Recent Strategies and Advances in Hydrogel-Based Delivery Platforms for Bone Regeneration
Corresponding Author: Yongping Lu
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 73
Abstract
Bioactive molecules have shown great promise for effectively regulating various bone formation processes, rendering them attractive therapeutics for bone regeneration. However, the widespread application of bioactive molecules is limited by their low accumulation and short half-lives in vivo. Hydrogels have emerged as ideal carriers to address these challenges, offering the potential to prolong retention times at lesion sites, extend half-lives in vivo and mitigate side effects, avoid burst release, and promote adsorption under physiological conditions. This review systematically summarizes the recent advances in the development of bioactive molecule-loaded hydrogels for bone regeneration, encompassing applications in cranial defect repair, femoral defect repair, periodontal bone regeneration, and bone regeneration with underlying diseases. Additionally, this review discusses the current strategies aimed at improving the release profiles of bioactive molecules through stimuli-responsive delivery, carrier-assisted delivery, and sequential delivery. Finally, this review elucidates the existing challenges and future directions of hydrogel encapsulated bioactive molecules in the field of bone regeneration.
Highlights:
1 Recent advances in the combined delivery platform that integrate nano-/microscale carriers and with 3D hydrogel network for bone regeneration are summarized.
2 The strategies for bioactive molecules delivery involving nanoparticles, nanosheets, and microspheres, along with extra stimuli such as near-infrared light, temperature changes, ultrasonication, and inflammatory conditions, are introduced.
3 The prospects and challenges for the clinical translation and the development of nano-/microscale incorporated hydrogel-based delivery platform are discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G.N. Duda, S. Geissler, S. Checa, S. Tsitsilonis, A. Petersen et al., The decisive early phase of bone regeneration. Nat. Rev. Rheumatol. 19, 78–95 (2023). https://doi.org/10.1038/s41584-022-00887-0
- S.-I. Harada, G.A. Rodan, Control of osteoblast function and regulation of bone mass. Nature 423, 349–355 (2003). https://doi.org/10.1038/nature01660
- G.L. Koons, M. Diba, A.G. Mikos, Materials design for bone-tissue engineering. Nat. Rev. Mater. 5, 584–603 (2020). https://doi.org/10.1038/s41578-020-0204-2
- A.M. McDermott, S. Herberg, D.E. Mason, J.M. Collins, H.B. Pearson et al., Recapitulating bone development through engineered mesenchymal condensations and mechanical cues for tissue regeneration. Sci. Transl. Med. 11, eaav7756 (2019). https://doi.org/10.1126/scitranslmed.aav7756
- C.A. de Sousa, C.A.A. Lemos, J.F. Santiago-Júnior, L.P. Faverani, E.P. Pellizzer, Bone augmentation using autogenous bone versus biomaterial in the posterior region of atrophic mandibles: A systematic review and meta-analysis. J. Dent. 76, 1–8 (2018). https://doi.org/10.1016/j.jdent.2018.06.014
- A. Kaya, B. Kaya, A. Aktas, E.T. Fırat, Effect of rifampin in combination with allogeneic, alloplastic, and heterogenous bone grafts on bone regeneration in rat tibial bone defects. J. Oral Maxillofac. Surg. Med. Pathol. 27, 20–28 (2015). https://doi.org/10.1016/j.ajoms.2013.08.001
- K. Hurle, F.R. Maia, V.P. Ribeiro, S. Pina, J. Oliveira et al., Osteogenic lithium-doped brushite cements for bone regeneration. Bioact. Mater. 16, 403–417 (2022). https://doi.org/10.1016/j.bioactmat.2021.12.025
- M.A. Nazeer, O.C. Onder, I. Sevgili, E. Yilgor, I.H. Kavakli et al., 3D printed poly(lactic acid scaffolds modified with chitosan and hydroxyapatite for bone repair applications. Mater. Today Commun. 25, 101515 (2020). https://doi.org/10.1016/j.mtcomm.2020.101515
- C.R. Almeida, T. Serra, M.I. Oliveira, J.A. Planell, M.A. Barbosa et al., Impact of 3-D printed PLA-and chitosan-based scaffolds on human monocyte/macrophage responses: unraveling the effect of 3-D structures on inflammation. Acta Biomater. 10, 613–622 (2014). https://doi.org/10.1016/j.actbio.2013.10.035
- A. Salhotra, H.N. Shah, B. Levi, M.T. Longaker, Mechanisms of bone development and repair. Nat. Rev. Mol. Cell Biol. 21, 696–711 (2020). https://doi.org/10.1038/s41580-020-00279-w
- S. Liu, Z. Han, J.-N. Hao, D. Zhang, X. Li et al., Engineering of a NIR-activable hydrogel-coated mesoporous bioactive glass scaffold with dual-mode parathyroid hormone derivative release property for angiogenesis and bone regeneration. Bioact. Mater. 26, 1–13 (2023). https://doi.org/10.1016/j.bioactmat.2023.02.008
- B. Sun, H. Wang, B. Xiao, H. Yan, H. Wu et al., Bioactive composite hydrogel with effects of robust promoting osteogenesis and immunomodulation for osteoporotic bone regeneration. Chem. Eng. J. 476, 146743 (2023). https://doi.org/10.1016/j.cej.2023.146743
- S. Liu, Y.-N. Wang, L. Yu, J. Li, S. Ge, Development of a thermosensitive hydrogel loaded with DTT and SDF-1 facilitating in situ periodontal bone regeneration. Chem. Eng. J. 432, 134308 (2022). https://doi.org/10.1016/j.cej.2021.134308
- P. Pal, M.A. Tucci, L.W. Fan, R. Bollavarapu, J.W. Lee et al., Functionalized collagen/Elastin-like polypeptide hydrogels for craniofacial bone regeneration. Adv. Healthc. Mater. 12, 2202477 (2023). https://doi.org/10.1002/adhm.202202477
- J. Wu, G. Li, T. Ye, G. Lu, R. Li et al., Stem cell-laden injectable hydrogel microspheres for cancellous bone regeneration. Chem. Eng. J. 393, 124715 (2020). https://doi.org/10.1016/j.cej.2020.124715
- J. Deng, X. Wang, W. Zhang, L. Sun, X. Han et al., Versatile hypoxic extracellular vesicles laden in an injectable and bioactive hydrogel for accelerated bone regeneration. Adv. Funct. Mater. 33, 2211664 (2023). https://doi.org/10.1002/adfm.202211664
- T. Yang, Y. Dong, J. Wan, X. Liu, Y. Liu et al., Sustained release of BMSC-EVs from 3D printing Gel/HA/nHAP scaffolds for promoting bone regeneration in diabetic rats. Adv. Healthc. Mater. 12, 2203131 (2023). https://doi.org/10.1002/adhm.202203131
- Z. Zhang, Z. Hao, C. Xian, J. Zhang, J. Wu, Triple functional magnesium ascorbyl phosphate encapsulated hydrogel: A cosmetic ingredient promotes bone repair via anti-oxidation, calcium uptake and blood vessel remodeling. Chem. Eng. J. 472, 145061 (2023). https://doi.org/10.1016/j.cej.2023.145061
- Y. Xu, C. Xu, K. Yang, L. Ma, G. Li et al., Copper ion-modified germanium phosphorus nanosheets integrated with an electroactive and biodegradable hydrogel for neuro-vascularized bone regeneration. Adv. Healthc. Mater. 12, 2301151 (2023). https://doi.org/10.1002/adhm.202301151
- C. Liu, W. Liu, B. Qi, L. Fan, S. Liu et al., Bone homeostasis modulating orthopedic adhesive for the closed-loop management of osteoporotic fractures. Small 19, 2302704 (2023). https://doi.org/10.1002/smll.202302704
- B. Huang, M. Chen, J. Tian, Y. Zhang, Z. Dai et al., Oxygen-carrying and antibacterial fluorinated nano-hydroxyapatite incorporated hydrogels for enhanced bone regeneration. Adv. Healthc. Mater. 11, 2102540 (2022). https://doi.org/10.1002/adhm.202102540
- X. Jing, C. Xu, W. Su, Q. Ding, B. Ye et al., Photosensitive and conductive hydrogel induced innerved bone regeneration for infected bone defect repair. Adv. Healthc. Mater. 12, 2201349 (2023). https://doi.org/10.1002/adhm.202201349
- N. Sheng, F. Xing, Q.-Y. Zhang, J. Tan, R. Nie et al., A pleiotropic SIS-based hydrogel with immunomodulation via NLRP3 inflammasome inhibition for diabetic bone regeneration. Chem. Eng. J. 480, 147985 (2024). https://doi.org/10.1016/j.cej.2023.147985
- M. Qiao, Z. Xu, X. Pei, Y. Liu, J. Wang et al., Nano SIM@ZIF-8 modified injectable high-intensity biohydrogel with bidirectional regulation of osteogenesis and anti-adipogenesis for bone repair. Chem. Eng. J. 434, 134583 (2022). https://doi.org/10.1016/j.cej.2022.134583
- A. Lao, J. Wu, D. Li, A. Shen, Y. Li et al., Functionalized metal–organic framework-modified hydrogel that breaks the vicious cycle of inflammation and ROS for repairing of diabetic bone defects. Small 19, 2206919 (2023). https://doi.org/10.1002/smll.202206919
- Z. He, C. Sun, Y. Ma, X. Chen, Y. Wang et al., Rejuvenating aged bone repair through multihierarchy reactive oxygen species-regulated hydrogel. Adv. Mater. 36, 2306552 (2023). https://doi.org/10.1002/adma.202306552
- S. Liu, W. Wang, P. Wu, Z. Chen, W. Pu et al., Pathogenesis-guided engineering of multi-bioactive hydrogel co-delivering inflammation-resolving nanotherapy and pro-osteogenic protein for bone regeneration. Adv. Funct. Mater. 33, 2301523 (2023). https://doi.org/10.1002/adfm.202301523
- Y. Jiang, X. Pan, M. Yao, L. Han, X. Zhang et al., Bioinspired adhesive and tumor microenvironment responsive nanoMOFs assembled 3D-printed scaffold for anti-tumor therapy and bone regeneration. Nano Today 39, 101182 (2021). https://doi.org/10.1016/j.nantod.2021.101182
- L. Kuang, J. Huang, Y. Liu, X. Li, Y. Yuan et al., Injectable hydrogel with NIR light-responsive, dual-mode PTH release for osteoregeneration in osteoporosis. Adv. Funct. Mater. 31, 2105383 (2021). https://doi.org/10.1002/adfm.202105383
- Y. Wang, Y. Zhao, S. Ma, M. Fu, M. Wu et al., Injective programmable proanthocyanidin-coordinated zinc-based composite hydrogel for infected bone repair. Adv. Healthc. Mater. 13, 2302690 (2023). https://doi.org/10.1002/adhm.202302690
- H. Sun, J. Xu, Y. Wang, S. Shen, X. Xu et al., Bone microenvironment regulative hydrogels with ROS scavenging and prolonged oxygen-generating for enhancing bone repair. Bioact. Mater. 24, 477–496 (2023). https://doi.org/10.1016/j.bioactmat.2022.12.021
- F. Zhang, M. Lv, S. Wang, M. Li, Y. Wang et al., Ultrasound-triggered biomimetic ultrashort peptide nanofiber hydrogels promote bone regeneration by modulating macrophage and the osteogenic immune microenvironment. Bioact. Mater. 31, 231–246 (2024). https://doi.org/10.1016/j.bioactmat.2023.08.008
- S. Chen, X. Han, Y. Cao, W. Yi, Y. Zhu et al., Spatiotemporalized hydrogel microspheres promote vascularized osteogenesis via ultrasound oxygen delivery. Adv. Funct. Mater. 34, 2308205 (2024). https://doi.org/10.1002/adfm.202308205
- G. Zhu, T. Zhang, M. Chen, K. Yao, X. Huang et al., Bone physiological microenvironment and healing mechanism: Basis for future bone-tissue engineering scaffolds. Bioact. Mater. 6, 4110–4140 (2021). https://doi.org/10.1016/j.bioactmat.2021.03.043
- D. Kong, Y. Shi, Y. Gao, M. Fu, S. Kong et al., Preparation of BMP-2 loaded MPEG-PCL microspheres and evaluation of their bone repair properties. Biomed. Pharmacother. 130, 110516 (2020). https://doi.org/10.1016/j.biopha.2020.110516
- R. Reyes, A. Delgado, E. Sanchez, A. Fernandez, A. Hernandez et al., Repair of an osteochondral defect by sustained delivery of BMP-2 or TGFβ1 from a bilayered alginate–PLGA scaffold. J. Tissue Eng. Regen. Med. 8, 521–533 (2014). https://doi.org/10.1002/term.1549
- M.H. Hettiaratchi, L. Krishnan, T. Rouse, C. Chou, T.C. McDevitt et al., Heparin-mediated delivery of bone morphogenetic protein-2 improves spatial localization of bone regeneration. Sci. Adv. 6, eaay1240 (2020). https://doi.org/10.1126/sciadv.aay1240
- S.S. Lee, J.H. Kim, J. Jeong, S.H.L. Kim, R.H. Koh et al., Sequential growth factor releasing double cryogel system for enhanced bone regeneration. Biomaterials 257, 120223 (2020). https://doi.org/10.1016/j.biomaterials.2020.120223
- Z. Li, H. Lin, S. Shi, K. Su, G. Zheng et al., Controlled and sequential delivery of stromal derived factor-1 α (SDF-1α) and magnesium ions from bifunctional hydrogel for bone regeneration. Polymers 14, 2872 (2022). https://doi.org/10.3390/polym14142872
- L. Li, X. Liu, B. Gaihre, S. Park, Y. Li et al., SDF-1α/OPF/BP Composites enhance the migrating and osteogenic abilities of mesenchymal stem cells. Stem Cells Int. 2021, 1938819 (2021). https://doi.org/10.1155/2021/1938819
- Q. Liang, L. Du, R. Zhang, W. Kang, S. Ge, Stromal cell-derived factor-1/Exendin-4 cotherapy facilitates the proliferation, migration and osteogenic differentiation of human periodontal ligament stem cells in vitro and promotes periodontal bone regeneration in vivo. Cell Prolif. 54, e12997 (2021). https://doi.org/10.1111/cpr.12997
- A.M. Hocking, The role of chemokines in mesenchymal stem cell homing to wounds. Adv. Wound Care 4, 623–630 (2015). https://doi.org/10.1089/wound.2014.0579
- T.E. Foster, B.L. Puskas, B.R. Mandelbaum, M.B. Gerhardt, S.A. Rodeo, Platelet-rich plasma: from basic science to clinical applications. Am. J. Sport. Med. 37, 2259–2272 (2009). https://doi.org/10.1177/0363546509349921
- P.R. Amable, R.B.V. Carias, M.V.T. Teixeira, Í. da Cruz Pacheco, R.J.F. Corrêa do Amaral et al., Platelet-rich plasma preparation for regenerative medicine: optimization and quantification of cytokines and growth factors. Stem Cell Res. Ther. 4, 1–13 (2013). https://doi.org/10.1186/scrt218
- G. Jiang, S. Li, K. Yu, B. He, J. Hong et al., A 3D-printed PRP-GelMA hydrogel promotes osteochondral regeneration through M2 macrophage polarization in a rabbit model. Acta Biomater. 128, 150–162 (2021). https://doi.org/10.1016/j.actbio.2021.04.010
- A.C. Mitchell, P.S. Briquez, J.A. Hubbell, J.R. Cochran, Engineering growth factors for regenerative medicine applications. Acta Biomater. 30, 1–12 (2016). https://doi.org/10.1016/j.actbio.2015.11.007
- J. Tan, M. Zhang, Z. Hai, C. Wu, J. Lin et al., Sustained release of two bioactive factors from supramolecular hydrogel promotes periodontal bone regeneration. ACS Nano 13, 5616–5622 (2019). https://doi.org/10.1021/acsnano.9b00788
- L. Xian, X. Wu, L. Pang, M. Lou, C.J. Rosen et al., Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells. Nat. Med. 18, 1095–1101 (2012). https://doi.org/10.1038/nm.2793
- J. Kim, I.S. Kim, T.H. Cho, K.B. Lee, S.J. Hwang et al., Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells. Biomaterials 28, 1830–1837 (2007). https://doi.org/10.1016/j.biomaterials.2006.11.050
- A. Shekaran, J.R. García, A.Y. Clark, T.E. Kavanaugh, A.S. Lin et al., Bone regeneration using an alpha 2 beta 1 integrin-specific hydrogel as a BMP-2 delivery vehicle. Biomaterials 35, 5453–5461 (2014). https://doi.org/10.1016/j.biomaterials.2014.03.055
- S. Sanchez-Casanova, F.M. Martin-Saavedra, C. Escudero-Duch, M.I.F. Uceda, M. Prieto et al., Local delivery of bone morphogenetic protein-2 from near infrared-responsive hydrogels for bone tissue regeneration. Biomaterials 241, 119909 (2020). https://doi.org/10.1016/j.biomaterials.2020.119909
- S. Ren, X. Tang, L. Liu, F. Meng, X. Yang et al., Reinforced blood-derived protein hydrogels enable dual-level regulation of bio-physiochemical microenvironments for personalized bone regeneration with remarkable enhanced efficacy. Nano Lett. 22, 3904–3913 (2022). https://doi.org/10.1021/acs.nanolett.2c00057
- Z. Tang, Y. Yang, S. Bao, D. Yu, H. Wu et al., Biomimetic and spatiotemporally sequential hydrogel delivery system with self-healing and adhesion: triple growth factor for bone defect repair. Chem. Eng. J. 478, 147095 (2023). https://doi.org/10.1016/j.cej.2023.147095
- T. Zhu, M. Jiang, M. Zhang, L. Cui, X. Yang et al., Biofunctionalized composite scaffold to potentiate osteoconduction, angiogenesis, and favorable metabolic microenvironment for osteonecrosis therapy. Bioact. Mater. 9, 446–460 (2022). https://doi.org/10.1016/j.bioactmat.2021.08.005
- S. Sowmya, U. Mony, P. Jayachandran, S. Reshma, R.A. Kumar et al., Tri-layered nanocomposite hydrogel scaffold for the concurrent regeneration of cementum, periodontal ligament, and alveolar bone. Adv. Healthc. Mater. 6, 1601251 (2017). https://doi.org/10.1002/adhm.201601251
- J. Sun, J. Lyu, F. Xing, R. Chen, X. Duan et al., A biphasic, demineralized, and Decellularized allograft bone-hydrogel scaffold with a cell-based BMP-7 delivery system for osteochondral defect regeneration. J. Biomed. Mater. Res. Part A 108, 1909–1921 (2020). https://doi.org/10.1002/jbm.a.36954
- S. Zang, C. Xiao, M. He, B. Chen, B. Liu et al., RGD and rhBMP-7 immobilized on zirconia scaffold with interweaved human dental pulp stem cells for promoting bone regeneration. Mater. Design 232, 112052 (2023). https://doi.org/10.1016/j.matdes.2023.112052
- Q. Min, J. Liu, Y. Zhang, B. Yang, Y. Wan et al., Dual network hydrogels incorporated with bone morphogenic protein-7-loaded hyaluronic acid complex nanops for inducing chondrogenic differentiation of synovium-derived mesenchymal stem cells. Pharmaceutics 12, 613 (2020). https://doi.org/10.3390/pharmaceutics12070613
