BiOCl Atomic Layers with Electrons Enriched Active Sites Exposed for Efficient Photocatalytic CO2 Overall Splitting
Corresponding Author: Shaohua Shen
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 223
Abstract
Given the limited exposure of active sites and the retarded separation of photogenerated charge carriers in those developed photocatalysts, photocatalytic CO2 splitting into value-added chemicals has suffered from the poor activity and remained in great challenge for real application. Herein, hydrothermally synthesized BiOCl with layered structure (BOCNSs) was exfoliated into thickness reduced nanosheets (BOCNSs-w) and even atomic layers (BOCNSs-i) via ultrasonication in water and isopropanol, respectively. In comparison with the pristine BOCNSs, the exfoliated BiOCl, especially BOCNSs-i with atomically layered structure, exhibits much improved photocatalytic activity for CO2 overall splitting to produce CO and O2 at a stoichiometric ratio of 2:1, with CO evolution rate reaching 134.8 µmol g−1 h−1 under simulated solar light (1.7 suns). By surpassing the photocatalytic performances of the state-of-the-art BilOmXn (X: Cl, Br, I) based photocatalysts, the CO evolution rate is further increased by 99 times, reaching 13.3 mmol g−1 h−1 under concentrated solar irradiation (34 suns). This excellent photocatalytic performance achieved over BOCNSs-i should be benefited from the shortened transfer distance and the increased built-in electric field intensity, which accelerates the migration of photogenerated charge carriers to surface. Moreover, with oxygen vacancies (VO) introduced into the atomic layers, BOCNSs-i is exposed with the electrons enriched Bi active sites that could transfer electrons to activate CO2 molecules for highly efficient and selective CO production, by lowering the energy barrier of rate-determining step (RDS), *OH + *CO2− → HCO3−. It is also realized that the H2O vapor supplied during photocatalytic reaction would exchange oxygen atoms with CO2, which could alter the reaction pathways and further reduce the energy barrier of RDS, contributing to the dramatically improved photocatalytic performance for CO2 overall splitting to CO and O2.
Highlights:
1 BiOCl atomic layers (BOCNSs-i) were prepared by exfoliating hydrothermally synthesized BiOCl (BOCNSs) via ultrasonication in isopropanol for efficient photocatalytic CO2 overall splitting to CO and O2.
2 The obtained BOCNSs-i photocatalyst exhibits a distinctly improved photocatalytic performance to stoichiometrically produce CO and O2 at the ratio of 2:1, with the CO evolution rate reaching 134.8 µmol g−1 h−1 under simulated solar light (1.7 suns) and reaching 13.3 mmol g−1 h−1 under concentrated solar irradiation (34 suns).
3 With the thickness of BiOCl photocatalyst reducing to atomic layers, the charge carrier transfer and separation were enhanced by shortened transfer distance and the increased built-in electric field intensity, and electrons enriched Bi sites were exposed for activating CO2 molecules.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Su, Y. Kong, S. Wang, S. Zuo, W. Lin et al., Hydroxyl-bonded Ru on metallic TiN surface catalyzing CO2 reduction with H2O by infrared light. J. Am. Chem. Soc. 145(50), 27415–27423 (2023). https://doi.org/10.1021/jacs.3c08311
