Photolithographic Microfabrication of Microbatteries for On-Chip Energy Storage
Corresponding Author: Zhong‑Shuai Wu
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 105
Abstract
Microbatteries (MBs) are crucial to power miniaturized devices for the Internet of Things. In the evolutionary journey of MBs, fabrication technology emerges as the cornerstone, guiding the intricacies of their configuration designs, ensuring precision, and facilitating scalability for mass production. Photolithography stands out as an ideal technology, leveraging its unparalleled resolution, exceptional design flexibility, and entrenched position within the mature semiconductor industry. However, comprehensive reviews on its application in MB development remain scarce. This review aims to bridge that gap by thoroughly assessing the recent status and promising prospects of photolithographic microfabrication for MBs. Firstly, we delve into the fundamental principles and step-by-step procedures of photolithography, offering a nuanced understanding of its operational mechanisms and the criteria for photoresist selection. Subsequently, we highlighted the specific roles of photolithography in the fabrication of MBs, including its utilization as a template for creating miniaturized micropatterns, a protective layer during the etching process, a mold for soft lithography, a constituent of MB active component, and a sacrificial layer in the construction of micro-Swiss-roll structure. Finally, the review concludes with a summary of the key challenges and future perspectives of MBs fabricated by photolithography, providing comprehensive insights and sparking research inspiration in this field.
Highlights:
1 The fundamental principles and step-by-step procedures of photolithography are introduced, and a nuanced understanding of its operational mechanisms and the criteria for photoresist selection is offered.
2 Various specific roles that photolithography plays in microbatteries (MBs) fabrication, including templates for 2D and 3D micropatterns, MB active components, and the sacrificial layer for constructing micro-Swiss-roll structure, are elaborated.
3 The challenges and future directions of MBs fabricated using photolithography, including materials selection, packaging techniques, application, and performance evaluation, are discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Zheng, X. Shi, P. Das, Z.-S. Wu, X. Bao, The Road towards planar microbatteries and micro-supercapacitors: from 2D to 3D device geometries. Adv. Mater. 31, e1900583 (2019). https://doi.org/10.1002/adma.201900583
- J. Ni, A. Dai, Y. Yuan, L. Li, J. Lu, Three-dimensional microbatteries beyond lithium ion. Matter 2, 1366–1376 (2020). https://doi.org/10.1016/j.matt.2020.04.020
- Z. Zhu, R. Kan, S. Hu, L. He, X. Hong et al., Recent advances in high-performance microbatteries: construction, application, and perspective. Small 16, 2003251 (2020). https://doi.org/10.1002/smll.202003251
- M. Sha, H. Zhao, Y. Lei, Updated insights into 3D architecture electrodes for micropower sources. Adv. Mater. 33, e2103304 (2021). https://doi.org/10.1002/adma.202103304
- Y. Li, S. Xiao, T. Qiu, X. Lang, H. Tan et al., Recent advances on energy storage microdevices: from materials to configurations. Energy Stor. Mater. 45, 741–767 (2022). https://doi.org/10.1016/j.ensm.2021.12.026
- Q. Xia, F. Zan, Q. Zhang, W. Liu, Q. Li et al., All-solid-state thin film lithium/lithium-ion microbatteries for powering the Internet of Things. Adv. Mater. 35, e2200538 (2023). https://doi.org/10.1002/adma.202200538
- B. Wu, H. Ouro-Koura, S.-H. Lu, H. Li, X. Wang et al., Functional materials for powering and implementing next-generation miniature sensors. Mater. Today 69, 333–354 (2023). https://doi.org/10.1016/j.mattod.2023.09.001
- J. Ma, R. Quhe, W. Zhang, Y. Yan, H. Tang et al., Zn microbatteries explore ways for integrations in intelligent systems. Small 19, 2300230 (2023). https://doi.org/10.1002/smll.202300230
- Y. Zhu, S. Wang, J. Ma, P. Das, S. Zheng et al., Recent status and future perspectives of 2D MXene for micro-supercapacitors and micro-batteries. Energy Stor. Mater. 51, 500–526 (2022). https://doi.org/10.1016/j.ensm.2022.06.044
- M. Zhu, O.G. Schmidt, Tiny robots and sensors need tiny batteries—here’s how to do it. Nature 589, 195–197 (2021). https://doi.org/10.1038/d41586-021-00021-2
- C. Yue, J. Li, L. Lin, Fabrication of Si-based three-dimensional microbatteries: a review. Front. Mech. Eng. 12, 459–476 (2017). https://doi.org/10.1007/s11465-017-0462-x
- Y. Li, J. Qu, F. Li, Z. Qu, H. Tang et al., Advanced architecture designs towards high-performance 3D microbatteries. Nano Mater. Sci. 3, 140–153 (2021). https://doi.org/10.1016/j.nanoms.2020.10.004
- K.-H. Lee, S.-Y. Lee, Cell architecture designs towards high-energy-density microscale energy storage devices. Nano Res. Energy 3, e9120101 (2024). https://doi.org/10.26599/nre.2023.9120101
- S. Wang, P. Das, Z.-S. Wu, High-energy-density microscale energy storage devices for Internet of Things. Sci. Bull. 69, 714–717 (2024). https://doi.org/10.1016/j.scib.2024.01.012
- J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001). https://doi.org/10.1038/35104644
- J.W. Choi, D. Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016). https://doi.org/10.1038/natrevmats.2016.13
- R. Schmuch, R. Wagner, G. Hörpel, T. Placke, M. Winter, Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3, 267–278 (2018). https://doi.org/10.1038/s41560-018-0107-2
- Y. Li, M. Zhu, V.K. Bandari, D.D. Karnaushenko, D. Karnaushenko et al., On-chip batteries for dust-sized computers. Adv. Energy Mater. 12, 2103641 (2022). https://doi.org/10.1002/aenm.202103641
- Z. Qu, M. Zhu, Y. Yin, Y. Huang, H. Tang et al., A sub-square-millimeter microbattery with milliampere-hour-level footprint capacity. Adv. Energy Mater. 12, 2200714 (2022). https://doi.org/10.1002/aenm.202200714
- J.W. Long, B. Dunn, D.R. Rolison, H.S. White, Three-dimensional battery architectures. Chem. Rev. 104, 4463–4492 (2004). https://doi.org/10.1021/cr020740l
- J.F.M. Oudenhoven, L. Baggetto, P.H.L. Notten, All-solid-state lithium-ion microbatteries: a review of various three-dimensional concepts. Adv. Energy Mater. 1, 10–33 (2011). https://doi.org/10.1002/aenm.201000002
- S. Ferrari, M. Loveridge, S.D. Beattie, M. Jahn, R.J. Dashwood et al., Latest advances in the manufacturing of 3D rechargeable lithium microbatteries. J. Power. Sour. 286, 25–46 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.133
- A. Kwade, W. Haselrieder, R. Leithoff, A. Modlinger, F. Dietrich et al., Current status and challenges for automotive battery production technologies. Nat. Energy 3, 290–300 (2018). https://doi.org/10.1038/s41560-018-0130-3
- M. Nasreldin, R. Delattre, C. Calmes, M. Ramuz, V.A. Sugiawati et al., High performance stretchable Li-ion microbattery. Energy Stor. Mater. 33, 108–115 (2020). https://doi.org/10.1016/j.ensm.2020.07.005
- W. Lai, Y. Wang, Z. Lei, R. Wang, Z. Lin et al., High performance, environmentally benign and integratable Zn// MnO2 microbatteries. J. Mater. Chem. A 6, 3933–3940 (2018). https://doi.org/10.1039/C7TA10936A
- J. Shi, S. Wang, X. Chen, Z. Chen, X. Du et al., An ultrahigh energy density quasi-solid-state zinc ion microbattery with excellent flexibility and thermostability. Adv. Energy Mater. 9, 1901957 (2019). https://doi.org/10.1002/aenm.201901957
- T. Li, J. Wang, X. Li, L. Si, S. Zhang et al., Unlocking the door of boosting biodirected structures for high-performance VNxOy/C by controlling the reproduction mode. Adv. Sci. 7, 1903276 (2020). https://doi.org/10.1002/advs.201903276
- Z. Tian, Z. Sun, Y. Shao, L. Gao, R. Huang et al., Ultrafast rechargeable Zn micro-batteries endowing a wearable solar charging system with high overall efficiency. Energy Environ. Sci. 14, 1602–1611 (2021). https://doi.org/10.1039/D0EE03623D
- X. Li, F. Chen, B. Zhao, S. Zhang, X. Zheng et al., Ultrafast synthesis of metal-layered hydroxides in a dozen seconds for high-performance aqueous Zn (micro-) battery. Nano-Micro Lett. 15, 32 (2023). https://doi.org/10.1007/s40820-022-01004-2
