS Appl. Mater. Interfaces 7, 28466 (2015). https://doi.org/10.1021/acsami.5b09572
Y. Yang, H. Chen, X. Zheng, X. Meng, T. Zhang et al., Ultrasound-spray deposition of multi-walled carbon nanotubes on NiO nanops-embedded perovskite layers for high-performance carbon-based perovskite solar cells. Nano Energy 42, 322 (2017). https://doi.org/10.1016/j.nanoen.2017.11.003
C. Liu, X. Zhou, S. Chen, X. Zhao, S. Dai et al., Hydrophobic Cu2O quantum dots enabled by surfactant modification as top hole-transport materials for efficient perovskite solar cells. Adv. Sci. 6, 1801169 (2019). https://doi.org/10.1002/advs.201801169
I.S. Yang, S. Lee, J. Choi, M.T. Jung, J. Kim et al., Enhancement of open circuit voltage for CuSCN-based perovskite solar cells by controlling the perovskite/CuSCN interface with functional molecules. J. Mater. Chem. A 7, 6028 (2019). https://doi.org/10.1039/C8TA12217B
B. Lee, A.J. Yun, J. Kim, B. Gil, B. Shin et al., Aminosilane-modified CuGaO2 nanops incorporated with CuSCN as a hole-transport layer for efficient and stable perovskite solar cells. Adv. Mater. Interfaces 6, 1901372 (2019). https://doi.org/10.1002/admi.201901372
N. Arora, M.I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber et al., Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science 358, 768 (2017). https://doi.org/10.1126/science.aam5655
G.A. Sepalage, S. Meyer, A.R. Pascoe, A.D. Scully, U. Bach et al., A facile deposition method for CuSCN: exploring the influence of CuSCN on JV hysteresis in planar perovskite solar cells. Nano Energy 32, 310 (2017). https://doi.org/10.1016/j.nanoen.2016.12.043
P. Xu, J. Liu, J. Huang, F. Yu, C.-H. Li et al., Interfacial engineering of CuSCN-based perovskite solar cells via PMMA interlayer toward enhanced efficiency and stability. New J. Chem. 45, 13168 (2021). https://doi.org/10.1039/D1NJ02454J
L. Kavan, Z.V. Živcová, P. Hubík, N. Arora, M.I. Dar et al., Electrochemical characterization of CuSCN hole-extracting thin films for perovskite photovoltaics. ACS Appl. Energy Mater. 2, 4264 (2019). https://doi.org/10.1021/acsaem.9b00496
H.-S. Kim, I.-H. Jang, N. Ahn, M. Choi, A. Guerrero et al., Control of I-V hysteresis in CH3NH3PbI3 perovskite solar cell. J. Phys. Chem. Lett. 6, 4633 (2015). https://doi.org/10.1021/acs.jpclett.5b02273
T. Zhang, X. Meng, Y. Bai, S. Xiao, C. Hu et al., Profiling the organic cation-dependent degradation of organolead halide perovskite solar cells. J. Mater. Chem. A 5, 1103 (2017). https://doi.org/10.1039/C6TA09687E
Y. Kato, L.K. Ono, M.V. Lee, S. Wang, S.R. Raga et al., Silver iodide formation in methyl ammonium lead iodide perovskite solar cells with silver top electrodes. Adv. Mater. Interfaces 2, 1500195 (2015). https://doi.org/10.1002/admi.201500195
J. Li, Q. Dong, N. Li, L. Wang, Direct evidence of ion diffusion for the silver-electrode-induced thermal degradation of inverted perovskite solar cells. Adv. Energy Mater. 7, 1602922 (2017). https://doi.org/10.1002/aenm.201602922
E. Lee, J. Ahn, H.C. Kwon, S. Ma, K. Kim et al., All-solution-processed silver nanowire window electrode-based flexible perovskite solar cells enabled with amorphous metal oxide protection. Adv. Energy Mater. 8, 1702182 (2018). https://doi.org/10.1002/aenm.201702182
Y. Cheng, X. Liu, Z. Guan, M. Li, Z. Zeng et al., Revealing the degradation and self-healing mechanisms in perovskite solar cells by sub-bandgap external quantum efficiency spectroscopy. Adv. Mater. 33, 2006170 (2021). https://doi.org/10.1002/adma.202006170
