Ultrahigh Energy and Power Density in Ni–Zn Aqueous Battery via Superoxide-Activated Three-Electron Transfer
Corresponding Author: Derek Ho
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 79
Abstract
Aqueous Ni–Zn microbatteries are safe, reliable and inexpensive but notoriously suffer from inadequate energy and power densities. Herein, we present a novel mechanism of superoxide-activated Ni substrate that realizes the redox reaction featuring three-electron transfers (Ni ↔ Ni3+). The superoxide activates the direct redox reaction between Ni substrate and KNiO2 by lowering the reaction Gibbs free energy, supported by in-situ Raman and density functional theory simulations. The prepared chronopotentiostatic superoxidation-activated Ni (CPS-Ni) electrodes exhibit an ultrahigh capacity of 3.21 mAh cm−2 at the current density of 5 mA cm−2, nearly 8 times that of traditional one-electron processes electrodes. Even under the ultrahigh 200 mA cm−2 current density, the CPS-Ni electrodes show 86.4% capacity retention with a Columbic efficiency of 99.2% after 10,000 cycles. The CPS-Ni||Zn microbattery achieves an exceptional energy density of 6.88 mWh cm−2 and power density of 339.56 mW cm−2. Device demonstration shows that the power source can continuously operate for more than 7 days in powering the sensing and computation intensive practical application of photoplethysmographic waveform monitoring. This work paves the way to the development of multi-electron transfer mechanisms for advanced aqueous Ni–Zn batteries with high capacity and long lifetime.
Highlights:
1 Efficient activation of Ni electrode employs chronopotentiostatic superoxidation.
2 Novel superoxide activation mechanism realizes the redox reaction with three-electron transfer (Ni ↔ Ni3+).
3 As-prepared CPS-Ni||Zn batteries exhibit simultaneously ultrahigh energy and power densities.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Wan, T. Mu, G. Yin, Intrinsic self-healing chemistry for next-generation flexible energy storage devices. Nano-Micro Lett. 15, 99 (2023). https://doi.org/10.1007/s40820-023-01075-9
- J.H. Pikul, H. Gang Zhang, J. Cho, P.V. Braun, W.P. King, High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. Nat. Commun. 4, 1732 (2013). https://doi.org/10.1038/ncomms2747
- W. Lv, Y. Zhang, H. Luo, Q. Xu, W. Quan et al., Wide remote-range and accurate wireless LC temperature–humidity sensor enabled by efficient mutual interference mitigation. ACS Sensors 8, 4531–4541 (2023). https://doi.org/10.1021/acssensors.3c01200
- J. Zeng, L. Dong, L. Sun, W. Wang, Y. Zhou et al., Printable zinc-ion hybrid micro-capacitors for flexible self-powered integrated units. Nano-Micro Lett. 13, 19 (2021). https://doi.org/10.1007/s40820-020-00546-
- J.W. Long, B. Dunn, D.R. Rolison, H.S. White, Three-dimensional battery architectures. Chem. Rev. 104, 4463 (2004). https://doi.org/10.1021/cr020740l
- J.F. Oudenhoven, L. Baggetto, P.H. Notten, All-solid-state lithium-ion microbatteries: a review of various three-dimensional concepts. Adv. Energy Mater. 1, 10 (2011). https://doi.org/10.1002/aenm.201000002
- Y. Duan, G. You, K. Sun, Z. Zhu, X. Liao et al., Advances in wearable textile-based micro energy storage devices: structuring, application and perspective. Nanoscale Adv. 3, 6271 (2021). https://doi.org/10.1039/D1NA00511A