- Y. Wu, N. He, G. Liang, C. Zhang, C. Liang et al., Thick-network electrode: enabling dual working voltage plateaus of Zn-ion micro-battery with ultrahigh areal capacity. Adv. Funct. Mater. 34, 2301734 (2024). https://doi.org/10.1002/adfm.202301734
- G. Zhang, F. Geng, T. Zhao, F. Zhou, N. Zhang et al., Biocompatible symmetric Na-ion microbatteries with sphere-in-network heteronanomat electrodes realizing high reliability and high energy density for implantable bioelectronics. ACS Appl. Mater. Interfaces 10, 42268–42278 (2018). https://doi.org/10.1021/acsami.8b14918
- Q. Liu, G. Zhang, N. Chen, X. Feng, C. Wang et al., The first flexible dual-ion microbattery demonstrates superior capacity and ultrahigh energy density: small and powerful. Adv. Funct. Mater. 30, 2002086 (2020). https://doi.org/10.1002/adfm.202002086
- Y. Zhu, J. Yin, A.-H. Emwas, O.F. Mohammed, H.N. Alshareef, An aqueous Mg2+-based dual-ion battery with high power density. Adv. Funct. Mater. 31, 2107523 (2021). https://doi.org/10.1002/adfm.202107523
- C. Dai, L. Hu, X. Jin, Y. Wang, R. Wang et al., Fast constructing polarity-switchable zinc-bromine microbatteries with high areal energy density. Sci. Adv. 8, eabo688 (2022). https://doi.org/10.1126/sciadv.abo6688
- X. Jin, L. Song, C. Dai, Y. Xiao, Y. Han et al., A flexible aqueous zinc-iodine microbattery with unprecedented energy density. Adv. Mater. 34, e2109450 (2022). https://doi.org/10.1002/adma.202109450
- S. Zheng, Z.-S. Wu, F. Zhou, X. Wang, J. Ma et al., All-solid-state planar integrated lithium ion micro-batteries with extraordinary flexibility and high-temperature performance. Nano Energy 51, 613–620 (2018). https://doi.org/10.1016/j.nanoen.2018.07.009
- X. Wang, Y. Li, P. Das, S. Zheng, F. Zhou et al., Layer-by-layer stacked amorphous V2O5/graphene 2D heterostructures with strong-coupling effect for high-capacity aqueous zinc-ion batteries with ultra-long cycle life. Energy Stor. Mater. 31, 156–163 (2020). https://doi.org/10.1016/j.ensm.2020.06.010
- X. Wang, Y. Li, S. Wang, F. Zhou, P. Das et al., Zinc-ion batteries: 2D amorphous V2O5/graphene heterostructures for high-safety aqueous Zn-ion batteries with unprecedented capacity and ultrahigh rate capability (adv. energy mater. 22/2020). Adv. Energy Mater. 10, 2070100 (2020). https://doi.org/10.1002/aenm.202070100
- S. Zheng, H. Huang, Y. Dong, S. Wang, F. Zhou et al., Ionogel-based sodium ion micro-batteries with a 3D Na-ion diffusion mechanism enable ultrahigh rate capability. Energy Environ. Sci. 13, 821–829 (2020). https://doi.org/10.1039/C9EE03219C
- X. Wang, H. Huang, F. Zhou, P. Das, P. Wen et al., High-voltage aqueous planar symmetric sodium ion micro-batteries with superior performance at low-temperature of −40 ºC. Nano Energy 82, 105688 (2021). https://doi.org/10.1016/j.nanoen.2020.105688
- X. Wang, J. Qin, Q. Hu, P. Das, P. Wen et al., Multifunctional mesoporous polyaniline/graphene nanosheets for flexible planar integrated microsystem of zinc ion microbattery and gas sensor. Small 18, e2200678 (2022). https://doi.org/10.1002/smll.202200678
- X. Wang, Y. Wang, J. Hao, Y. Liu, H. Xiao et al., Pseudocapacitive zinc cation intercalation with superior kinetics enabled by atomically thin V2O5 nanobelts for quasi-solid-state microbatteries. Energy Stor. Mater. 50, 454–463 (2022). https://doi.org/10.1016/j.ensm.2022.05.049
- X. Wang, S. Zheng, F. Zhou, J. Qin, X. Shi et al., Scalable fabrication of printed Zn//MnO2 planar micro-batteries with high volumetric energy density and exceptional safety. Natl. Sci. Rev. 7, 64–72 (2020). https://doi.org/10.1093/nsr/nwz070
- S. Zheng, H. Wang, P. Das, Y. Zhang, Y. Cao et al., Multitasking MXene inks enable high-performance printable microelectrochemical energy storage devices for all-flexible self-powered integrated systems. Adv. Mater. 33, e2005449 (2021). https://doi.org/10.1002/adma.202005449
- Y. Zhang, S. Zheng, F. Zhou, X. Shi, C. Dong et al., Multi-layer printable lithium ion micro-batteries with remarkable areal energy density and flexibility for wearable smart electronics. Small 18, e2104506 (2022). https://doi.org/10.1002/smll.202104506
- X. Cai, Y. Liu, J. Zha, F. Tan, B. Zhang et al., A flexible and safe planar zinc-ion micro-battery with ultrahigh energy density enabled by interfacial engineering for wearable sensing systems. Adv. Funct. Mater. 33, 2303009 (2023). https://doi.org/10.1002/adfm.202303009
- R. Kumar, K.M. Johnson, N.X. Williams, V. Subramanian, Scaling printable Zn–Ag2O batteries for integrated electronics. Adv. Energy Mater. 9, 1803645 (2019). https://doi.org/10.1002/aenm.201803645
- A. Toor, A. Wen, F. Maksimovic, A.M. Gaikwad, K.S.J. Pister et al., Stencil-printed Lithium-ion micro batteries for IoT applications. Nano Energy 82, 105666 (2021). https://doi.org/10.1016/j.nanoen.2020.105666
- P. Li, Z. Yang, C. Li, J. Li, C. Wang et al., Swimmable micro-battery for targeted power delivery. Adv. Funct. Mater. 34, 2312188 (2024). https://doi.org/10.1002/adfm.202312188
- S. Wang, G. Zeng, Q. Sun, Y. Feng, X. Wang et al., Flexible electronic systems via electrohydrodynamic jet printing: a MnSe@rGO cathode for aqueous zinc-ion batteries. ACS Nano 17, 13256–13268 (2023). https://doi.org/10.1021/acsnano.3c00672
- K. Sun, T.S. Wei, B.Y. Ahn, J.Y. Seo, S.J. Dillon et al., 3D printing of interdigitated Li-ion microbattery architectures. Adv. Mater. 25, 4539–4543 (2013). https://doi.org/10.1002/adma.201301036
- K. Fu, Y. Wang, C. Yan, Y. Yao, Y. Chen et al., Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries. Adv. Mater. 28, 2587–2594 (2016). https://doi.org/10.1002/adma.201505391
- D. Cao, Y. Xing, K. Tantratian, X. Wang, Y. Ma et al., 3D printed high-performance lithium metal microbatteries enabled by nanocellulose. Adv. Mater. 31, e1807313 (2019). https://doi.org/10.1002/adma.201807313
- L. Zhou, W. Ning, C. Wu, D. Zhang, W. Wei et al., 3D-printed microelectrodes with a developed conductive network and hierarchical pores toward high areal capacity for microbatteries. Adv. Mater. Technol. 4, 1800402 (2019). https://doi.org/10.1002/admt.201800402
- J. Ma, S. Zheng, L. Chi, Y. Liu, Y. Zhang et al., 3D printing flexible sodium-ion microbatteries with ultrahigh areal capacity and robust rate capability. Adv. Mater. 34, e2205569 (2022). https://doi.org/10.1002/adma.202205569
- Y. Ren, F. Meng, S. Zhang, B. Ping, H. Li et al., CNT@MnO2 composite ink toward a flexible 3D printed micro-zinc-ion battery. Carbon Energy 4, 446–457 (2022). https://doi.org/10.1002/cey2.177
- Y. Lu, Z. Wang, M. Li, Z. Li, X. Hu et al., 3D printed flexible zinc ion micro-batteries with high areal capacity toward practical application. Adv. Funct. Mater. 34, 2310966 (2024). https://doi.org/10.1002/adfm.202310966
- H. Ning, J.H. Pikul, R. Zhang, X. Li, S. Xu et al., Holographic patterning of high-performance on-chip 3D lithium-ion microbatteries. Proc. Natl. Acad. Sci. U.S.A. 112, 6573–6578 (2015). https://doi.org/10.1073/pnas.1423889112
- W. Li, T.L. Christiansen, C. Li, Y. Zhou, H. Fei et al., High-power lithium-ion microbatteries from imprinted 3D electrodes of sub-10 nm LiMn2O4/Li4Ti5O12 nanocrystals and a copolymer gel electrolyte. Nano Energy 52, 431–440 (2018). https://doi.org/10.1016/j.nanoen.2018.08.019
- P. Sun, X. Li, J. Shao, P.V. Braun, High-performance packaged 3D lithium-ion microbatteries fabricated using imprint lithography. Adv. Mater. 33, e2006229 (2021). https://doi.org/10.1002/adma.202006229
- H.-S. Min, B.Y. Park, L. Taherabadi, C. Wang, Y. Yeh et al., Fabrication and properties of a carbon/polypyrrole three-dimensional microbattery. J. Power. Sour. 178, 795–800 (2008). https://doi.org/10.1016/j.jpowsour.2007.10.003
- H. Tang, D.D. Karnaushenko, V. Neu, F. Gabler, S. Wang et al., Stress-actuated spiral microelectrode for high-performance lithium-ion microbatteries. Small 16, e2002410 (2020). https://doi.org/10.1002/smll.202002410
- Q. Weng, S. Wang, L. Liu, X. Lu, M. Zhu et al., A compact tube-in-tube microsized lithium-ion battery as an independent microelectric power supply unit. Cell Rep. Phys. Sci. 2, 100429 (2021). https://doi.org/10.1016/j.xcrp.2021.100429