- H. Motasadizadeh, M. Tavakoli, S. Damoogh, F. Mottaghitalab, M. Gholami et al., Dual drug delivery system of teicoplanin and phenamil based on pH-sensitive silk fibroin/sodium alginate hydrogel scaffold for treating chronic bone infection. Biomater. Adv. 139, 213032 (2022). https://doi.org/10.1016/j.bioadv.2022.213032
- Y. Murahashi, F. Yano, H. Nakamoto, Y. Maenohara, K. Iba et al., Multi-layered PLLA-nanosheets loaded with FGF-2 induce robust bone regeneration with controlled release in critical-sized mouse femoral defects. Acta Biomater. 85, 172–179 (2019). https://doi.org/10.1016/j.actbio.2018.12.031
- J. Zhang, Z. Liu, Y. Li, Q. You, J. Yang et al., FGF2: a key regulator augmenting tendon-to-bone healing and cartilage repair. Regen. Med. 15, 2129–2142 (2020). https://doi.org/10.2217/rme-2019-0080
- R. Kumar, J.R. Thompson, The regulation of parathyroid hormone secretion and synthesis. J Am Soc Nephrol 22, 216–224 (2011). https://doi.org/10.1681/ASN.2010020186
- J. Huang, D. Lin, Z. Wei, Q. Li, J. Zheng et al., Parathyroid hormone derivative with reduced osteoclastic activity promoted bone regeneration via synergistic bone remodeling and angiogenesis. Small 16, 1905876 (2020). https://doi.org/10.1002/smll.201905876
- M.N. Wein, Y. Liang, O. Goransson, T.B. Sundberg, J. Wang et al., SIKs control osteocyte responses to parathyroid hormone. Nat. Commun. 7, 13176 (2016). https://doi.org/10.1038/ncomms13176
- S.J. Wojda, S.W. Donahue, Parathyroid hormone for bone regeneration. J. Orthop. Res. 36, 2586–2594 (2018). https://doi.org/10.1002/jor.24075
- P. McSheehy, T. Chambers, Osteoblastic cells mediate osteoclastic responsiveness to parathyroid hormone. Endocrinology 118, 824–828 (1986). https://doi.org/10.1210/endo-118-2-824
- Y. Ren, W. Kong, Y. Liu, X. Yang, X. Xu et al., Photocurable 3D-printed PMBG/TCP scaffold coordinated with PTH (1–34) bidirectionally regulates bone homeostasis to accelerate bone regeneration. Adv. Healthc. Mater. 12, 2300292 (2023). https://doi.org/10.1002/adhm.202300292
- M.M. Menger, A.L. Tobias, D. Bauer, M. Bleimehl, C. Scheuer et al., Parathyroid hormone stimulates bone regeneration in an atrophic non-union model in aged mice. J. Transl. Med. 21, 844 (2023). https://doi.org/10.1186/s12967-023-04661-y
- S. Chang, C. Li, N. Xu, J. Wang, Z. Jing et al., A sustained release of alendronate from an injectable tetra-PEG hydrogel for efficient bone repair. Front. Bioeng. Biotechnol. 10, 961227 (2022). https://doi.org/10.3389/fbioe.2022.961227
- S. Afra, M. Koch, J. Żur-Pińska, M. Dolatshahi, A.R. Bahrami et al., Chitosan/Nanohydroxyapatite/Hydroxyethyl-cellulose-based printable formulations for local alendronate drug delivery in osteoporosis treatment. Carbohydr. Polym. Technol. Appl. 7, 100418 (2024). https://doi.org/10.1016/j.carpta.2023.100418
- Y. Zeng, M. Zhou, L. Chen, H. Fang, S. Liu et al., Alendronate loaded graphene oxide functionalized collagen sponge for the dual effects of osteogenesis and anti-osteoclastogenesis in osteoporotic rats. Bioact. Mater. 5, 859–870 (2020). https://doi.org/10.1016/j.bioactmat.2020.06.010
- S. Datta, A.P. Rameshbabu, K. Bankoti, S. Jana, S. Roy et al., Microsphere embedded hydrogel construct–binary delivery of alendronate and BMP-2 for superior bone regeneration. J. Mat. Chem. B 9, 6856–6869 (2021). https://doi.org/10.1039/D1TB00255D
- H. Liu, K. Li, D. Yi, Y. Ding, Y. Gao et al., Deferoxamine-loaded chitosan-based hydrogel on bone implants showing enhanced bond strength and pro-angiogenic effects. J. Func. Biomater. 15, 112 (2024). https://doi.org/10.3390/jfb15040112
- C. Wan, S.R. Gilbert, Y. Wang, X. Cao, X. Shen et al., Activation of the hypoxia-inducible factor-1α pathway accelerates bone regeneration. Proc. Natl. Acad. Sci. U. S. A. 105, 686–691 (2008). https://doi.org/10.1073/pnas.0708474105
- G. Xiang, K. Liu, T. Wang, X. Hu, J. Wang et al., In situ regulation of macrophage polarization to enhance osseointegration under diabetic conditions using injectable silk/sitagliptin gel scaffolds. Adv. Sci. 8, 2002328 (2021). https://doi.org/10.1002/advs.202002328
- S.J. Patel, J.M. Milwid, K.R. King, S. Bohr, A. Iracheta-Vellve et al., Gap junction inhibition prevents drug-induced liver toxicity and fulminant hepatic failure. Nat. Biotechnol. 30, 179–183 (2012). https://doi.org/10.1038/nbt.2089
- X. Zhou, Y. Qian, L. Chen, T. Li, X. Sun et al., Flowerbed-inspired biomimetic scaffold with rapid internal tissue infiltration and vascularization capacity for bone repair. ACS Nano 17, 5140–5156 (2023). https://doi.org/10.1021/acsnano.3c00598
- J. Hou, Z. Ding, X. Zheng, Y. Shen, Q. Lu et al., Tough porous silk nanofiber-derived cryogels with osteogenic and angiogenic capacity for bone repair. Adv. Healthc. Mater. (2023). https://doi.org/10.1002/adhm.202203050
- J. Long, Y. Wang, M. Lu, A.E. Etxeberria, Y. Zhou et al., Dual-cross-linked magnetic hydrogel with programmed release of parathyroid hormone promotes bone healing. ACS Appl. Mater. Interfaces 15, 35815–35831 (2023). https://doi.org/10.1021/acsami.3c03047
- J. Liu, X. Zhang, C. Xiao, X. Chen, A drug-mineralized hydrogel orchestrated by spontaneous dynamic mineralization. Adv. Funct. Mater. 34, 2311844 (2023). https://doi.org/10.1002/adfm.202311844
- D. Li, J. Zhou, M. Zhang, Y. Ma, Y. Yang et al., Long-term delivery of alendronate through an injectable tetra-PEG hydrogel to promote osteoporosis therapy. Biomater. Sci. 8, 3138–3146 (2020). https://doi.org/10.1039/D0BM00376J
- Y. Chen, W. Liu, S. Wan, H. Wang, Y. Chen et al., Superior synergistic osteogenesis of MXene-based hydrogel through supersensitive drug release at mild heat. Adv. Funct. Mater. 34, 2309191 (2024). https://doi.org/10.1002/adfm.202309191
- J. Li, L. Li, T. Wu, K. Shi, Z. Bei et al., An injectable thermosensitive hydrogel containing resveratrol and dexamethasone-loaded carbonated hydroxyapatite microspheres for the regeneration of osteoporotic bone defects. Small Methods 8, 2300843 (2024). https://doi.org/10.1002/smtd.202300843
- J.S. Park, C. Lee, S.Y. Cheon, Y. Lee, H. Jeon et al., Efficient drug supply in stem cell cytosol via pore-forming saponin nanops promotes in vivo osteogenesis and bone regeneration. Biomaterials 302, 122342 (2023). https://doi.org/10.1016/j.biomaterials.2023.122342
- S. Guo, C. He, Bioprinted scaffold remodels the neuromodulatory microenvironment for enhancing bone regeneration. Adv. Funct. Mater. 33, 2304172 (2023). https://doi.org/10.1002/adfm.202304172
- Q. Feng, J. Xu, K. Zhang, H. Yao, N. Zheng et al., Dynamic and cell-infiltratable hydrogels as injectable carrier of therapeutic cells and drugs for treating challenging bone defects. ACS Central Sci. 5, 440–450 (2019). https://doi.org/10.1021/acscentsci.8b00764
- Y. Cui, S. Hong, Y. Xia, X. Li, X. He et al., Melatonin engineering M2 macrophage-derived exosomes mediate endoplasmic reticulum stress and immune reprogramming for periodontitis therapy. Adv. Sci. 10, 2302029 (2023). https://doi.org/10.1002/advs.202302029
- L. Moradi, L. Witek, V.V. Nayak, A.C. Pereira, E. Kim et al., Injectable hydrogel for sustained delivery of progranulin derivative Atsttrin in treating diabetic fracture healing. Biomaterials 301, 122289 (2023). https://doi.org/10.1016/j.biomaterials.2023.122289
- X. Han, J. Shen, S. Chen, Z. Cai, Y. Zhu et al., Ultrasonic-controlled “explosive” hydrogels to precisely regulate spatiotemporal osteoimmune disturbance. Biomaterials 295, 122057 (2023). https://doi.org/10.1016/j.biomaterials.2023.122057
- X. Zhao, Y. Yang, J. Yu, R. Ding, D. Pei et al., Injectable hydrogels with high drug loading through B-N coordination and ROS-triggered drug release for efficient treatment of chronic periodontitis in diabetic rats. Biomaterials 282, 121387 (2022). https://doi.org/10.1016/j.biomaterials.2022.121387
- F. Xu, T. Deng, W. Li, Y. Ai, J. Wu et al., A sequential sustained-release hydrogel with potent antimicrobial, anti-inflammatory, and osteogenesis-promoting properties for the treatment of periodontitis. Chem. Eng. J. 477, 147195 (2023). https://doi.org/10.1016/j.cej.2023.147195
- H. Zhu, C. Cai, Y. Yu, Y. Zhou, S. Yang et al., Quercetin-loaded bioglass injectable hydrogel promotes m6A alteration of Per1 to alleviate oxidative stress for periodontal bone defects. Adv. Sci. 11, 2403412 (2024). https://doi.org/10.1002/advs.202403412
- Y. Li, L. Yang, Y. Hou, Z. Zhang, M. Chen et al., Polydopamine-mediated graphene oxide and nanohydroxyapatite-incorporated conductive scaffold with an immunomodulatory ability accelerates periodontal bone regeneration in diabetes. Bioact. Mater. 18, 213–227 (2022). https://doi.org/10.1016/j.bioactmat.2022.03.021
- T. Wu, L. Huang, J. Sun, J. Sun, Q. Yan et al., Multifunctional chitin-based barrier membrane with antibacterial and osteogenic activities for the treatment of periodontal disease. Carbohydr. Polym. 269, 118276 (2021). https://doi.org/10.1016/j.carbpol.2021.118276
- K. Zhang, S. Lin, Q. Feng, C. Dong, Y. Yang et al., Nanocomposite hydrogels stabilized by self-assembled multivalent bisphosphonate-magnesium nanops mediate sustained release of magnesium ion and promote in-situ bone regeneration. Acta Biomater. 64, 389–400 (2017). https://doi.org/10.1016/j.actbio.2017.09.039
- R. Yang, G. Li, C. Zhuang, P. Yu, T. Ye et al., Gradient bimetallic ion–based hydrogels for tissue microstructure reconstruction of tendon-to-bone insertion. Sci. Adv. 7, eabg3816 (2021). https://doi.org/10.1126/sciadv.abg3816
- X. Zhang, S. Meng, Y. Huang, M. Xu, Y. He et al., Electrospun gelatin/β-TCP composite nanofibers enhance osteogenic differentiation of BMSCs and in vivo bone formation by activating Ca2+-sensing receptor signaling. Stem Cells Int. 2015, 507154 (2015). https://doi.org/10.1155/2015/507154
- X. Chen, B. Tan, S. Wang, R. Tang, Z. Bao et al., Rationally designed protein cross-linked hydrogel for bone regeneration via synergistic release of magnesium and zinc ions. Biomaterials 274, 120895 (2021). https://doi.org/10.1016/j.biomaterials.2021.120895
- J.P. O’Connor, D. Kanjilal, M. Teitelbaum, S.S. Lin, J.A. Cottrell, Zinc as a therapeutic agent in bone regeneration. Materials 13, 2211 (2020). https://doi.org/10.3390/ma13102211
- L. Xu, S. Xu, T.Y. Xiang, L.W. Chen, W.X. Zhong et al., A novel peptide hydrogel of metal ion clusters for accelerating bone defect regeneration. J. Control. Release 353, 738–751 (2023). https://doi.org/10.1016/j.jconrel.2022.12.031
- E.J. Ryan, A.J. Ryan, A. González-Vázquez, A. Philippart, F.E. Ciraldo et al., Collagen scaffolds functionalised with copper-eluting bioactive glass reduce infection and enhance osteogenesis and angiogenesis both in vitro and in vivo. Biomaterials 197, 405–416 (2019). https://doi.org/10.1016/j.biomaterials.2019.01.031
- M. Chen, Y. Zhang, W. Zhang, J. Li, Polyhedral oligomeric silsesquioxane-incorporated gelatin hydrogel promotes angiogenesis during vascularized bone regeneration. ACS Appl. Mater. Interfaces 12, 22410–22425 (2020). https://doi.org/10.1021/acsami.0c00714
- C.J. Li, J.H. Park, G.S. Jin, N. Mandakhbayar, D. Yeo et al., Strontium/Silicon/Calcium-releasing hierarchically structured 3D-printed scaffolds accelerate osteochondral defect repair. Adv. Healthc. Mater. 13, 2400154 (2024). https://doi.org/10.1002/adhm.202400154
- G. Jian, D. Li, Q. Ying, X. Chen, Q. Zhai et al., Dual photo-enhanced interpenetrating network hydrogel with biophysical and biochemical signals for infected bone defect healing. Adv. Healthc. Mater. 12, 2370150 (2023). https://doi.org/10.21203/rs.3.rs-2534216/v1
- X. Zhai, C. Ruan, Y. Ma, D. Cheng, M. Wu et al., 3D-bioprinted osteoblast-laden nanocomposite hydrogel constructs with induced microenvironments promote cell viability, differentiation, and osteogenesis both in vitro and in vivo. Adv. Sci. 5, 1700550 (2018). https://doi.org/10.1002/advs.201700550
- Y. Tang, S. Lin, S. Yin, F. Jiang, M. Zhou et al., In situ gas foaming based on magnesium p degradation: A novel approach to fabricate injectable macroporous hydrogels. Biomaterials 232, 119727 (2020). https://doi.org/10.1016/j.biomaterials.2019.119727
- J. Huang, Q.-C. Tan, H. Bai, J. Wang, P. Makvandi et al., Harnessing immunomodulation for efficient bone regeneration: Bioengineered black phosphorus-incorporated self-healing hydrogel. Chem. Eng. J. 470, 144117 (2023). https://doi.org/10.1016/j.cej.2023.144117
- C. Li, W. Zhang, R. Wang, X.-F. Du, D. Jiang et al., Nanocomposite multifunctional hydrogel for suppressing osteosarcoma recurrence and enhancing bone regeneration. Chem. Eng. J. 435, 134896 (2022). https://doi.org/10.1016/j.cej.2022.134896
- Y. Xu, C. Xu, L. He, J. Zhou, T. Chen et al., Stratified-structural hydrogel incorporated with magnesium-ion-modified black phosphorus nanosheets for promoting neuro-vascularized bone regeneration. Bioact. Mater. 16, 271–284 (2022). https://doi.org/10.1016/j.bioactmat.2022.02.024
- Z. Zhao, G. Li, H. Ruan, K. Chen, Z. Cai et al., Capturing magnesium ions via microfluidic hydrogel microspheres for promoting cancellous bone regeneration. ACS Nano 15, 13041–13054 (2021). https://doi.org/10.1021/acsnano.1c02147
- Z. Wu, J. Bai, G. Ge, T. Wang, S. Feng et al., Regulating macrophage polarization in high glucose microenvironment using lithium-modified bioglass-hydrogel for diabetic bone regeneration. Adv. Healthc. Mater. 11, 2200298 (2022). https://doi.org/10.1002/adhm.202200298
- Q. Zhang, S. Gao, B. Li, Q. Li, X. Li et al., Lithium-doped titanium dioxide-based multilayer hierarchical structure for accelerating nerve-induced bone regeneration. ACS Appl. Mater. Interfaces 16, 22887–22899 (2024). https://doi.org/10.1021/acsami.4c01520
- A. Henriques Lourenço, N. Neves, C. Ribeiro-Machado, S.R. Sousa, M. Lamghari et al., Injectable hybrid system for strontium local delivery promotes bone regeneration in a rat critical-sized defect model. Sci. Rep. 7, 5098 (2017). https://doi.org/10.1038/s41598-017-04866-4
- R.A. Perez, J.-H. Kim, J.O. Buitrago, I.B. Wall, H.-W. Kim, Novel therapeutic core–shell hydrogel scaffolds with sequential delivery of cobalt and bone morphogenetic protein-2 for synergistic bone regeneration. Acta Biomater. 23, 295–308 (2015). https://doi.org/10.1016/j.actbio.2015.06.002
- A.I. Caplan, Adult mesenchymal stem cells: when, where, and how. Stem Cells Int. 628767 (2015). https://doi.org/10.1155/2015/628767
- S. Kern, H. Eichler, J. Stoeve, H. Klüter, K. Bieback, Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24, 1294–1301 (2006). https://doi.org/10.1634/stemcells.2005-0342
- X. Ye, P. Zhang, S. Xue, Y. Xu, J. Tan et al., Adipose-derived stem cells alleviate osteoporosis by enchancing osteogenesis and inhibiting adipogenesis in a rabbit model. Cytotherapy 16, 1643–1655 (2014). https://doi.org/10.1016/j.jcyt.2014.07.009
- W. Shen, B. Sun, C. Zhou, W. Ming, S. Zhang et al., CircFOXP1/FOXP1 promotes osteogenic differentiation in adipose-derived mesenchymal stem cells and bone regeneration in osteoporosis via miR-33a-5p. J. Cell. Mol. Med. 24, 12513–12524 (2020). https://doi.org/10.1111/jcmm.15792
- Y.J. Yoon, O.Y. Kim, Y.S. Gho, Extracellular vesicles as emerging intercellular communicasomes. BMB Rep. 47, 531 (2014). https://doi.org/10.5483/BMBRep.2014.47.10.164
- X. Li, C. Chen, L. Wei, Q. Li, X. Niu et al., Exosomes derived from endothelial progenitor cells attenuate vascular repair and accelerate reendothelialization by enhancing endothelial function. Cytotherapy 18, 253–262 (2016). https://doi.org/10.1016/j.jcyt.2015.11.009
- K. Man, M.Y. Brunet, M.-C. Jones, S.C. Cox, Engineered extracellular vesicles: tailored-made nanomaterials for medical applications. Nanomaterials 10, 1838 (2020). https://doi.org/10.3390/nano10091838
- Y. Qin, L. Wang, Z. Gao, G. Chen, C. Zhang, Bone marrow stromal/stem cell-derived extracellular vesicles regulate osteoblast activity and differentiation in vitro and promote bone regeneration in vivo. Sci. Rep. 6, 21961 (2016). https://doi.org/10.1038/srep21961
- P. Cheng, T. Cao, X. Zhao, W. Lu, S. Miao et al., Nidogen1-enriched extracellular vesicles accelerate angiogenesis and bone regeneration by targeting Myosin-10 to regulate endothelial cell adhesion. Bioact. Mater. 12, 185–197 (2022). https://doi.org/10.1016/j.bioactmat.2021.10.021