- H. Kim, J. Hong, K.-Y. Park, H. Kim, S.-W. Kim et al., Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 114, 11788 (2014). https://doi.org/10.1021/cr500232y
- W. Chen, G. Li, A. Pei, Y. Li, L. Liao et al., A manganese–hydrogen battery with potential for grid-scale energy storage. Nat. Energy 3, 428 (2018). https://doi.org/10.1038/s41560-018-0147-7
- P. Li, Z. Yang, C. Li, J. Li, C. Wang et al., Swimmable micro-battery for targeted power delivery. Adv. Funct. Mater. 34, 2312188 (2024). https://doi.org/10.1002/adfm.202312188
- H. Zhang, R. Wang, D. Lin, Y. Zeng, X. Lu, Ni-based nanostructures as high-performance cathodes for rechargeable Ni-Zn battery. ChemNanoMat 4, 525–536 (2018). https://doi.org/10.1002/cnma.201800078
- A. Brisse, P. Stevens, G. Toussaint, O. Crosnier, T. Brousse, Ni(OH)2 and NiO based composites: battery type electrode materials for hybrid supercapacitor devices. Materials 11, 1178 (2018). https://doi.org/10.3390/ma11071178
- W. He, S. Wang, Y. Shao, Z. Kong, H. Tu et al., Water invoking interface corrosion: an energy density booster for Ni//Zn battery. Adv. Energy Mater. 11, 2003268 (2021). https://doi.org/10.1002/aenm.202003268
- W. Zhou, D. Zhu, J. He, J. Li, H. Chen et al., A scalable top-down strategy toward practical metrics of Ni–Zn aqueous batteries with total energy densities of 165 Wh kg−1 and 506 Wh L−1. Energ Environ. Sci. 13, 4157 (2020). https://doi.org/10.1039/D0EE01221A
- L. Zhou, S. Zeng, D. Zheng, Y. Zeng, F. Wang et al., NiMoO4 nanowires supported on Ni/C nanosheets as high-performance cathode for stable aqueous rechargeable nickel-zinc battery. Chem. Eng. J. 400, 125832 (2020). https://doi.org/10.1016/j.cej.2020.125832
- J. Yao, H. Wan, C. Chen, J. Ji, N. Wang et al., Oxygen-defect enhanced anion adsorption energy toward super-rate and durable cathode for Ni–Zn batteries. Nano-Micro Lett. 13, 1 (2021). https://doi.org/10.1007/s40820-021-00699-z
- W. Xie, K. Zhu, H. Yang, W. Jiang, W. Li et al., Enhancing energy conversion efficiency and durability of alkaline nickel-zinc batteries with air-breathing cathode. Angew. Chem. Int. Ed. 135, e202303517 (2023). https://doi.org/10.1002/anie.202303517
- J. Kang, Y. Xue, J. Yang, Q. Hu, Q. Zhang et al., Realizing two-electron transfer in Ni(OH)2 nanosheets for energy storage. J. Am. Chem. Soc. 144, 8969 (2022). https://doi.org/10.1021/jacs.1c13523
- K. Wang, X. Fan, S. Chen, J. Deng, L. Zhang et al., 3D Co-doping α-Ni(OH)2 nanosheets for ultrastable, high-rate Ni-Zn battery. Small 19, 2206287 (2023). https://doi.org/10.1002/smll.202206287
- J.H. Kim, G.D. Park, Y.C. Kang, Synthesis of yolk-shell-structured iron monosulfide-carbon microspheres and understanding of their conversion reaction for potassium-ion storage. Int. J. Energy Res. 45, 14910 (2021). https://doi.org/10.1002/er.6767
- J. Mehrez, Y. Zhang, M. Zeng, J. Yang, N. Hu et al., Nitrogen-based gas molecule adsorption on a ReSe2 monolayer via single-atom doping: a first-principles study. Langmuir 40, 7843–7859 (2024). https://doi.org/10.1021/acs.langmuir.3c03281
- A. Carley, S. Jackson, J. O’shea, M. Roberts, The formation and characterisation of Ni3+—an X-ray photoelectron spectroscopic investigation of potassium-doped Ni(110)–O. Surf. Sci. 440, L868 (1999). https://doi.org/10.1016/S0039-6028(99)00872-9