- Y. Li, M. Zhu, D.D. Karnaushenko, F. Li, J. Qu et al., Microbatteries with twin-Swiss-rolls redefine performance limits in the sub-square millimeter range. Nanoscale Horiz. 8, 127–132 (2023). https://doi.org/10.1039/D2NH00472K
- Z. Qu, J. Ma, Y. Huang, T. Li, H. Tang et al., A photolithographable electrolyte for deeply rechargeable Zn microbatteries in on-chip devices. Adv. Mater. 36, e2310667 (2024). https://doi.org/10.1002/adma.202310667
- S. Wang, L. Li, S. Zheng, P. Das, X. Shi et al., Monolithic integrated micro-supercapacitors with ultra-high systemic volumetric performance and areal output voltage. Natl. Sci. Rev. 10, nwac271 (2022). https://doi.org/10.1093/nsr/nwac271
- S. Wang, S. Zheng, X. Shi, P. Das, L. Li et al., Monolithically integrated micro-supercapacitors with high areal number density produced by surface adhesive-directed electrolyte assembly. Nat. Commun. 15, 2850 (2024). https://doi.org/10.1038/s41467-024-47216-5
- A. Pearse, T. Schmitt, E. Sahadeo, D.M. Stewart, A. Kozen et al., Three-dimensional solid-state lithium-ion batteries fabricated by conformal vapor-phase chemistry. ACS Nano 12, 4286–4294 (2018). https://doi.org/10.1021/acsnano.7b08751
- J. Qiu, Y. Duan, S. Li, H. Zhao, W. Ma et al., Insights into nano- and micro-structured scaffolds for advanced electrochemical energy storage. Nano-Micro Lett. 16, 130 (2024). https://doi.org/10.1007/s40820-024-01341-4
- G.H. Lee, K. Kim, Y. Kim, J. Yang, M.K. Choi, Recent advances in patterning strategies for full-color perovskite light-emitting diodes. Nano-Micro Lett. 16, 45 (2023). https://doi.org/10.1007/s40820-023-01254-8
- J.H. Pikul, H. Gang Zhang, J. Cho, P.V. Braun, W.P. King, High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. Nat. Commun. 4, 1732 (2013). https://doi.org/10.1038/ncomms2747
- L. Baggetto, H.C.M. Knoops, R.A.H. Niessen, W.M.M. Kessels, P.H.L. Notten, 3D negative electrode stacks for integrated all-solid-state lithium-ion microbatteries. J. Mater. Chem. 20, 3703 (2010). https://doi.org/10.1039/b926044g
- E. Eustache, P. Tilmant, L. Morgenroth, P. Roussel, G. Patriarche et al., Silicon-microtube scaffold decorated with anatase TiO2 as a negative electrode for a 3D litium-ion microbattery. Adv. Energy Mater. 4, 1301612 (2014). https://doi.org/10.1002/aenm.201301612
- M. Létiche, E. Eustache, J. Freixas, A. Demortière, V. De Andrade et al., Atomic layer deposition of functional layers for on chip 3D Li-ion all solid state microbattery. Adv. Energy Mater. 7, 1601402 (2017). https://doi.org/10.1002/aenm.201601402
- Y. Wang, X. Hong, Y. Guo, Y. Zhao, X. Liao et al., Wearable textile-based Co−Zn alkaline microbattery with high energy density and excellent reliability. Small 16, 2000293 (2020). https://doi.org/10.1002/smll.202000293
- K.T. Nam, R. Wartena, P.J. Yoo, F.W. Liau, Y.J. Lee et al., Stamped microbattery electrodes based on self-assembled M13 viruses. Proc. Natl. Acad. Sci. U.S.A. 105, 17227–17231 (2008). https://doi.org/10.1073/pnas.0711620105
- J.I. Hur, L.C. Smith, B. Dunn, High areal energy density 3D lithium-ion microbatteries. Joule 2, 1187–1201 (2018). https://doi.org/10.1016/j.joule.2018.04.002
- L. Cao, G. Fang, H. Cao, X. Duan, Photopatterning and electrochemical energy storage properties of an on-chip organic radical microbattery. Langmuir 35, 16079–16086 (2019). https://doi.org/10.1021/acs.langmuir.9b02079
- K. Dokko, J.-I. Sugaya, H. Nakano, T. Yasukawa, T. Matsue et al., Sol–gel fabrication of lithium-ion microarray battery. Electrochem. Commun. 9, 857–862 (2007). https://doi.org/10.1016/j.elecom.2006.11.025
- H. Nakano, K. Dokko, J.-I. Sugaya, T. Yasukawa, T. Matsue et al., All-solid-state micro lithium-ion batteries fabricated by using dry polymer electrolyte with micro-phase separation structure. Electrochem. Commun. 9, 2013–2017 (2007). https://doi.org/10.1016/j.elecom.2007.05.020
- Z. Lyu, G.J.H. Lim, J.J. Koh, Y. Li, Y. Ma et al., Design and manufacture of 3D-printed batteries. Joule 5, 89–114 (2021). https://doi.org/10.1016/j.joule.2020.11.010
- W. Zhang, H. Liu, X. Zhang, X. Li, G. Zhang et al., 3D printed micro-electrochemical energy storage devices: from design to integration. Adv. Funct. Mater. 31, 2104909 (2021). https://doi.org/10.1002/adfm.202104909
- X. Gao, M. Zheng, X. Yang, R. Sun, J. Zhang et al., Emerging application of 3D-printing techniques in lithium batteries: from liquid to solid. Mater. Today 59, 161–181 (2022). https://doi.org/10.1016/j.mattod.2022.07.016
- R. Hahn, M. Ferch, N.A. Kyeremateng, K. Hoeppner, K. Marquardt et al., Characteristics of Li-ion micro batteries fully batch fabricated by micro-fluidic MEMS packaging. Microsyst. Technol. 28, 1321–1329 (2022). https://doi.org/10.1007/s00542-018-3933-z
- J. Pu, Z. Shen, C. Zhong, Q. Zhou, J. Liu et al., Electrodeposition technologies for Li-based batteries: new frontiers of energy storage. Adv. Mater. 32, e1903808 (2020). https://doi.org/10.1002/adma.201903808
- C.-H. Hung, P. Huynh, K. Teo, C.L. Cobb, Are three-dimensional batteries beneficial? Analyzing historical data to elucidate performance advantages. ACS Energy Lett. 8, 296–305 (2023). https://doi.org/10.1021/acsenergylett.2c02208
- J.H. Pikul, J. Liu, P.V. Braun, W.P. King, Integration of high capacity materials into interdigitated mesostructured electrodes for high energy and high power density primary microbatteries. J. Power. Sour. 315, 308–315 (2016). https://doi.org/10.1016/j.jpowsour.2016.03.034
- Z. Hao, L. Xu, Q. Liu, W. Yang, X. Liao et al., On-chip Ni–Zn microbattery based on hierarchical ordered porous Ni@Ni(OH)2 microelectrode with ultrafast ion and electron transport kinetics. Adv. Funct. Mater. 29, 1808470 (2019). https://doi.org/10.1002/adfm.201808470
- M. Campbell, D.N. Sharp, M.T. Harrison, R.G. Denning, A.J. Turberfield, Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature 404, 53–56 (2000). https://doi.org/10.1038/35003523
- J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Evolution of nanoporosity in dealloying. Nature 410, 450–453 (2001). https://doi.org/10.1038/35068529
- Y.-Q. Li, H. Shi, S.-B. Wang, Y.-T. Zhou, Z. Wen et al., Dual-phase nanostructuring of layered metal oxides for high-performance aqueous rechargeable potassium ion microbatteries. Nat. Commun. 10, 4292 (2019). https://doi.org/10.1038/s41467-019-12274-7
- M. Shi, Y. Zhang, X. Zhou, Y. Li, S. Xiao et al., A high-energy/power and ultra-stable aqueous ammonium ion microbattery based on amorphous/crystalline dual-phase layered metal oxides. Chem. Eng. J. 464, 142600 (2023). https://doi.org/10.1016/j.cej.2023.142600
- F. Laermer, A. Urban, Challenges, developments and applications of silicon deep reactive ion etching. Microelectron. Eng. 67, 349–355 (2003). https://doi.org/10.1016/S0167-9317(03)00089-3
- D. Golodnitsky, V. Yufit, M. Nathan, I. Shechtman, T. Ripenbein et al., Advanced materials for the 3D microbattery. J. Power. Sour. 153, 281–287 (2006). https://doi.org/10.1016/j.jpowsour.2005.05.029
- J. Xie, J.F.M. Oudenhoven, D. Li, C. Chen, R.-A. Eichel et al., High power and high capacity 3D-structured TiO2 electrodes for lithium-ion microbatteries. J. Electrochem. Soc. 163, A2385–A2389 (2016). https://doi.org/10.1149/2.1141610jes
- D.S. Ashby, C.S. Choi, M.A. Edwards, A.A. Talin, H.S. White et al., High-performance solid-state lithium-ion battery with mixed 2D and 3D electrodes. ACS Appl. Energy Mater. 3, 8402–8409 (2020). https://doi.org/10.1021/acsaem.0c01029
- J.A. Rogers, R.G. Nuzzo, Recent progress in soft lithography. Mater. Today 8, 50–56 (2005). https://doi.org/10.1016/S1369-7021(05)00702-9
- D.C. Duffy, J.C. McDonald, O.J.A. Schueller, G.M. Whitesides, Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 70, 4974–4984 (1998). https://doi.org/10.1021/ac980656z
- J.C. McDonald, D.C. Duffy, J.R. Anderson, D.T. Chiu, H. Wu et al., Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21, 27–40 (2000). https://doi.org/10.1002/(SICI)1522-2683(20000101)21:1%3c27::AID-ELPS27%3e3.0.CO;2-C
- J.C. McDonald, G.M. Whitesides, Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc. Chem. Res. 35, 491–499 (2002). https://doi.org/10.1021/ar010110q
