Multifunctional Graphdiyne Enables Efficient Perovskite Solar Cells via Anti-Solvent Additive Engineering
Corresponding Author: Jizheng Wang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 121
Abstract
Finding ways to produce dense and smooth perovskite films with negligible defects is vital for achieving high-efficiency perovskite solar cells (PSCs). Herein, we aim to enhance the quality of the perovskite films through the utilization of a multifunctional additive in the perovskite anti-solvent, a strategy referred to as anti-solvent additive engineering. Specifically, we introduce ortho-substituted-4′-(4,4″-di-tert-butyl-1,1′:3′,1″-terphenyl)-graphdiyne (o-TB-GDY) as an AAE additive, characterized by its sp/sp2-cohybridized and highly π-conjugated structure, into the anti-solvent. o-TB-GDY not only significantly passivates undercoordinated lead defects (through potent coordination originating from specific high π–electron conjugation), but also serves as nucleation seeds to effectively enhance the nucleation and growth of perovskite crystals. This markedly reduces defects and non-radiative recombination, thereby increasing the power conversion efficiency (PCE) to 25.62% (certified as 25.01%). Meanwhile, the PSCs exhibit largely enhanced stability, maintaining 92.6% of their initial PCEs after 500 h continuous 1-sun illumination at ~ 23 °C in a nitrogen-filled glove box.
Highlights:
1 The use of novel nanographdiyne (o-TB-GDY) via anti-solvent additive engineering significantly enhances the nucleation and growth of perovskite crystals, leading to improved film quality, reduced film defects and suppressed non-radiative recombination.
2 o-TB-GDY primarily remains on the surface of the perovskite films after crystallization, where it strongly interacts with the undercoordinated Pb defects for effective passivation.
3 The optimized perovskite solar cells achieve a champion power conversion efficiency of 25.62% (certified as 25.01%) with good stability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html
- H. Lu, Y. Liu, P. Ahlawat, A. Mishra, W.R. Tress et al., Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells. Science 370, eabb8985 (2020). https://doi.org/10.1126/science.abb8985
- Q. Jiang, J. Tong, Y. Xian, R.A. Kerner, S.P. Dunfield et al., Surface reaction for efficient and stable inverted perovskite solar cells. Nature 611, 278–283 (2022). https://doi.org/10.1038/s41586-022-05268-x
- J.J. Yoo, G. Seo, M.R. Chua, T.G. Park, Y. Lu et al., Efficient perovskite solar cells via improved carrier management. Nature 590, 587–593 (2021). https://doi.org/10.1038/s41586-021-03285-w
- S. Ye, H. Rao, M. Feng, L. Xi, Z. Yen et al., Expanding the low-dimensional interface engineering toolbox for efficient perovskite solar cells. Nat. Energy 8, 284–293 (2023). https://doi.org/10.1038/s41560-023-01204-z
- J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat et al., Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 592, 381–385 (2021). https://doi.org/10.1038/s41586-021-03406-5
- Z. Liang, Y. Zhang, H. Xu, W. Chen, B. Liu et al., Homogenizing out-of-plane cation composition in perovskite solar cells. Nature 624, 557–563 (2023). https://doi.org/10.1038/s41586-023-06784-0
- H. Min, M. Kim, S.U. Lee, H. Kim, G. Kim et al., Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science 366, 749–753 (2019). https://doi.org/10.1126/science.aay7044
- P. Shi, Y. Ding, B. Ding, Q. Xing, T. Kodalle et al., Oriented nucleation in formamidinium perovskite for photovoltaics. Nature 620, 323–327 (2023). https://doi.org/10.1038/s41586-023-06208-z
- F. Ye, J. Ma, C. Chen, H. Wang, Y. Xu et al., Roles of MACl in sequentially deposited bromine-free perovskite absorbers for efficient solar cells. Adv. Mater. 33, e2007126 (2021). https://doi.org/10.1002/adma.202007126