- J. Chang, H. Xu, J. Sun, L. Gao, High pseudocapacitance material prepared via in situ growth of Ni(OH)2 nanoflakes on reduced graphene oxide. J. Mater. Chem. A 22, 11146 (2012). https://doi.org/10.1039/C2JM30243H
- W. Lai, L. Ge, H. Li, Y. Deng, B. Xu et al., In situ Raman spectroscopic study towards the growth and excellent HER catalysis of Ni/Ni(OH)2 heterostructure. Int. J. Hydrog. Energy 46, 26861 (2021). https://doi.org/10.1016/j.ijhydene.2021.05.158
- B.J. Trześniewski, O. Diaz-Morales, D.A. Vermaas, A. Longo, W. Bras et al., In situ observation of active oxygen species in Fe-containing Ni-based oxygen evolution catalysts: the effect of pH on electrochemical activity. J. Am. Chem. Soc. 137, 15112 (2015). https://doi.org/10.1021/jacs.5b06814
- R.L. Frost, M.J. Dickfos, B. Jagannadha Reddy, Raman spectroscopy of hydroxy nickel carbonate minerals nullaginite and zaratite. J. Raman Spectrosc. 39, 1250 (2008). https://doi.org/10.1002/jrs.1978
- Y. Hou, S. Jenkins, D. King, Surface infra-red emission during alkali–metal incorporation at an oxide surface. Surf. Sci. 550, L27 (2004). https://doi.org/10.1016/j.susc.2003.11.043
- L. Azancot, V. Blay, R. Blay-Roger, L.F. Bobadilla, A. Penkova et al., Evidence of new Ni-O-K catalytic sites with superior stability for methane dry reforming. Appl. Catal. B-Environ. 307, 121148 (2022). https://doi.org/10.1016/j.apcatb.2022.121148
- A. Carley, S. Jackson, M. Roberts, J. O’Shea, Alkali metal reactions with Ni(110) –O and NiO(100) surfaces. Surf. Sci. 454, 141 (2000). https://doi.org/10.1016/S0039-6028(00)00143-6
- Z. Zhu, R. Kan, P. Wu, Y. Ma, Z. Wang et al., A Durable Ni–Zn microbattery with ultrahigh-rate capability enabled by in situ reconstructed nanoporous nickel with epitaxial phase. Small 17, 2103136 (2021). https://doi.org/10.1002/smll.202103136
- C. Johnston, P. Graves, In situ Raman spectroscopy study of the nickel oxyhydroxide electrode (NOE) system. Appl. Spectrosc. 44, 105 (1990). https://doi.org/10.1366/0003702904085769
- K. Yang, H. Fu, Y. Duan, M. Wang, M.X. Tran et al., Uniform metal sulfide@N-doped carbon nanospheres for sodium storage: universal synthesis strategy and superior performance. Energy Environ. Mater. 6, e12380 (2023). https://doi.org/10.1002/eem2.12380
- C. Hung, L. Duan, T. Zhao, L. Liu, Y. Xia et al., Gradient hierarchically porous structure for rapid capillary-assisted catalysis. J. Am. Chem. Soc. 144, 6091 (2022). https://doi.org/10.1021/jacs.2c01444
- X. Jin, L. Song, C. Dai, Y. Xiao, Y. Han et al., A flexible aqueous zinc–iodine microbattery with unprecedented energy density. Adv. Mater. 34, 2109450 (2022). https://doi.org/10.1002/adma.202109450
- Y. Zhang, S. Zheng, F. Zhou, X. Shi, C. Dong et al., Multi-layer printable lithium ion micro-batteries with remarkable areal energy density and flexibility for wearable smart electronics. Small 18, 2104506 (2022). https://doi.org/10.1002/smll.202104506
- J. Shi, S. Wang, X. Chen, Z. Chen, X. Du et al., An ultrahigh energy density quasi-solid-state zinc ion microbattery with excellent flexibility and thermostability. Adv. Energy Mater. 9, 1901957 (2019). https://doi.org/10.1002/aenm.201901957