- R.T. Johnson Jr., R.M. Biefeld, J.A. Sayre, High-temperature electrical conductivity and thermal decomposition of Sylgard® 184 and mixtures containing hollow microspherical fillers. Polym. Eng. Sci. 24, 435–441 (1984). https://doi.org/10.1002/pen.760240608
- C. Chen, J. Wang, Z. Chen, Surface restructuring behavior of various types of poly(dimethylsiloxane) in water detected by SFG. Langmuir 20, 10186–10193 (2004). https://doi.org/10.1021/la049327u
- W.H. Teh, U. Dürig, U. Drechsler, C.G. Smith, H.-J. Güntherodt, Effect of low numerical-aperture femtosecond two-photon absorption on (SU-8) resist for ultrahigh-aspect-ratio microstereolithography. 97, 54907 (2005). https://doi.org/10.1063/1.1856214
- D. Zhou, D. Shanmukaraj, A. Tkacheva, M. Armand, G. Wang, Polymer electrolytes for lithium-based batteries: advances and prospects. Chem 5, 2326–2352 (2019). https://doi.org/10.1016/j.chempr.2019.05.009
- C.S. Choi, J. Lau, J. Hur, L. Smith, C. Wang et al., Synthesis and properties of a photopatternable lithium-ion conducting solid electrolyte. Adv. Mater. 30, 1703772 (2018). https://doi.org/10.1002/adma.201703772
- O.G. Schmidt, K. Eberl, Thin solid films roll up into nanotubes. Nature 410, 168 (2001). https://doi.org/10.1038/35065525
- W. Zhang, H. Tang, Y. Yan, J. Ma, L.M.M. Ferro et al., Unlocking micro-origami energy storage. ACS Appl. Energy Mater. 7, 11256–11268 (2024). https://doi.org/10.1021/acsaem.4c00702
- X. Meng, Atomic layer deposition of solid-state electrolytes for next-generation lithium-ion batteries and beyond: opportunities and challenges. Energy Stor. Mater. 30, 296–328 (2020). https://doi.org/10.1016/j.ensm.2020.05.001
- F. Yu, L. Du, G. Zhang, F. Su, W. Wang et al., Electrode engineering by atomic layer deposition for sodium-ion batteries: from traditional to advanced batteries. Adv. Funct. Mater. 30, 1906890 (2020). https://doi.org/10.1002/adfm.201906890
- Y. Zhao, L. Zhang, J. Liu, K. Adair, F. Zhao et al., Atomic/molecular layer deposition for energy storage and conversion. Chem. Soc. Rev. 50, 3889–3956 (2021). https://doi.org/10.1039/d0cs00156b
- H. Zhang, H. Ning, J. Busbee, Z. Shen, C. Kiggins et al., Electroplating lithium transition metal oxides. Sci. Adv. 3, e1602427 (2017). https://doi.org/10.1126/sciadv.1602427
- C. Lethien, M. Zegaoui, P. Roussel, P. Tilmant, N. Rolland et al., Micro-patterning of LiPON and lithium iron phosphate material deposited onto silicon nanopillars array for lithium ion solid state 3D micro-battery. Microelectron. Eng. 88, 3172–3177 (2011). https://doi.org/10.1016/j.mee.2011.06.022
- Y. Liu, W. Zhang, Y. Zhu, Y. Luo, Y. Xu et al., Architecturing hierarchical function layers on self-assembled viral templates as 3D nano-array electrodes for integrated Li-ion microbatteries. Nano Lett. 13, 293–300 (2013). https://doi.org/10.1021/nl304104q
- J. Etula, K. Lahtinen, N. Wester, A. Iyer, K. Arstila et al., Room-temperature micropillar growth of lithium–titanate–carbon composite structures by self-biased direct current magnetron sputtering for lithium ion microbatteries. Adv. Funct. Mater. 29, 1904306 (2019). https://doi.org/10.1002/adfm.201904306
- A.J. Lovett, V. Daramalla, D. Nayak, F.N. Sayed, A. Mahadevegowda et al., 3D nanocomposite thin film cathodes for micro-batteries with enhanced high-rate electrochemical performance over planar films. Adv. Energy Mater. 13, 2302053 (2023). https://doi.org/10.1002/aenm.202302053
- M. Koo, K.-I. Park, S.H. Lee, M. Suh, D.Y. Jeon et al., Bendable inorganic thin-film battery for fully flexible electronic systems. Nano Lett. 12, 4810–4816 (2012). https://doi.org/10.1021/nl302254v
- A.J. Pearse, T.E. Schmitt, E.J. Fuller, F. El-Gabaly, C.-F. Lin et al., Nanoscale solid state batteries enabled by thermal atomic layer deposition of a lithium polyphosphazene solid state electrolyte. Chem. Mater. 29, 3740–3753 (2017). https://doi.org/10.1021/acs.chemmater.7b00805
- J. Trask, A. Anapolsky, B. Cardozo, E. Januar, K. Kumar et al., Optimization of 10-μm, sputtered, LiCoO2 cathodes to enable higher energy density solid state batteries. J. Power. Sour. 350, 56–64 (2017). https://doi.org/10.1016/j.jpowsour.2017.03.017
- R. Pfenninger, S. Afyon, I. Garbayo, M. Struzik, J.L.M. Rupp, Lithium titanate anode thin films for Li-ion solid state battery based on garnets. Adv. Funct. Mater. 28, 1800879 (2018). https://doi.org/10.1002/adfm.201800879
- S. Oukassi, A. Bazin, C. Secouard, I. Chevalier, S. Poncet et al., Millimeter scale thin film batteries for integrated high energy density storage. 2019 IEEE International Electron Devices Meeting (IEDM), Dec 7–11, 2019, San Francisco, CA, USA. IEEE, (2019), 26.1.1–26.1.4
- M.H. Futscher, L. Brinkman, A. Müller, J. Casella, A. Aribia et al., Monolithically-stacked thin-film solid-state batteries. Commun. Chem. 6, 110 (2023). https://doi.org/10.1038/s42004-023-00901-w
- A.J. Lovett, V. Daramalla, F.N. Sayed, D. Nayak, M. de h-Óra et al., Low temperature epitaxial LiMn2O4 cathodes enabled by NiCo2O4 current collector for high-performance microbatteries. ACS Energy Lett. 8, 3437–3442 (2023). https://doi.org/10.1021/acsenergylett.3c01094
- J. Zheng, R. Xia, S. Baiju, Z. Sun, P. Kaghazchi et al., Stabilizing crystal framework of an overlithiated Li1+xMn2O4 cathode by heterointerfacial epitaxial strain for high-performance microbatteries. ACS Nano 17, 25391–25404 (2023). https://doi.org/10.1021/acsnano.3c08849
- J. Liu, M.N. Banis, Q. Sun, A. Lushington, R. Li et al., Rational design of atomic-layer-deposited LiFePO4 as a high-performance cathode for lithium-ion batteries. Adv. Mater. 26, 6472–6477 (2014). https://doi.org/10.1002/adma.201401805
- Q. Xia, Q. Zhang, S. Sun, F. Hussain, C. Zhang et al., Tunnel intergrowth LixMnO2 nanosheet arrays as 3D cathode for high-performance all-solid-state thin film lithium microbatteries. Adv. Mater. 33, 2003524 (2021). https://doi.org/10.1002/adma.202003524
- F. Le Cras, B. Pecquenard, V. Dubois, V.-P. Phan, D. Guy-Bouyssou, All-solid-state lithium-ion microbatteries using silicon nanofilm anodes: high performance and memory effect. Adv. Energy Mater. 5, 1501061 (2015). https://doi.org/10.1002/aenm.201501061
- J. Li, C. Ma, M. Chi, C. Liang, N.J. Dudney, Solid electrolyte: the key for high-voltage lithium batteries. Adv. Energy Mater. 5, 1401408 (2015). https://doi.org/10.1002/aenm.201401408
- R. Deng, B. Ke, Y. Xie, S. Cheng, C. Zhang et al., All-solid-state thin-film lithium-sulfur batteries. Nano-Micro Lett. 15, 73 (2023). https://doi.org/10.1007/s40820-023-01064-y
- B. Jia, C. Zhang, M. Liu, Z. Li, J. Wang et al., Integration of microbattery with thin-film electronics for constructing an integrated transparent microsystem based on InGaZnO. Nat. Commun. 14, 5330 (2023). https://doi.org/10.1038/s41467-023-41181-1
- S. Sun, Z. Han, W. Liu, Q. Xia, L. Xue et al., Lattice pinning in MoO3 via coherent interface with stabilized Li+ intercalation. Nat. Commun. 14, 6662 (2023). https://doi.org/10.1038/s41467-023-42335-x
- Y. Lim, J. Yoon, J. Yun, D. Kim, S.Y. Hong et al., Biaxially stretchable, integrated array of high performance microsupercapacitors. ACS Nano 8, 11639–11650 (2014). https://doi.org/10.1021/nn504925s
- D.S. Ashby, R.H. DeBlock, C.-H. Lai, C.S. Choi, B.S. Dunn, Patternable, solution-processed ionogels for thin-film lithium-ion electrolytes. Joule 1, 344–358 (2017). https://doi.org/10.1016/j.joule.2017.08.012
- C. Choi, K. Robert, G. Whang, P. Roussel, C. Lethien et al., Photopatternable hydroxide ion electrolyte for solid-state micro-supercapacitors. Joule 5, 2466–2478 (2021). https://doi.org/10.1016/j.joule.2021.07.003
- T. Li, X. Pan, Z. Yang, F. Liu, K. Yu et al., Fabricating ion-conducting channel in SU-8 matrix for high-performance patternable polymer electrolytes. Nano Res. 16, 496–502 (2023). https://doi.org/10.1007/s12274-022-4751-2
- S. O’Halloran, A. Pandit, A. Heise, A. Kellett, Two-photon polymerization: fundamentals, materials, and chemical modification strategies. Adv. Sci. 10, e2204072 (2023). https://doi.org/10.1002/advs.202204072
- S. Kwon, G. Kim, H. Lim, J. Kim, K.-B. Choi et al., High performance microsupercapacitors based on a nano-micro hierarchical carbon electrode by direct laser writing. Appl. Phys. Lett. 113, 243901 (2018). https://doi.org/10.1063/1.5066017