- M. Jung, S.-G. Ji, G. Kim, S.I. Seok, Perovskite precursor solution chemistry: from fundamentals to photovoltaic applications. Chem. Soc. Rev. 48, 2011–2038 (2019). https://doi.org/10.1039/C8CS00656C
- J. Park, J. Kim, H.S. Yun, M.J. Paik, E. Noh et al., Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 616, 724–730 (2023). https://doi.org/10.1038/s41586-023-05825-y
- Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13, 460–466 (2019). https://doi.org/10.1038/s41566-019-0398-2
- Y.-W. Jang, S. Lee, K.M. Yeom, K. Jeong, K. Choi et al., Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth. Nat. Energy 6, 63–71 (2021). https://doi.org/10.1038/s41560-020-00749-7
- S. Sidhik, Y. Wang, M. De Siena, R. Asadpour, A.J. Torma et al., Deterministic fabrication of 3D/2D perovskite bilayer stacks for durable and efficient solar cells. Science 377, 1425–1430 (2022). https://doi.org/10.1126/science.abq7652
- F. Zhang, S.Y. Park, C. Yao, H. Lu, S.P. Dunfield et al., Metastable Dion-Jacobson 2D structure enables efficient and stable perovskite solar cells. Science 375, 71–76 (2022). https://doi.org/10.1126/science.abj2637
- G.E. Eperon, V.M. Burlakov, P. Docampo, A. Goriely, H.J. Snaith, Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater. 24, 151–157 (2014). https://doi.org/10.1002/adfm.201302090
- J.Y. Kim, J.-W. Lee, H.S. Jung, H. Shin, N.-G. Park, High-efficiency perovskite solar cells. Chem. Rev. 120, 7867–7918 (2020). https://doi.org/10.1021/acs.chemrev.0c00107
- N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu et al., Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014). https://doi.org/10.1038/nmat4014
- M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu et al., A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew. Chem. Int. Ed. 53, 9898–9903 (2014). https://doi.org/10.1002/anie.201405334
- H. Zhu, W. Yang, Y. Reo, G. Zheng, S. Bai et al., Tin perovskite transistors and complementary circuits based on A-site cation engineering. Nat. Electron. 6, 650–657 (2023). https://doi.org/10.1038/s41928-023-01019-6
- A. Liu, H. Zhu, S. Bai, Y. Reo, T. Zou et al., High-performance inorganic metal halide perovskite transistors. Nat. Electron. 5, 78–83 (2022). https://doi.org/10.1038/s41928-022-00712-2
- Z. Huang, Y. Bai, X. Huang, J. Li, Y. Wu et al., Anion–π interactions suppress phase impurities in FAPbI3 solar cells. Nature 623, 531–537 (2023). https://doi.org/10.1038/s41586-023-06637-w
- M. Kim, G.H. Kim, T.K. Lee, I.W. Choi, H.W. Choi et al., Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 3, 2179–2192 (2019). https://doi.org/10.1016/j.joule.2019.06.014
- T. Yang, C. Ma, W. Cai, S. Wang, Y. Wu et al., Amidino-based Dion-Jacobson 2D perovskite for efficient and stable 2D/3D heterostructure perovskite solar cells. Joule 7, 574–586 (2023). https://doi.org/10.1016/j.joule.2023.02.003
- Y.-J. Kang, S.-N. Kwon, S.-P. Cho, Y.-H. Seo, M.-J. Choi et al., Antisolvent additive engineering containing dual-function additive for triple-cation p–i–n perovskite solar cells with over 20% PCE. ACS Energy Lett. 5, 2535–2545 (2020). https://doi.org/10.1021/acsenergylett.0c01130
- Y. Wu, Q. Wang, Y. Chen, W. Qiu, Q. Peng, Stable perovskite solar cells with 25.17% efficiency enabled by improving crystallization and passivating defects synergistically. Energy Environ. Sci. 15, 4700–4709 (2022). https://doi.org/10.1039/D2EE02277J
- T. Yang, W. Zhao, Y. Yang, W. Huang, K. Zhao et al., Lead(II) 2-ethylhexanoate for simultaneous modulated crystallization and surface shielding to boost perovskite solar cell efficiency and stability. Adv. Mater. 35, e2211006 (2023). https://doi.org/10.1002/adma.202211006