- A. Faqeer, M. Wang, G. Alam, A.A. Padhiar, D. Zheng et al., Cleaved SPP1-rich extracellular vesicles from osteoclasts promote bone regeneration via TGFβ1/SMAD3 signaling. Biomaterials 303, 122367 (2023). https://doi.org/10.1016/j.biomaterials.2023.122367
- Y. Jiang, J. Li, X. Xue, Z. Yin, K. Xu et al., Engineered extracellular vesicles for bone therapy. Nano Today 44, 101487 (2022). https://doi.org/10.1016/j.nantod.2022.101487
- R.C. de Abreu, H. Fernandes, P.A. da Costa Martins, S. Sahoo, C. Emanueli et al., Native and bioengineered extracellular vesicles for cardiovascular therapeutics. Nat. Rev. Cardiol. 17, 685–697 (2020). https://doi.org/10.1038/s41569-020-0389-5
- T. Zhang, S. Yan, Y. Song, C. Chen, D. Xu et al., Exosomes secreted by hypoxia-stimulated bone-marrow mesenchymal stem cells promote grafted tendon-bone tunnel healing in rat anterior cruciate ligament reconstruction model. J. Orthop. Transl. 36, 152–163 (2022). https://doi.org/10.1016/j.jot.2022.08.001
- W. Song, Z. Ma, X. Wang, Y. Wang, D. Wu et al., Macroporous granular hydrogels functionalized with aligned architecture and small extracellular vesicles stimulate osteoporotic tendon-to-bone healing. Adv. Sci. 10, 2304090 (2023). https://doi.org/10.1002/advs.202304090
- G. Peng, W. Li, L. Peng, R. Li, Z. Wang et al., Multifunctional DNA-based hydrogel promotes diabetic alveolar bone defect reconstruction. Small 20, 2305594 (2023). https://doi.org/10.1002/smll.202305594
- Y. Zhao, Y. Gong, X. Liu, J. He, B. Zheng et al., The experimental study of periodontal ligament stem cells derived exosomes with hydrogel accelerating bone regeneration on alveolar bone defect. Pharmaceutics 14, 2189 (2022). https://doi.org/10.3390/pharmaceutics14102189
- S. Han, H. Yang, X. Ni, Y. Deng, Z. Li et al., Programmed release of vascular endothelial growth factor and exosome from injectable chitosan nanofibrous microsphere-based PLGA-PEG-PLGA hydrogel for enhanced bone regeneration. Int. J. Biol. Macromol. 253, 126721 (2023). https://doi.org/10.1016/j.ijbiomac.2023.126721
- Q. Li, H. Yu, F. Zhao, C. Cao, T. Wu et al., 3D printing of microenvironment-specific bioinspired and exosome-reinforced hydrogel scaffolds for efficient cartilage and subchondral bone regeneration. Adv. Sci. 10, 2303650 (2023). https://doi.org/10.1002/advs.202303650
- Z. Lin, Y. Xiong, W. Meng, Y. Hu, L. Chen et al., Exosomal PD-L1 induces osteogenic differentiation and promotes fracture healing by acting as an immunosuppressant. Bioact. Mater. 13, 300–311 (2022). https://doi.org/10.1016/j.bioactmat.2021.10.042
- L. He, Q. Zhou, H. Zhang, N. Zhao, L. Liao, PF127 hydrogel-based delivery of exosomal CTNNB1 from mesenchymal stem cells induces osteogenic differentiation during the repair of alveolar bone defects. Nanomaterials 13, 1083 (2023). https://doi.org/10.3390/nano13061083
- S. Chen, Y. Tang, Y. Liu, P. Zhang, L. Lv et al., Exosomes derived from miR-375-overexpressing human adipose mesenchymal stem cells promote bone regeneration. Cell Prolif. 52, e12669 (2019). https://doi.org/10.1111/cpr.12669
- Z. Hao, L. Ren, Z. Zhang, Z. Yang, S. Wu et al., A multifunctional neuromodulation platform utilizing Schwann cell-derived exosomes orchestrates bone microenvironment via immunomodulation, angiogenesis and osteogenesis. Bioact. Mater. 23, 206–222 (2023). https://doi.org/10.1016/j.bioactmat.2022.10.018
- B. Peng, Y. Chen, K.W. Leong, MicroRNA delivery for regenerative medicine. Adv. Drug Deliv. Rev. 88, 108–122 (2015). https://doi.org/10.1016/j.addr.2015.05.014
- H. Feng, Z. Li, W. Xie, Q. Wan, Y. Guo et al., Delivery of therapeutic miRNAs using nanoscale zeolitic imidazolate framework for accelerating vascularized bone regeneration. Chem. Eng. J. 430, 132867 (2022). https://doi.org/10.1016/j.cej.2021.132867
- M.K. Nguyen, O. Jeon, P.N. Dang, C.T. Huynh, D. Varghai et al., RNA interfering molecule delivery from in situ forming biodegradable hydrogels for enhancement of bone formation in rat calvarial bone defects. Acta Biomater. 75, 105–114 (2018). https://doi.org/10.1016/j.actbio.2018.06.007
- J.-z Xu, J.-l Zhang, W.-g Zhang, Antisense RNA: the new favorite in genetic research. J. Zhejiang Univ. Sc. B 19, 739–749 (2018). https://doi.org/10.1631/jzus.B1700594
- F. Qiao, Y. Zou, B. Bie, Y. Lv, Dual siRNA-loaded cell membrane functionalized matrix facilitates bone regeneration with angiogenesis and neurogenesis. Small 20, 2307062 (2024). https://doi.org/10.1002/smll.202307062
- R. Yang, F. Chen, J. Guo, D. Zhou, S. Luan, Recent advances in polymeric biomaterials-based gene delivery for cartilage repair. Bioact. Mater. 5, 990–1003 (2020). https://doi.org/10.1016/j.bioactmat.2020.06.004
- A.E. Labatut, G. Mattheolabakis, Non-viral based miR delivery and recent developments. Eur. J. Pharm. Biopharm. 128, 82–90 (2018). https://doi.org/10.1016/j.ejpb.2018.04.018
- A. Malek-Khatabi, H.A. Javar, E. Dashtimoghadam, S. Ansari, M.M. Hasani-Sadrabadi et al., In situ bone tissue engineering using gene delivery nanocomplexes. Acta Biomater. 108, 326–336 (2020). https://doi.org/10.1016/j.actbio.2020.03.008
- J. Sun, Y. Gao, Y. Yao, Y. Li, M. Feng et al., Bone tissue engineering based on sustained release of MiR29c-modified framework nucleic acids from an injectable hydrogel. Chem. Eng. J. 487, 150706 (2024). https://doi.org/10.1016/j.cej.2024.150706
- D. Li, Z. Yang, Y. Luo, X. Zhao, M. Tian et al., Delivery of miR335-5p-pendant tetrahedron DNA nanostructures using an injectable heparin lithium hydrogel for challenging bone defects in steroid-associated osteonecrosis. Adv. Healthc. Mater. 11, 2101412 (2022). https://doi.org/10.1002/adhm.202101412
- R. Li, H. Wang, J.V. John, H. Song, M.J. Teusink et al., 3D Hybrid nanofiber aerogels combining with nanops made of a biocleavable and targeting polycation and MiR-26a for bone repair. Adv. Funct. Mater. 30, 2005531 (2020). https://doi.org/10.1002/adfm.202005531
- L. Hao, S. Huang, T. Huang, D. Yi, C. Wang et al., Bone targeting miR-26a loaded exosome-mimetics for bone regeneration therapy by activating Wnt signaling pathway. Chem. Eng. J. 471, 144594 (2023). https://doi.org/10.1016/j.cej.2023.144594
- Y. Wang, D.W. Malcolm, D.S. Benoit, Controlled and sustained delivery of siRNA/NPs from hydrogels expedites bone fracture healing. Biomaterials 139, 127–138 (2017). https://doi.org/10.1016/j.biomaterials.2017.06.001
- Z. Zhang, P. Ding, Y. Meng, T. Lin, Z. Zhang et al., Rational polyelectrolyte nanops endow preosteoclast-targeted siRNA transfection for anabolic therapy of osteoporosis. Sci. Adv. 9, eade7379 (2023). https://doi.org/10.1126/sciadv.ade7379
- X. Ding, X. Li, C. Li, M. Qi, Z. Zhang et al., Chitosan/dextran hydrogel constructs containing strontium-doped hydroxyapatite with enhanced osteogenic potential in rat cranium. ACS Biomater. Sci. Eng. 5, 4574–4586 (2019). https://doi.org/10.1021/acsbiomaterials.9b00584
- G. Camci-Unal, D. Cuttica, N. Annabi, D. Demarchi, A. Khademhosseini, Synthesis and characterization of hybrid hyaluronic acid-gelatin hydrogels. Biomacromol 14, 1085–1092 (2013). https://doi.org/10.1021/bm3019856
- A.M. Rubiano, N. Carney, R. Chesnut, J.C. Puyana, Global neurotrauma research challenges and opportunities. Nature 527, S193–S197 (2015). https://doi.org/10.1038/nature16035
- J.V. Rosenfeld, A.I. Maas, P. Bragge, M.C. Morganti-Kossmann, G.T. Manley et al., Early management of severe traumatic brain injury. The Lancet 380, 1088–1098 (2012). https://doi.org/10.1016/S0140-6736(12)60864-2
- C. Cordonnier, A. Demchuk, W. Ziai, C.S. Anderson, Intracerebral haemorrhage: current approaches to acute management. The Lancet 392, 1257–1268 (2018). https://doi.org/10.1016/S0140-6736(18)31878-6
- L. Xu, Q. Ye, J. Xie, J. Yang, W. Jiang et al., An injectable gellan gum-based hydrogel that inhibits Staphylococcus aureus for infected bone defect repair. J. Mat. Chem. B 10, 282–292 (2022). https://doi.org/10.1039/D1TB02230J
- M. Gopalakrishnan, N.C. Shanbhag, D.P. Shukla, S.K. Konar, D.I. Bhat et al., Complications of decompressive craniectomy. Front. Neurol. 9, 416751 (2018). https://doi.org/10.3389/fneur.2018.00977
- G. Lu, Y. Xu, Q. Liu, M. Chen, H. Sun et al., An instantly fixable and self-adaptive scaffold for skull regeneration by autologous stem cell recruitment and angiogenesis. Nat. Commun. 13, 2499 (2022). https://doi.org/10.1038/s41467-022-30243-5
- L. Wang, D. Li, Y. Huang, R. Mao, B. Zhang et al., Bionic mineralized 3D-printed scaffolds with enhanced in situ mineralization for cranial bone regeneration. Adv. Funct. Mater. 34, 2309042 (2024). https://doi.org/10.1002/adfm.202309042
- Z. Zou, L. Wang, Z. Zhou, Q. Sun, D. Liu et al., Simultaneous incorporation of PTH (1–34) and nano-hydroxyapatite into chitosan/alginate hydrogels for efficient bone regeneration. Bioact. Mater. 6, 1839–1851 (2021). https://doi.org/10.1016/j.bioactmat.2020.11.021
- P. Li, Z. Jia, Q. Wang, P. Tang, M. Wang et al., A resilient and flexible chitosan/silk cryogel incorporated Ag/Sr co-doped nanoscale hydroxyapatite for osteoinductivity and antibacterial properties. J. Mat. Chem. B 6, 7427–7438 (2018). https://doi.org/10.1039/C8TB01672K
- Q. Yang, Y. Miao, J. Luo, Y. Chen, Y. Wang, Amyloid fibril and clay nanosheet dual-nanoengineered DNA dynamic hydrogel for vascularized bone regeneration. ACS Nano 17, 17131–17147 (2023). https://doi.org/10.1021/acsnano.3c04816
- Z. Mao, X. Bi, C. Yu, L. Chen, J. Shen et al., Mechanically robust and personalized silk fibroin-magnesium composite scaffolds with water-responsive shape-memory for irregular bone regeneration. Nat. Commun. 15, 4160 (2024). https://doi.org/10.1038/s41467-024-48417-8
- P. Liu, T. Bao, L. Sun, Z. Wang, J. Sun et al., In situ mineralized PLGA/zwitterionic hydrogel composite scaffold enables high-efficiency rhBMP-2 release for critical-sized bone healing. Biomater. Sci. 10, 781–793 (2022). https://doi.org/10.1039/D1BM01521D
- Z. Zhong, Y. Li, Z. Sun, X. Wu, J. Li et al., Hypoxia-triggered exosome-mimetics accelerate vascularized osteogenesis. Mater. Today 73, 16–29 (2024). https://doi.org/10.1016/j.mattod.2023.09.026
- Y.P. Zou, H.F. Liang, B. Wang, Q.C. Zhang, D.H. Su et al., Precipitation-based silk fibroin fast gelling, highly adhesive, and magnetic nanocomposite hydrogel for repair of irregular bone defects. Adv. Funct. Mater. 33, 2302442 (2023). https://doi.org/10.1002/adfm.202302442
- D.L. Worthley, M. Churchill, J.T. Compton, Y. Tailor, M. Rao et al., Gremlin 1 identifies a skeletal stem cell with bone, cartilage, and reticular stromal potential. Cell 160, 269–284 (2015). https://doi.org/10.1016/j.cell.2014.11.042
- B. Shen, A. Tasdogan, J.M. Ubellacker, J. Zhang, E.D. Nosyreva et al., A mechanosensitive peri-arteriolar niche for osteogenesis and lymphopoiesis. Nature 591, 438–444 (2021). https://doi.org/10.1038/s41586-021-03298-5
- X. Zhang, W. Jiang, C. Xie, X. Wu, Q. Ren et al., Msx1+ stem cells recruited by bioactive tissue engineering graft for bone regeneration. Nat. Commun. 13, 5211 (2022). https://doi.org/10.1038/s41467-022-32868-y
- J. Liu, Y. Tang, W. Yang, B. Tao, Y. He et al., Functionalization of titanium substrate with multifunctional peptide OGP-NAC for the regulation of osteoimmunology. Biomater. Sci. 7, 1463–1476 (2019). https://doi.org/10.1039/C8BM01611A
- L. Shen, S. Cao, Y. Wang, P. Zhou, S. Wang et al., Self-adaptive antibacterial scaffold with programmed delivery of osteogenic peptide and lysozyme for infected bone defect treatment. ACS Appl. Mater. Interfaces 15, 626–637 (2022). https://doi.org/10.1021/acsami.2c19026
- M. Monteiro-Soares, E.J. Boyko, W. Jeffcoate, J.L. Mills, D. Russell et al., Diabetic foot ulcer classifications: a critical review. Diabetes Metab. Res. Rev. 36, e3272 (2020). https://doi.org/10.1002/dmrr.3272
- Y. Li, Z. Liu, C. Zhao, C. Xu, A. Shin et al., A sustained-release PDGF-BB nanocomposite hydrogel for DM-associated bone regeneration. J. Mat. Chem. B 11, 974–984 (2023). https://doi.org/10.1039/D2TB02037H
- Z. Xu, X. Qi, M. Bao, T. Zhou, J. Shi et al., Biomineralization inspired 3D printed bioactive glass nanocomposite scaffolds orchestrate diabetic bone regeneration by remodeling micromilieu. Bioact. Mater. 25, 239–255 (2023). https://doi.org/10.1016/j.bioactmat.2023.01.024
- L. Che, Y. Wang, D. Sha, G. Li, Z. Wei et al., A biomimetic and bioactive scaffold with intelligently pulsatile teriparatide delivery for local and systemic osteoporosis regeneration. Bioact. Mater. 19, 75–87 (2023). https://doi.org/10.1016/j.bioactmat.2022.03.023
- S. Song, Y. Guo, Y. Yang, D. Fu, Advances in pathogenesis and therapeutic strategies for osteoporosis. Pharmacol. Ther. 237, 108168 (2022). https://doi.org/10.1016/j.pharmthera.2022.108168
- S.R. Cummings, L.J. Melton, Epidemiology and outcomes of osteoporotic fractures. The Lancet 359, 1761–1767 (2002). https://doi.org/10.1016/S0140-6736(02)08657-9
- K.-Y. Chin, B.N. Ng, M.K.I. Rostam, N.F.D. Muhammad Fadzil, V. Raman et al., A mini review on osteoporosis: from biology to pharmacological management of bone loss. J. Clin. Med. 11, 6434 (2022). https://doi.org/10.3390/jcm11216434
- B.M. Tang, G.D. Eslick, C. Nowson, C. Smith, A. Bensoussan, Use of calcium or calcium in combination with vitamin D supplementation to prevent fractures and bone loss in people aged 50 years and older: a meta-analysis. The Lancet 370, 657–666 (2007). https://doi.org/10.1016/S0140-6736(07)61342-7
- M. Echave, I. Erezuma, N. Golafshan, M. Castilho, F. Kadumudi et al., Bioinspired gelatin/bioceramic composites loaded with bone morphogenetic protein-2 (BMP-2) promote osteoporotic bone repair. Biomater. Adv. 134, 112539 (2022). https://doi.org/10.1016/j.msec.2021.112539
- J. Fang, P. Li, X. Lu, L. Fang, X. Lü et al., A strong, tough, and osteoconductive hydroxyapatite mineralized polyacrylamide/dextran hydrogel for bone tissue regeneration. Acta Biomater. 88, 503–513 (2019). https://doi.org/10.1016/j.actbio.2019.02.019
- C. Liu, J. Wu, D. Gan, Z. Li, J. Shen et al., The characteristics of mussel-inspired nHA/OSA injectable hydrogel and repaired bone defect in rabbit. J. Biomed. Mater. Res. B 108, 1814–1825 (2020). https://doi.org/10.1002/jbm.b.34524
- L.-B. Jiang, S.-L. Ding, W. Ding, D.-H. Su, F.-X. Zhang et al., Injectable sericin based nanocomposite hydrogel for multi-modal imaging-guided immunomodulatory bone regeneration. Chem. Eng. J. 418, 129323 (2021). https://doi.org/10.1016/j.cej.2021.129323
- X. Wang, J. Fang, W. Zhu, C. Zhong, D. Ye et al., Bioinspired highly anisotropic, ultrastrong and stiff, and osteoconductive mineralized wood hydrogel composites for bone repair. Adv. Funct. Mater. 31, 2010068 (2021). https://doi.org/10.1002/adfm.202010068
- K. Fong, V. Truong, C.J. Foote, B. Petrisor, D. Williams et al., Predictors of nonunion and reoperation in patients with fractures of the tibia: an observational study. BMC Musculoskelet. Disord. 14, 1–9 (2013). https://doi.org/10.1186/1471-2474-14-103
- R. Zura, Z. Xiong, T. Einhorn, J.T. Watson, R.F. Ostrum et al., Epidemiology of fracture nonunion in 18 human bones. JAMA Surg. 151, e162775–e162775 (2016). https://doi.org/10.1001/jamasurg.2016.2775
- K. Zha, M. Tan, Y. Hu, W. Hu, S. Zhang et al., Regulation of metabolic microenvironment with a nanocomposite hydrogel for improved bone fracture healing. Bioact. Mater. 37, 424–438 (2024). https://doi.org/10.1016/j.bioactmat.2024.03.025
- L. Si, T. Winzenberg, Q. Jiang, M. Chen, A.J. Palmer, Projection of osteoporosis-related fractures and costs in China: 2010–2050. Osteoporosis Int. 26, 1929–1937 (2015). https://doi.org/10.1007/s00198-015-3093-2
- B. Yuan, L. Wang, R. Zhao, X. Yang, X. Yang et al., A biomimetically hierarchical polyetherketoneketone scaffold for osteoporotic bone repair. Sci. Adv. 6, eabc4704 (2020). https://doi.org/10.1126/sciadv.abc4704
- D. Patel, S. Wairkar, Bone regeneration in osteoporosis: opportunities and challenges. Drug Deliv. Transl. Res. 13, 419–432 (2023). https://doi.org/10.1007/s13346-022-01222-6
- C. Chen, L. Fu, Y. Luo, W. Zeng, X. Qi et al., Engineered exosome-functionalized extracellular matrix-mimicking hydrogel for promoting bone repair in glucocorticoid-induced osteonecrosis of the femoral head. ACS Appl. Mater. Interfaces 15, 28891–28906 (2023). https://doi.org/10.1021/acsami.3c01539
- M. Maruyama, S. Moeinzadeh, R.A. Guzman, N. Zhang, H.W. Storaci et al., The efficacy of lapine preconditioned or genetically modified IL4 over-expressing bone marrow-derived mesenchymal stromal cells in corticosteroid-associated osteonecrosis of the femoral head in rabbits. Biomaterials 275, 120972 (2021). https://doi.org/10.1016/j.biomaterials.2021.120972