- H. Yu, J. Li, Y. Zhang, S. Yang, K. Han et al., Three-in-one oxygen vacancies: whole visible-spectrum absorption, efficient charge separation, and surface site activation for robust CO2 photoreduction. Angew. Chem. Int. Ed. 58(12), 3880–3884 (2019). https://doi.org/10.1002/anie.201813967
- L. Wang, X. Zhao, D. Lv, C. Liu, W. Lai et al., Promoted photocharge separation in 2D lateral epitaxial heterostructure for visible-light-driven CO2 photoreduction. Adv. Mater. 32(48), e2004311 (2020). https://doi.org/10.1002/adma.202004311
- J. Di, C. Chen, C. Zhu, R. Long, H. Chen et al., Surface local polarization induced by bismuth-oxygen vacancy pairs tuning non-covalent interaction for CO2 photoreduction. Adv. Energy Mater. 11(41), 2102389 (2021). https://doi.org/10.1002/aenm.202102389
- J. Di, C. Chen, S.-Z. Yang, S. Chen, M. Duan et al., Isolated single atom cobalt in Bi3O4Br atomic layers to trigger efficient CO2 photoreduction. Nat. Commun. 10(1), 2840 (2019). https://doi.org/10.1038/s41467-019-10392-w
- W. Gao, S. Li, H. He, X. Li, Z. Cheng et al., Vacancy-defect modulated pathway of photoreduction of CO2 on single atomically thin AgInP2S6 sheets into olefiant gas. Nat. Commun. 12(1), 4747 (2021). https://doi.org/10.1038/s41467-021-25068-7
- S. Wang, B.Y. Guan, Y. Lu, X.W.D. Lou, Formation of hierarchical In2S3-CdIn2S4 heterostructured nanotubes for efficient and stable visible light CO2 reduction. J. Am. Chem. Soc. 139(48), 17305–17308 (2017). https://doi.org/10.1021/jacs.7b10733
- L. Wang, W. Chen, D. Zhang, Y. Du, R. Amal et al., Surface strategies for catalytic CO2 reduction: from two-dimensional materials to nanoclusters to single atoms. Chem. Soc. Rev. 48(21), 5310–5349 (2019). https://doi.org/10.1039/C9CS00163H
- J. Li, H. Li, G. Zhan, L. Zhang, Solar water splitting and nitrogen fixation with layered bismuth oxyhalides. Acc. Chem. Res. 50(1), 112–121 (2017). https://doi.org/10.1021/acs.accounts.6b00523
- Z. Luo, X. Ye, S. Zhang, S. Xue, C. Yang et al., Unveiling the charge transfer dynamics steered by built-in electric fields in BiOBr photocatalysts. Nat. Commun. 13(1), 2230 (2022). https://doi.org/10.1038/s41467-022-29825-0
- K. Zhang, J. Liang, S. Wang, J. Liu, K. Ren et al., BiOCl sub-microcrystals induced by citric acid and their high photocatalytic activities. Cryst. Growth Des. 12(2), 793–803 (2012). https://doi.org/10.1021/cg201112j
- J. Di, J. Xia, M.F. Chisholm, J. Zhong, C. Chen et al., Defect-tailoring mediated electron-hole separation in single-unit-cell Bi3O4Br nanosheets for boosting photocatalytic hydrogen evolution and nitrogen fixation. Adv. Mater. 31(28), e1807576 (2019). https://doi.org/10.1002/adma.201807576
- J. Li, L. Zhang, Y. Li, Y. Yu, Synthesis and internal electric field dependent photoreactivity of Bi3O4Cl single-crystalline nanosheets with high{001}facet exposure percentages. Nanoscale 6(1), 167–171 (2014). https://doi.org/10.1039/C3NR05246J
- M. Guan, C. Xiao, J. Zhang, S. Fan, R. An et al., Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets. J. Am. Chem. Soc. 135(28), 10411–10417 (2013). https://doi.org/10.1021/ja402956f