C.C. Boyd, R. Cheacharoen, K.A. Bush, R. Prasanna, T. Leijtens et al., Barrier design to prevent metal-induced degradation and improve thermal stability in perovskite solar cells. ACS Energy Lett. 3, 1772 (2018). https://doi.org/10.1021/acsenergylett.8b00926
J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat et al., Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 592, 381–385 (2021). https://doi.org/10.1038/s41586-021-03406-5
A. Guerrero, J. You, C. Aranda, Y.S. Kang, G. Garcia-Belmonte et al., Interfacial degradation of planar lead halide perovskite solar cells. ACS Nano 10, 218 (2016). https://doi.org/10.1021/acsnano.5b03687
P. Qin, T. Wu, Z. Wang, L. Xiao, L. Ma et al., Grain boundary and interface passivation with Core-Shell Au@CdS nanospheres for high-efficiency perovskite solar cells. Adv. Funct. Mater. 30, 1908408 (2020). https://doi.org/10.1002/adfm.201908408
A. Davis, T. Tran, D. Young, Solution chemistry of iodide leaching of gold. Hydrometallurgy 32, 143 (1993). https://doi.org/10.1016/0304-386X(93)90020-E
L. Liang, Y. Cai, X. Li, M.K. Nazeeruddin, P. Gao, All that glitters is not gold: recent progress of alternative counter electrodes for perovskite solar cells. Nano Energy 52, 211 (2018). https://doi.org/10.1016/j.nanoen.2018.07.049
M. Kaltenbrunner, G. Adam, E.D. Głowacki, M. Drack, R. Schwödiauer et al., Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air. Nat. Mater. 14, 1032 (2015). https://doi.org/10.1038/nmat4388
S. Cacovich, L. Ciná, F. Matteocci, G. Divitini, P.A. Midgley et al., Gold and iodine diffusion in large area perovskite solar cells under illumination. Nanoscale 9, 4700 (2017). https://doi.org/10.1039/C7NR00784A
K. Domanski, J.-P. Correa-Baena, N. Mine, M.K. Nazeeruddin, A. Abate et al., Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells. ACS Nano 10, 6306 (2016). https://doi.org/10.1021/acsnano.6b02613
N.N. Shlenskaya, N.A. Belich, M. Grätzel, E.A. Goodilin, A.B. Tarasov, Light-induced reactivity of gold and hybrid perovskite as a new possible degradation mechanism in perovskite solar cells. J. Mater. Chem. A 6, 1780 (2018). https://doi.org/10.1039/C7TA10217H
R.A. Kerner, P. Schulz, J.A. Christians, S.P. Dunfield, B. Dou et al., Reactions at noble metal contacts with methylammonium lead triiodide perovskites: role of underpotential deposition and electrochemistry. APL Mater. 7, 041103 (2019). https://doi.org/10.1063/1.5083812
Y. Xu, Y. Tian, M. Hou, Y. Wu, Y. Ding et al., Performance promotion through dual-interface engineering of CuSCN layers in planar perovskite solar cells. J. Phys. Chem. C 124, 27977 (2020). https://doi.org/10.1021/acs.jpcc.0c09794
Y. Yang, M.T. Hoang, D. Yao, N.D. Pham, V.T. Tiong et al., Spiro-OMeTAD or CuSCN as a preferable hole transport material for carbon-based planar perovskite solar cells. J. Mater. Chem. A 8, 12723 (2020). https://doi.org/10.1039/D0TA03951A
M. Jørgensen, K. Norrman, F.C. Krebs, Stability/degradation of polymer solar cells. Sol. Energy Mater. Sol. Cells 92, 686 (2008). https://doi.org/10.1016/j.solmat.2008.01.005
S. Guo, X. Sun, C. Ding, R. Huang, M. Tan et al., Non-uniform chemical corrosion of metal electrode of p–i–n type of perovskite solar cells caused by the diffusion of CH3NH3I. Energy Technol. 8, 2000250 (2020). https://doi.org/10.1002/ente.202000250
L. Zhao, R.A. Kerner, Z. Xiao, Y.L. Lin, K.M. Lee et al., Redox chemistry dominates the degradation and decomposition of metal halide perovskite optoelectronic devices. ACS Energy Lett. 1, 595 (2016). https://doi.org/10.1021/acsenergylett.6b00320
Y.-H. Lin, N. Sakai, P. Da, J. Wu, C. Sansom Harry et al., A piperidinium salt stabilizes efficient metal-halide perovskite solar cells. Science 369, 96 (2020). https://doi.org/10.1126/science.aba1628