- K.N. Weilbaecher, T.A. Guise, L.K. McCauley, Cancer to bone: a fatal attraction. Nat. Rev. Cancer 11, 411–425 (2011). https://doi.org/10.1038/nrc3055
- J. Liao, K. Shi, Y. Jia, Y. Wu, Z. Qian, Gold nanorods and nanohydroxyapatite hybrid hydrogel for preventing bone tumor recurrence via postoperative photothermal therapy and bone regeneration promotion. Bioact. Mater. 6, 2221–2230 (2021). https://doi.org/10.1016/j.bioactmat.2021.01.006
- S. Luo, J. Wu, Z. Jia, P. Tang, J. Sheng et al., An injectable, bifunctional hydrogel with photothermal effects for tumor therapy and bone regeneration. Macromol. Biosci. 19, 1900047 (2019). https://doi.org/10.1002/mabi.201900047
- X. Zhao, I. Seah, K. Xue, W. Wong, Q.S.W. Tan et al., Antiangiogenic nanomicelles for the topical delivery of aflibercept to treat retinal neovascular disease. Adv. Mater. 34, 2108360 (2022). https://doi.org/10.1002/adma.202108360
- W. Li, C. Wang, Z. Wang, L. Gou, Y. Zhou et al., Physically cross-linked DNA hydrogel-based sustained cytokine delivery for in situ diabetic alveolar bone rebuilding. ACS Appl. Mater. Interfaces 14, 25173–25182 (2022). https://doi.org/10.1021/acsami.2c04769
- D. Gan, Z. Wang, C. Xie, X. Wang, W. Xing et al., Mussel-inspired tough hydrogel with in situ nanohydroxyapatite mineralization for osteochondral defect repair. Adv. Healthc. Mater. 8, 1901103 (2019). https://doi.org/10.1002/adhm.201901103
- J. Fang, J. Liao, C. Zhong, X. Lu, F. Ren, High-strength, biomimetic functional chitosan-based hydrogels for full-thickness osteochondral defect repair. ACS Biomater. Sci. Eng. 8, 4449–4461 (2022). https://doi.org/10.1021/acsbiomaterials.2c00187
- J. Xing, X. Peng, A. Li, M. Chen, Y. Ding et al., Gellan gum/alginate-based Ca-enriched acellular bilayer hydrogel with robust interface bonding for effective osteochondral repair. Carbohydr. Polym. 270, 118382 (2021). https://doi.org/10.1016/j.carbpol.2021.118382
- B.T. Estes, M. Enomoto, F.T. Moutos, M.A. Carson, J.M. Toth et al., Biological resurfacing in a canine model of hip osteoarthritis. Sci. Adv. 7, eabi5918 (2021). https://doi.org/10.1126/sciadv.abi5918
- J.H. Teixeira, C.L. Pereira, M.I. Almeida, G.Q. Teixeira, R.M. Gonçalves et al., Articular repair/regeneration in healthy and inflammatory conditions: from advanced in vitro to in vivo models. Adv. Funct. Mater. 30, 1909523 (2020). https://doi.org/10.1002/adfm.201909523
- L. Han, J. Xu, X. Lu, D. Gan, Z. Wang et al., Biohybrid methacrylated gelatin/polyacrylamide hydrogels for cartilage repair. J. Mat. Chem. B 5, 731–741 (2017). https://doi.org/10.1039/C6TB02348G
- D. Gan, T. Xu, W. Xing, M. Wang, J. Fang et al., Mussel-inspired dopamine oligomer intercalated tough and resilient gelatin methacryloyl (GelMA hydrogels for cartilage regeneration. J. Mat. Chem. B 7, 1716–1725 (2019). https://doi.org/10.1039/C8TB01664J
- X. Wang, X. Sun, D. Gan, M. Soubrier, H.-Y. Chiang et al., Bioadhesive and conductive hydrogel-integrated brain-machine interfaces for conformal and immune-evasive contact with brain tissue. Matter 5, 1204–1223 (2022). https://doi.org/10.1016/j.matt.2022.01.012
- Y. Jiang, X. Zhang, W. Zhang, M. Wang, L. Yan et al., Infant skin friendly adhesive hydrogel patch activated at body temperature for bioelectronics securing and diabetic wound healing. ACS Nano 16, 8662–8676 (2022). https://doi.org/10.1021/acsnano.2c00662
- P. Chen, W. Zhang, X. Fan, X. Shi, Y. Jiang et al., A polyphenol-derived redox-active and conductive nanop-reinforced hydrogel with wet adhesiveness for myocardial infarction repair by simultaneously stimulating anti-inflammation and calcium homeostasis pathways. Nano Today 55, 102157 (2024). https://doi.org/10.1016/j.nantod.2024.102157
- D. Gan, Y. Jiang, Y. Hu, X. Wang, Q. Wang et al., Mussel-inspired extracellular matrix-mimicking hydrogel scaffold with high cell affinity and immunomodulation ability for growth factor-free cartilage regeneration. J. Orthop. Transl. 33, 120–131 (2022). https://doi.org/10.1016/j.jot.2022.02.006
- P. Yu, Y. Li, H. Sun, X. Ke, J. Xing et al., Cartilage-inspired hydrogel with mechanical adaptability, controllable lubrication, and inflammation regulation abilities. ACS Appl. Mater. Interfaces 14, 27360–27370 (2022). https://doi.org/10.1021/acsami.2c04609
- J. Zhu, S. Yang, Y. Qi, Z. Gong, H. Zhang et al., Stem cell–homing hydrogel-based miR-29b-5p delivery promotes cartilage regeneration by suppressing senescence in an osteoarthritis rat model. Sci. Adv. 8, eabk0011 (2022). https://doi.org/10.1126/sciadv.abk0011
- J. Gong, C. Ye, J. Ran, X. Xiong, X. Fang et al., Polydopamine-mediated immunomodulatory patch for diabetic periodontal tissue regeneration assisted by metformin-ZIF system. ACS Nano 17, 16573–16586 (2023). https://doi.org/10.1021/acsnano.3c02407
- H. Zhang, T. Fan, W. Chen, Y. Li, B. Wang, Recent advances of two-dimensional materials in smart drug delivery nano-systems. Bioact. Mater. 5, 1071–1086 (2020). https://doi.org/10.1016/j.bioactmat.2020.06.012
- Y. Miao, Y. Chen, J. Luo, X. Liu, Q. Yang et al., Black phosphorus nanosheets-enabled DNA hydrogel integrating 3D-printed scaffold for promoting vascularized bone regeneration. Bioact. Mater. 21, 97–109 (2023). https://doi.org/10.1016/j.bioactmat.2022.08.005
- S. Gupta, S. Majumdar, S. Krishnamurthy, Bioactive glass: A multifunctional delivery system. J. Control. Release 335, 481–497 (2021). https://doi.org/10.1016/j.jconrel.2021.05.043
- C. Huang, S. Shi, M. Qin, X. Rong, Z. Ding et al., A composite hydrogel functionalized by borosilicate bioactive glasses and VEGF for critical-size bone regeneration. Adv. Sci. 11, 2400349 (2024). https://doi.org/10.1002/advs.202400349
- L. Zhou, H. Liu, B. Zhang, C. Wei, S. Zhou et al., A novel 3D-printed bi-layer cranial-brain patch promotes brain injury repair and bone tissue regeneration. Adv. Funct. Mater. 34, 2314330 (2024). https://doi.org/10.1002/adfm.202314330
- C.G. Zalavras, Prevention of infection in open fractures. Infect. Dis. Clin. 31, 339–352 (2017). https://doi.org/10.1016/j.idc.2017.01.005
- M.L. Costa, J. Achten, J. Bruce, E. Tutton, S. Petrou et al., Effect of negative pressure wound therapy vs standard wound management on 12-month disability among adults with severe open fracture of the lower limb: the WOLLF randomized clinical trial. JAMA 319, 2280–2288 (2018). https://doi.org/10.1001/jama.2018.6452
- R.A. Gosselin, I. Roberts, W.J. Gillespie, Antibiotics for preventing infection in open limb fractures. Cochrane Database Syst. Rev. 1, CD003764 (2004). https://doi.org/10.1002/14651858.CD003764.pub2
- Y. Yang, S. Su, S. Liu, W. Liu, Q. Yang et al., Triple-functional bone adhesive with enhanced internal fixation, bacteriostasis and osteoinductive properties for open fracture repair. Bioact. Mater. 25, 273–290 (2023). https://doi.org/10.1016/j.bioactmat.2023.01.021
- X. Ding, J. Shi, J. Wei, Y. Li, X. Wu et al., A biopolymer hydrogel electrostatically reinforced by amino-functionalized bioactive glass for accelerated bone regeneration. Sci. Adv. 7, eabj7857 (2021). https://doi.org/10.1126/sciadv.abj7857
- J. Kang, Y. Li, Y. Qin, Z. Huang, Y. Wu et al., In situ deposition of drug and gene nanops on a patterned supramolecular hydrogel to construct a directionally osteochondral plug. Nano-Micro Lett. 16, 18 (2024). https://doi.org/10.1007/s40820-023-01228-w
- Y. Wu, X. Li, Y. Sun, X. Tan, C. Wang et al., Multiscale design of stiffening and ROS scavenging hydrogels for the augmentation of mandibular bone regeneration. Bioact. Mater. 20, 111–125 (2023). https://doi.org/10.1016/j.bioactmat.2022.05.021
- J.H. Hamman, Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems. Mar. Drugs 8, 1305–1322 (2010). https://doi.org/10.3390/md8041305
- M. Afshar, G. Dini, S. Vaezifar, M. Mehdikhani, B. Movahedi, Preparation and characterization of sodium alginate/polyvinyl alcohol hydrogel containing drug-loaded chitosan nanops as a drug delivery system. J. Drug Deliv. Sci. Technol. 56, 101530 (2020). https://doi.org/10.1016/j.jddst.2020.101530
- H.I. Chiu, V. Lim, Wheat germ agglutinin-conjugated disulfide cross-linked alginate nanops as a docetaxel carrier for colon cancer therapy. Int. J. Nanomed. 16, 2995—3020 (2021). https://doi.org/10.2147/IJN.S302238
- A.R. Ahmady, A. Solouk, S. Saber-Samandari, S. Akbari, H. Ghanbari et al., Capsaicin-loaded alginate nanops embedded polycaprolactone-chitosan nanofibers as a controlled drug delivery nanoplatform for anticancer activity. J. Colloid Interface Sci. 638, 616–628 (2023). https://doi.org/10.1016/j.jcis.2023.01.139
- D. Gan, M. Liu, T. Xu, K. Wang, H. Tan et al., Chitosan/biphasic calcium phosphate scaffolds functionalized with BMP-2-encapsulated nanops and RGD for bone regeneration. J. Biomed. Mater. Res. Part A 106, 2613–2624 (2018). https://doi.org/10.1002/jbm.a.36453
- L.-J. Kang, J. Yoon, J.G. Rho, H.S. Han, S. Lee et al., Self-assembled hyaluronic acid nanops for osteoarthritis treatment. Biomaterials 275, 120967 (2021). https://doi.org/10.1016/j.biomaterials.2021.120967
- X. Zhang, M. Zhao, N. Cao, W. Qin, M. Zhao et al., Construction of a tumor microenvironment pH-responsive cleavable PEGylated hyaluronic acid nano-drug delivery system for colorectal cancer treatment. Biomater. Sci. 8, 1885–1896 (2020). https://doi.org/10.1039/C9BM01927H
- Q. Chen, J. Li, F. Han, Q. Meng, H. Wang et al., A multifunctional composite hydrogel that rescues the ROS microenvironment and guides the immune response for repair of osteoporotic bone defects. Adv. Funct. Mater. 32, 2201067 (2022). https://doi.org/10.1002/adfm.202201067
- Y. Gong, Y. Zhang, Z. Cao, F. Ye, Z. Lin et al., Development of CaCO3 microsphere-based composite hydrogel for dual delivery of growth factor and Ca to enhance bone regeneration. Biomater. Sci. 7, 3614–3626 (2019). https://doi.org/10.1039/C9BM00463G
- R.M. Stefani, A.J. Lee, A.R. Tan, S.S. Halder, Y. Hu et al., Sustained low-dose dexamethasone delivery via a PLGA microsphere-embedded agarose implant for enhanced osteochondral repair. Acta Biomater. 102, 326–340 (2020). https://doi.org/10.1016/j.actbio.2019.11.052
- M. Ferrari, A.P. Lee, L.J. Lee, BioMEMS and biomedical nanotechnology (Springer, New York, 2006), pp.19–50
- N.K. Varde, D.W. Pack, Microspheres for controlled release drug delivery. Expert Opin. Biol. Ther. 4, 35–51 (2004). https://doi.org/10.1517/14712598.4.1.35
- E. Geeurickx, J. Tulkens, B. Dhondt, J. Van Deun, L. Lippens et al., The generation and use of recombinant extracellular vesicles as biological reference material. Nat. Commun. 10, 3288 (2019). https://doi.org/10.1038/s41467-019-11182-0
- J. Malda, J. Boere, C.H. Van De Lest, P.R. Van Weeren, M.H. Wauben, Extracellular vesicles-new tool for joint repair and regeneration. Nat. Rev. Rheumatol. 12, 243–249 (2016). https://doi.org/10.1038/nrrheum.2015.170
- J. Sun, G. Li, S. Wu, Y. Zou, W. Weng et al., Engineering preparation and sustained delivery of bone functional exosomes-laden biodegradable hydrogel for in situ bone regeneration. Compos. Part B-Eng. 261, 110803 (2023). https://doi.org/10.1016/j.compositesb.2023.110803
- H. Kuang, J. Ma, X. Chi, Q. Fu, Q. Zhu et al., Integrated osteoinductive factors-Exosome@MicroRNA-26a hydrogel enhances bone regeneration. ACS Appl. Mater. Interfaces 15, 22805–22816 (2023). https://doi.org/10.1021/acsami.2c21933
- Z. Li, S. Li, J. Yang, Y. Ha, Q. Zhang et al., 3D bioprinted gelatin/gellan gum-based scaffold with double-crosslinking network for vascularized bone regeneration. Carbohydr. Polym. 290, 119469 (2022). https://doi.org/10.1016/j.carbpol.2022.119469
- H.-C. Yan, T.-T. Yu, J. Li, Y.-Q. Qiao, L.-C. Wang et al., The delivery of extracellular vesicles loaded in biomaterial scaffolds for bone regeneration. Front. Bioeng. Biotechnol. 8, 1015 (2020). https://doi.org/10.3389/fbioe.2020.01015
- Z. Wan, Q. Dong, X. Guo, X. Bai, X. Zhang et al., A dual-responsive polydopamine-modified hydroxybutyl chitosan hydrogel for sequential regulation of bone regeneration. Carbohydr. Polym. 297, 120027 (2022). https://doi.org/10.1016/j.carbpol.2022.120027
- Y. Zhao, X. Peng, X. Xu, M. Wu, F. Sun et al., Chitosan based photothermal scaffold fighting against bone tumor-related complications: Recurrence, infection, and defects. Carbohydr. Polym. 300, 120264 (2023). https://doi.org/10.1016/j.carbpol.2022.120264
- Y. Zhao, X. Peng, D. Wang, H. Zhang, Q. Xin et al., Chloroplast-inspired scaffold for infected bone defect therapy: towards stable photothermal properties and self-defensive functionality. Adv. Sci. 9, 2204535 (2022). https://doi.org/10.1002/advs.202204535
- X. Zhang, H. Wei, C. Dong, J. Wang, T. Zhang et al., 3D printed hydrogel/bioceramics core/shell scaffold with NIR-II triggered drug release for chemo-photothermal therapy of bone tumors and enhanced bone repair. Chem. Eng. J. 461, 141855 (2023). https://doi.org/10.1016/j.cej.2023.141855
- X. Wang, W. Guo, L. Li, F. Yu, J. Li et al., Photothermally triggered biomimetic drug delivery of Teriparatide via reduced graphene oxide loaded chitosan hydrogel for osteoporotic bone regeneration. Chem. Eng. J. 413, 127413 (2021). https://doi.org/10.1016/j.cej.2020.127413
- C. Zeng, N. Lane, D. Hunter, J. Wei, H. Choi et al., Intra-articular corticosteroids and the risk of knee osteoarthritis progression: results from the Osteoarthritis Initiative. Osteoarthr. Cartilage 27, 855–862 (2019). https://doi.org/10.1016/j.joca.2019.01.007
- M.J. Farrar, Compliance affects success of ultrasound for bone healing. BMJ 356, j1512 (2017). https://doi.org/10.1136/bmj.j1512
- Y. Yi, J. Song, P. Zhou, Y. Shu, P. Liang et al., An ultrasound-triggered injectable sodium alginate scaffold loaded with electrospun microspheres for on-demand drug delivery to accelerate bone defect regeneration. Carbohydr. Polym. 334, 122039 (2024). https://doi.org/10.1016/j.carbpol.2024.122039
- L. Claes, S. Recknagel, A. Ignatius, Fracture healing under healthy and inflammatory conditions. Nat. Rev. Rheumatol. 8, 133–143 (2012). https://doi.org/10.1038/nrrheum.2012.1
- N.J. Horwood, Macrophage polarization and bone formation: a review. Clin. Rev. Allergy Immunol. 51, 79–86 (2016). https://doi.org/10.1007/s12016-015-8519-2
- Y. Xu, Y. Luo, Z. Weng, H. Xu, W. Zhang et al., Microenvironment-responsive metal-phenolic nanozyme release platform with antibacterial, ROS scavenging, and osteogenesis for periodontitis. ACS Nano 17, 18732–18746 (2023). https://doi.org/10.1021/acsnano.3c01940
- D. Li, K. Chen, H. Tang, S. Hu, L. Xin et al., A logic-based diagnostic and therapeutic hydrogel with multistimuli responsiveness to orchestrate diabetic bone regeneration. Adv. Mater. 34, 2108430 (2022). https://doi.org/10.1002/adma.202108430
- K.K. Moncal, R.S.T. Aydın, K.P. Godzik, T.M. Acri, D.N. Heo et al., Controlled co-delivery of pPDGF-B and pBMP-2 from intraoperatively bioprinted bone constructs improves the repair of calvarial defects in rats. Biomaterials 281, 121333 (2022). https://doi.org/10.1016/j.biomaterials.2021.121333
- D. Lee, M. Wufuer, I. Kim, T.H. Choi, B.J. Kim et al., Sequential dual-drug delivery of BMP-2 and alendronate from hydroxyapatite-collagen scaffolds for enhanced bone regeneration. Sci. Rep. 11, 746 (2021). https://doi.org/10.1038/s41598-020-80608-3
- L. Nie, D. Chen, S. Zhong, Q. Shi, Y. Sun et al., Injectable cell-laden poly(N-isopropylacrylamide/chitosan hydrogel reinforced via graphene oxide and incorporated with dual-growth factors. Mater. Lett. 280, 128572 (2020). https://doi.org/10.1016/j.matlet.2020.128572
- Y. Park, S. Lin, Y. Bai, S. Moeinzadeh, S. Kim et al., Dual delivery of BMP2 and IGF1 through injectable hydrogel promotes cranial bone defect healing. Tissue Eng. Part A 28, 760–769 (2022). https://doi.org/10.1089/ten.tea.2022.0002
- Z. Lv, T. Hu, Y. Bian, G. Wang, Z. Wu et al., A MgFe-LDH nanosheet-incorporated smart thermo-responsive hydrogel with controllable growth factor releasing capability for bone regeneration. Adv. Mater. 35, 2206545 (2023). https://doi.org/10.1002/adma.202206545
- X. Zhang, J. Fan, C. Chen, T. Aghaloo, M. Lee, Co-delivery of simvastatin and demineralized bone matrix hierarchically from nanosheet-based supramolecular hydrogels for osteogenesis. J. Mat. Chem. B 9, 7741–7750 (2021). https://doi.org/10.1039/D1TB01256H