- N.A. Kyeremateng, R. Hahn, Attainable energy density of microbatteries. ACS Energy Lett. 3, 1172–1175 (2018). https://doi.org/10.1021/acsenergylett.8b00500
- X. Yue, A.C. Johnson, S. Kim, R.R. Kohlmeyer, A. Patra et al., A nearly packaging-free design paradigm for light, powerful, and energy-dense primary microbatteries. Adv. Mater. 33, 2101760 (2021). https://doi.org/10.1002/adma.202101760
- S. Kim, A. Patra, R.R. Kohlmeyer, S. Jo, X. Yue et al., Serially integrated high-voltage and high power miniature batteries. Cell Rep. Phys. Sci. 4, 101205 (2023). https://doi.org/10.1016/j.xcrp.2022.101205
- T.S. Wei, B.Y. Ahn, J. Grotto, J.A. Lewis, 3D printing of customized Li-ion batteries with thick electrodes. Adv. Mater. 30, e1703027 (2018). https://doi.org/10.1002/adma.201703027
- Y.W. Kwon, D.B. Ahn, Y.G. Park, E. Kim, D.H. Lee et al., Power-integrated, wireless neural recording systems on the cranium using a direct printing method for deep-brain analysis. Sci. Adv. 10, eadn3784 (2024). https://doi.org/10.1126/sciadv.adn3784
- G. Zhang, S. Yang, J.F. Yang, D. Gonzalez-Medrano, M.Z. Miskin et al., High energy density picoliter-scale zinc-air microbatteries for colloidal robotics. Sci. Robot. 9, eade4642 (2024). https://doi.org/10.1126/scirobotics.ade4642
References
S. Zheng, X. Shi, P. Das, Z.-S. Wu, X. Bao, The Road towards planar microbatteries and micro-supercapacitors: from 2D to 3D device geometries. Adv. Mater. 31, e1900583 (2019). https://doi.org/10.1002/adma.201900583
J. Ni, A. Dai, Y. Yuan, L. Li, J. Lu, Three-dimensional microbatteries beyond lithium ion. Matter 2, 1366–1376 (2020). https://doi.org/10.1016/j.matt.2020.04.020
Z. Zhu, R. Kan, S. Hu, L. He, X. Hong et al., Recent advances in high-performance microbatteries: construction, application, and perspective. Small 16, 2003251 (2020). https://doi.org/10.1002/smll.202003251
M. Sha, H. Zhao, Y. Lei, Updated insights into 3D architecture electrodes for micropower sources. Adv. Mater. 33, e2103304 (2021). https://doi.org/10.1002/adma.202103304
Y. Li, S. Xiao, T. Qiu, X. Lang, H. Tan et al., Recent advances on energy storage microdevices: from materials to configurations. Energy Stor. Mater. 45, 741–767 (2022). https://doi.org/10.1016/j.ensm.2021.12.026
Q. Xia, F. Zan, Q. Zhang, W. Liu, Q. Li et al., All-solid-state thin film lithium/lithium-ion microbatteries for powering the Internet of Things. Adv. Mater. 35, e2200538 (2023). https://doi.org/10.1002/adma.202200538
B. Wu, H. Ouro-Koura, S.-H. Lu, H. Li, X. Wang et al., Functional materials for powering and implementing next-generation miniature sensors. Mater. Today 69, 333–354 (2023). https://doi.org/10.1016/j.mattod.2023.09.001
J. Ma, R. Quhe, W. Zhang, Y. Yan, H. Tang et al., Zn microbatteries explore ways for integrations in intelligent systems. Small 19, 2300230 (2023). https://doi.org/10.1002/smll.202300230
Y. Zhu, S. Wang, J. Ma, P. Das, S. Zheng et al., Recent status and future perspectives of 2D MXene for micro-supercapacitors and micro-batteries. Energy Stor. Mater. 51, 500–526 (2022). https://doi.org/10.1016/j.ensm.2022.06.044
M. Zhu, O.G. Schmidt, Tiny robots and sensors need tiny batteries—here’s how to do it. Nature 589, 195–197 (2021). https://doi.org/10.1038/d41586-021-00021-2
C. Yue, J. Li, L. Lin, Fabrication of Si-based three-dimensional microbatteries: a review. Front. Mech. Eng. 12, 459–476 (2017). https://doi.org/10.1007/s11465-017-0462-x
Y. Li, J. Qu, F. Li, Z. Qu, H. Tang et al., Advanced architecture designs towards high-performance 3D microbatteries. Nano Mater. Sci. 3, 140–153 (2021). https://doi.org/10.1016/j.nanoms.2020.10.004
K.-H. Lee, S.-Y. Lee, Cell architecture designs towards high-energy-density microscale energy storage devices. Nano Res. Energy 3, e9120101 (2024). https://doi.org/10.26599/nre.2023.9120101
S. Wang, P. Das, Z.-S. Wu, High-energy-density microscale energy storage devices for Internet of Things. Sci. Bull. 69, 714–717 (2024). https://doi.org/10.1016/j.scib.2024.01.012
J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001). https://doi.org/10.1038/35104644
J.W. Choi, D. Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016). https://doi.org/10.1038/natrevmats.2016.13
R. Schmuch, R. Wagner, G. Hörpel, T. Placke, M. Winter, Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3, 267–278 (2018). https://doi.org/10.1038/s41560-018-0107-2
Y. Li, M. Zhu, V.K. Bandari, D.D. Karnaushenko, D. Karnaushenko et al., On-chip batteries for dust-sized computers. Adv. Energy Mater. 12, 2103641 (2022). https://doi.org/10.1002/aenm.202103641
Z. Qu, M. Zhu, Y. Yin, Y. Huang, H. Tang et al., A sub-square-millimeter microbattery with milliampere-hour-level footprint capacity. Adv. Energy Mater. 12, 2200714 (2022). https://doi.org/10.1002/aenm.202200714
J.W. Long, B. Dunn, D.R. Rolison, H.S. White, Three-dimensional battery architectures. Chem. Rev. 104, 4463–4492 (2004). https://doi.org/10.1021/cr020740l
J.F.M. Oudenhoven, L. Baggetto, P.H.L. Notten, All-solid-state lithium-ion microbatteries: a review of various three-dimensional concepts. Adv. Energy Mater. 1, 10–33 (2011). https://doi.org/10.1002/aenm.201000002
S. Ferrari, M. Loveridge, S.D. Beattie, M. Jahn, R.J. Dashwood et al., Latest advances in the manufacturing of 3D rechargeable lithium microbatteries. J. Power. Sour. 286, 25–46 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.133
A. Kwade, W. Haselrieder, R. Leithoff, A. Modlinger, F. Dietrich et al., Current status and challenges for automotive battery production technologies. Nat. Energy 3, 290–300 (2018). https://doi.org/10.1038/s41560-018-0130-3
M. Nasreldin, R. Delattre, C. Calmes, M. Ramuz, V.A. Sugiawati et al., High performance stretchable Li-ion microbattery. Energy Stor. Mater. 33, 108–115 (2020). https://doi.org/10.1016/j.ensm.2020.07.005
W. Lai, Y. Wang, Z. Lei, R. Wang, Z. Lin et al., High performance, environmentally benign and integratable Zn// MnO2 microbatteries. J. Mater. Chem. A 6, 3933–3940 (2018). https://doi.org/10.1039/C7TA10936A
J. Shi, S. Wang, X. Chen, Z. Chen, X. Du et al., An ultrahigh energy density quasi-solid-state zinc ion microbattery with excellent flexibility and thermostability. Adv. Energy Mater. 9, 1901957 (2019). https://doi.org/10.1002/aenm.201901957
T. Li, J. Wang, X. Li, L. Si, S. Zhang et al., Unlocking the door of boosting biodirected structures for high-performance VNxOy/C by controlling the reproduction mode. Adv. Sci. 7, 1903276 (2020). https://doi.org/10.1002/advs.201903276
Z. Tian, Z. Sun, Y. Shao, L. Gao, R. Huang et al., Ultrafast rechargeable Zn micro-batteries endowing a wearable solar charging system with high overall efficiency. Energy Environ. Sci. 14, 1602–1611 (2021). https://doi.org/10.1039/D0EE03623D
X. Li, F. Chen, B. Zhao, S. Zhang, X. Zheng et al., Ultrafast synthesis of metal-layered hydroxides in a dozen seconds for high-performance aqueous Zn (micro-) battery. Nano-Micro Lett. 15, 32 (2023). https://doi.org/10.1007/s40820-022-01004-2
Y. Wu, N. He, G. Liang, C. Zhang, C. Liang et al., Thick-network electrode: enabling dual working voltage plateaus of Zn-ion micro-battery with ultrahigh areal capacity. Adv. Funct. Mater. 34, 2301734 (2024). https://doi.org/10.1002/adfm.202301734
G. Zhang, F. Geng, T. Zhao, F. Zhou, N. Zhang et al., Biocompatible symmetric Na-ion microbatteries with sphere-in-network heteronanomat electrodes realizing high reliability and high energy density for implantable bioelectronics. ACS Appl. Mater. Interfaces 10, 42268–42278 (2018). https://doi.org/10.1021/acsami.8b14918
Q. Liu, G. Zhang, N. Chen, X. Feng, C. Wang et al., The first flexible dual-ion microbattery demonstrates superior capacity and ultrahigh energy density: small and powerful. Adv. Funct. Mater. 30, 2002086 (2020). https://doi.org/10.1002/adfm.202002086
Y. Zhu, J. Yin, A.-H. Emwas, O.F. Mohammed, H.N. Alshareef, An aqueous Mg2+-based dual-ion battery with high power density. Adv. Funct. Mater. 31, 2107523 (2021). https://doi.org/10.1002/adfm.202107523