- X. Zhao, Y. Xia, H. Li, X. Wang, J. Wei et al., Oxygen vacancy dependent photocatalytic CO2 reduction activity in liquid-exfoliated atomically thin BiOCl nanosheets. Appl. Catal. B Environ. 297, 120426 (2021). https://doi.org/10.1016/j.apcatb.2021.120426
- J. Wu, X. Li, W. Shi, P. Ling, Y. Sun et al., Efficient visible-light-driven CO2 reduction mediated by defect-engineered BiOBr atomic layers. Angew. Chem. Int. Ed. 57(28), 8719–8723 (2018). https://doi.org/10.1002/anie.201803514
- M. Li, Y. Zhang, X. Li, Y. Wang, F. Dong et al., Nature-derived approach to oxygen and chlorine dual-vacancies for efficient photocatalysis and photoelectrochemistry. ACS Sustain. Chem. Eng. 6(2), 2395–2406 (2018). https://doi.org/10.1021/acssuschemeng.7b03847
- X. Zhang, X.B. Wang, L.W. Wang, W.K. Wang, L.L. Long et al., Synthesis of a highly efficient BiOCl single-crystal nanodisk photocatalyst with exposing{001}facets. ACS Appl. Mater. Interfaces 6(10), 7766–7772 (2014). https://doi.org/10.1021/am5010392
- Y. Shi, J. Li, C. Mao, S. Liu, X. Wang et al., Van Der Waals gap-rich BiOCl atomic layers realizing efficient, pure-water CO2-to-CO photocatalysis. Nat. Commun. 12(1), 5923 (2021). https://doi.org/10.1038/s41467-021-26219-6
- M. Li, S. Yu, H. Huang, X. Li, Y. Feng et al., Unprecedented eighteen-faceted BiOCl with a ternary facet junction boosting cascade charge flow and photo-redox. Angew. Chem. Int. Ed. 58(28), 9517–9521 (2019). https://doi.org/10.1002/anie.201904921
- W. Li, Y. Mao, Z. Liu, J. Zhang, J. Luo et al., Chelated ion-exchange strategy toward BiOCl mesoporous single-crystalline nanosheets for boosting photocatalytic selective aromatic alcohols oxidation. Adv. Mater. 35(18), e2300396 (2023). https://doi.org/10.1002/adma.202300396
- Y. Guo, Q. Zhou, J. Nan, W. Shi, F. Cui et al., Perylenetetracarboxylic acid nanosheets with internal electric fields and anisotropic charge migration for photocatalytic hydrogen evolution. Nat. Commun. 13(1), 2067 (2022). https://doi.org/10.1038/s41467-022-29826-z
- Z. Zhang, X. Chen, H. Zhang, W. Liu, W. Zhu et al., A highly crystalline perylene imide polymer with the robust built-In electric field for efficient photocatalytic water oxidation. Adv. Mater. 32(32), 1907746 (2020). https://doi.org/10.1002/adma.201907746
- K. Zhao, L. Zhang, J. Wang, Q. Li, W. He et al., Surface structure-dependent molecular oxygen activation of BiOCl single-crystalline nanosheets. J. Am. Chem. Soc. 135(42), 15750–15753 (2013). https://doi.org/10.1021/ja4092903
- H. Li, J. Li, Z. Ai, F. Jia, L. Zhang, Oxygen vacancy-mediated photocatalysis of BiOCl: reactivity, selectivity, and perspectives. Angew. Chem. Int. Ed. 57(1), 122–138 (2018). https://doi.org/10.1002/anie.201705628
- D. Cui, L. Wang, K. Xu, L. Ren, L. Wang et al., Band-gap engineering of BiOCl with oxygen vacancies for efficient photooxidation properties under visible-light irradiation. J. Mater. Chem. A 6(5), 2193–2199 (2018). https://doi.org/10.1039/C7TA09897A
- J. Kang, X. Chen, R. Si, X. Gao, S. Zhang et al., Activating Bi p-orbitals in dispersed clusters of amorphous BiOx for electrocatalytic nitrogen reduction. Angew. Chem. Int. Ed. 62(15), e202217428 (2023). https://doi.org/10.1002/anie.202217428