- K. Jiang, Z. Zhou, X. Wen, Q. Weng, Fabrications of high-performance planar zinc-ion microbatteries by engraved soft templates. Small 17, 2007389 (2021). https://doi.org/10.1002/smll.202007389
- Z. Tian, Z. Sun, Y. Shao, L. Gao, R. Huang et al., Ultrafast rechargeable Zn micro-batteries endowing a wearable solar charging system with high overall efficiency. Energ. Environ. Sci. 14, 1602 (2021). https://doi.org/10.1039/D0EE03623D
- X. Wang, Y. Wang, J. Hao, Y. Liu, H. Xiao et al., Pseudocapacitive zinc cation intercalation with superior kinetics enabled by atomically thin V2O5 nanobelts for quasi-solid-state microbatteries. Energy Stor. Mater. 50, 454 (2022). https://doi.org/10.1016/j.ensm.2022.05.049
- Z. Hao, L. Xu, Q. Liu, W. Yang, X. Liao et al., On-chip Ni–Zn microbattery based on hierarchical ordered porous Ni@Ni(OH)2 microelectrode with ultrafast ion and electron transport kinetics. Adv. Funct. Mater. 29, 1808470 (2019). https://doi.org/10.1002/adfm.201808470
- Y. Wang, X. Hong, Y. Guo, Y. Zhao, X. Liao et al., Wearable textile-based Co−Zn alkaline microbattery with high energy density and excellent reliability. Small 16, 2000293 (2020). https://doi.org/10.1002/smll.202000293
- J. Liu, C. Guan, C. Zhou, Z. Fan, Q. Ke et al., A flexible quasi-solid-state nickel–zinc battery with high energy and power densities based on 3D electrode design. Adv. Mater. 28, 8732 (2016). https://doi.org/10.1002/adma.201603038
- C. Li, Q. Zhang, T. Li, B. He, P. Man et al., Nickel metal–organic framework nanosheets as novel binder-free cathode for advanced fibrous aqueous rechargeable Ni–Zn battery. J. Mater. Chem. A 8, 3262 (2020). https://doi.org/10.1039/C9TA11136K
- X. Lan, X. Zhang, Y. Feng, S. Yin, J. Xu et al., Structural engineering of metal-organic frameworks cathode materials toward high-performance flexible aqueous rechargeable Ni–Zn batteries. Mater. Today Energy 30, 101157 (2022). https://doi.org/10.1016/j.mtener.2022.101157
- Y.F. Li, Y.H. Shi, S.G. Wang, J.H. Liu, J. Lin et al., Carbon/binder-free NiO@NiO/NF with in situ formed interlayer for high-areal-capacity lithium storage. Adv. Energy Mater. 9, 1803690 (2019). https://doi.org/10.1002/aenm.201803690
- J. Wu, W. Yin, W. Liu, P. Guo, G. Liu et al., High performance NiO nanosheets anchored on three-dimensional nitrogen-doped carbon nanotubes as a binder-free anode for lithium ion batteries. J. Mater. Chem. A 4, 10940 (2016). https://doi.org/10.1039/C6TA03137D
- Y. Su, G. Yuan, J. Hu, G. Zhang, Y. Tang et al., Thiosalicylic-acid-mediated coordination structure of nickel center via thermodynamic modulation for aqueous Ni–Zn batteries. Adv. Mater. (2024). https://doi.org/10.1002/adma.202406094
- C. Bai, J. Zhang, R. Chen, W. Wu, X. Li et al., Planar Li-ion micro-supercapacitor with ultrahigh energy density. ACS Energy Lett. 9, 410 (2024). https://doi.org/10.1021/acsenergylett.3c02406
- P. Sun, X. Li, J. Shao, P.V. Braun, High-performance packaged 3D lithium-ion microbatteries fabricated using imprint lithography. Adv. Mater. 33, 2006229 (2021). https://doi.org/10.1002/adma.202006229
- S. Bi, F. Wan, S. Wang, S. Jia, J. Tian et al., Flexible and tailorable quasi-solid-state rechargeable Ag/Zn microbatteries with high performance. Carbon Energy 3, 167 (2021). https://doi.org/10.1002/cey2.64