C. Dai, L. Hu, X. Jin, Y. Wang, R. Wang et al., Fast constructing polarity-switchable zinc-bromine microbatteries with high areal energy density. Sci. Adv. 8, eabo688 (2022). https://doi.org/10.1126/sciadv.abo6688
X. Jin, L. Song, C. Dai, Y. Xiao, Y. Han et al., A flexible aqueous zinc-iodine microbattery with unprecedented energy density. Adv. Mater. 34, e2109450 (2022). https://doi.org/10.1002/adma.202109450
S. Zheng, Z.-S. Wu, F. Zhou, X. Wang, J. Ma et al., All-solid-state planar integrated lithium ion micro-batteries with extraordinary flexibility and high-temperature performance. Nano Energy 51, 613–620 (2018). https://doi.org/10.1016/j.nanoen.2018.07.009
X. Wang, Y. Li, P. Das, S. Zheng, F. Zhou et al., Layer-by-layer stacked amorphous V2O5/graphene 2D heterostructures with strong-coupling effect for high-capacity aqueous zinc-ion batteries with ultra-long cycle life. Energy Stor. Mater. 31, 156–163 (2020). https://doi.org/10.1016/j.ensm.2020.06.010
X. Wang, Y. Li, S. Wang, F. Zhou, P. Das et al., Zinc-ion batteries: 2D amorphous V2O5/graphene heterostructures for high-safety aqueous Zn-ion batteries with unprecedented capacity and ultrahigh rate capability (adv. energy mater. 22/2020). Adv. Energy Mater. 10, 2070100 (2020). https://doi.org/10.1002/aenm.202070100
S. Zheng, H. Huang, Y. Dong, S. Wang, F. Zhou et al., Ionogel-based sodium ion micro-batteries with a 3D Na-ion diffusion mechanism enable ultrahigh rate capability. Energy Environ. Sci. 13, 821–829 (2020). https://doi.org/10.1039/C9EE03219C
X. Wang, H. Huang, F. Zhou, P. Das, P. Wen et al., High-voltage aqueous planar symmetric sodium ion micro-batteries with superior performance at low-temperature of −40 ºC. Nano Energy 82, 105688 (2021). https://doi.org/10.1016/j.nanoen.2020.105688
X. Wang, J. Qin, Q. Hu, P. Das, P. Wen et al., Multifunctional mesoporous polyaniline/graphene nanosheets for flexible planar integrated microsystem of zinc ion microbattery and gas sensor. Small 18, e2200678 (2022). https://doi.org/10.1002/smll.202200678
X. Wang, Y. Wang, J. Hao, Y. Liu, H. Xiao et al., Pseudocapacitive zinc cation intercalation with superior kinetics enabled by atomically thin V2O5 nanobelts for quasi-solid-state microbatteries. Energy Stor. Mater. 50, 454–463 (2022). https://doi.org/10.1016/j.ensm.2022.05.049
X. Wang, S. Zheng, F. Zhou, J. Qin, X. Shi et al., Scalable fabrication of printed Zn//MnO2 planar micro-batteries with high volumetric energy density and exceptional safety. Natl. Sci. Rev. 7, 64–72 (2020). https://doi.org/10.1093/nsr/nwz070
S. Zheng, H. Wang, P. Das, Y. Zhang, Y. Cao et al., Multitasking MXene inks enable high-performance printable microelectrochemical energy storage devices for all-flexible self-powered integrated systems. Adv. Mater. 33, e2005449 (2021). https://doi.org/10.1002/adma.202005449
Y. Zhang, S. Zheng, F. Zhou, X. Shi, C. Dong et al., Multi-layer printable lithium ion micro-batteries with remarkable areal energy density and flexibility for wearable smart electronics. Small 18, e2104506 (2022). https://doi.org/10.1002/smll.202104506
X. Cai, Y. Liu, J. Zha, F. Tan, B. Zhang et al., A flexible and safe planar zinc-ion micro-battery with ultrahigh energy density enabled by interfacial engineering for wearable sensing systems. Adv. Funct. Mater. 33, 2303009 (2023). https://doi.org/10.1002/adfm.202303009
R. Kumar, K.M. Johnson, N.X. Williams, V. Subramanian, Scaling printable Zn–Ag2O batteries for integrated electronics. Adv. Energy Mater. 9, 1803645 (2019). https://doi.org/10.1002/aenm.201803645
A. Toor, A. Wen, F. Maksimovic, A.M. Gaikwad, K.S.J. Pister et al., Stencil-printed Lithium-ion micro batteries for IoT applications. Nano Energy 82, 105666 (2021). https://doi.org/10.1016/j.nanoen.2020.105666
P. Li, Z. Yang, C. Li, J. Li, C. Wang et al., Swimmable micro-battery for targeted power delivery. Adv. Funct. Mater. 34, 2312188 (2024). https://doi.org/10.1002/adfm.202312188
S. Wang, G. Zeng, Q. Sun, Y. Feng, X. Wang et al., Flexible electronic systems via electrohydrodynamic jet printing: a MnSe@rGO cathode for aqueous zinc-ion batteries. ACS Nano 17, 13256–13268 (2023). https://doi.org/10.1021/acsnano.3c00672
K. Sun, T.S. Wei, B.Y. Ahn, J.Y. Seo, S.J. Dillon et al., 3D printing of interdigitated Li-ion microbattery architectures. Adv. Mater. 25, 4539–4543 (2013). https://doi.org/10.1002/adma.201301036
K. Fu, Y. Wang, C. Yan, Y. Yao, Y. Chen et al., Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries. Adv. Mater. 28, 2587–2594 (2016). https://doi.org/10.1002/adma.201505391
D. Cao, Y. Xing, K. Tantratian, X. Wang, Y. Ma et al., 3D printed high-performance lithium metal microbatteries enabled by nanocellulose. Adv. Mater. 31, e1807313 (2019). https://doi.org/10.1002/adma.201807313
L. Zhou, W. Ning, C. Wu, D. Zhang, W. Wei et al., 3D-printed microelectrodes with a developed conductive network and hierarchical pores toward high areal capacity for microbatteries. Adv. Mater. Technol. 4, 1800402 (2019). https://doi.org/10.1002/admt.201800402
J. Ma, S. Zheng, L. Chi, Y. Liu, Y. Zhang et al., 3D printing flexible sodium-ion microbatteries with ultrahigh areal capacity and robust rate capability. Adv. Mater. 34, e2205569 (2022). https://doi.org/10.1002/adma.202205569
Y. Ren, F. Meng, S. Zhang, B. Ping, H. Li et al., CNT@MnO2 composite ink toward a flexible 3D printed micro-zinc-ion battery. Carbon Energy 4, 446–457 (2022). https://doi.org/10.1002/cey2.177
Y. Lu, Z. Wang, M. Li, Z. Li, X. Hu et al., 3D printed flexible zinc ion micro-batteries with high areal capacity toward practical application. Adv. Funct. Mater. 34, 2310966 (2024). https://doi.org/10.1002/adfm.202310966
H. Ning, J.H. Pikul, R. Zhang, X. Li, S. Xu et al., Holographic patterning of high-performance on-chip 3D lithium-ion microbatteries. Proc. Natl. Acad. Sci. U.S.A. 112, 6573–6578 (2015). https://doi.org/10.1073/pnas.1423889112
W. Li, T.L. Christiansen, C. Li, Y. Zhou, H. Fei et al., High-power lithium-ion microbatteries from imprinted 3D electrodes of sub-10 nm LiMn2O4/Li4Ti5O12 nanocrystals and a copolymer gel electrolyte. Nano Energy 52, 431–440 (2018). https://doi.org/10.1016/j.nanoen.2018.08.019
P. Sun, X. Li, J. Shao, P.V. Braun, High-performance packaged 3D lithium-ion microbatteries fabricated using imprint lithography. Adv. Mater. 33, e2006229 (2021). https://doi.org/10.1002/adma.202006229
H.-S. Min, B.Y. Park, L. Taherabadi, C. Wang, Y. Yeh et al., Fabrication and properties of a carbon/polypyrrole three-dimensional microbattery. J. Power. Sour. 178, 795–800 (2008). https://doi.org/10.1016/j.jpowsour.2007.10.003
H. Tang, D.D. Karnaushenko, V. Neu, F. Gabler, S. Wang et al., Stress-actuated spiral microelectrode for high-performance lithium-ion microbatteries. Small 16, e2002410 (2020). https://doi.org/10.1002/smll.202002410
Q. Weng, S. Wang, L. Liu, X. Lu, M. Zhu et al., A compact tube-in-tube microsized lithium-ion battery as an independent microelectric power supply unit. Cell Rep. Phys. Sci. 2, 100429 (2021). https://doi.org/10.1016/j.xcrp.2021.100429
Y. Li, M. Zhu, D.D. Karnaushenko, F. Li, J. Qu et al., Microbatteries with twin-Swiss-rolls redefine performance limits in the sub-square millimeter range. Nanoscale Horiz. 8, 127–132 (2023). https://doi.org/10.1039/D2NH00472K
Z. Qu, J. Ma, Y. Huang, T. Li, H. Tang et al., A photolithographable electrolyte for deeply rechargeable Zn microbatteries in on-chip devices. Adv. Mater. 36, e2310667 (2024). https://doi.org/10.1002/adma.202310667
S. Wang, L. Li, S. Zheng, P. Das, X. Shi et al., Monolithic integrated micro-supercapacitors with ultra-high systemic volumetric performance and areal output voltage. Natl. Sci. Rev. 10, nwac271 (2022). https://doi.org/10.1093/nsr/nwac271
S. Wang, S. Zheng, X. Shi, P. Das, L. Li et al., Monolithically integrated micro-supercapacitors with high areal number density produced by surface adhesive-directed electrolyte assembly. Nat. Commun. 15, 2850 (2024). https://doi.org/10.1038/s41467-024-47216-5
A. Pearse, T. Schmitt, E. Sahadeo, D.M. Stewart, A. Kozen et al., Three-dimensional solid-state lithium-ion batteries fabricated by conformal vapor-phase chemistry. ACS Nano 12, 4286–4294 (2018). https://doi.org/10.1021/acsnano.7b08751