- L. Zhang, C.-G. Niu, X.-F. Zhao, C. Liang, H. Guo et al., Ultrathin BiOCl single-crystalline nanosheets with large reactive facets area and high electron mobility efficiency: a superior candidate for high-performance dye self-photosensitization photocatalytic fuel cell. ACS Appl. Mater. Interfaces 10(46), 39723–39734 (2018). https://doi.org/10.1021/acsami.8b14227
- X. Shi, X.-A. Dong, Y. He, P. Yan, F. Dong, Light-induced halogen defects as dynamic active sites for CO2 photoreduction to CO with 100% selectivity. Sci. Bull. 67(11), 1137–1144 (2022). https://doi.org/10.1016/j.scib.2022.01.013
- Y. Li, Y. Xue, X. Gao, L. Wang, X. Liu et al., Cayanamide group functionalized crystalline carbon nitride aerogel for efficient CO2 photoreduction. Adv. Funct. Mater. 34(14), 2312634 (2024). https://doi.org/10.1002/adfm.202312634
- W. Shangguan, Q. Liu, Y. Wang, N. Sun, Y. Liu et al., Molecular-level insight into photocatalytic CO2 reduction with H2O over Au nanops by interband transitions. Nat. Commun. 13(1), 3894 (2022). https://doi.org/10.1038/s41467-022-31474-2
- M. Xia, C. Mao, A. Gu, A.A. Tountas, C. Qiu et al., Solar urea: towards a sustainable fertilizer industry. Angew. Chem. Int. Ed. 61(1), e202110158 (2022). https://doi.org/10.1002/anie.202110158
- R. Long, Y. Li, Y. Liu, S. Chen, X. Zheng et al., Isolation of Cu atoms in Pd lattice: forming highly selective sites for photocatalytic conversion of CO2 to CH4. J. Am. Chem. Soc. 139(12), 4486–4492 (2017). https://doi.org/10.1021/jacs.7b00452
- Z. Ma, P. Li, L. Ye, Y. Zhou, F. Su et al., Oxygen vacancies induced exciton dissociation of flexible BiOCl nanosheets for effective photocatalytic CO2 conversion. J. Mater. Chem. A 5(47), 24995–25004 (2017). https://doi.org/10.1039/c7ta08766g
- S. Karmakar, S. Barman, F.A. Rahimi, S. Biswas, S. Nath et al., Developing post-modified Ce-MOF as a photocatalyst: a detail mechanistic insight into CO2 reduction toward selective C2 product formation. Energy Environ. Sci. 16(5), 2187–2198 (2023). https://doi.org/10.1039/D2EE03755F
- J. Zhu, W. Shao, X. Li, X. Jiao, J. Zhu et al., Asymmetric triple-atom sites confined in ternary oxide enabling selective CO2 photothermal reduction to acetate. J. Am. Chem. Soc. 143(43), 18233–18241 (2021). https://doi.org/10.1021/jacs.1c08033
- Z. Huang, J. Wu, M. Ma, J. Wang, S. Wu et al., The selective production of CH4 via photocatalytic CO2 reduction over Pd-modified BiOCl. New J. Chem. 46(35), 16889–16898 (2022). https://doi.org/10.1039/d2nj02725a
- T. Qin, D. Wang, X. Zhang, Y. Wang, N.E. Drewett et al., Unlocking the optimal aqueous δ-Bi2O3 anode via unifying octahedrally liberated bi-atoms and spilled nano-Bi exsolution. Energy Storage Mater. 36, 376–386 (2021). https://doi.org/10.1016/j.ensm.2021.01.013
- B. Wang, W. Zhang, G. Liu, H. Chen, Y.X. Weng et al., Excited electron-rich Bi(3–x)+ sites: a quantum well-like structure for highly promoted selective photocatalytic CO2 reduction performance. Adv. Funct. Mater. 32(35), 2202885 (2022). https://doi.org/10.1002/adfm.202202885
- C. Lin, J.-L. Li, X. Li, S. Yang, W. Luo et al., In-situ reconstructed Ru atom array on α-MnO2 with enhanced performance for acidic water oxidation. Nat. Catal. 4(12), 1012–1023 (2021). https://doi.org/10.1038/s41929-021-00703-0