- M. Wu, Y. Zhao, H. Jiang, X. Xu, D. Wang et al., Self-organized spatiotemporal mineralization of hydrogel: A simulant of osteon. Small 18, 2106649 (2022). https://doi.org/10.1002/smll.202106649
- A. Bharadwaz, A.C. Jayasuriya, Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. Mat. Sci. Eng. C 110, 110698 (2020). https://doi.org/10.1016/j.msec.2020.110698
- B. Xu, P. Zheng, F. Gao, W. Wang, H. Zhang et al., A mineralized high strength and tough hydrogel for skull bone regeneration. Adv. Funct. Mater. 27, 1604327 (2017). https://doi.org/10.1002/adfm.201604327
- J. Guo, X. Shu, H. Deng, J. Zhang, Y. Wang et al., Stiff and tough hydrogels prepared through integration of ionic cross-linking and enzymatic mineralization. Acta Biomater. 149, 220–232 (2022). https://doi.org/10.1016/j.actbio.2022.06.008
- N. Huebsch, P.R. Arany, A.S. Mao, D. Shvartsman, O.A. Ali et al., Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat. Mater. 9, 518–526 (2010). https://doi.org/10.1038/nmat2732
- O. Chaudhuri, L. Gu, D. Klumpers, M. Darnell, S.A. Bencherif et al., Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 15, 326–334 (2016). https://doi.org/10.1038/nmat4489
- J. Whitehead, K.H. Griffin, M. Gionet-Gonzales, C.E. Vorwald, S.E. Cinque et al., Hydrogel mechanics are a key driver of bone formation by mesenchymal stromal cell spheroids. Biomateria
References
G.N. Duda, S. Geissler, S. Checa, S. Tsitsilonis, A. Petersen et al., The decisive early phase of bone regeneration. Nat. Rev. Rheumatol. 19, 78–95 (2023). https://doi.org/10.1038/s41584-022-00887-0
S.-I. Harada, G.A. Rodan, Control of osteoblast function and regulation of bone mass. Nature 423, 349–355 (2003). https://doi.org/10.1038/nature01660
G.L. Koons, M. Diba, A.G. Mikos, Materials design for bone-tissue engineering. Nat. Rev. Mater. 5, 584–603 (2020). https://doi.org/10.1038/s41578-020-0204-2
A.M. McDermott, S. Herberg, D.E. Mason, J.M. Collins, H.B. Pearson et al., Recapitulating bone development through engineered mesenchymal condensations and mechanical cues for tissue regeneration. Sci. Transl. Med. 11, eaav7756 (2019). https://doi.org/10.1126/scitranslmed.aav7756
C.A. de Sousa, C.A.A. Lemos, J.F. Santiago-Júnior, L.P. Faverani, E.P. Pellizzer, Bone augmentation using autogenous bone versus biomaterial in the posterior region of atrophic mandibles: A systematic review and meta-analysis. J. Dent. 76, 1–8 (2018). https://doi.org/10.1016/j.jdent.2018.06.014
A. Kaya, B. Kaya, A. Aktas, E.T. Fırat, Effect of rifampin in combination with allogeneic, alloplastic, and heterogenous bone grafts on bone regeneration in rat tibial bone defects. J. Oral Maxillofac. Surg. Med. Pathol. 27, 20–28 (2015). https://doi.org/10.1016/j.ajoms.2013.08.001
K. Hurle, F.R. Maia, V.P. Ribeiro, S. Pina, J. Oliveira et al., Osteogenic lithium-doped brushite cements for bone regeneration. Bioact. Mater. 16, 403–417 (2022). https://doi.org/10.1016/j.bioactmat.2021.12.025
M.A. Nazeer, O.C. Onder, I. Sevgili, E. Yilgor, I.H. Kavakli et al., 3D printed poly(lactic acid scaffolds modified with chitosan and hydroxyapatite for bone repair applications. Mater. Today Commun. 25, 101515 (2020). https://doi.org/10.1016/j.mtcomm.2020.101515
C.R. Almeida, T. Serra, M.I. Oliveira, J.A. Planell, M.A. Barbosa et al., Impact of 3-D printed PLA-and chitosan-based scaffolds on human monocyte/macrophage responses: unraveling the effect of 3-D structures on inflammation. Acta Biomater. 10, 613–622 (2014). https://doi.org/10.1016/j.actbio.2013.10.035
A. Salhotra, H.N. Shah, B. Levi, M.T. Longaker, Mechanisms of bone development and repair. Nat. Rev. Mol. Cell Biol. 21, 696–711 (2020). https://doi.org/10.1038/s41580-020-00279-w
S. Liu, Z. Han, J.-N. Hao, D. Zhang, X. Li et al., Engineering of a NIR-activable hydrogel-coated mesoporous bioactive glass scaffold with dual-mode parathyroid hormone derivative release property for angiogenesis and bone regeneration. Bioact. Mater. 26, 1–13 (2023). https://doi.org/10.1016/j.bioactmat.2023.02.008
B. Sun, H. Wang, B. Xiao, H. Yan, H. Wu et al., Bioactive composite hydrogel with effects of robust promoting osteogenesis and immunomodulation for osteoporotic bone regeneration. Chem. Eng. J. 476, 146743 (2023). https://doi.org/10.1016/j.cej.2023.146743
S. Liu, Y.-N. Wang, L. Yu, J. Li, S. Ge, Development of a thermosensitive hydrogel loaded with DTT and SDF-1 facilitating in situ periodontal bone regeneration. Chem. Eng. J. 432, 134308 (2022). https://doi.org/10.1016/j.cej.2021.134308
P. Pal, M.A. Tucci, L.W. Fan, R. Bollavarapu, J.W. Lee et al., Functionalized collagen/Elastin-like polypeptide hydrogels for craniofacial bone regeneration. Adv. Healthc. Mater. 12, 2202477 (2023). https://doi.org/10.1002/adhm.202202477
J. Wu, G. Li, T. Ye, G. Lu, R. Li et al., Stem cell-laden injectable hydrogel microspheres for cancellous bone regeneration. Chem. Eng. J. 393, 124715 (2020). https://doi.org/10.1016/j.cej.2020.124715
J. Deng, X. Wang, W. Zhang, L. Sun, X. Han et al., Versatile hypoxic extracellular vesicles laden in an injectable and bioactive hydrogel for accelerated bone regeneration. Adv. Funct. Mater. 33, 2211664 (2023). https://doi.org/10.1002/adfm.202211664
T. Yang, Y. Dong, J. Wan, X. Liu, Y. Liu et al., Sustained release of BMSC-EVs from 3D printing Gel/HA/nHAP scaffolds for promoting bone regeneration in diabetic rats. Adv. Healthc. Mater. 12, 2203131 (2023). https://doi.org/10.1002/adhm.202203131
Z. Zhang, Z. Hao, C. Xian, J. Zhang, J. Wu, Triple functional magnesium ascorbyl phosphate encapsulated hydrogel: A cosmetic ingredient promotes bone repair via anti-oxidation, calcium uptake and blood vessel remodeling. Chem. Eng. J. 472, 145061 (2023). https://doi.org/10.1016/j.cej.2023.145061
Y. Xu, C. Xu, K. Yang, L. Ma, G. Li et al., Copper ion-modified germanium phosphorus nanosheets integrated with an electroactive and biodegradable hydrogel for neuro-vascularized bone regeneration. Adv. Healthc. Mater. 12, 2301151 (2023). https://doi.org/10.1002/adhm.202301151
C. Liu, W. Liu, B. Qi, L. Fan, S. Liu et al., Bone homeostasis modulating orthopedic adhesive for the closed-loop management of osteoporotic fractures. Small 19, 2302704 (2023). https://doi.org/10.1002/smll.202302704
B. Huang, M. Chen, J. Tian, Y. Zhang, Z. Dai et al., Oxygen-carrying and antibacterial fluorinated nano-hydroxyapatite incorporated hydrogels for enhanced bone regeneration. Adv. Healthc. Mater. 11, 2102540 (2022). https://doi.org/10.1002/adhm.202102540
X. Jing, C. Xu, W. Su, Q. Ding, B. Ye et al., Photosensitive and conductive hydrogel induced innerved bone regeneration for infected bone defect repair. Adv. Healthc. Mater. 12, 2201349 (2023). https://doi.org/10.1002/adhm.202201349
N. Sheng, F. Xing, Q.-Y. Zhang, J. Tan, R. Nie et al., A pleiotropic SIS-based hydrogel with immunomodulation via NLRP3 inflammasome inhibition for diabetic bone regeneration. Chem. Eng. J. 480, 147985 (2024). https://doi.org/10.1016/j.cej.2023.147985
M. Qiao, Z. Xu, X. Pei, Y. Liu, J. Wang et al., Nano SIM@ZIF-8 modified injectable high-intensity biohydrogel with bidirectional regulation of osteogenesis and anti-adipogenesis for bone repair. Chem. Eng. J. 434, 134583 (2022). https://doi.org/10.1016/j.cej.2022.134583
A. Lao, J. Wu, D. Li, A. Shen, Y. Li et al., Functionalized metal–organic framework-modified hydrogel that breaks the vicious cycle of inflammation and ROS for repairing of diabetic bone defects. Small 19, 2206919 (2023). https://doi.org/10.1002/smll.202206919
Z. He, C. Sun, Y. Ma, X. Chen, Y. Wang et al., Rejuvenating aged bone repair through multihierarchy reactive oxygen species-regulated hydrogel. Adv. Mater. 36, 2306552 (2023). https://doi.org/10.1002/adma.202306552
S. Liu, W. Wang, P. Wu, Z. Chen, W. Pu et al., Pathogenesis-guided engineering of multi-bioactive hydrogel co-delivering inflammation-resolving nanotherapy and pro-osteogenic protein for bone regeneration. Adv. Funct. Mater. 33, 2301523 (2023). https://doi.org/10.1002/adfm.202301523
Y. Jiang, X. Pan, M. Yao, L. Han, X. Zhang et al., Bioinspired adhesive and tumor microenvironment responsive nanoMOFs assembled 3D-printed scaffold for anti-tumor therapy and bone regeneration. Nano Today 39, 101182 (2021). https://doi.org/10.1016/j.nantod.2021.101182
L. Kuang, J. Huang, Y. Liu, X. Li, Y. Yuan et al., Injectable hydrogel with NIR light-responsive, dual-mode PTH release for osteoregeneration in osteoporosis. Adv. Funct. Mater. 31, 2105383 (2021). https://doi.org/10.1002/adfm.202105383
Y. Wang, Y. Zhao, S. Ma, M. Fu, M. Wu et al., Injective programmable proanthocyanidin-coordinated zinc-based composite hydrogel for infected bone repair. Adv. Healthc. Mater. 13, 2302690 (2023). https://doi.org/10.1002/adhm.202302690
H. Sun, J. Xu, Y. Wang, S. Shen, X. Xu et al., Bone microenvironment regulative hydrogels with ROS scavenging and prolonged oxygen-generating for enhancing bone repair. Bioact. Mater. 24, 477–496 (2023). https://doi.org/10.1016/j.bioactmat.2022.12.021
F. Zhang, M. Lv, S. Wang, M. Li, Y. Wang et al., Ultrasound-triggered biomimetic ultrashort peptide nanofiber hydrogels promote bone regeneration by modulating macrophage and the osteogenic immune microenvironment. Bioact. Mater. 31, 231–246 (2024). https://doi.org/10.1016/j.bioactmat.2023.08.008
S. Chen, X. Han, Y. Cao, W. Yi, Y. Zhu et al., Spatiotemporalized hydrogel microspheres promote vascularized osteogenesis via ultrasound oxygen delivery. Adv. Funct. Mater. 34, 2308205 (2024). https://doi.org/10.1002/adfm.202308205
G. Zhu, T. Zhang, M. Chen, K. Yao, X. Huang et al., Bone physiological microenvironment and healing mechanism: Basis for future bone-tissue engineering scaffolds. Bioact. Mater. 6, 4110–4140 (2021). https://doi.org/10.1016/j.bioactmat.2021.03.043
D. Kong, Y. Shi, Y. Gao, M. Fu, S. Kong et al., Preparation of BMP-2 loaded MPEG-PCL microspheres and evaluation of their bone repair properties. Biomed. Pharmacother. 130, 110516 (2020). https://doi.org/10.1016/j.biopha.2020.110516
R. Reyes, A. Delgado, E. Sanchez, A. Fernandez, A. Hernandez et al., Repair of an osteochondral defect by sustained delivery of BMP-2 or TGFβ1 from a bilayered alginate–PLGA scaffold. J. Tissue Eng. Regen. Med. 8, 521–533 (2014). https://doi.org/10.1002/term.1549
M.H. Hettiaratchi, L. Krishnan, T. Rouse, C. Chou, T.C. McDevitt et al., Heparin-mediated delivery of bone morphogenetic protein-2 improves spatial localization of bone regeneration. Sci. Adv. 6, eaay1240 (2020). https://doi.org/10.1126/sciadv.aay1240
S.S. Lee, J.H. Kim, J. Jeong, S.H.L. Kim, R.H. Koh et al., Sequential growth factor releasing double cryogel system for enhanced bone regeneration. Biomaterials 257, 120223 (2020). https://doi.org/10.1016/j.biomaterials.2020.120223
Z. Li, H. Lin, S. Shi, K. Su, G. Zheng et al., Controlled and sequential delivery of stromal derived factor-1 α (SDF-1α) and magnesium ions from bifunctional hydrogel for bone regeneration. Polymers 14, 2872 (2022). https://doi.org/10.3390/polym14142872
L. Li, X. Liu, B. Gaihre, S. Park, Y. Li et al., SDF-1α/OPF/BP Composites enhance the migrating and osteogenic abilities of mesenchymal stem cells. Stem Cells Int. 2021, 1938819 (2021). https://doi.org/10.1155/2021/1938819
Q. Liang, L. Du, R. Zhang, W. Kang, S. Ge, Stromal cell-derived factor-1/Exendin-4 cotherapy facilitates the proliferation, migration and osteogenic differentiation of human periodontal ligament stem cells in vitro and promotes periodontal bone regeneration in vivo. Cell Prolif. 54, e12997 (2021). https://doi.org/10.1111/cpr.12997
A.M. Hocking, The role of chemokines in mesenchymal stem cell homing to wounds. Adv. Wound Care 4, 623–630 (2015). https://doi.org/10.1089/wound.2014.0579
T.E. Foster, B.L. Puskas, B.R. Mandelbaum, M.B. Gerhardt, S.A. Rodeo, Platelet-rich plasma: from basic science to clinical applications. Am. J. Sport. Med. 37, 2259–2272 (2009). https://doi.org/10.1177/0363546509349921
P.R. Amable, R.B.V. Carias, M.V.T. Teixeira, Í. da Cruz Pacheco, R.J.F. Corrêa do Amaral et al., Platelet-rich plasma preparation for regenerative medicine: optimization and quantification of cytokines and growth factors. Stem Cell Res. Ther. 4, 1–13 (2013). https://doi.org/10.1186/scrt218
G. Jiang, S. Li, K. Yu, B. He, J. Hong et al., A 3D-printed PRP-GelMA hydrogel promotes osteochondral regeneration through M2 macrophage polarization in a rabbit model. Acta Biomater. 128, 150–162 (2021). https://doi.org/10.1016/j.actbio.2021.04.010
A.C. Mitchell, P.S. Briquez, J.A. Hubbell, J.R. Cochran, Engineering growth factors for regenerative medicine applications. Acta Biomater. 30, 1–12 (2016). https://doi.org/10.1016/j.actbio.2015.11.007
J. Tan, M. Zhang, Z. Hai, C. Wu, J. Lin et al., Sustained release of two bioactive factors from supramolecular hydrogel promotes periodontal bone regeneration. ACS Nano 13, 5616–5622 (2019). https://doi.org/10.1021/acsnano.9b00788
L. Xian, X. Wu, L. Pang, M. Lou, C.J. Rosen et al., Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells. Nat. Med. 18, 1095–1101 (2012). https://doi.org/10.1038/nm.2793
J. Kim, I.S. Kim, T.H. Cho, K.B. Lee, S.J. Hwang et al., Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells. Biomaterials 28, 1830–1837 (2007). https://doi.org/10.1016/j.biomaterials.2006.11.050
A. Shekaran, J.R. García, A.Y. Clark, T.E. Kavanaugh, A.S. Lin et al., Bone regeneration using an alpha 2 beta 1 integrin-specific hydrogel as a BMP-2 delivery vehicle. Biomaterials 35, 5453–5461 (2014). https://doi.org/10.1016/j.biomaterials.2014.03.055
S. Sanchez-Casanova, F.M. Martin-Saavedra, C. Escudero-Duch, M.I.F. Uceda, M. Prieto et al., Local delivery of bone morphogenetic protein-2 from near infrared-responsive hydrogels for bone tissue regeneration. Biomaterials 241, 119909 (2020). https://doi.org/10.1016/j.biomaterials.2020.119909
S. Ren, X. Tang, L. Liu, F. Meng, X. Yang et al., Reinforced blood-derived protein hydrogels enable dual-level regulation of bio-physiochemical microenvironments for personalized bone regeneration with remarkable enhanced efficacy. Nano Lett. 22, 3904–3913 (2022). https://doi.org/10.1021/acs.nanolett.2c00057
Z. Tang, Y. Yang, S. Bao, D. Yu, H. Wu et al., Biomimetic and spatiotemporally sequential hydrogel delivery system with self-healing and adhesion: triple growth factor for bone defect repair. Chem. Eng. J. 478, 147095 (2023). https://doi.org/10.1016/j.cej.2023.147095
T. Zhu, M. Jiang, M. Zhang, L. Cui, X. Yang et al., Biofunctionalized composite scaffold to potentiate osteoconduction, angiogenesis, and favorable metabolic microenvironment for osteonecrosis therapy. Bioact. Mater. 9, 446–460 (2022). https://doi.org/10.1016/j.bioactmat.2021.08.005
S. Sowmya, U. Mony, P. Jayachandran, S. Reshma, R.A. Kumar et al., Tri-layered nanocomposite hydrogel scaffold for the concurrent regeneration of cementum, periodontal ligament, and alveolar bone. Adv. Healthc. Mater. 6, 1601251 (2017). https://doi.org/10.1002/adhm.201601251
J. Sun, J. Lyu, F. Xing, R. Chen, X. Duan et al., A biphasic, demineralized, and Decellularized allograft bone-hydrogel scaffold with a cell-based BMP-7 delivery system for osteochondral defect regeneration. J. Biomed. Mater. Res. Part A 108, 1909–1921 (2020). https://doi.org/10.1002/jbm.a.36954
S. Zang, C. Xiao, M. He, B. Chen, B. Liu et al., RGD and rhBMP-7 immobilized on zirconia scaffold with interweaved human dental pulp stem cells for promoting bone regeneration. Mater. Design 232, 112052 (2023). https://doi.org/10.1016/j.matdes.2023.112052
Q. Min, J. Liu, Y. Zhang, B. Yang, Y. Wan et al., Dual network hydrogels incorporated with bone morphogenic protein-7-loaded hyaluronic acid complex nanops for inducing chondrogenic differentiation of synovium-derived mesenchymal stem cells. Pharmaceutics 12, 613 (2020). https://doi.org/10.3390/pharmaceutics12070613
H. Motasadizadeh, M. Tavakoli, S. Damoogh, F. Mottaghitalab, M. Gholami et al., Dual drug delivery system of teicoplanin and phenamil based on pH-sensitive silk fibroin/sodium alginate hydrogel scaffold for treating chronic bone infection. Biomater. Adv. 139, 213032 (2022). https://doi.org/10.1016/j.bioadv.2022.213032
Y. Murahashi, F. Yano, H. Nakamoto, Y. Maenohara, K. Iba et al., Multi-layered PLLA-nanosheets loaded with FGF-2 induce robust bone regeneration with controlled release in critical-sized mouse femoral defects. Acta Biomater. 85, 172–179 (2019). https://doi.org/10.1016/j.actbio.2018.12.031
J. Zhang, Z. Liu, Y. Li, Q. You, J. Yang et al., FGF2: a key regulator augmenting tendon-to-bone healing and cartilage repair. Regen. Med. 15, 2129–2142 (2020). https://doi.org/10.2217/rme-2019-0080