J. Qiu, Y. Duan, S. Li, H. Zhao, W. Ma et al., Insights into nano- and micro-structured scaffolds for advanced electrochemical energy storage. Nano-Micro Lett. 16, 130 (2024). https://doi.org/10.1007/s40820-024-01341-4
G.H. Lee, K. Kim, Y. Kim, J. Yang, M.K. Choi, Recent advances in patterning strategies for full-color perovskite light-emitting diodes. Nano-Micro Lett. 16, 45 (2023). https://doi.org/10.1007/s40820-023-01254-8
J.H. Pikul, H. Gang Zhang, J. Cho, P.V. Braun, W.P. King, High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. Nat. Commun. 4, 1732 (2013). https://doi.org/10.1038/ncomms2747
L. Baggetto, H.C.M. Knoops, R.A.H. Niessen, W.M.M. Kessels, P.H.L. Notten, 3D negative electrode stacks for integrated all-solid-state lithium-ion microbatteries. J. Mater. Chem. 20, 3703 (2010). https://doi.org/10.1039/b926044g
E. Eustache, P. Tilmant, L. Morgenroth, P. Roussel, G. Patriarche et al., Silicon-microtube scaffold decorated with anatase TiO2 as a negative electrode for a 3D litium-ion microbattery. Adv. Energy Mater. 4, 1301612 (2014). https://doi.org/10.1002/aenm.201301612
M. Létiche, E. Eustache, J. Freixas, A. Demortière, V. De Andrade et al., Atomic layer deposition of functional layers for on chip 3D Li-ion all solid state microbattery. Adv. Energy Mater. 7, 1601402 (2017). https://doi.org/10.1002/aenm.201601402
Y. Wang, X. Hong, Y. Guo, Y. Zhao, X. Liao et al., Wearable textile-based Co−Zn alkaline microbattery with high energy density and excellent reliability. Small 16, 2000293 (2020). https://doi.org/10.1002/smll.202000293
K.T. Nam, R. Wartena, P.J. Yoo, F.W. Liau, Y.J. Lee et al., Stamped microbattery electrodes based on self-assembled M13 viruses. Proc. Natl. Acad. Sci. U.S.A. 105, 17227–17231 (2008). https://doi.org/10.1073/pnas.0711620105
J.I. Hur, L.C. Smith, B. Dunn, High areal energy density 3D lithium-ion microbatteries. Joule 2, 1187–1201 (2018). https://doi.org/10.1016/j.joule.2018.04.002
L. Cao, G. Fang, H. Cao, X. Duan, Photopatterning and electrochemical energy storage properties of an on-chip organic radical microbattery. Langmuir 35, 16079–16086 (2019). https://doi.org/10.1021/acs.langmuir.9b02079
K. Dokko, J.-I. Sugaya, H. Nakano, T. Yasukawa, T. Matsue et al., Sol–gel fabrication of lithium-ion microarray battery. Electrochem. Commun. 9, 857–862 (2007). https://doi.org/10.1016/j.elecom.2006.11.025
H. Nakano, K. Dokko, J.-I. Sugaya, T. Yasukawa, T. Matsue et al., All-solid-state micro lithium-ion batteries fabricated by using dry polymer electrolyte with micro-phase separation structure. Electrochem. Commun. 9, 2013–2017 (2007). https://doi.org/10.1016/j.elecom.2007.05.020
Z. Lyu, G.J.H. Lim, J.J. Koh, Y. Li, Y. Ma et al., Design and manufacture of 3D-printed batteries. Joule 5, 89–114 (2021). https://doi.org/10.1016/j.joule.2020.11.010
W. Zhang, H. Liu, X. Zhang, X. Li, G. Zhang et al., 3D printed micro-electrochemical energy storage devices: from design to integration. Adv. Funct. Mater. 31, 2104909 (2021). https://doi.org/10.1002/adfm.202104909
X. Gao, M. Zheng, X. Yang, R. Sun, J. Zhang et al., Emerging application of 3D-printing techniques in lithium batteries: from liquid to solid. Mater. Today 59, 161–181 (2022). https://doi.org/10.1016/j.mattod.2022.07.016
R. Hahn, M. Ferch, N.A. Kyeremateng, K. Hoeppner, K. Marquardt et al., Characteristics of Li-ion micro batteries fully batch fabricated by micro-fluidic MEMS packaging. Microsyst. Technol. 28, 1321–1329 (2022). https://doi.org/10.1007/s00542-018-3933-z
J. Pu, Z. Shen, C. Zhong, Q. Zhou, J. Liu et al., Electrodeposition technologies for Li-based batteries: new frontiers of energy storage. Adv. Mater. 32, e1903808 (2020). https://doi.org/10.1002/adma.201903808
C.-H. Hung, P. Huynh, K. Teo, C.L. Cobb, Are three-dimensional batteries beneficial? Analyzing historical data to elucidate performance advantages. ACS Energy Lett. 8, 296–305 (2023). https://doi.org/10.1021/acsenergylett.2c02208
J.H. Pikul, J. Liu, P.V. Braun, W.P. King, Integration of high capacity materials into interdigitated mesostructured electrodes for high energy and high power density primary microbatteries. J. Power. Sour. 315, 308–315 (2016). https://doi.org/10.1016/j.jpowsour.2016.03.034
Z. Hao, L. Xu, Q. Liu, W. Yang, X. Liao et al., On-chip Ni–Zn microbattery based on hierarchical ordered porous Ni@Ni(OH)2 microelectrode with ultrafast ion and electron transport kinetics. Adv. Funct. Mater. 29, 1808470 (2019). https://doi.org/10.1002/adfm.201808470
M. Campbell, D.N. Sharp, M.T. Harrison, R.G. Denning, A.J. Turberfield, Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature 404, 53–56 (2000). https://doi.org/10.1038/35003523
J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Evolution of nanoporosity in dealloying. Nature 410, 450–453 (2001). https://doi.org/10.1038/35068529
Y.-Q. Li, H. Shi, S.-B. Wang, Y.-T. Zhou, Z. Wen et al., Dual-phase nanostructuring of layered metal oxides for high-performance aqueous rechargeable potassium ion microbatteries. Nat. Commun. 10, 4292 (2019). https://doi.org/10.1038/s41467-019-12274-7
M. Shi, Y. Zhang, X. Zhou, Y. Li, S. Xiao et al., A high-energy/power and ultra-stable aqueous ammonium ion microbattery based on amorphous/crystalline dual-phase layered metal oxides. Chem. Eng. J. 464, 142600 (2023). https://doi.org/10.1016/j.cej.2023.142600
F. Laermer, A. Urban, Challenges, developments and applications of silicon deep reactive ion etching. Microelectron. Eng. 67, 349–355 (2003). https://doi.org/10.1016/S0167-9317(03)00089-3
D. Golodnitsky, V. Yufit, M. Nathan, I. Shechtman, T. Ripenbein et al., Advanced materials for the 3D microbattery. J. Power. Sour. 153, 281–287 (2006). https://doi.org/10.1016/j.jpowsour.2005.05.029
J. Xie, J.F.M. Oudenhoven, D. Li, C. Chen, R.-A. Eichel et al., High power and high capacity 3D-structured TiO2 electrodes for lithium-ion microbatteries. J. Electrochem. Soc. 163, A2385–A2389 (2016). https://doi.org/10.1149/2.1141610jes
D.S. Ashby, C.S. Choi, M.A. Edwards, A.A. Talin, H.S. White et al., High-performance solid-state lithium-ion battery with mixed 2D and 3D electrodes. ACS Appl. Energy Mater. 3, 8402–8409 (2020). https://doi.org/10.1021/acsaem.0c01029
J.A. Rogers, R.G. Nuzzo, Recent progress in soft lithography. Mater. Today 8, 50–56 (2005). https://doi.org/10.1016/S1369-7021(05)00702-9
D.C. Duffy, J.C. McDonald, O.J.A. Schueller, G.M. Whitesides, Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 70, 4974–4984 (1998). https://doi.org/10.1021/ac980656z
J.C. McDonald, D.C. Duffy, J.R. Anderson, D.T. Chiu, H. Wu et al., Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21, 27–40 (2000). https://doi.org/10.1002/(SICI)1522-2683(20000101)21:1%3c27::AID-ELPS27%3e3.0.CO;2-C
J.C. McDonald, G.M. Whitesides, Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc. Chem. Res. 35, 491–499 (2002). https://doi.org/10.1021/ar010110q
R.T. Johnson Jr., R.M. Biefeld, J.A. Sayre, High-temperature electrical conductivity and thermal decomposition of Sylgard® 184 and mixtures containing hollow microspherical fillers. Polym. Eng. Sci. 24, 435–441 (1984). https://doi.org/10.1002/pen.760240608
C. Chen, J. Wang, Z. Chen, Surface restructuring behavior of various types of poly(dimethylsiloxane) in water detected by SFG. Langmuir 20, 10186–10193 (2004). https://doi.org/10.1021/la049327u
W.H. Teh, U. Dürig, U. Drechsler, C.G. Smith, H.-J. Güntherodt, Effect of low numerical-aperture femtosecond two-photon absorption on (SU-8) resist for ultrahigh-aspect-ratio microstereolithography. 97, 54907 (2005). https://doi.org/10.1063/1.1856214
D. Zhou, D. Shanmukaraj, A. Tkacheva, M. Armand, G. Wang, Polymer electrolytes for lithium-based batteries: advances and prospects. Chem 5, 2326–2352 (2019). https://doi.org/10.1016/j.chempr.2019.05.009
C.S. Choi, J. Lau, J. Hur, L. Smith, C. Wang et al., Synthesis and properties of a photopatternable lithium-ion conducting solid electrolyte. Adv. Mater. 30, 1703772 (2018). https://doi.org/10.1002/adma.201703772
O.G. Schmidt, K. Eberl, Thin solid films roll up into nanotubes. Nature 410, 168 (2001). https://doi.org/10.1038/35065525