- J. Bi, J. Zhang, P. Giannakou, T. Wickramanayake, X. Yao et al., A highly integrated flexible photo-rechargeable system based on stable ultrahigh-rate quasi-solid-state zinc-ion micro-batteries and perovskite solar cells. Energy Stor. Mater. 51, 239 (2022). https://doi.org/10.1016/j.ensm.2022.06.043
- Y. Wang, Y. Zhang, G. Wang, X. Shi, Y. Qiao et al., Direct graphene-carbon nanotube composite ink writing all-solid-state flexible microsupercapacitors with high areal energy density. Adv. Funct. Mater. 30, 1907284 (2020). https://doi.org/10.1002/adfm.201907284
- S. Zheng, H. Huang, Y. Dong, S. Wang, F. Zhou et al., Ionogel-based sodium ion micro-batteries with a 3D Na-ion diffusion mechanism enable ultrahigh rate capability. Energ. Environ. Sci. 13, 821 (2020). https://doi.org/10.1039/C9EE03219C
- Y. Zeng, Y. Meng, Z. Lai, X. Zhang, M. Yu et al., An ultrastable and high-performance flexible fiber-shaped Ni–Zn battery based on a Ni–NiO heterostructured nanosheet cathode. Adv. Mater. 29, 1702698 (2017). https://doi.org/10.1002/adma.201702698
References
X. Wan, T. Mu, G. Yin, Intrinsic self-healing chemistry for next-generation flexible energy storage devices. Nano-Micro Lett. 15, 99 (2023). https://doi.org/10.1007/s40820-023-01075-9
J.H. Pikul, H. Gang Zhang, J. Cho, P.V. Braun, W.P. King, High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. Nat. Commun. 4, 1732 (2013). https://doi.org/10.1038/ncomms2747
W. Lv, Y. Zhang, H. Luo, Q. Xu, W. Quan et al., Wide remote-range and accurate wireless LC temperature–humidity sensor enabled by efficient mutual interference mitigation. ACS Sensors 8, 4531–4541 (2023). https://doi.org/10.1021/acssensors.3c01200
J. Zeng, L. Dong, L. Sun, W. Wang, Y. Zhou et al., Printable zinc-ion hybrid micro-capacitors for flexible self-powered integrated units. Nano-Micro Lett. 13, 19 (2021). https://doi.org/10.1007/s40820-020-00546-
J.W. Long, B. Dunn, D.R. Rolison, H.S. White, Three-dimensional battery architectures. Chem. Rev. 104, 4463 (2004). https://doi.org/10.1021/cr020740l
J.F. Oudenhoven, L. Baggetto, P.H. Notten, All-solid-state lithium-ion microbatteries: a review of various three-dimensional concepts. Adv. Energy Mater. 1, 10 (2011). https://doi.org/10.1002/aenm.201000002
Y. Duan, G. You, K. Sun, Z. Zhu, X. Liao et al., Advances in wearable textile-based micro energy storage devices: structuring, application and perspective. Nanoscale Adv. 3, 6271 (2021). https://doi.org/10.1039/D1NA00511A
H. Kim, J. Hong, K.-Y. Park, H. Kim, S.-W. Kim et al., Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 114, 11788 (2014). https://doi.org/10.1021/cr500232y
W. Chen, G. Li, A. Pei, Y. Li, L. Liao et al., A manganese–hydrogen battery with potential for grid-scale energy storage. Nat. Energy 3, 428 (2018). https://doi.org/10.1038/s41560-018-0147-7
P. Li, Z. Yang, C. Li, J. Li, C. Wang et al., Swimmable micro-battery for targeted power delivery. Adv. Funct. Mater. 34, 2312188 (2024). https://doi.org/10.1002/adfm.202312188
H. Zhang, R. Wang, D. Lin, Y. Zeng, X. Lu, Ni-based nanostructures as high-performance cathodes for rechargeable Ni-Zn battery. ChemNanoMat 4, 525–536 (2018). https://doi.org/10.1002/cnma.201800078
A. Brisse, P. Stevens, G. Toussaint, O. Crosnier, T. Brousse, Ni(OH)2 and NiO based composites: battery type electrode materials for hybrid supercapacitor devices. Materials 11, 1178 (2018). https://doi.org/10.3390/ma11071178