- Y. Fang, Y. Liu, L. Qi, Y. Xue, Y. Li, 2D graphdiyne: an emerging carbon material. Chem. Soc. Rev. 51, 2681–2709 (2022). https://doi.org/10.1039/d1cs00592h
- J. He, G. Hu, Y. Jiang, S. Zeng, G. Niu et al., Dual-interface engineering in perovskite solar cells with 2D carbides. Angew. Chem. Int. Ed. 62, e202311865 (2023). https://doi.org/10.1002/anie.202311865
- W. Fan, S. Zhang, C. Xu, H. Si, Z. Xiong et al., Grain boundary perfection enabled by pyridinic nitrogen doped graphdiyne in hybrid perovskite. Adv. Funct. Mater. 31, 2104633 (2021). https://doi.org/10.1002/adfm.202104633
- S. Zhang, H. Si, W. Fan, M. Shi, M. Li et al., Graphdiyne: bridging SnO2 and perovskite in planar solar cells. Angew. Chem. Int. Ed. 59, 11573–11582 (2020). https://doi.org/10.1002/anie.202003502
- J. Li, T. Jiu, S. Chen, L. Liu, Q. Yao et al., Graphdiyne as a host active material for perovskite solar cell application. Nano Lett. 18, 6941–6947 (2018). https://doi.org/10.1021/acs.nanolett.8b02863
- Y. Luan, F. Wang, J. Zhuang, T. Lin, Y. Wei et al., Dual-function interface engineering for efficient perovskite solar cells. EcoMat 3, e12092 (2021). https://doi.org/10.1002/eom2.12092
- G. Hu, J. He, J. Chen, Y. Li, Synthesis of a wheel-shaped nanographdiyne. J. Am. Chem. Soc. 145, 5400–5409 (2023). https://doi.org/10.1021/jacs.2c13604
- S. Zhang, J. Wang, Z. Li, R. Zhao, L. Tong et al., Raman spectra and corresponding strain effects in graphyne and graphdiyne. J. Phys. Chem. C 120, 10605–10613 (2016). https://doi.org/10.1021/acs.jpcc.5b12388
- J. Shi, M.W. Samad, F. Li, C. Guo, C. Liu et al., Dual-site molecular dipole enables tunable interfacial field toward efficient and stable perovskite solar cells. Adv. Mater. 36, e2410464 (2024). https://doi.org/10.1002/adma.202410464
- J. Guo, G. Meng, X. Zhang, H. Huang, J. Shi et al., Dual-interface modulation with covalent organic framework enables efficient and durable perovskite solar cells. Adv. Mater. 35, e2302839 (2023). https://doi.org/10.1002/adma.202302839
- J. Guo, B. Wang, J. Min, J. Shi, Y. Wang et al., Stabilizing lead halide perovskites via an organometallic chemical bridge for efficient and stable photovoltaics. ACS Nano 18, 19865–19874 (2024). https://doi.org/10.1021/acsnano.4c07093
- F. Li, X. Deng, Z. Shi, S. Wu, Z. Zeng et al., Hydrogen-bond-bridged intermediate for perovskite solar cells with enhanced efficiency and stability. Nat. Photonics 17, 478–484 (2023). https://doi.org/10.1038/s41566-023-01180-6
- T. Yang, L. Gao, J. Lu, C. Ma, Y. Du et al., One-stone-for-two-birds strategy to attain beyond 25% perovskite solar cells. Nat. Commun. 14, 839 (2023). https://doi.org/10.1038/s41467-023-36229-1
- N. Wu, T. Yang, Z. Wang, Y. Wu, Y. Wang et al., Stabilizing precursor solution and controlling crystallization kinetics simultaneously for high-performance perovskite solar cells. Adv. Mater. 35, e2304809 (2023). https://doi.org/10.1002/adma.202304809
- Y. Wu, X. Yang, W. Chen, Y. Yue, M. Cai et al., Perovskite solar cells with 18.21% efficiency andarea over 1 cm2 fabricated by heterojunctionengineering. Nat. Energy 1, 16148 (2016). https://doi.org/10.1038/nenergy.2016.148
- H. Li, C. Zhang, C. Gong, D. Zhang, H. Zhang et al., 2D/3D heterojunction engineering at the buried interface towards high-performance inverted methylammonium-free perovskite solar cells. Nat. Energy 8, 946–955 (2023). https://doi.org/10.1038/s41560-023-01295-8
- C. Shao, J. He, G. Niu, Y. Dong, K. Yang et al., 2D BA2PbI4 regulating PbI2 crystallization to induce perovskite growth for efficient solar cells. Small 20, e2309009 (2024). https://doi.org/10.1002/smll.202309009
- H. Zhang, Z. Ren, K. Liu, M. Qin, Z. Wu et al., Controllable heterogenous seeding-induced crystallization for high-efficiency FAPbI3-based perovskite solar cells over 24%. Adv. Mater. 34, e2204366 (2022). https://doi.org/10.1002/adma.202204366