R. Kumar, J.R. Thompson, The regulation of parathyroid hormone secretion and synthesis. J Am Soc Nephrol 22, 216–224 (2011). https://doi.org/10.1681/ASN.2010020186
J. Huang, D. Lin, Z. Wei, Q. Li, J. Zheng et al., Parathyroid hormone derivative with reduced osteoclastic activity promoted bone regeneration via synergistic bone remodeling and angiogenesis. Small 16, 1905876 (2020). https://doi.org/10.1002/smll.201905876
M.N. Wein, Y. Liang, O. Goransson, T.B. Sundberg, J. Wang et al., SIKs control osteocyte responses to parathyroid hormone. Nat. Commun. 7, 13176 (2016). https://doi.org/10.1038/ncomms13176
S.J. Wojda, S.W. Donahue, Parathyroid hormone for bone regeneration. J. Orthop. Res. 36, 2586–2594 (2018). https://doi.org/10.1002/jor.24075
P. McSheehy, T. Chambers, Osteoblastic cells mediate osteoclastic responsiveness to parathyroid hormone. Endocrinology 118, 824–828 (1986). https://doi.org/10.1210/endo-118-2-824
Y. Ren, W. Kong, Y. Liu, X. Yang, X. Xu et al., Photocurable 3D-printed PMBG/TCP scaffold coordinated with PTH (1–34) bidirectionally regulates bone homeostasis to accelerate bone regeneration. Adv. Healthc. Mater. 12, 2300292 (2023). https://doi.org/10.1002/adhm.202300292
M.M. Menger, A.L. Tobias, D. Bauer, M. Bleimehl, C. Scheuer et al., Parathyroid hormone stimulates bone regeneration in an atrophic non-union model in aged mice. J. Transl. Med. 21, 844 (2023). https://doi.org/10.1186/s12967-023-04661-y
S. Chang, C. Li, N. Xu, J. Wang, Z. Jing et al., A sustained release of alendronate from an injectable tetra-PEG hydrogel for efficient bone repair. Front. Bioeng. Biotechnol. 10, 961227 (2022). https://doi.org/10.3389/fbioe.2022.961227
S. Afra, M. Koch, J. Żur-Pińska, M. Dolatshahi, A.R. Bahrami et al., Chitosan/Nanohydroxyapatite/Hydroxyethyl-cellulose-based printable formulations for local alendronate drug delivery in osteoporosis treatment. Carbohydr. Polym. Technol. Appl. 7, 100418 (2024). https://doi.org/10.1016/j.carpta.2023.100418
Y. Zeng, M. Zhou, L. Chen, H. Fang, S. Liu et al., Alendronate loaded graphene oxide functionalized collagen sponge for the dual effects of osteogenesis and anti-osteoclastogenesis in osteoporotic rats. Bioact. Mater. 5, 859–870 (2020). https://doi.org/10.1016/j.bioactmat.2020.06.010
S. Datta, A.P. Rameshbabu, K. Bankoti, S. Jana, S. Roy et al., Microsphere embedded hydrogel construct–binary delivery of alendronate and BMP-2 for superior bone regeneration. J. Mat. Chem. B 9, 6856–6869 (2021). https://doi.org/10.1039/D1TB00255D
H. Liu, K. Li, D. Yi, Y. Ding, Y. Gao et al., Deferoxamine-loaded chitosan-based hydrogel on bone implants showing enhanced bond strength and pro-angiogenic effects. J. Func. Biomater. 15, 112 (2024). https://doi.org/10.3390/jfb15040112
C. Wan, S.R. Gilbert, Y. Wang, X. Cao, X. Shen et al., Activation of the hypoxia-inducible factor-1α pathway accelerates bone regeneration. Proc. Natl. Acad. Sci. U. S. A. 105, 686–691 (2008). https://doi.org/10.1073/pnas.0708474105
G. Xiang, K. Liu, T. Wang, X. Hu, J. Wang et al., In situ regulation of macrophage polarization to enhance osseointegration under diabetic conditions using injectable silk/sitagliptin gel scaffolds. Adv. Sci. 8, 2002328 (2021). https://doi.org/10.1002/advs.202002328
S.J. Patel, J.M. Milwid, K.R. King, S. Bohr, A. Iracheta-Vellve et al., Gap junction inhibition prevents drug-induced liver toxicity and fulminant hepatic failure. Nat. Biotechnol. 30, 179–183 (2012). https://doi.org/10.1038/nbt.2089
X. Zhou, Y. Qian, L. Chen, T. Li, X. Sun et al., Flowerbed-inspired biomimetic scaffold with rapid internal tissue infiltration and vascularization capacity for bone repair. ACS Nano 17, 5140–5156 (2023). https://doi.org/10.1021/acsnano.3c00598
J. Hou, Z. Ding, X. Zheng, Y. Shen, Q. Lu et al., Tough porous silk nanofiber-derived cryogels with osteogenic and angiogenic capacity for bone repair. Adv. Healthc. Mater. (2023). https://doi.org/10.1002/adhm.202203050
J. Long, Y. Wang, M. Lu, A.E. Etxeberria, Y. Zhou et al., Dual-cross-linked magnetic hydrogel with programmed release of parathyroid hormone promotes bone healing. ACS Appl. Mater. Interfaces 15, 35815–35831 (2023). https://doi.org/10.1021/acsami.3c03047
J. Liu, X. Zhang, C. Xiao, X. Chen, A drug-mineralized hydrogel orchestrated by spontaneous dynamic mineralization. Adv. Funct. Mater. 34, 2311844 (2023). https://doi.org/10.1002/adfm.202311844
D. Li, J. Zhou, M. Zhang, Y. Ma, Y. Yang et al., Long-term delivery of alendronate through an injectable tetra-PEG hydrogel to promote osteoporosis therapy. Biomater. Sci. 8, 3138–3146 (2020). https://doi.org/10.1039/D0BM00376J
Y. Chen, W. Liu, S. Wan, H. Wang, Y. Chen et al., Superior synergistic osteogenesis of MXene-based hydrogel through supersensitive drug release at mild heat. Adv. Funct. Mater. 34, 2309191 (2024). https://doi.org/10.1002/adfm.202309191
J. Li, L. Li, T. Wu, K. Shi, Z. Bei et al., An injectable thermosensitive hydrogel containing resveratrol and dexamethasone-loaded carbonated hydroxyapatite microspheres for the regeneration of osteoporotic bone defects. Small Methods 8, 2300843 (2024). https://doi.org/10.1002/smtd.202300843
J.S. Park, C. Lee, S.Y. Cheon, Y. Lee, H. Jeon et al., Efficient drug supply in stem cell cytosol via pore-forming saponin nanops promotes in vivo osteogenesis and bone regeneration. Biomaterials 302, 122342 (2023). https://doi.org/10.1016/j.biomaterials.2023.122342
S. Guo, C. He, Bioprinted scaffold remodels the neuromodulatory microenvironment for enhancing bone regeneration. Adv. Funct. Mater. 33, 2304172 (2023). https://doi.org/10.1002/adfm.202304172
Q. Feng, J. Xu, K. Zhang, H. Yao, N. Zheng et al., Dynamic and cell-infiltratable hydrogels as injectable carrier of therapeutic cells and drugs for treating challenging bone defects. ACS Central Sci. 5, 440–450 (2019). https://doi.org/10.1021/acscentsci.8b00764
Y. Cui, S. Hong, Y. Xia, X. Li, X. He et al., Melatonin engineering M2 macrophage-derived exosomes mediate endoplasmic reticulum stress and immune reprogramming for periodontitis therapy. Adv. Sci. 10, 2302029 (2023). https://doi.org/10.1002/advs.202302029
L. Moradi, L. Witek, V.V. Nayak, A.C. Pereira, E. Kim et al., Injectable hydrogel for sustained delivery of progranulin derivative Atsttrin in treating diabetic fracture healing. Biomaterials 301, 122289 (2023). https://doi.org/10.1016/j.biomaterials.2023.122289
X. Han, J. Shen, S. Chen, Z. Cai, Y. Zhu et al., Ultrasonic-controlled “explosive” hydrogels to precisely regulate spatiotemporal osteoimmune disturbance. Biomaterials 295, 122057 (2023). https://doi.org/10.1016/j.biomaterials.2023.122057
X. Zhao, Y. Yang, J. Yu, R. Ding, D. Pei et al., Injectable hydrogels with high drug loading through B-N coordination and ROS-triggered drug release for efficient treatment of chronic periodontitis in diabetic rats. Biomaterials 282, 121387 (2022). https://doi.org/10.1016/j.biomaterials.2022.121387
F. Xu, T. Deng, W. Li, Y. Ai, J. Wu et al., A sequential sustained-release hydrogel with potent antimicrobial, anti-inflammatory, and osteogenesis-promoting properties for the treatment of periodontitis. Chem. Eng. J. 477, 147195 (2023). https://doi.org/10.1016/j.cej.2023.147195
H. Zhu, C. Cai, Y. Yu, Y. Zhou, S. Yang et al., Quercetin-loaded bioglass injectable hydrogel promotes m6A alteration of Per1 to alleviate oxidative stress for periodontal bone defects. Adv. Sci. 11, 2403412 (2024). https://doi.org/10.1002/advs.202403412
Y. Li, L. Yang, Y. Hou, Z. Zhang, M. Chen et al., Polydopamine-mediated graphene oxide and nanohydroxyapatite-incorporated conductive scaffold with an immunomodulatory ability accelerates periodontal bone regeneration in diabetes. Bioact. Mater. 18, 213–227 (2022). https://doi.org/10.1016/j.bioactmat.2022.03.021
T. Wu, L. Huang, J. Sun, J. Sun, Q. Yan et al., Multifunctional chitin-based barrier membrane with antibacterial and osteogenic activities for the treatment of periodontal disease. Carbohydr. Polym. 269, 118276 (2021). https://doi.org/10.1016/j.carbpol.2021.118276
K. Zhang, S. Lin, Q. Feng, C. Dong, Y. Yang et al., Nanocomposite hydrogels stabilized by self-assembled multivalent bisphosphonate-magnesium nanops mediate sustained release of magnesium ion and promote in-situ bone regeneration. Acta Biomater. 64, 389–400 (2017). https://doi.org/10.1016/j.actbio.2017.09.039
R. Yang, G. Li, C. Zhuang, P. Yu, T. Ye et al., Gradient bimetallic ion–based hydrogels for tissue microstructure reconstruction of tendon-to-bone insertion. Sci. Adv. 7, eabg3816 (2021). https://doi.org/10.1126/sciadv.abg3816
X. Zhang, S. Meng, Y. Huang, M. Xu, Y. He et al., Electrospun gelatin/β-TCP composite nanofibers enhance osteogenic differentiation of BMSCs and in vivo bone formation by activating Ca2+-sensing receptor signaling. Stem Cells Int. 2015, 507154 (2015). https://doi.org/10.1155/2015/507154
X. Chen, B. Tan, S. Wang, R. Tang, Z. Bao et al., Rationally designed protein cross-linked hydrogel for bone regeneration via synergistic release of magnesium and zinc ions. Biomaterials 274, 120895 (2021). https://doi.org/10.1016/j.biomaterials.2021.120895
J.P. O’Connor, D. Kanjilal, M. Teitelbaum, S.S. Lin, J.A. Cottrell, Zinc as a therapeutic agent in bone regeneration. Materials 13, 2211 (2020). https://doi.org/10.3390/ma13102211
L. Xu, S. Xu, T.Y. Xiang, L.W. Chen, W.X. Zhong et al., A novel peptide hydrogel of metal ion clusters for accelerating bone defect regeneration. J. Control. Release 353, 738–751 (2023). https://doi.org/10.1016/j.jconrel.2022.12.031
E.J. Ryan, A.J. Ryan, A. González-Vázquez, A. Philippart, F.E. Ciraldo et al., Collagen scaffolds functionalised with copper-eluting bioactive glass reduce infection and enhance osteogenesis and angiogenesis both in vitro and in vivo. Biomaterials 197, 405–416 (2019). https://doi.org/10.1016/j.biomaterials.2019.01.031
M. Chen, Y. Zhang, W. Zhang, J. Li, Polyhedral oligomeric silsesquioxane-incorporated gelatin hydrogel promotes angiogenesis during vascularized bone regeneration. ACS Appl. Mater. Interfaces 12, 22410–22425 (2020). https://doi.org/10.1021/acsami.0c00714
C.J. Li, J.H. Park, G.S. Jin, N. Mandakhbayar, D. Yeo et al., Strontium/Silicon/Calcium-releasing hierarchically structured 3D-printed scaffolds accelerate osteochondral defect repair. Adv. Healthc. Mater. 13, 2400154 (2024). https://doi.org/10.1002/adhm.202400154
G. Jian, D. Li, Q. Ying, X. Chen, Q. Zhai et al., Dual photo-enhanced interpenetrating network hydrogel with biophysical and biochemical signals for infected bone defect healing. Adv. Healthc. Mater. 12, 2370150 (2023). https://doi.org/10.21203/rs.3.rs-2534216/v1
X. Zhai, C. Ruan, Y. Ma, D. Cheng, M. Wu et al., 3D-bioprinted osteoblast-laden nanocomposite hydrogel constructs with induced microenvironments promote cell viability, differentiation, and osteogenesis both in vitro and in vivo. Adv. Sci. 5, 1700550 (2018). https://doi.org/10.1002/advs.201700550
Y. Tang, S. Lin, S. Yin, F. Jiang, M. Zhou et al., In situ gas foaming based on magnesium p degradation: A novel approach to fabricate injectable macroporous hydrogels. Biomaterials 232, 119727 (2020). https://doi.org/10.1016/j.biomaterials.2019.119727
J. Huang, Q.-C. Tan, H. Bai, J. Wang, P. Makvandi et al., Harnessing immunomodulation for efficient bone regeneration: Bioengineered black phosphorus-incorporated self-healing hydrogel. Chem. Eng. J. 470, 144117 (2023). https://doi.org/10.1016/j.cej.2023.144117
C. Li, W. Zhang, R. Wang, X.-F. Du, D. Jiang et al., Nanocomposite multifunctional hydrogel for suppressing osteosarcoma recurrence and enhancing bone regeneration. Chem. Eng. J. 435, 134896 (2022). https://doi.org/10.1016/j.cej.2022.134896
Y. Xu, C. Xu, L. He, J. Zhou, T. Chen et al., Stratified-structural hydrogel incorporated with magnesium-ion-modified black phosphorus nanosheets for promoting neuro-vascularized bone regeneration. Bioact. Mater. 16, 271–284 (2022). https://doi.org/10.1016/j.bioactmat.2022.02.024
Z. Zhao, G. Li, H. Ruan, K. Chen, Z. Cai et al., Capturing magnesium ions via microfluidic hydrogel microspheres for promoting cancellous bone regeneration. ACS Nano 15, 13041–13054 (2021). https://doi.org/10.1021/acsnano.1c02147
Z. Wu, J. Bai, G. Ge, T. Wang, S. Feng et al., Regulating macrophage polarization in high glucose microenvironment using lithium-modified bioglass-hydrogel for diabetic bone regeneration. Adv. Healthc. Mater. 11, 2200298 (2022). https://doi.org/10.1002/adhm.202200298
Q. Zhang, S. Gao, B. Li, Q. Li, X. Li et al., Lithium-doped titanium dioxide-based multilayer hierarchical structure for accelerating nerve-induced bone regeneration. ACS Appl. Mater. Interfaces 16, 22887–22899 (2024). https://doi.org/10.1021/acsami.4c01520
A. Henriques Lourenço, N. Neves, C. Ribeiro-Machado, S.R. Sousa, M. Lamghari et al., Injectable hybrid system for strontium local delivery promotes bone regeneration in a rat critical-sized defect model. Sci. Rep. 7, 5098 (2017). https://doi.org/10.1038/s41598-017-04866-4
R.A. Perez, J.-H. Kim, J.O. Buitrago, I.B. Wall, H.-W. Kim, Novel therapeutic core–shell hydrogel scaffolds with sequential delivery of cobalt and bone morphogenetic protein-2 for synergistic bone regeneration. Acta Biomater. 23, 295–308 (2015). https://doi.org/10.1016/j.actbio.2015.06.002
A.I. Caplan, Adult mesenchymal stem cells: when, where, and how. Stem Cells Int. 628767 (2015). https://doi.org/10.1155/2015/628767
S. Kern, H. Eichler, J. Stoeve, H. Klüter, K. Bieback, Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24, 1294–1301 (2006). https://doi.org/10.1634/stemcells.2005-0342
X. Ye, P. Zhang, S. Xue, Y. Xu, J. Tan et al., Adipose-derived stem cells alleviate osteoporosis by enchancing osteogenesis and inhibiting adipogenesis in a rabbit model. Cytotherapy 16, 1643–1655 (2014). https://doi.org/10.1016/j.jcyt.2014.07.009
W. Shen, B. Sun, C. Zhou, W. Ming, S. Zhang et al., CircFOXP1/FOXP1 promotes osteogenic differentiation in adipose-derived mesenchymal stem cells and bone regeneration in osteoporosis via miR-33a-5p. J. Cell. Mol. Med. 24, 12513–12524 (2020). https://doi.org/10.1111/jcmm.15792
Y.J. Yoon, O.Y. Kim, Y.S. Gho, Extracellular vesicles as emerging intercellular communicasomes. BMB Rep. 47, 531 (2014). https://doi.org/10.5483/BMBRep.2014.47.10.164
X. Li, C. Chen, L. Wei, Q. Li, X. Niu et al., Exosomes derived from endothelial progenitor cells attenuate vascular repair and accelerate reendothelialization by enhancing endothelial function. Cytotherapy 18, 253–262 (2016). https://doi.org/10.1016/j.jcyt.2015.11.009
K. Man, M.Y. Brunet, M.-C. Jones, S.C. Cox, Engineered extracellular vesicles: tailored-made nanomaterials for medical applications. Nanomaterials 10, 1838 (2020). https://doi.org/10.3390/nano10091838
Y. Qin, L. Wang, Z. Gao, G. Chen, C. Zhang, Bone marrow stromal/stem cell-derived extracellular vesicles regulate osteoblast activity and differentiation in vitro and promote bone regeneration in vivo. Sci. Rep. 6, 21961 (2016). https://doi.org/10.1038/srep21961
P. Cheng, T. Cao, X. Zhao, W. Lu, S. Miao et al., Nidogen1-enriched extracellular vesicles accelerate angiogenesis and bone regeneration by targeting Myosin-10 to regulate endothelial cell adhesion. Bioact. Mater. 12, 185–197 (2022). https://doi.org/10.1016/j.bioactmat.2021.10.021
A. Faqeer, M. Wang, G. Alam, A.A. Padhiar, D. Zheng et al., Cleaved SPP1-rich extracellular vesicles from osteoclasts promote bone regeneration via TGFβ1/SMAD3 signaling. Biomaterials 303, 122367 (2023). https://doi.org/10.1016/j.biomaterials.2023.122367
Y. Jiang, J. Li, X. Xue, Z. Yin, K. Xu et al., Engineered extracellular vesicles for bone therapy. Nano Today 44, 101487 (2022). https://doi.org/10.1016/j.nantod.2022.101487
R.C. de Abreu, H. Fernandes, P.A. da Costa Martins, S. Sahoo, C. Emanueli et al., Native and bioengineered extracellular vesicles for cardiovascular therapeutics. Nat. Rev. Cardiol. 17, 685–697 (2020). https://doi.org/10.1038/s41569-020-0389-5
T. Zhang, S. Yan, Y. Song, C. Chen, D. Xu et al., Exosomes secreted by hypoxia-stimulated bone-marrow mesenchymal stem cells promote grafted tendon-bone tunnel healing in rat anterior cruciate ligament reconstruction model. J. Orthop. Transl. 36, 152–163 (2022). https://doi.org/10.1016/j.jot.2022.08.001