W. Zhang, H. Tang, Y. Yan, J. Ma, L.M.M. Ferro et al., Unlocking micro-origami energy storage. ACS Appl. Energy Mater. 7, 11256–11268 (2024). https://doi.org/10.1021/acsaem.4c00702
X. Meng, Atomic layer deposition of solid-state electrolytes for next-generation lithium-ion batteries and beyond: opportunities and challenges. Energy Stor. Mater. 30, 296–328 (2020). https://doi.org/10.1016/j.ensm.2020.05.001
F. Yu, L. Du, G. Zhang, F. Su, W. Wang et al., Electrode engineering by atomic layer deposition for sodium-ion batteries: from traditional to advanced batteries. Adv. Funct. Mater. 30, 1906890 (2020). https://doi.org/10.1002/adfm.201906890
Y. Zhao, L. Zhang, J. Liu, K. Adair, F. Zhao et al., Atomic/molecular layer deposition for energy storage and conversion. Chem. Soc. Rev. 50, 3889–3956 (2021). https://doi.org/10.1039/d0cs00156b
H. Zhang, H. Ning, J. Busbee, Z. Shen, C. Kiggins et al., Electroplating lithium transition metal oxides. Sci. Adv. 3, e1602427 (2017). https://doi.org/10.1126/sciadv.1602427
C. Lethien, M. Zegaoui, P. Roussel, P. Tilmant, N. Rolland et al., Micro-patterning of LiPON and lithium iron phosphate material deposited onto silicon nanopillars array for lithium ion solid state 3D micro-battery. Microelectron. Eng. 88, 3172–3177 (2011). https://doi.org/10.1016/j.mee.2011.06.022
Y. Liu, W. Zhang, Y. Zhu, Y. Luo, Y. Xu et al., Architecturing hierarchical function layers on self-assembled viral templates as 3D nano-array electrodes for integrated Li-ion microbatteries. Nano Lett. 13, 293–300 (2013). https://doi.org/10.1021/nl304104q
J. Etula, K. Lahtinen, N. Wester, A. Iyer, K. Arstila et al., Room-temperature micropillar growth of lithium–titanate–carbon composite structures by self-biased direct current magnetron sputtering for lithium ion microbatteries. Adv. Funct. Mater. 29, 1904306 (2019). https://doi.org/10.1002/adfm.201904306
A.J. Lovett, V. Daramalla, D. Nayak, F.N. Sayed, A. Mahadevegowda et al., 3D nanocomposite thin film cathodes for micro-batteries with enhanced high-rate electrochemical performance over planar films. Adv. Energy Mater. 13, 2302053 (2023). https://doi.org/10.1002/aenm.202302053
M. Koo, K.-I. Park, S.H. Lee, M. Suh, D.Y. Jeon et al., Bendable inorganic thin-film battery for fully flexible electronic systems. Nano Lett. 12, 4810–4816 (2012). https://doi.org/10.1021/nl302254v
A.J. Pearse, T.E. Schmitt, E.J. Fuller, F. El-Gabaly, C.-F. Lin et al., Nanoscale solid state batteries enabled by thermal atomic layer deposition of a lithium polyphosphazene solid state electrolyte. Chem. Mater. 29, 3740–3753 (2017). https://doi.org/10.1021/acs.chemmater.7b00805
J. Trask, A. Anapolsky, B. Cardozo, E. Januar, K. Kumar et al., Optimization of 10-μm, sputtered, LiCoO2 cathodes to enable higher energy density solid state batteries. J. Power. Sour. 350, 56–64 (2017). https://doi.org/10.1016/j.jpowsour.2017.03.017
R. Pfenninger, S. Afyon, I. Garbayo, M. Struzik, J.L.M. Rupp, Lithium titanate anode thin films for Li-ion solid state battery based on garnets. Adv. Funct. Mater. 28, 1800879 (2018). https://doi.org/10.1002/adfm.201800879
S. Oukassi, A. Bazin, C. Secouard, I. Chevalier, S. Poncet et al., Millimeter scale thin film batteries for integrated high energy density storage. 2019 IEEE International Electron Devices Meeting (IEDM), Dec 7–11, 2019, San Francisco, CA, USA. IEEE, (2019), 26.1.1–26.1.4
M.H. Futscher, L. Brinkman, A. Müller, J. Casella, A. Aribia et al., Monolithically-stacked thin-film solid-state batteries. Commun. Chem. 6, 110 (2023). https://doi.org/10.1038/s42004-023-00901-w
A.J. Lovett, V. Daramalla, F.N. Sayed, D. Nayak, M. de h-Óra et al., Low temperature epitaxial LiMn2O4 cathodes enabled by NiCo2O4 current collector for high-performance microbatteries. ACS Energy Lett. 8, 3437–3442 (2023). https://doi.org/10.1021/acsenergylett.3c01094
J. Zheng, R. Xia, S. Baiju, Z. Sun, P. Kaghazchi et al., Stabilizing crystal framework of an overlithiated Li1+xMn2O4 cathode by heterointerfacial epitaxial strain for high-performance microbatteries. ACS Nano 17, 25391–25404 (2023). https://doi.org/10.1021/acsnano.3c08849
J. Liu, M.N. Banis, Q. Sun, A. Lushington, R. Li et al., Rational design of atomic-layer-deposited LiFePO4 as a high-performance cathode for lithium-ion batteries. Adv. Mater. 26, 6472–6477 (2014). https://doi.org/10.1002/adma.201401805
Q. Xia, Q. Zhang, S. Sun, F. Hussain, C. Zhang et al., Tunnel intergrowth LixMnO2 nanosheet arrays as 3D cathode for high-performance all-solid-state thin film lithium microbatteries. Adv. Mater. 33, 2003524 (2021). https://doi.org/10.1002/adma.202003524
F. Le Cras, B. Pecquenard, V. Dubois, V.-P. Phan, D. Guy-Bouyssou, All-solid-state lithium-ion microbatteries using silicon nanofilm anodes: high performance and memory effect. Adv. Energy Mater. 5, 1501061 (2015). https://doi.org/10.1002/aenm.201501061
J. Li, C. Ma, M. Chi, C. Liang, N.J. Dudney, Solid electrolyte: the key for high-voltage lithium batteries. Adv. Energy Mater. 5, 1401408 (2015). https://doi.org/10.1002/aenm.201401408
R. Deng, B. Ke, Y. Xie, S. Cheng, C. Zhang et al., All-solid-state thin-film lithium-sulfur batteries. Nano-Micro Lett. 15, 73 (2023). https://doi.org/10.1007/s40820-023-01064-y
B. Jia, C. Zhang, M. Liu, Z. Li, J. Wang et al., Integration of microbattery with thin-film electronics for constructing an integrated transparent microsystem based on InGaZnO. Nat. Commun. 14, 5330 (2023). https://doi.org/10.1038/s41467-023-41181-1
S. Sun, Z. Han, W. Liu, Q. Xia, L. Xue et al., Lattice pinning in MoO3 via coherent interface with stabilized Li+ intercalation. Nat. Commun. 14, 6662 (2023). https://doi.org/10.1038/s41467-023-42335-x
Y. Lim, J. Yoon, J. Yun, D. Kim, S.Y. Hong et al., Biaxially stretchable, integrated array of high performance microsupercapacitors. ACS Nano 8, 11639–11650 (2014). https://doi.org/10.1021/nn504925s
D.S. Ashby, R.H. DeBlock, C.-H. Lai, C.S. Choi, B.S. Dunn, Patternable, solution-processed ionogels for thin-film lithium-ion electrolytes. Joule 1, 344–358 (2017). https://doi.org/10.1016/j.joule.2017.08.012
C. Choi, K. Robert, G. Whang, P. Roussel, C. Lethien et al., Photopatternable hydroxide ion electrolyte for solid-state micro-supercapacitors. Joule 5, 2466–2478 (2021). https://doi.org/10.1016/j.joule.2021.07.003
T. Li, X. Pan, Z. Yang, F. Liu, K. Yu et al., Fabricating ion-conducting channel in SU-8 matrix for high-performance patternable polymer electrolytes. Nano Res. 16, 496–502 (2023). https://doi.org/10.1007/s12274-022-4751-2
S. O’Halloran, A. Pandit, A. Heise, A. Kellett, Two-photon polymerization: fundamentals, materials, and chemical modification strategies. Adv. Sci. 10, e2204072 (2023). https://doi.org/10.1002/advs.202204072
S. Kwon, G. Kim, H. Lim, J. Kim, K.-B. Choi et al., High performance microsupercapacitors based on a nano-micro hierarchical carbon electrode by direct laser writing. Appl. Phys. Lett. 113, 243901 (2018). https://doi.org/10.1063/1.5066017
N.A. Kyeremateng, R. Hahn, Attainable energy density of microbatteries. ACS Energy Lett. 3, 1172–1175 (2018). https://doi.org/10.1021/acsenergylett.8b00500
X. Yue, A.C. Johnson, S. Kim, R.R. Kohlmeyer, A. Patra et al., A nearly packaging-free design paradigm for light, powerful, and energy-dense primary microbatteries. Adv. Mater. 33, 2101760 (2021). https://doi.org/10.1002/adma.202101760
S. Kim, A. Patra, R.R. Kohlmeyer, S. Jo, X. Yue et al., Serially integrated high-voltage and high power miniature batteries. Cell Rep. Phys. Sci. 4, 101205 (2023). https://doi.org/10.1016/j.xcrp.2022.101205
T.S. Wei, B.Y. Ahn, J. Grotto, J.A. Lewis, 3D printing of customized Li-ion batteries with thick electrodes. Adv. Mater. 30, e1703027 (2018). https://doi.org/10.1002/adma.201703027
Y.W. Kwon, D.B. Ahn, Y.G. Park, E. Kim, D.H. Lee et al., Power-integrated, wireless neural recording systems on the cranium using a direct printing method for deep-brain analysis. Sci. Adv. 10, eadn3784 (2024). https://doi.org/10.1126/sciadv.adn3784
G. Zhang, S. Yang, J.F. Yang, D. Gonzalez-Medrano, M.Z. Miskin et al., High energy density picoliter-scale zinc-air microbatteries for colloidal robotics. Sci. Robot. 9, eade4642 (2024). https://doi.org/10.1126/scirobotics.ade4642