- C. Luo, G. Zheng, F. Gao, X. Wang, Y. Zhao et al., Facet orientation tailoring via 2D-seed- induced growth enables highly efficient and stable perovskite solar cells. Joule 6, 240–257 (2022). https://doi.org/10.1016/j.joule.2021.12.006
- T. Zhou, H. Lai, T. Liu, D. Lu, X. Wan et al., Highly efficient and stable solar cells based on crystalline oriented 2D/3D hybrid perovskite. Adv. Mater. 31, e1901242 (2019). https://doi.org/10.1002/adma.201901242
- T. Zhou, Z. Xu, R. Wang, X. Dong, Q. Fu et al., Crystal growth regulation of 2D/3D perovskite films for solar cells with both high efficiency and stability. Adv. Mater. 34, e2200705 (2022). https://doi.org/10.1002/adma.202200705
- Z. Wang, Q. Lin, F.P. Chmiel, N. Sakai, L.M. Herz et al., Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nat. Energy 2, 17135 (2017). https://doi.org/10.1038/nenergy.2017.135
- M. Stolterfoht, C.M. Wolff, J.A. Márquez, S. Zhang, C.J. Hages et al., Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells. Nat. Energy 3, 847–854 (2018). https://doi.org/10.1038/s41560-018-0219-8
- L. Luo, H. Zeng, Z. Wang, M. Li, S. You et al., Stabilization of 3D/2D perovskite heterostructures via inhibition of ion diffusion by cross-linked polymers for solar cells with improved performance. Nat. Energy 8, 294–303 (2023). https://doi.org/10.1038/s41560-023-01205-y
- D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu et al., Solar cells. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015). https://doi.org/10.1126/science.aaa2725
- M. Li, R. Sun, J. Chang, J. Dong, Q. Tian et al., Orientated crystallization of FA-based perovskite via hydrogen-bonded polymer network for efficient and stable solar cells. Nat. Commun. 14, 573 (2023). https://doi.org/10.1038/s41467-023-36224-6
- Y. Shen, G. Xu, J. Li, X. Lin, F. Yang et al., Functional ionic liquid polymer stabilizer for high-performance perovskite photovoltaics. Angew. Chem. Int. Ed. 62, e202300690 (2023). https://doi.org/10.1002/anie.202300690
- J. Wu, M.-H. Li, J.-T. Fan, Z. Li, X.-H. Fan et al., Regioselective multisite atomic-chlorine passivation enables efficient and stable perovskite solar cells. J. Am. Chem. Soc. 145, 5872–5879 (2023). https://doi.org/10.1021/jacs.2c13307
- Q. Tan, Z. Li, G. Luo, X. Zhang, B. Che et al., Inverted perovskite solar cells using dimethylacridine-based dopants. Nature 620, 545–551 (2023). https://doi.org/10.1038/s41586-023-06207-0
- Y. Wang, Y. Meng, C. Liu, R. Cao, B. Han et al., Utilizing electrostatic dynamic bonds in zwitterion elastomer for self-curing of flexible perovskite solar cells. Joule 8, 1120–1141 (2024). https://doi.org/10.1016/j.joule.2024.01.021
- L. Yan, H. Huang, P. Cui, S. Du, Z. Lan et al., Fabrication of perovskite solar cells in ambient air by blocking perovskite hydration with guanabenz acetate salt. Nat. Energy 8, 1158–1167 (2023). https://doi.org/10.1038/s41560-023-01358-w
- H. Guo, W. Xiang, Y. Fang, J. Li, Y. Lin, Molecular bridge on buried interface for efficient and stable perovskite solar cells. Angew. Chem. Int. Ed. 62, e202304568 (2023). https://doi.org/10.1002/anie.202304568
- X. Li, W. Zhang, X. Guo, C. Lu, J. Wei et al., Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science 375, 434–437 (2022). https://doi.org/10.1126/science.abl5676
- V.M. Le Corre, E.A. Duijnstee, O. El Tambouli, J.M. Ball, H.J. Snaith et al., Revealing charge carrier mobility and defect densities in metal halide perovskites via space-charge-limited current measurements. ACS Energy Lett. 6, 1087–1094 (2021). https://doi.org/10.1021/acsenergylett.0c02599
- L.M. Herz, Charge-carrier mobilities in metal halide perovskites: fundamental mechanisms and limits. ACS Energy Lett. 2, 1539–1548 (2017). https://doi.org/10.1021/acsenergylett.7b00276