W. Song, Z. Ma, X. Wang, Y. Wang, D. Wu et al., Macroporous granular hydrogels functionalized with aligned architecture and small extracellular vesicles stimulate osteoporotic tendon-to-bone healing. Adv. Sci. 10, 2304090 (2023). https://doi.org/10.1002/advs.202304090
G. Peng, W. Li, L. Peng, R. Li, Z. Wang et al., Multifunctional DNA-based hydrogel promotes diabetic alveolar bone defect reconstruction. Small 20, 2305594 (2023). https://doi.org/10.1002/smll.202305594
Y. Zhao, Y. Gong, X. Liu, J. He, B. Zheng et al., The experimental study of periodontal ligament stem cells derived exosomes with hydrogel accelerating bone regeneration on alveolar bone defect. Pharmaceutics 14, 2189 (2022). https://doi.org/10.3390/pharmaceutics14102189
S. Han, H. Yang, X. Ni, Y. Deng, Z. Li et al., Programmed release of vascular endothelial growth factor and exosome from injectable chitosan nanofibrous microsphere-based PLGA-PEG-PLGA hydrogel for enhanced bone regeneration. Int. J. Biol. Macromol. 253, 126721 (2023). https://doi.org/10.1016/j.ijbiomac.2023.126721
Q. Li, H. Yu, F. Zhao, C. Cao, T. Wu et al., 3D printing of microenvironment-specific bioinspired and exosome-reinforced hydrogel scaffolds for efficient cartilage and subchondral bone regeneration. Adv. Sci. 10, 2303650 (2023). https://doi.org/10.1002/advs.202303650
Z. Lin, Y. Xiong, W. Meng, Y. Hu, L. Chen et al., Exosomal PD-L1 induces osteogenic differentiation and promotes fracture healing by acting as an immunosuppressant. Bioact. Mater. 13, 300–311 (2022). https://doi.org/10.1016/j.bioactmat.2021.10.042
L. He, Q. Zhou, H. Zhang, N. Zhao, L. Liao, PF127 hydrogel-based delivery of exosomal CTNNB1 from mesenchymal stem cells induces osteogenic differentiation during the repair of alveolar bone defects. Nanomaterials 13, 1083 (2023). https://doi.org/10.3390/nano13061083
S. Chen, Y. Tang, Y. Liu, P. Zhang, L. Lv et al., Exosomes derived from miR-375-overexpressing human adipose mesenchymal stem cells promote bone regeneration. Cell Prolif. 52, e12669 (2019). https://doi.org/10.1111/cpr.12669
Z. Hao, L. Ren, Z. Zhang, Z. Yang, S. Wu et al., A multifunctional neuromodulation platform utilizing Schwann cell-derived exosomes orchestrates bone microenvironment via immunomodulation, angiogenesis and osteogenesis. Bioact. Mater. 23, 206–222 (2023). https://doi.org/10.1016/j.bioactmat.2022.10.018
B. Peng, Y. Chen, K.W. Leong, MicroRNA delivery for regenerative medicine. Adv. Drug Deliv. Rev. 88, 108–122 (2015). https://doi.org/10.1016/j.addr.2015.05.014
H. Feng, Z. Li, W. Xie, Q. Wan, Y. Guo et al., Delivery of therapeutic miRNAs using nanoscale zeolitic imidazolate framework for accelerating vascularized bone regeneration. Chem. Eng. J. 430, 132867 (2022). https://doi.org/10.1016/j.cej.2021.132867
M.K. Nguyen, O. Jeon, P.N. Dang, C.T. Huynh, D. Varghai et al., RNA interfering molecule delivery from in situ forming biodegradable hydrogels for enhancement of bone formation in rat calvarial bone defects. Acta Biomater. 75, 105–114 (2018). https://doi.org/10.1016/j.actbio.2018.06.007
J.-z Xu, J.-l Zhang, W.-g Zhang, Antisense RNA: the new favorite in genetic research. J. Zhejiang Univ. Sc. B 19, 739–749 (2018). https://doi.org/10.1631/jzus.B1700594
F. Qiao, Y. Zou, B. Bie, Y. Lv, Dual siRNA-loaded cell membrane functionalized matrix facilitates bone regeneration with angiogenesis and neurogenesis. Small 20, 2307062 (2024). https://doi.org/10.1002/smll.202307062
R. Yang, F. Chen, J. Guo, D. Zhou, S. Luan, Recent advances in polymeric biomaterials-based gene delivery for cartilage repair. Bioact. Mater. 5, 990–1003 (2020). https://doi.org/10.1016/j.bioactmat.2020.06.004
A.E. Labatut, G. Mattheolabakis, Non-viral based miR delivery and recent developments. Eur. J. Pharm. Biopharm. 128, 82–90 (2018). https://doi.org/10.1016/j.ejpb.2018.04.018
A. Malek-Khatabi, H.A. Javar, E. Dashtimoghadam, S. Ansari, M.M. Hasani-Sadrabadi et al., In situ bone tissue engineering using gene delivery nanocomplexes. Acta Biomater. 108, 326–336 (2020). https://doi.org/10.1016/j.actbio.2020.03.008
J. Sun, Y. Gao, Y. Yao, Y. Li, M. Feng et al., Bone tissue engineering based on sustained release of MiR29c-modified framework nucleic acids from an injectable hydrogel. Chem. Eng. J. 487, 150706 (2024). https://doi.org/10.1016/j.cej.2024.150706
D. Li, Z. Yang, Y. Luo, X. Zhao, M. Tian et al., Delivery of miR335-5p-pendant tetrahedron DNA nanostructures using an injectable heparin lithium hydrogel for challenging bone defects in steroid-associated osteonecrosis. Adv. Healthc. Mater. 11, 2101412 (2022). https://doi.org/10.1002/adhm.202101412
R. Li, H. Wang, J.V. John, H. Song, M.J. Teusink et al., 3D Hybrid nanofiber aerogels combining with nanops made of a biocleavable and targeting polycation and MiR-26a for bone repair. Adv. Funct. Mater. 30, 2005531 (2020). https://doi.org/10.1002/adfm.202005531
L. Hao, S. Huang, T. Huang, D. Yi, C. Wang et al., Bone targeting miR-26a loaded exosome-mimetics for bone regeneration therapy by activating Wnt signaling pathway. Chem. Eng. J. 471, 144594 (2023). https://doi.org/10.1016/j.cej.2023.144594
Y. Wang, D.W. Malcolm, D.S. Benoit, Controlled and sustained delivery of siRNA/NPs from hydrogels expedites bone fracture healing. Biomaterials 139, 127–138 (2017). https://doi.org/10.1016/j.biomaterials.2017.06.001
Z. Zhang, P. Ding, Y. Meng, T. Lin, Z. Zhang et al., Rational polyelectrolyte nanops endow preosteoclast-targeted siRNA transfection for anabolic therapy of osteoporosis. Sci. Adv. 9, eade7379 (2023). https://doi.org/10.1126/sciadv.ade7379
X. Ding, X. Li, C. Li, M. Qi, Z. Zhang et al., Chitosan/dextran hydrogel constructs containing strontium-doped hydroxyapatite with enhanced osteogenic potential in rat cranium. ACS Biomater. Sci. Eng. 5, 4574–4586 (2019). https://doi.org/10.1021/acsbiomaterials.9b00584
G. Camci-Unal, D. Cuttica, N. Annabi, D. Demarchi, A. Khademhosseini, Synthesis and characterization of hybrid hyaluronic acid-gelatin hydrogels. Biomacromol 14, 1085–1092 (2013). https://doi.org/10.1021/bm3019856
A.M. Rubiano, N. Carney, R. Chesnut, J.C. Puyana, Global neurotrauma research challenges and opportunities. Nature 527, S193–S197 (2015). https://doi.org/10.1038/nature16035
J.V. Rosenfeld, A.I. Maas, P. Bragge, M.C. Morganti-Kossmann, G.T. Manley et al., Early management of severe traumatic brain injury. The Lancet 380, 1088–1098 (2012). https://doi.org/10.1016/S0140-6736(12)60864-2
C. Cordonnier, A. Demchuk, W. Ziai, C.S. Anderson, Intracerebral haemorrhage: current approaches to acute management. The Lancet 392, 1257–1268 (2018). https://doi.org/10.1016/S0140-6736(18)31878-6
L. Xu, Q. Ye, J. Xie, J. Yang, W. Jiang et al., An injectable gellan gum-based hydrogel that inhibits Staphylococcus aureus for infected bone defect repair. J. Mat. Chem. B 10, 282–292 (2022). https://doi.org/10.1039/D1TB02230J
M. Gopalakrishnan, N.C. Shanbhag, D.P. Shukla, S.K. Konar, D.I. Bhat et al., Complications of decompressive craniectomy. Front. Neurol. 9, 416751 (2018). https://doi.org/10.3389/fneur.2018.00977
G. Lu, Y. Xu, Q. Liu, M. Chen, H. Sun et al., An instantly fixable and self-adaptive scaffold for skull regeneration by autologous stem cell recruitment and angiogenesis. Nat. Commun. 13, 2499 (2022). https://doi.org/10.1038/s41467-022-30243-5
L. Wang, D. Li, Y. Huang, R. Mao, B. Zhang et al., Bionic mineralized 3D-printed scaffolds with enhanced in situ mineralization for cranial bone regeneration. Adv. Funct. Mater. 34, 2309042 (2024). https://doi.org/10.1002/adfm.202309042
Z. Zou, L. Wang, Z. Zhou, Q. Sun, D. Liu et al., Simultaneous incorporation of PTH (1–34) and nano-hydroxyapatite into chitosan/alginate hydrogels for efficient bone regeneration. Bioact. Mater. 6, 1839–1851 (2021). https://doi.org/10.1016/j.bioactmat.2020.11.021
P. Li, Z. Jia, Q. Wang, P. Tang, M. Wang et al., A resilient and flexible chitosan/silk cryogel incorporated Ag/Sr co-doped nanoscale hydroxyapatite for osteoinductivity and antibacterial properties. J. Mat. Chem. B 6, 7427–7438 (2018). https://doi.org/10.1039/C8TB01672K
Q. Yang, Y. Miao, J. Luo, Y. Chen, Y. Wang, Amyloid fibril and clay nanosheet dual-nanoengineered DNA dynamic hydrogel for vascularized bone regeneration. ACS Nano 17, 17131–17147 (2023). https://doi.org/10.1021/acsnano.3c04816
Z. Mao, X. Bi, C. Yu, L. Chen, J. Shen et al., Mechanically robust and personalized silk fibroin-magnesium composite scaffolds with water-responsive shape-memory for irregular bone regeneration. Nat. Commun. 15, 4160 (2024). https://doi.org/10.1038/s41467-024-48417-8
P. Liu, T. Bao, L. Sun, Z. Wang, J. Sun et al., In situ mineralized PLGA/zwitterionic hydrogel composite scaffold enables high-efficiency rhBMP-2 release for critical-sized bone healing. Biomater. Sci. 10, 781–793 (2022). https://doi.org/10.1039/D1BM01521D
Z. Zhong, Y. Li, Z. Sun, X. Wu, J. Li et al., Hypoxia-triggered exosome-mimetics accelerate vascularized osteogenesis. Mater. Today 73, 16–29 (2024). https://doi.org/10.1016/j.mattod.2023.09.026
Y.P. Zou, H.F. Liang, B. Wang, Q.C. Zhang, D.H. Su et al., Precipitation-based silk fibroin fast gelling, highly adhesive, and magnetic nanocomposite hydrogel for repair of irregular bone defects. Adv. Funct. Mater. 33, 2302442 (2023). https://doi.org/10.1002/adfm.202302442
D.L. Worthley, M. Churchill, J.T. Compton, Y. Tailor, M. Rao et al., Gremlin 1 identifies a skeletal stem cell with bone, cartilage, and reticular stromal potential. Cell 160, 269–284 (2015). https://doi.org/10.1016/j.cell.2014.11.042
B. Shen, A. Tasdogan, J.M. Ubellacker, J. Zhang, E.D. Nosyreva et al., A mechanosensitive peri-arteriolar niche for osteogenesis and lymphopoiesis. Nature 591, 438–444 (2021). https://doi.org/10.1038/s41586-021-03298-5
X. Zhang, W. Jiang, C. Xie, X. Wu, Q. Ren et al., Msx1+ stem cells recruited by bioactive tissue engineering graft for bone regeneration. Nat. Commun. 13, 5211 (2022). https://doi.org/10.1038/s41467-022-32868-y
J. Liu, Y. Tang, W. Yang, B. Tao, Y. He et al., Functionalization of titanium substrate with multifunctional peptide OGP-NAC for the regulation of osteoimmunology. Biomater. Sci. 7, 1463–1476 (2019). https://doi.org/10.1039/C8BM01611A
L. Shen, S. Cao, Y. Wang, P. Zhou, S. Wang et al., Self-adaptive antibacterial scaffold with programmed delivery of osteogenic peptide and lysozyme for infected bone defect treatment. ACS Appl. Mater. Interfaces 15, 626–637 (2022). https://doi.org/10.1021/acsami.2c19026
M. Monteiro-Soares, E.J. Boyko, W. Jeffcoate, J.L. Mills, D. Russell et al., Diabetic foot ulcer classifications: a critical review. Diabetes Metab. Res. Rev. 36, e3272 (2020). https://doi.org/10.1002/dmrr.3272
Y. Li, Z. Liu, C. Zhao, C. Xu, A. Shin et al., A sustained-release PDGF-BB nanocomposite hydrogel for DM-associated bone regeneration. J. Mat. Chem. B 11, 974–984 (2023). https://doi.org/10.1039/D2TB02037H
Z. Xu, X. Qi, M. Bao, T. Zhou, J. Shi et al., Biomineralization inspired 3D printed bioactive glass nanocomposite scaffolds orchestrate diabetic bone regeneration by remodeling micromilieu. Bioact. Mater. 25, 239–255 (2023). https://doi.org/10.1016/j.bioactmat.2023.01.024
L. Che, Y. Wang, D. Sha, G. Li, Z. Wei et al., A biomimetic and bioactive scaffold with intelligently pulsatile teriparatide delivery for local and systemic osteoporosis regeneration. Bioact. Mater. 19, 75–87 (2023). https://doi.org/10.1016/j.bioactmat.2022.03.023
S. Song, Y. Guo, Y. Yang, D. Fu, Advances in pathogenesis and therapeutic strategies for osteoporosis. Pharmacol. Ther. 237, 108168 (2022). https://doi.org/10.1016/j.pharmthera.2022.108168
S.R. Cummings, L.J. Melton, Epidemiology and outcomes of osteoporotic fractures. The Lancet 359, 1761–1767 (2002). https://doi.org/10.1016/S0140-6736(02)08657-9
K.-Y. Chin, B.N. Ng, M.K.I. Rostam, N.F.D. Muhammad Fadzil, V. Raman et al., A mini review on osteoporosis: from biology to pharmacological management of bone loss. J. Clin. Med. 11, 6434 (2022). https://doi.org/10.3390/jcm11216434
B.M. Tang, G.D. Eslick, C. Nowson, C. Smith, A. Bensoussan, Use of calcium or calcium in combination with vitamin D supplementation to prevent fractures and bone loss in people aged 50 years and older: a meta-analysis. The Lancet 370, 657–666 (2007). https://doi.org/10.1016/S0140-6736(07)61342-7
M. Echave, I. Erezuma, N. Golafshan, M. Castilho, F. Kadumudi et al., Bioinspired gelatin/bioceramic composites loaded with bone morphogenetic protein-2 (BMP-2) promote osteoporotic bone repair. Biomater. Adv. 134, 112539 (2022). https://doi.org/10.1016/j.msec.2021.112539
J. Fang, P. Li, X. Lu, L. Fang, X. Lü et al., A strong, tough, and osteoconductive hydroxyapatite mineralized polyacrylamide/dextran hydrogel for bone tissue regeneration. Acta Biomater. 88, 503–513 (2019). https://doi.org/10.1016/j.actbio.2019.02.019
C. Liu, J. Wu, D. Gan, Z. Li, J. Shen et al., The characteristics of mussel-inspired nHA/OSA injectable hydrogel and repaired bone defect in rabbit. J. Biomed. Mater. Res. B 108, 1814–1825 (2020). https://doi.org/10.1002/jbm.b.34524
L.-B. Jiang, S.-L. Ding, W. Ding, D.-H. Su, F.-X. Zhang et al., Injectable sericin based nanocomposite hydrogel for multi-modal imaging-guided immunomodulatory bone regeneration. Chem. Eng. J. 418, 129323 (2021). https://doi.org/10.1016/j.cej.2021.129323
X. Wang, J. Fang, W. Zhu, C. Zhong, D. Ye et al., Bioinspired highly anisotropic, ultrastrong and stiff, and osteoconductive mineralized wood hydrogel composites for bone repair. Adv. Funct. Mater. 31, 2010068 (2021). https://doi.org/10.1002/adfm.202010068
K. Fong, V. Truong, C.J. Foote, B. Petrisor, D. Williams et al., Predictors of nonunion and reoperation in patients with fractures of the tibia: an observational study. BMC Musculoskelet. Disord. 14, 1–9 (2013). https://doi.org/10.1186/1471-2474-14-103
R. Zura, Z. Xiong, T. Einhorn, J.T. Watson, R.F. Ostrum et al., Epidemiology of fracture nonunion in 18 human bones. JAMA Surg. 151, e162775–e162775 (2016). https://doi.org/10.1001/jamasurg.2016.2775
K. Zha, M. Tan, Y. Hu, W. Hu, S. Zhang et al., Regulation of metabolic microenvironment with a nanocomposite hydrogel for improved bone fracture healing. Bioact. Mater. 37, 424–438 (2024). https://doi.org/10.1016/j.bioactmat.2024.03.025
L. Si, T. Winzenberg, Q. Jiang, M. Chen, A.J. Palmer, Projection of osteoporosis-related fractures and costs in China: 2010–2050. Osteoporosis Int. 26, 1929–1937 (2015). https://doi.org/10.1007/s00198-015-3093-2
B. Yuan, L. Wang, R. Zhao, X. Yang, X. Yang et al., A biomimetically hierarchical polyetherketoneketone scaffold for osteoporotic bone repair. Sci. Adv. 6, eabc4704 (2020). https://doi.org/10.1126/sciadv.abc4704
D. Patel, S. Wairkar, Bone regeneration in osteoporosis: opportunities and challenges. Drug Deliv. Transl. Res. 13, 419–432 (2023). https://doi.org/10.1007/s13346-022-01222-6
C. Chen, L. Fu, Y. Luo, W. Zeng, X. Qi et al., Engineered exosome-functionalized extracellular matrix-mimicking hydrogel for promoting bone repair in glucocorticoid-induced osteonecrosis of the femoral head. ACS Appl. Mater. Interfaces 15, 28891–28906 (2023). https://doi.org/10.1021/acsami.3c01539
M. Maruyama, S. Moeinzadeh, R.A. Guzman, N. Zhang, H.W. Storaci et al., The efficacy of lapine preconditioned or genetically modified IL4 over-expressing bone marrow-derived mesenchymal stromal cells in corticosteroid-associated osteonecrosis of the femoral head in rabbits. Biomaterials 275, 120972 (2021). https://doi.org/10.1016/j.biomaterials.2021.120972
K.N. Weilbaecher, T.A. Guise, L.K. McCauley, Cancer to bone: a fatal attraction. Nat. Rev. Cancer 11, 411–425 (2011). https://doi.org/10.1038/nrc3055
J. Liao, K. Shi, Y. Jia, Y. Wu, Z. Qian, Gold nanorods and nanohydroxyapatite hybrid hydrogel for preventing bone tumor recurrence via postoperative photothermal therapy and bone regeneration promotion. Bioact. Mater. 6, 2221–2230 (2021). https://doi.org/10.1016/j.bioactmat.2021.01.006
S. Luo, J. Wu, Z. Jia, P. Tang, J. Sheng et al., An injectable, bifunctional hydrogel with photothermal effects for tumor therapy and bone regeneration. Macromol. Biosci. 19, 1900047 (2019). https://doi.org/10.1002/mabi.201900047
X. Zhao, I. Seah, K. Xue, W. Wong, Q.S.W. Tan et al., Antiangiogenic nanomicelles for the topical delivery of aflibercept to treat retinal neovascular disease. Adv. Mater. 34, 2108360 (2022). https://doi.org/10.1002/adma.202108360