W. He, S. Wang, Y. Shao, Z. Kong, H. Tu et al., Water invoking interface corrosion: an energy density booster for Ni//Zn battery. Adv. Energy Mater. 11, 2003268 (2021). https://doi.org/10.1002/aenm.202003268
W. Zhou, D. Zhu, J. He, J. Li, H. Chen et al., A scalable top-down strategy toward practical metrics of Ni–Zn aqueous batteries with total energy densities of 165 Wh kg−1 and 506 Wh L−1. Energ Environ. Sci. 13, 4157 (2020). https://doi.org/10.1039/D0EE01221A
L. Zhou, S. Zeng, D. Zheng, Y. Zeng, F. Wang et al., NiMoO4 nanowires supported on Ni/C nanosheets as high-performance cathode for stable aqueous rechargeable nickel-zinc battery. Chem. Eng. J. 400, 125832 (2020). https://doi.org/10.1016/j.cej.2020.125832
J. Yao, H. Wan, C. Chen, J. Ji, N. Wang et al., Oxygen-defect enhanced anion adsorption energy toward super-rate and durable cathode for Ni–Zn batteries. Nano-Micro Lett. 13, 1 (2021). https://doi.org/10.1007/s40820-021-00699-z
W. Xie, K. Zhu, H. Yang, W. Jiang, W. Li et al., Enhancing energy conversion efficiency and durability of alkaline nickel-zinc batteries with air-breathing cathode. Angew. Chem. Int. Ed. 135, e202303517 (2023). https://doi.org/10.1002/anie.202303517
J. Kang, Y. Xue, J. Yang, Q. Hu, Q. Zhang et al., Realizing two-electron transfer in Ni(OH)2 nanosheets for energy storage. J. Am. Chem. Soc. 144, 8969 (2022). https://doi.org/10.1021/jacs.1c13523
K. Wang, X. Fan, S. Chen, J. Deng, L. Zhang et al., 3D Co-doping α-Ni(OH)2 nanosheets for ultrastable, high-rate Ni-Zn battery. Small 19, 2206287 (2023). https://doi.org/10.1002/smll.202206287
J.H. Kim, G.D. Park, Y.C. Kang, Synthesis of yolk-shell-structured iron monosulfide-carbon microspheres and understanding of their conversion reaction for potassium-ion storage. Int. J. Energy Res. 45, 14910 (2021). https://doi.org/10.1002/er.6767
J. Mehrez, Y. Zhang, M. Zeng, J. Yang, N. Hu et al., Nitrogen-based gas molecule adsorption on a ReSe2 monolayer via single-atom doping: a first-principles study. Langmuir 40, 7843–7859 (2024). https://doi.org/10.1021/acs.langmuir.3c03281
A. Carley, S. Jackson, J. O’shea, M. Roberts, The formation and characterisation of Ni3+—an X-ray photoelectron spectroscopic investigation of potassium-doped Ni(110)–O. Surf. Sci. 440, L868 (1999). https://doi.org/10.1016/S0039-6028(99)00872-9
J. Chang, H. Xu, J. Sun, L. Gao, High pseudocapacitance material prepared via in situ growth of Ni(OH)2 nanoflakes on reduced graphene oxide. J. Mater. Chem. A 22, 11146 (2012). https://doi.org/10.1039/C2JM30243H
W. Lai, L. Ge, H. Li, Y. Deng, B. Xu et al., In situ Raman spectroscopic study towards the growth and excellent HER catalysis of Ni/Ni(OH)2 heterostructure. Int. J. Hydrog. Energy 46, 26861 (2021). https://doi.org/10.1016/j.ijhydene.2021.05.158
B.J. Trześniewski, O. Diaz-Morales, D.A. Vermaas, A. Longo, W. Bras et al., In situ observation of active oxygen species in Fe-containing Ni-based oxygen evolution catalysts: the effect of pH on electrochemical activity. J. Am. Chem. Soc. 137, 15112 (2015). https://doi.org/10.1021/jacs.5b06814
R.L. Frost, M.J. Dickfos, B. Jagannadha Reddy, Raman spectroscopy of hydroxy nickel carbonate minerals nullaginite and zaratite. J. Raman Spectrosc. 39, 1250 (2008). https://doi.org/10.1002/jrs.1978