- X. Zhuang, D. Zhou, S. Liu, R. Sun, Z. Shi et al., Learning from plants: lycopene additive passivation toward efficient and “fresh” perovskite solar cells with oxygen and ultraviolet resistance. Adv. Energy Mater. 12, 2200614 (2022). https://doi.org/10.1002/aenm.202200614
- Y. Zhao, F. Ma, Z. Qu, S. Yu, T. Shen et al., Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 377, 531–534 (2022). https://doi.org/10.1126/science.abp8873
- W. Peng, K. Mao, F. Cai, H. Meng, Z. Zhu et al., Reducing nonradiative recombination in perovskite solar cells with a porous insulator contact. Science 379, 683–690 (2023). https://doi.org/10.1126/science.ade3126
- P. Liao, X. Zhao, G. Li, Y. Shen, M. Wang, A new method for fitting current–voltage curves of planar heterojunction perovskite solar cells. Nano-Micro Lett. 10, 5 (2017). https://doi.org/10.1007/s40820-017-0159-z
- M.V. Khenkin, E.A. Katz, A. Abate, G. Bardizza, J.J. Berry et al., Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 5, 35–49 (2020). https://doi.org/10.1038/s41560-019-0529-5
References
Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html
H. Lu, Y. Liu, P. Ahlawat, A. Mishra, W.R. Tress et al., Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells. Science 370, eabb8985 (2020). https://doi.org/10.1126/science.abb8985
Q. Jiang, J. Tong, Y. Xian, R.A. Kerner, S.P. Dunfield et al., Surface reaction for efficient and stable inverted perovskite solar cells. Nature 611, 278–283 (2022). https://doi.org/10.1038/s41586-022-05268-x
J.J. Yoo, G. Seo, M.R. Chua, T.G. Park, Y. Lu et al., Efficient perovskite solar cells via improved carrier management. Nature 590, 587–593 (2021). https://doi.org/10.1038/s41586-021-03285-w
S. Ye, H. Rao, M. Feng, L. Xi, Z. Yen et al., Expanding the low-dimensional interface engineering toolbox for efficient perovskite solar cells. Nat. Energy 8, 284–293 (2023). https://doi.org/10.1038/s41560-023-01204-z
J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat et al., Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 592, 381–385 (2021). https://doi.org/10.1038/s41586-021-03406-5
Z. Liang, Y. Zhang, H. Xu, W. Chen, B. Liu et al., Homogenizing out-of-plane cation composition in perovskite solar cells. Nature 624, 557–563 (2023). https://doi.org/10.1038/s41586-023-06784-0
H. Min, M. Kim, S.U. Lee, H. Kim, G. Kim et al., Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science 366, 749–753 (2019). https://doi.org/10.1126/science.aay7044
P. Shi, Y. Ding, B. Ding, Q. Xing, T. Kodalle et al., Oriented nucleation in formamidinium perovskite for photovoltaics. Nature 620, 323–327 (2023). https://doi.org/10.1038/s41586-023-06208-z
F. Ye, J. Ma, C. Chen, H. Wang, Y. Xu et al., Roles of MACl in sequentially deposited bromine-free perovskite absorbers for efficient solar cells. Adv. Mater. 33, e2007126 (2021). https://doi.org/10.1002/adma.202007126
M. Jung, S.-G. Ji, G. Kim, S.I. Seok, Perovskite precursor solution chemistry: from fundamentals to photovoltaic applications. Chem. Soc. Rev. 48, 2011–2038 (2019). https://doi.org/10.1039/C8CS00656C
J. Park, J. Kim, H.S. Yun, M.J. Paik, E. Noh et al., Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 616, 724–730 (2023). https://doi.org/10.1038/s41586-023-05825-y
Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13, 460–466 (2019). https://doi.org/10.1038/s41566-019-0398-2
Y.-W. Jang, S. Lee, K.M. Yeom, K. Jeong, K. Choi et al., Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth. Nat. Energy 6, 63–71 (2021). https://doi.org/10.1038/s41560-020-00749-7
S. Sidhik, Y. Wang, M. De Siena, R. Asadpour, A.J. Torma et al., Deterministic fabrication of 3D/2D perovskite bilayer stacks for durable and efficient solar cells. Science 377, 1425–1430 (2022). https://doi.org/10.1126/science.abq7652