W. Li, C. Wang, Z. Wang, L. Gou, Y. Zhou et al., Physically cross-linked DNA hydrogel-based sustained cytokine delivery for in situ diabetic alveolar bone rebuilding. ACS Appl. Mater. Interfaces 14, 25173–25182 (2022). https://doi.org/10.1021/acsami.2c04769
D. Gan, Z. Wang, C. Xie, X. Wang, W. Xing et al., Mussel-inspired tough hydrogel with in situ nanohydroxyapatite mineralization for osteochondral defect repair. Adv. Healthc. Mater. 8, 1901103 (2019). https://doi.org/10.1002/adhm.201901103
J. Fang, J. Liao, C. Zhong, X. Lu, F. Ren, High-strength, biomimetic functional chitosan-based hydrogels for full-thickness osteochondral defect repair. ACS Biomater. Sci. Eng. 8, 4449–4461 (2022). https://doi.org/10.1021/acsbiomaterials.2c00187
J. Xing, X. Peng, A. Li, M. Chen, Y. Ding et al., Gellan gum/alginate-based Ca-enriched acellular bilayer hydrogel with robust interface bonding for effective osteochondral repair. Carbohydr. Polym. 270, 118382 (2021). https://doi.org/10.1016/j.carbpol.2021.118382
B.T. Estes, M. Enomoto, F.T. Moutos, M.A. Carson, J.M. Toth et al., Biological resurfacing in a canine model of hip osteoarthritis. Sci. Adv. 7, eabi5918 (2021). https://doi.org/10.1126/sciadv.abi5918
J.H. Teixeira, C.L. Pereira, M.I. Almeida, G.Q. Teixeira, R.M. Gonçalves et al., Articular repair/regeneration in healthy and inflammatory conditions: from advanced in vitro to in vivo models. Adv. Funct. Mater. 30, 1909523 (2020). https://doi.org/10.1002/adfm.201909523
L. Han, J. Xu, X. Lu, D. Gan, Z. Wang et al., Biohybrid methacrylated gelatin/polyacrylamide hydrogels for cartilage repair. J. Mat. Chem. B 5, 731–741 (2017). https://doi.org/10.1039/C6TB02348G
D. Gan, T. Xu, W. Xing, M. Wang, J. Fang et al., Mussel-inspired dopamine oligomer intercalated tough and resilient gelatin methacryloyl (GelMA hydrogels for cartilage regeneration. J. Mat. Chem. B 7, 1716–1725 (2019). https://doi.org/10.1039/C8TB01664J
X. Wang, X. Sun, D. Gan, M. Soubrier, H.-Y. Chiang et al., Bioadhesive and conductive hydrogel-integrated brain-machine interfaces for conformal and immune-evasive contact with brain tissue. Matter 5, 1204–1223 (2022). https://doi.org/10.1016/j.matt.2022.01.012
Y. Jiang, X. Zhang, W. Zhang, M. Wang, L. Yan et al., Infant skin friendly adhesive hydrogel patch activated at body temperature for bioelectronics securing and diabetic wound healing. ACS Nano 16, 8662–8676 (2022). https://doi.org/10.1021/acsnano.2c00662
P. Chen, W. Zhang, X. Fan, X. Shi, Y. Jiang et al., A polyphenol-derived redox-active and conductive nanop-reinforced hydrogel with wet adhesiveness for myocardial infarction repair by simultaneously stimulating anti-inflammation and calcium homeostasis pathways. Nano Today 55, 102157 (2024). https://doi.org/10.1016/j.nantod.2024.102157
D. Gan, Y. Jiang, Y. Hu, X. Wang, Q. Wang et al., Mussel-inspired extracellular matrix-mimicking hydrogel scaffold with high cell affinity and immunomodulation ability for growth factor-free cartilage regeneration. J. Orthop. Transl. 33, 120–131 (2022). https://doi.org/10.1016/j.jot.2022.02.006
P. Yu, Y. Li, H. Sun, X. Ke, J. Xing et al., Cartilage-inspired hydrogel with mechanical adaptability, controllable lubrication, and inflammation regulation abilities. ACS Appl. Mater. Interfaces 14, 27360–27370 (2022). https://doi.org/10.1021/acsami.2c04609
J. Zhu, S. Yang, Y. Qi, Z. Gong, H. Zhang et al., Stem cell–homing hydrogel-based miR-29b-5p delivery promotes cartilage regeneration by suppressing senescence in an osteoarthritis rat model. Sci. Adv. 8, eabk0011 (2022). https://doi.org/10.1126/sciadv.abk0011
J. Gong, C. Ye, J. Ran, X. Xiong, X. Fang et al., Polydopamine-mediated immunomodulatory patch for diabetic periodontal tissue regeneration assisted by metformin-ZIF system. ACS Nano 17, 16573–16586 (2023). https://doi.org/10.1021/acsnano.3c02407
H. Zhang, T. Fan, W. Chen, Y. Li, B. Wang, Recent advances of two-dimensional materials in smart drug delivery nano-systems. Bioact. Mater. 5, 1071–1086 (2020). https://doi.org/10.1016/j.bioactmat.2020.06.012
Y. Miao, Y. Chen, J. Luo, X. Liu, Q. Yang et al., Black phosphorus nanosheets-enabled DNA hydrogel integrating 3D-printed scaffold for promoting vascularized bone regeneration. Bioact. Mater. 21, 97–109 (2023). https://doi.org/10.1016/j.bioactmat.2022.08.005
S. Gupta, S. Majumdar, S. Krishnamurthy, Bioactive glass: A multifunctional delivery system. J. Control. Release 335, 481–497 (2021). https://doi.org/10.1016/j.jconrel.2021.05.043
C. Huang, S. Shi, M. Qin, X. Rong, Z. Ding et al., A composite hydrogel functionalized by borosilicate bioactive glasses and VEGF for critical-size bone regeneration. Adv. Sci. 11, 2400349 (2024). https://doi.org/10.1002/advs.202400349
L. Zhou, H. Liu, B. Zhang, C. Wei, S. Zhou et al., A novel 3D-printed bi-layer cranial-brain patch promotes brain injury repair and bone tissue regeneration. Adv. Funct. Mater. 34, 2314330 (2024). https://doi.org/10.1002/adfm.202314330
C.G. Zalavras, Prevention of infection in open fractures. Infect. Dis. Clin. 31, 339–352 (2017). https://doi.org/10.1016/j.idc.2017.01.005
M.L. Costa, J. Achten, J. Bruce, E. Tutton, S. Petrou et al., Effect of negative pressure wound therapy vs standard wound management on 12-month disability among adults with severe open fracture of the lower limb: the WOLLF randomized clinical trial. JAMA 319, 2280–2288 (2018). https://doi.org/10.1001/jama.2018.6452
R.A. Gosselin, I. Roberts, W.J. Gillespie, Antibiotics for preventing infection in open limb fractures. Cochrane Database Syst. Rev. 1, CD003764 (2004). https://doi.org/10.1002/14651858.CD003764.pub2
Y. Yang, S. Su, S. Liu, W. Liu, Q. Yang et al., Triple-functional bone adhesive with enhanced internal fixation, bacteriostasis and osteoinductive properties for open fracture repair. Bioact. Mater. 25, 273–290 (2023). https://doi.org/10.1016/j.bioactmat.2023.01.021
X. Ding, J. Shi, J. Wei, Y. Li, X. Wu et al., A biopolymer hydrogel electrostatically reinforced by amino-functionalized bioactive glass for accelerated bone regeneration. Sci. Adv. 7, eabj7857 (2021). https://doi.org/10.1126/sciadv.abj7857
J. Kang, Y. Li, Y. Qin, Z. Huang, Y. Wu et al., In situ deposition of drug and gene nanops on a patterned supramolecular hydrogel to construct a directionally osteochondral plug. Nano-Micro Lett. 16, 18 (2024). https://doi.org/10.1007/s40820-023-01228-w
Y. Wu, X. Li, Y. Sun, X. Tan, C. Wang et al., Multiscale design of stiffening and ROS scavenging hydrogels for the augmentation of mandibular bone regeneration. Bioact. Mater. 20, 111–125 (2023). https://doi.org/10.1016/j.bioactmat.2022.05.021
J.H. Hamman, Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems. Mar. Drugs 8, 1305–1322 (2010). https://doi.org/10.3390/md8041305
M. Afshar, G. Dini, S. Vaezifar, M. Mehdikhani, B. Movahedi, Preparation and characterization of sodium alginate/polyvinyl alcohol hydrogel containing drug-loaded chitosan nanops as a drug delivery system. J. Drug Deliv. Sci. Technol. 56, 101530 (2020). https://doi.org/10.1016/j.jddst.2020.101530
H.I. Chiu, V. Lim, Wheat germ agglutinin-conjugated disulfide cross-linked alginate nanops as a docetaxel carrier for colon cancer therapy. Int. J. Nanomed. 16, 2995—3020 (2021). https://doi.org/10.2147/IJN.S302238
A.R. Ahmady, A. Solouk, S. Saber-Samandari, S. Akbari, H. Ghanbari et al., Capsaicin-loaded alginate nanops embedded polycaprolactone-chitosan nanofibers as a controlled drug delivery nanoplatform for anticancer activity. J. Colloid Interface Sci. 638, 616–628 (2023). https://doi.org/10.1016/j.jcis.2023.01.139
D. Gan, M. Liu, T. Xu, K. Wang, H. Tan et al., Chitosan/biphasic calcium phosphate scaffolds functionalized with BMP-2-encapsulated nanops and RGD for bone regeneration. J. Biomed. Mater. Res. Part A 106, 2613–2624 (2018). https://doi.org/10.1002/jbm.a.36453
L.-J. Kang, J. Yoon, J.G. Rho, H.S. Han, S. Lee et al., Self-assembled hyaluronic acid nanops for osteoarthritis treatment. Biomaterials 275, 120967 (2021). https://doi.org/10.1016/j.biomaterials.2021.120967
X. Zhang, M. Zhao, N. Cao, W. Qin, M. Zhao et al., Construction of a tumor microenvironment pH-responsive cleavable PEGylated hyaluronic acid nano-drug delivery system for colorectal cancer treatment. Biomater. Sci. 8, 1885–1896 (2020). https://doi.org/10.1039/C9BM01927H
Q. Chen, J. Li, F. Han, Q. Meng, H. Wang et al., A multifunctional composite hydrogel that rescues the ROS microenvironment and guides the immune response for repair of osteoporotic bone defects. Adv. Funct. Mater. 32, 2201067 (2022). https://doi.org/10.1002/adfm.202201067
Y. Gong, Y. Zhang, Z. Cao, F. Ye, Z. Lin et al., Development of CaCO3 microsphere-based composite hydrogel for dual delivery of growth factor and Ca to enhance bone regeneration. Biomater. Sci. 7, 3614–3626 (2019). https://doi.org/10.1039/C9BM00463G
R.M. Stefani, A.J. Lee, A.R. Tan, S.S. Halder, Y. Hu et al., Sustained low-dose dexamethasone delivery via a PLGA microsphere-embedded agarose implant for enhanced osteochondral repair. Acta Biomater. 102, 326–340 (2020). https://doi.org/10.1016/j.actbio.2019.11.052
M. Ferrari, A.P. Lee, L.J. Lee, BioMEMS and biomedical nanotechnology (Springer, New York, 2006), pp.19–50
N.K. Varde, D.W. Pack, Microspheres for controlled release drug delivery. Expert Opin. Biol. Ther. 4, 35–51 (2004). https://doi.org/10.1517/14712598.4.1.35
E. Geeurickx, J. Tulkens, B. Dhondt, J. Van Deun, L. Lippens et al., The generation and use of recombinant extracellular vesicles as biological reference material. Nat. Commun. 10, 3288 (2019). https://doi.org/10.1038/s41467-019-11182-0
J. Malda, J. Boere, C.H. Van De Lest, P.R. Van Weeren, M.H. Wauben, Extracellular vesicles-new tool for joint repair and regeneration. Nat. Rev. Rheumatol. 12, 243–249 (2016). https://doi.org/10.1038/nrrheum.2015.170
J. Sun, G. Li, S. Wu, Y. Zou, W. Weng et al., Engineering preparation and sustained delivery of bone functional exosomes-laden biodegradable hydrogel for in situ bone regeneration. Compos. Part B-Eng. 261, 110803 (2023). https://doi.org/10.1016/j.compositesb.2023.110803
H. Kuang, J. Ma, X. Chi, Q. Fu, Q. Zhu et al., Integrated osteoinductive factors-Exosome@MicroRNA-26a hydrogel enhances bone regeneration. ACS Appl. Mater. Interfaces 15, 22805–22816 (2023). https://doi.org/10.1021/acsami.2c21933
Z. Li, S. Li, J. Yang, Y. Ha, Q. Zhang et al., 3D bioprinted gelatin/gellan gum-based scaffold with double-crosslinking network for vascularized bone regeneration. Carbohydr. Polym. 290, 119469 (2022). https://doi.org/10.1016/j.carbpol.2022.119469
H.-C. Yan, T.-T. Yu, J. Li, Y.-Q. Qiao, L.-C. Wang et al., The delivery of extracellular vesicles loaded in biomaterial scaffolds for bone regeneration. Front. Bioeng. Biotechnol. 8, 1015 (2020). https://doi.org/10.3389/fbioe.2020.01015
Z. Wan, Q. Dong, X. Guo, X. Bai, X. Zhang et al., A dual-responsive polydopamine-modified hydroxybutyl chitosan hydrogel for sequential regulation of bone regeneration. Carbohydr. Polym. 297, 120027 (2022). https://doi.org/10.1016/j.carbpol.2022.120027
Y. Zhao, X. Peng, X. Xu, M. Wu, F. Sun et al., Chitosan based photothermal scaffold fighting against bone tumor-related complications: Recurrence, infection, and defects. Carbohydr. Polym. 300, 120264 (2023). https://doi.org/10.1016/j.carbpol.2022.120264
Y. Zhao, X. Peng, D. Wang, H. Zhang, Q. Xin et al., Chloroplast-inspired scaffold for infected bone defect therapy: towards stable photothermal properties and self-defensive functionality. Adv. Sci. 9, 2204535 (2022). https://doi.org/10.1002/advs.202204535
X. Zhang, H. Wei, C. Dong, J. Wang, T. Zhang et al., 3D printed hydrogel/bioceramics core/shell scaffold with NIR-II triggered drug release for chemo-photothermal therapy of bone tumors and enhanced bone repair. Chem. Eng. J. 461, 141855 (2023). https://doi.org/10.1016/j.cej.2023.141855
X. Wang, W. Guo, L. Li, F. Yu, J. Li et al., Photothermally triggered biomimetic drug delivery of Teriparatide via reduced graphene oxide loaded chitosan hydrogel for osteoporotic bone regeneration. Chem. Eng. J. 413, 127413 (2021). https://doi.org/10.1016/j.cej.2020.127413
C. Zeng, N. Lane, D. Hunter, J. Wei, H. Choi et al., Intra-articular corticosteroids and the risk of knee osteoarthritis progression: results from the Osteoarthritis Initiative. Osteoarthr. Cartilage 27, 855–862 (2019). https://doi.org/10.1016/j.joca.2019.01.007
M.J. Farrar, Compliance affects success of ultrasound for bone healing. BMJ 356, j1512 (2017). https://doi.org/10.1136/bmj.j1512
Y. Yi, J. Song, P. Zhou, Y. Shu, P. Liang et al., An ultrasound-triggered injectable sodium alginate scaffold loaded with electrospun microspheres for on-demand drug delivery to accelerate bone defect regeneration. Carbohydr. Polym. 334, 122039 (2024). https://doi.org/10.1016/j.carbpol.2024.122039
L. Claes, S. Recknagel, A. Ignatius, Fracture healing under healthy and inflammatory conditions. Nat. Rev. Rheumatol. 8, 133–143 (2012). https://doi.org/10.1038/nrrheum.2012.1
N.J. Horwood, Macrophage polarization and bone formation: a review. Clin. Rev. Allergy Immunol. 51, 79–86 (2016). https://doi.org/10.1007/s12016-015-8519-2
Y. Xu, Y. Luo, Z. Weng, H. Xu, W. Zhang et al., Microenvironment-responsive metal-phenolic nanozyme release platform with antibacterial, ROS scavenging, and osteogenesis for periodontitis. ACS Nano 17, 18732–18746 (2023). https://doi.org/10.1021/acsnano.3c01940
D. Li, K. Chen, H. Tang, S. Hu, L. Xin et al., A logic-based diagnostic and therapeutic hydrogel with multistimuli responsiveness to orchestrate diabetic bone regeneration. Adv. Mater. 34, 2108430 (2022). https://doi.org/10.1002/adma.202108430
K.K. Moncal, R.S.T. Aydın, K.P. Godzik, T.M. Acri, D.N. Heo et al., Controlled co-delivery of pPDGF-B and pBMP-2 from intraoperatively bioprinted bone constructs improves the repair of calvarial defects in rats. Biomaterials 281, 121333 (2022). https://doi.org/10.1016/j.biomaterials.2021.121333
D. Lee, M. Wufuer, I. Kim, T.H. Choi, B.J. Kim et al., Sequential dual-drug delivery of BMP-2 and alendronate from hydroxyapatite-collagen scaffolds for enhanced bone regeneration. Sci. Rep. 11, 746 (2021). https://doi.org/10.1038/s41598-020-80608-3
L. Nie, D. Chen, S. Zhong, Q. Shi, Y. Sun et al., Injectable cell-laden poly(N-isopropylacrylamide/chitosan hydrogel reinforced via graphene oxide and incorporated with dual-growth factors. Mater. Lett. 280, 128572 (2020). https://doi.org/10.1016/j.matlet.2020.128572
Y. Park, S. Lin, Y. Bai, S. Moeinzadeh, S. Kim et al., Dual delivery of BMP2 and IGF1 through injectable hydrogel promotes cranial bone defect healing. Tissue Eng. Part A 28, 760–769 (2022). https://doi.org/10.1089/ten.tea.2022.0002
Z. Lv, T. Hu, Y. Bian, G. Wang, Z. Wu et al., A MgFe-LDH nanosheet-incorporated smart thermo-responsive hydrogel with controllable growth factor releasing capability for bone regeneration. Adv. Mater. 35, 2206545 (2023). https://doi.org/10.1002/adma.202206545
X. Zhang, J. Fan, C. Chen, T. Aghaloo, M. Lee, Co-delivery of simvastatin and demineralized bone matrix hierarchically from nanosheet-based supramolecular hydrogels for osteogenesis. J. Mat. Chem. B 9, 7741–7750 (2021). https://doi.org/10.1039/D1TB01256H
M. Wu, Y. Zhao, H. Jiang, X. Xu, D. Wang et al., Self-organized spatiotemporal mineralization of hydrogel: A simulant of osteon. Small 18, 2106649 (2022). https://doi.org/10.1002/smll.202106649
A. Bharadwaz, A.C. Jayasuriya, Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. Mat. Sci. Eng. C 110, 110698 (2020). https://doi.org/10.1016/j.msec.2020.110698
B. Xu, P. Zheng, F. Gao, W. Wang, H. Zhang et al., A mineralized high strength and tough hydrogel for skull bone regeneration. Adv. Funct. Mater. 27, 1604327 (2017). https://doi.org/10.1002/adfm.201604327
J. Guo, X. Shu, H. Deng, J. Zhang, Y. Wang et al., Stiff and tough hydrogels prepared through integration of ionic cross-linking and enzymatic mineralization. Acta Biomater. 149, 220–232 (2022). https://doi.org/10.1016/j.actbio.2022.06.008
N. Huebsch, P.R. Arany, A.S. Mao, D. Shvartsman, O.A. Ali et al., Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat. Mater. 9, 518–526 (2010). https://doi.org/10.1038/nmat2732
O. Chaudhuri, L. Gu, D. Klumpers, M. Darnell, S.A. Bencherif et al., Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 15, 326–334 (2016). https://doi.org/10.1038/nmat4489
J. Whitehead, K.H. Griffin, M. Gionet-Gonzales, C.E. Vorwald, S.E. Cinque et al., Hydrogel mechanics are a key driver of bone formation by mesenchymal stromal cell spheroids. Biomateria