Y. Hou, S. Jenkins, D. King, Surface infra-red emission during alkali–metal incorporation at an oxide surface. Surf. Sci. 550, L27 (2004). https://doi.org/10.1016/j.susc.2003.11.043
L. Azancot, V. Blay, R. Blay-Roger, L.F. Bobadilla, A. Penkova et al., Evidence of new Ni-O-K catalytic sites with superior stability for methane dry reforming. Appl. Catal. B-Environ. 307, 121148 (2022). https://doi.org/10.1016/j.apcatb.2022.121148
A. Carley, S. Jackson, M. Roberts, J. O’Shea, Alkali metal reactions with Ni(110) –O and NiO(100) surfaces. Surf. Sci. 454, 141 (2000). https://doi.org/10.1016/S0039-6028(00)00143-6
Z. Zhu, R. Kan, P. Wu, Y. Ma, Z. Wang et al., A Durable Ni–Zn microbattery with ultrahigh-rate capability enabled by in situ reconstructed nanoporous nickel with epitaxial phase. Small 17, 2103136 (2021). https://doi.org/10.1002/smll.202103136
C. Johnston, P. Graves, In situ Raman spectroscopy study of the nickel oxyhydroxide electrode (NOE) system. Appl. Spectrosc. 44, 105 (1990). https://doi.org/10.1366/0003702904085769
K. Yang, H. Fu, Y. Duan, M. Wang, M.X. Tran et al., Uniform metal sulfide@N-doped carbon nanospheres for sodium storage: universal synthesis strategy and superior performance. Energy Environ. Mater. 6, e12380 (2023). https://doi.org/10.1002/eem2.12380
C. Hung, L. Duan, T. Zhao, L. Liu, Y. Xia et al., Gradient hierarchically porous structure for rapid capillary-assisted catalysis. J. Am. Chem. Soc. 144, 6091 (2022). https://doi.org/10.1021/jacs.2c01444
X. Jin, L. Song, C. Dai, Y. Xiao, Y. Han et al., A flexible aqueous zinc–iodine microbattery with unprecedented energy density. Adv. Mater. 34, 2109450 (2022). https://doi.org/10.1002/adma.202109450
Y. Zhang, S. Zheng, F. Zhou, X. Shi, C. Dong et al., Multi-layer printable lithium ion micro-batteries with remarkable areal energy density and flexibility for wearable smart electronics. Small 18, 2104506 (2022). https://doi.org/10.1002/smll.202104506
J. Shi, S. Wang, X. Chen, Z. Chen, X. Du et al., An ultrahigh energy density quasi-solid-state zinc ion microbattery with excellent flexibility and thermostability. Adv. Energy Mater. 9, 1901957 (2019). https://doi.org/10.1002/aenm.201901957
K. Jiang, Z. Zhou, X. Wen, Q. Weng, Fabrications of high-performance planar zinc-ion microbatteries by engraved soft templates. Small 17, 2007389 (2021). https://doi.org/10.1002/smll.202007389
Z. Tian, Z. Sun, Y. Shao, L. Gao, R. Huang et al., Ultrafast rechargeable Zn micro-batteries endowing a wearable solar charging system with high overall efficiency. Energ. Environ. Sci. 14, 1602 (2021). https://doi.org/10.1039/D0EE03623D
X. Wang, Y. Wang, J. Hao, Y. Liu, H. Xiao et al., Pseudocapacitive zinc cation intercalation with superior kinetics enabled by atomically thin V2O5 nanobelts for quasi-solid-state microbatteries. Energy Stor. Mater. 50, 454 (2022). https://doi.org/10.1016/j.ensm.2022.05.049
Z. Hao, L. Xu, Q. Liu, W. Yang, X. Liao et al., On-chip Ni–Zn microbattery based on hierarchical ordered porous Ni@Ni(OH)2 microelectrode with ultrafast ion and electron transport kinetics. Adv. Funct. Mater. 29, 1808470 (2019). https://doi.org/10.1002/adfm.201808470