F. Zhang, S.Y. Park, C. Yao, H. Lu, S.P. Dunfield et al., Metastable Dion-Jacobson 2D structure enables efficient and stable perovskite solar cells. Science 375, 71–76 (2022). https://doi.org/10.1126/science.abj2637
G.E. Eperon, V.M. Burlakov, P. Docampo, A. Goriely, H.J. Snaith, Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater. 24, 151–157 (2014). https://doi.org/10.1002/adfm.201302090
J.Y. Kim, J.-W. Lee, H.S. Jung, H. Shin, N.-G. Park, High-efficiency perovskite solar cells. Chem. Rev. 120, 7867–7918 (2020). https://doi.org/10.1021/acs.chemrev.0c00107
N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu et al., Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014). https://doi.org/10.1038/nmat4014
M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu et al., A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew. Chem. Int. Ed. 53, 9898–9903 (2014). https://doi.org/10.1002/anie.201405334
H. Zhu, W. Yang, Y. Reo, G. Zheng, S. Bai et al., Tin perovskite transistors and complementary circuits based on A-site cation engineering. Nat. Electron. 6, 650–657 (2023). https://doi.org/10.1038/s41928-023-01019-6
A. Liu, H. Zhu, S. Bai, Y. Reo, T. Zou et al., High-performance inorganic metal halide perovskite transistors. Nat. Electron. 5, 78–83 (2022). https://doi.org/10.1038/s41928-022-00712-2
Z. Huang, Y. Bai, X. Huang, J. Li, Y. Wu et al., Anion–π interactions suppress phase impurities in FAPbI3 solar cells. Nature 623, 531–537 (2023). https://doi.org/10.1038/s41586-023-06637-w
M. Kim, G.H. Kim, T.K. Lee, I.W. Choi, H.W. Choi et al., Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 3, 2179–2192 (2019). https://doi.org/10.1016/j.joule.2019.06.014
T. Yang, C. Ma, W. Cai, S. Wang, Y. Wu et al., Amidino-based Dion-Jacobson 2D perovskite for efficient and stable 2D/3D heterostructure perovskite solar cells. Joule 7, 574–586 (2023). https://doi.org/10.1016/j.joule.2023.02.003
Y.-J. Kang, S.-N. Kwon, S.-P. Cho, Y.-H. Seo, M.-J. Choi et al., Antisolvent additive engineering containing dual-function additive for triple-cation p–i–n perovskite solar cells with over 20% PCE. ACS Energy Lett. 5, 2535–2545 (2020). https://doi.org/10.1021/acsenergylett.0c01130
Y. Wu, Q. Wang, Y. Chen, W. Qiu, Q. Peng, Stable perovskite solar cells with 25.17% efficiency enabled by improving crystallization and passivating defects synergistically. Energy Environ. Sci. 15, 4700–4709 (2022). https://doi.org/10.1039/D2EE02277J
T. Yang, W. Zhao, Y. Yang, W. Huang, K. Zhao et al., Lead(II) 2-ethylhexanoate for simultaneous modulated crystallization and surface shielding to boost perovskite solar cell efficiency and stability. Adv. Mater. 35, e2211006 (2023). https://doi.org/10.1002/adma.202211006
Y. Fang, Y. Liu, L. Qi, Y. Xue, Y. Li, 2D graphdiyne: an emerging carbon material. Chem. Soc. Rev. 51, 2681–2709 (2022). https://doi.org/10.1039/d1cs00592h
J. He, G. Hu, Y. Jiang, S. Zeng, G. Niu et al., Dual-interface engineering in perovskite solar cells with 2D carbides. Angew. Chem. Int. Ed. 62, e202311865 (2023). https://doi.org/10.1002/anie.202311865
W. Fan, S. Zhang, C. Xu, H. Si, Z. Xiong et al., Grain boundary perfection enabled by pyridinic nitrogen doped graphdiyne in hybrid perovskite. Adv. Funct. Mater. 31, 2104633 (2021). https://doi.org/10.1002/adfm.202104633
S. Zhang, H. Si, W. Fan, M. Shi, M. Li et al., Graphdiyne: bridging SnO2 and perovskite in planar solar cells. Angew. Chem. Int. Ed. 59, 11573–11582 (2020). https://doi.org/10.1002/anie.202003502
J. Li, T. Jiu, S. Chen, L. Liu, Q. Yao et al., Graphdiyne as a host active material for perovskite solar cell application. Nano Lett. 18, 6941–6947 (2018). https://doi.org/10.1021/acs.nanolett.8b02863