M. Kim, S.G. Motti, R. Sorrentino, A. Petrozza, Enhanced solar cell stability by hygroscopic polymer passivation of metal halide perovskite thin film. Energy Environ. Sci. 11, 2609 (2018). https://doi.org/10.1039/C8EE01101J
Q. Wang, Q. Dong, T. Li, A. Gruverman, J. Huang, Thin insulating tunneling contacts for efficient and water-resistant perovskite solar cells. Adv. Mater. 28, 6734 (2016). https://doi.org/10.1002/adma.201600969
Z. Wu, T. Song, B. Sun, Carbon-based materials used for perovskite solar cells. ChemNanoMat 3, 75 (2017). https://doi.org/10.1002/cnma.201600312
L. Gao, I. Spanopoulos, W. Ke, S. Huang, I. Hadar et al., Improved environmental stability and solar cell efficiency of (MA, FA) PbI3 perovskite using a wide-band-gap 1D thiazolium lead iodide capping layer strategy. ACS Energy Lett. 4, 1763 (2019). https://doi.org/10.1021/acsenergylett.9b00930
Y. Hou, X. Du, S. Scheiner, D.P. McMeekin, Z. Wang et al., A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells. Science 358, 1192 (2017). https://doi.org/10.1126/science.aao5561
J. Kim, Y. Lee, B. Gil, A.J. Yun, J. Kim et al., A Cu2O–CuSCN nanocomposite as a hole-transport material of perovskite solar cells for enhanced carrier transport and suppressed interfacial degradation. ACS Appl. Energy Mater. 3, 7572 (2020). https://doi.org/10.1021/acsaem.0c01001
S.S. Mali, J.V. Patil, H. Kim, R. Luque, C.K. Hong, Highly efficient thermally stable perovskite solar cells via Cs:NiOx/CuSCN double-inorganic hole extraction layer interface engineering. Mater. Today 26, 8 (2019). https://doi.org/10.1016/j.mattod.2019.01.017
J. Cao, B. Wu, R. Chen, Y. Wu, Y. Hui et al., Efficient, hysteresis-free, and stable perovskite solar cells with ZnO as electron-transport layer: effect of surface passivation. Adv. Mater. 30, 1705596 (2018). https://doi.org/10.1002/adma.201705596
R. Azmi, C.-L. Lee, I.H. Jung, S.-Y. Jang, Simultaneous improvement in efficiency and stability of low-temperature-processed perovskite solar cells by interfacial control. Adv. Energy Mater. 8, 1702934 (2018). https://doi.org/10.1002/aenm.201702934
W. Qiu, M. Buffière, G. Brammertz, U.W. Paetzold, L. Froyen et al., High efficiency perovskite solar cells using a PCBM/ZnO double electron transport layer and a short air-aging step. Org. Electron. 26, 30 (2015). https://doi.org/10.1016/j.orgel.2015.06.046
S. Zheng, W. Li, T. Su, F. Xie, J. Chen et al., Metal oxide crox as a promising bilayer electron transport material for enhancing the performance stability of planar perovskite solar cells. Sol. RRL 2, 1700245 (2018). https://doi.org/10.1002/solr.201700245
Z. Jiang, X. Chen, X. Lin, X. Jia, J. Wang et al., Amazing stable open-circuit voltage in perovskite solar cells using AgAl alloy electrode. Sol. Energy Mater. Sol. Cells 146, 35 (2016). https://doi.org/10.1016/j.solmat.2015.11.026
E. Bi, H. Chen, F. Xie, Y. Wu, W. Chen et al., Diffusion engineering of ions and charge carriers for stable efficient perovskite solar cells. Nat. Commun. 8, 15330 (2017). https://doi.org/10.1038/ncomms15330
J. Lee, S. Singh, S. Kim, S. Baik, Graphene interfacial diffusion barrier between CuSCN and Au layers for stable perovskite solar cells. Carbon 157, 731 (2020). https://doi.org/10.1016/j.carbon.2019.10.101
Q. Jiang, J. Tong, Y. Xian, R.A. Kerner, S.P. Dunfield et al., Surface reaction for efficient and stable inverted perovskite solar cells. Nature 611, 278 (2022). https://doi.org/10.1038/s41586-022-05268-x