Y. Wang, X. Hong, Y. Guo, Y. Zhao, X. Liao et al., Wearable textile-based Co−Zn alkaline microbattery with high energy density and excellent reliability. Small 16, 2000293 (2020). https://doi.org/10.1002/smll.202000293
J. Liu, C. Guan, C. Zhou, Z. Fan, Q. Ke et al., A flexible quasi-solid-state nickel–zinc battery with high energy and power densities based on 3D electrode design. Adv. Mater. 28, 8732 (2016). https://doi.org/10.1002/adma.201603038
C. Li, Q. Zhang, T. Li, B. He, P. Man et al., Nickel metal–organic framework nanosheets as novel binder-free cathode for advanced fibrous aqueous rechargeable Ni–Zn battery. J. Mater. Chem. A 8, 3262 (2020). https://doi.org/10.1039/C9TA11136K
X. Lan, X. Zhang, Y. Feng, S. Yin, J. Xu et al., Structural engineering of metal-organic frameworks cathode materials toward high-performance flexible aqueous rechargeable Ni–Zn batteries. Mater. Today Energy 30, 101157 (2022). https://doi.org/10.1016/j.mtener.2022.101157
Y.F. Li, Y.H. Shi, S.G. Wang, J.H. Liu, J. Lin et al., Carbon/binder-free NiO@NiO/NF with in situ formed interlayer for high-areal-capacity lithium storage. Adv. Energy Mater. 9, 1803690 (2019). https://doi.org/10.1002/aenm.201803690
J. Wu, W. Yin, W. Liu, P. Guo, G. Liu et al., High performance NiO nanosheets anchored on three-dimensional nitrogen-doped carbon nanotubes as a binder-free anode for lithium ion batteries. J. Mater. Chem. A 4, 10940 (2016). https://doi.org/10.1039/C6TA03137D
Y. Su, G. Yuan, J. Hu, G. Zhang, Y. Tang et al., Thiosalicylic-acid-mediated coordination structure of nickel center via thermodynamic modulation for aqueous Ni–Zn batteries. Adv. Mater. (2024). https://doi.org/10.1002/adma.202406094
C. Bai, J. Zhang, R. Chen, W. Wu, X. Li et al., Planar Li-ion micro-supercapacitor with ultrahigh energy density. ACS Energy Lett. 9, 410 (2024). https://doi.org/10.1021/acsenergylett.3c02406
P. Sun, X. Li, J. Shao, P.V. Braun, High-performance packaged 3D lithium-ion microbatteries fabricated using imprint lithography. Adv. Mater. 33, 2006229 (2021). https://doi.org/10.1002/adma.202006229
S. Bi, F. Wan, S. Wang, S. Jia, J. Tian et al., Flexible and tailorable quasi-solid-state rechargeable Ag/Zn microbatteries with high performance. Carbon Energy 3, 167 (2021). https://doi.org/10.1002/cey2.64
J. Bi, J. Zhang, P. Giannakou, T. Wickramanayake, X. Yao et al., A highly integrated flexible photo-rechargeable system based on stable ultrahigh-rate quasi-solid-state zinc-ion micro-batteries and perovskite solar cells. Energy Stor. Mater. 51, 239 (2022). https://doi.org/10.1016/j.ensm.2022.06.043
Y. Wang, Y. Zhang, G. Wang, X. Shi, Y. Qiao et al., Direct graphene-carbon nanotube composite ink writing all-solid-state flexible microsupercapacitors with high areal energy density. Adv. Funct. Mater. 30, 1907284 (2020). https://doi.org/10.1002/adfm.201907284
S. Zheng, H. Huang, Y. Dong, S. Wang, F. Zhou et al., Ionogel-based sodium ion micro-batteries with a 3D Na-ion diffusion mechanism enable ultrahigh rate capability. Energ. Environ. Sci. 13, 821 (2020). https://doi.org/10.1039/C9EE03219C
Y. Zeng, Y. Meng, Z. Lai, X. Zhang, M. Yu et al., An ultrastable and high-performance flexible fiber-shaped Ni–Zn battery based on a Ni–NiO heterostructured nanosheet cathode. Adv. Mater. 29, 1702698 (2017). https://doi.org/10.1002/adma.201702698