Y. Luan, F. Wang, J. Zhuang, T. Lin, Y. Wei et al., Dual-function interface engineering for efficient perovskite solar cells. EcoMat 3, e12092 (2021). https://doi.org/10.1002/eom2.12092
G. Hu, J. He, J. Chen, Y. Li, Synthesis of a wheel-shaped nanographdiyne. J. Am. Chem. Soc. 145, 5400–5409 (2023). https://doi.org/10.1021/jacs.2c13604
S. Zhang, J. Wang, Z. Li, R. Zhao, L. Tong et al., Raman spectra and corresponding strain effects in graphyne and graphdiyne. J. Phys. Chem. C 120, 10605–10613 (2016). https://doi.org/10.1021/acs.jpcc.5b12388
J. Shi, M.W. Samad, F. Li, C. Guo, C. Liu et al., Dual-site molecular dipole enables tunable interfacial field toward efficient and stable perovskite solar cells. Adv. Mater. 36, e2410464 (2024). https://doi.org/10.1002/adma.202410464
J. Guo, G. Meng, X. Zhang, H. Huang, J. Shi et al., Dual-interface modulation with covalent organic framework enables efficient and durable perovskite solar cells. Adv. Mater. 35, e2302839 (2023). https://doi.org/10.1002/adma.202302839
J. Guo, B. Wang, J. Min, J. Shi, Y. Wang et al., Stabilizing lead halide perovskites via an organometallic chemical bridge for efficient and stable photovoltaics. ACS Nano 18, 19865–19874 (2024). https://doi.org/10.1021/acsnano.4c07093
F. Li, X. Deng, Z. Shi, S. Wu, Z. Zeng et al., Hydrogen-bond-bridged intermediate for perovskite solar cells with enhanced efficiency and stability. Nat. Photonics 17, 478–484 (2023). https://doi.org/10.1038/s41566-023-01180-6
T. Yang, L. Gao, J. Lu, C. Ma, Y. Du et al., One-stone-for-two-birds strategy to attain beyond 25% perovskite solar cells. Nat. Commun. 14, 839 (2023). https://doi.org/10.1038/s41467-023-36229-1
N. Wu, T. Yang, Z. Wang, Y. Wu, Y. Wang et al., Stabilizing precursor solution and controlling crystallization kinetics simultaneously for high-performance perovskite solar cells. Adv. Mater. 35, e2304809 (2023). https://doi.org/10.1002/adma.202304809
Y. Wu, X. Yang, W. Chen, Y. Yue, M. Cai et al., Perovskite solar cells with 18.21% efficiency andarea over 1 cm2 fabricated by heterojunctionengineering. Nat. Energy 1, 16148 (2016). https://doi.org/10.1038/nenergy.2016.148
H. Li, C. Zhang, C. Gong, D. Zhang, H. Zhang et al., 2D/3D heterojunction engineering at the buried interface towards high-performance inverted methylammonium-free perovskite solar cells. Nat. Energy 8, 946–955 (2023). https://doi.org/10.1038/s41560-023-01295-8
C. Shao, J. He, G. Niu, Y. Dong, K. Yang et al., 2D BA2PbI4 regulating PbI2 crystallization to induce perovskite growth for efficient solar cells. Small 20, e2309009 (2024). https://doi.org/10.1002/smll.202309009
H. Zhang, Z. Ren, K. Liu, M. Qin, Z. Wu et al., Controllable heterogenous seeding-induced crystallization for high-efficiency FAPbI3-based perovskite solar cells over 24%. Adv. Mater. 34, e2204366 (2022). https://doi.org/10.1002/adma.202204366
C. Luo, G. Zheng, F. Gao, X. Wang, Y. Zhao et al., Facet orientation tailoring via 2D-seed- induced growth enables highly efficient and stable perovskite solar cells. Joule 6, 240–257 (2022). https://doi.org/10.1016/j.joule.2021.12.006
T. Zhou, H. Lai, T. Liu, D. Lu, X. Wan et al., Highly efficient and stable solar cells based on crystalline oriented 2D/3D hybrid perovskite. Adv. Mater. 31, e1901242 (2019). https://doi.org/10.1002/adma.201901242
T. Zhou, Z. Xu, R. Wang, X. Dong, Q. Fu et al., Crystal growth regulation of 2D/3D perovskite films for solar cells with both high efficiency and stability. Adv. Mater. 34, e2200705 (2022). https://doi.org/10.1002/adma.202200705
Z. Wang, Q. Lin, F.P. Chmiel, N. Sakai, L.M. Herz et al., Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nat. Energy 2, 17135 (2017). https://doi.org/10.1038/nenergy.2017.135
M. Stolterfoht, C.M. Wolff, J.A. Márquez, S. Zhang, C.J. Hages et al., Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells. Nat. Energy 3, 847–854 (2018). https://doi.org/10.1038/s41560-018-0219-8