X. Li, W. Zhang, X. Guo, C. Lu, J. Wei et al., Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science 375, 434 (2022). https://doi.org/10.1126/science.abl5676
F. Zhang, K. Zhu, Additive engineering for efficient and stable perovskite solar cells. Adv. Energy Mater. 10, 1902579 (2020). https://doi.org/10.1002/aenm.201902579
D. Bi, P. Gao, R. Scopelliti, E. Oveisi, J. Luo et al., High-performance perovskite solar cells with enhanced environmental stability based on amphiphile-modified CH3NH3PbI3. Adv. Mater. 28, 2910 (2016). https://doi.org/10.1002/adma.201505255
Y. Zhao, J. Wei, H. Li, Y. Yan, W. Zhou et al., A polymer scaffold for self-healing perovskite solar cells. Nat. Commun. 7, 1 (2016). https://doi.org/10.1038/ncomms10228
X. Li, W. Zhang, W. Zhang, H.-Q. Wang, J. Fang, Spontaneous grain polymerization for efficient and stable perovskite solar cells. Nano Energy 58, 825 (2019). https://doi.org/10.1016/j.nanoen.2019.02.009
L. Zuo, H. Guo, D.W. deQuilettes, S. Jariwala, N. deMarco et al., Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells. Sci. Adv. 3, e1700106 (2017)
X. Li, W. Zhang, Y.-C. Wang, W. Zhang, H.-Q. Wang et al., In-situ cross-linking strategy for efficient and operationally stable methylammoniun lead iodide solar cells. Nat. Commun. 9, 1 (2018). https://doi.org/10.1038/s41467-018-06204-2
S. Bai, P. Da, C. Li, Z. Wang, Z. Yuan et al., Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 571, 245 (2019). https://doi.org/10.1038/s41586-019-1357-2
L. Gao, S. Huang, L. Chen, X. Li, B. Ding et al., Excellent stability of perovskite solar cells by passivation engineering. Sol. RRL 2, 1800088 (2018). https://doi.org/10.1002/solr.201800088
G.Y. Kim, A. Senocrate, T.-Y. Yang, G. Gregori, M. Grätzel et al., Large tunable photoeffect on ion conduction in halide perovskites and implications for photodecomposition. Nat. Mater. 17, 445 (2018). https://doi.org/10.1038/s41563-018-0038-0
Q. Lou, H. Li, Q. Huang, Z. Shen, F. Li et al., Multifunctional CNT: TiO2 additives in spiro-OMeTAD layer for highly efficient and stable perovskite solar cells. EcoMat 3, e12099 (2021). https://doi.org/10.1002/eom2.12099
Q. Luo, Y. Zhang, C. Liu, J. Li, N. Wang et al., Iodide-reduced graphene oxide with dopant-free spiro-OMeTAD for ambient stable and high-efficiency perovskite solar cells. J. Mater. Chem. A 3, 15996 (2015). https://doi.org/10.1039/C5TA02710A
Y. Han, G. Zhang, H. Xie, T. Kong, Y. Li et al., Azide additive acting as a powerful locker for Li+ and TBP in spiro-OMeTAD toward highly efficient and stable perovskite solar cells. Nano Energy (2022). https://doi.org/10.1016/j.nanoen.2022.107072
Y. Shao, Y. Fang, T. Li, Q. Wang, Q. Dong et al., Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films. Energy Environ. Sci. 9, 1752 (2016). https://doi.org/10.1039/C6EE00413J
R. Wang, J. Xue, L. Meng, J.-W. Lee, Z. Zhao et al., Caffeine improves the performance and thermal stability of perovskite solar cells. Joule 3, 1464 (2019). https://doi.org/10.1016/j.joule.2019.04.005
L. Liu, S. Huang, Y. Lu, P. Liu, Y. Zhao et al., Grain-boundary “patches” by in situ conversion to enhance perovskite solar cells stability. Adv. Mater. 30, 1800544 (2018). https://doi.org/10.1002/adma.201800544
X. Li, S. Ke, X. Feng, X. Zhao, W. Zhang et al., Enhancing the stability of perovskite solar cells through cross-linkable and hydrogen bonding multifunctional additives. J. Mater. Chem. A 9, 12684 (2021). https://doi.org/10.1039/D1TA01572A
Y. Ma, Y. Cheng, X. Xu, M. Li, C. Zhang et al., Suppressing ion migration across perovskite grain boundaries by polymer additives. Adv. Funct. Mater. 31, 2006802 (2021). https://doi.org/10.1002/adfm.202006802