L. Luo, H. Zeng, Z. Wang, M. Li, S. You et al., Stabilization of 3D/2D perovskite heterostructures via inhibition of ion diffusion by cross-linked polymers for solar cells with improved performance. Nat. Energy 8, 294–303 (2023). https://doi.org/10.1038/s41560-023-01205-y
D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu et al., Solar cells. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015). https://doi.org/10.1126/science.aaa2725
M. Li, R. Sun, J. Chang, J. Dong, Q. Tian et al., Orientated crystallization of FA-based perovskite via hydrogen-bonded polymer network for efficient and stable solar cells. Nat. Commun. 14, 573 (2023). https://doi.org/10.1038/s41467-023-36224-6
Y. Shen, G. Xu, J. Li, X. Lin, F. Yang et al., Functional ionic liquid polymer stabilizer for high-performance perovskite photovoltaics. Angew. Chem. Int. Ed. 62, e202300690 (2023). https://doi.org/10.1002/anie.202300690
J. Wu, M.-H. Li, J.-T. Fan, Z. Li, X.-H. Fan et al., Regioselective multisite atomic-chlorine passivation enables efficient and stable perovskite solar cells. J. Am. Chem. Soc. 145, 5872–5879 (2023). https://doi.org/10.1021/jacs.2c13307
Q. Tan, Z. Li, G. Luo, X. Zhang, B. Che et al., Inverted perovskite solar cells using dimethylacridine-based dopants. Nature 620, 545–551 (2023). https://doi.org/10.1038/s41586-023-06207-0
Y. Wang, Y. Meng, C. Liu, R. Cao, B. Han et al., Utilizing electrostatic dynamic bonds in zwitterion elastomer for self-curing of flexible perovskite solar cells. Joule 8, 1120–1141 (2024). https://doi.org/10.1016/j.joule.2024.01.021
L. Yan, H. Huang, P. Cui, S. Du, Z. Lan et al., Fabrication of perovskite solar cells in ambient air by blocking perovskite hydration with guanabenz acetate salt. Nat. Energy 8, 1158–1167 (2023). https://doi.org/10.1038/s41560-023-01358-w
H. Guo, W. Xiang, Y. Fang, J. Li, Y. Lin, Molecular bridge on buried interface for efficient and stable perovskite solar cells. Angew. Chem. Int. Ed. 62, e202304568 (2023). https://doi.org/10.1002/anie.202304568
X. Li, W. Zhang, X. Guo, C. Lu, J. Wei et al., Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science 375, 434–437 (2022). https://doi.org/10.1126/science.abl5676
V.M. Le Corre, E.A. Duijnstee, O. El Tambouli, J.M. Ball, H.J. Snaith et al., Revealing charge carrier mobility and defect densities in metal halide perovskites via space-charge-limited current measurements. ACS Energy Lett. 6, 1087–1094 (2021). https://doi.org/10.1021/acsenergylett.0c02599
L.M. Herz, Charge-carrier mobilities in metal halide perovskites: fundamental mechanisms and limits. ACS Energy Lett. 2, 1539–1548 (2017). https://doi.org/10.1021/acsenergylett.7b00276
X. Zhuang, D. Zhou, S. Liu, R. Sun, Z. Shi et al., Learning from plants: lycopene additive passivation toward efficient and “fresh” perovskite solar cells with oxygen and ultraviolet resistance. Adv. Energy Mater. 12, 2200614 (2022). https://doi.org/10.1002/aenm.202200614
Y. Zhao, F. Ma, Z. Qu, S. Yu, T. Shen et al., Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 377, 531–534 (2022). https://doi.org/10.1126/science.abp8873
W. Peng, K. Mao, F. Cai, H. Meng, Z. Zhu et al., Reducing nonradiative recombination in perovskite solar cells with a porous insulator contact. Science 379, 683–690 (2023). https://doi.org/10.1126/science.ade3126
P. Liao, X. Zhao, G. Li, Y. Shen, M. Wang, A new method for fitting current–voltage curves of planar heterojunction perovskite solar cells. Nano-Micro Lett. 10, 5 (2017). https://doi.org/10.1007/s40820-017-0159-z
M.V. Khenkin, E.A. Katz, A. Abate, G. Bardizza, J.J. Berry et al., Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 5, 35–49 (2020). https://doi.org/10.1038/s41560-019-0529-5