- H. Kang, L. Zhu, S. Li, S. Yu, Y. Niu et al., Generation of oxide surface patches promoting H-spillover in Ru/(TiOx)MnO catalysts enables CO2 reduction to CO. Nat. Catal. 6(11), 1062–1072 (2023). https://doi.org/10.1038/s41929-023-01040-0
References
B. Su, Y. Kong, S. Wang, S. Zuo, W. Lin et al., Hydroxyl-bonded Ru on metallic TiN surface catalyzing CO2 reduction with H2O by infrared light. J. Am. Chem. Soc. 145(50), 27415–27423 (2023). https://doi.org/10.1021/jacs.3c08311
H. Yu, J. Li, Y. Zhang, S. Yang, K. Han et al., Three-in-one oxygen vacancies: whole visible-spectrum absorption, efficient charge separation, and surface site activation for robust CO2 photoreduction. Angew. Chem. Int. Ed. 58(12), 3880–3884 (2019). https://doi.org/10.1002/anie.201813967
L. Wang, X. Zhao, D. Lv, C. Liu, W. Lai et al., Promoted photocharge separation in 2D lateral epitaxial heterostructure for visible-light-driven CO2 photoreduction. Adv. Mater. 32(48), e2004311 (2020). https://doi.org/10.1002/adma.202004311
J. Di, C. Chen, C. Zhu, R. Long, H. Chen et al., Surface local polarization induced by bismuth-oxygen vacancy pairs tuning non-covalent interaction for CO2 photoreduction. Adv. Energy Mater. 11(41), 2102389 (2021). https://doi.org/10.1002/aenm.202102389
J. Di, C. Chen, S.-Z. Yang, S. Chen, M. Duan et al., Isolated single atom cobalt in Bi3O4Br atomic layers to trigger efficient CO2 photoreduction. Nat. Commun. 10(1), 2840 (2019). https://doi.org/10.1038/s41467-019-10392-w
W. Gao, S. Li, H. He, X. Li, Z. Cheng et al., Vacancy-defect modulated pathway of photoreduction of CO2 on single atomically thin AgInP2S6 sheets into olefiant gas. Nat. Commun. 12(1), 4747 (2021). https://doi.org/10.1038/s41467-021-25068-7
S. Wang, B.Y. Guan, Y. Lu, X.W.D. Lou, Formation of hierarchical In2S3-CdIn2S4 heterostructured nanotubes for efficient and stable visible light CO2 reduction. J. Am. Chem. Soc. 139(48), 17305–17308 (2017). https://doi.org/10.1021/jacs.7b10733
L. Wang, W. Chen, D. Zhang, Y. Du, R. Amal et al., Surface strategies for catalytic CO2 reduction: from two-dimensional materials to nanoclusters to single atoms. Chem. Soc. Rev. 48(21), 5310–5349 (2019). https://doi.org/10.1039/C9CS00163H
J. Li, H. Li, G. Zhan, L. Zhang, Solar water splitting and nitrogen fixation with layered bismuth oxyhalides. Acc. Chem. Res. 50(1), 112–121 (2017). https://doi.org/10.1021/acs.accounts.6b00523
Z. Luo, X. Ye, S. Zhang, S. Xue, C. Yang et al., Unveiling the charge transfer dynamics steered by built-in electric fields in BiOBr photocatalysts. Nat. Commun. 13(1), 2230 (2022). https://doi.org/10.1038/s41467-022-29825-0
K. Zhang, J. Liang, S. Wang, J. Liu, K. Ren et al., BiOCl sub-microcrystals induced by citric acid and their high photocatalytic activities. Cryst. Growth Des. 12(2), 793–803 (2012). https://doi.org/10.1021/cg201112j
J. Di, J. Xia, M.F. Chisholm, J. Zhong, C. Chen et al., Defect-tailoring mediated electron-hole separation in single-unit-cell Bi3O4Br nanosheets for boosting photocatalytic hydrogen evolution and nitrogen fixation. Adv. Mater. 31(28), e1807576 (2019). https://doi.org/10.1002/adma.201807576
J. Li, L. Zhang, Y. Li, Y. Yu, Synthesis and internal electric field dependent photoreactivity of Bi3O4Cl single-crystalline nanosheets with high{001}facet exposure percentages. Nanoscale 6(1), 167–171 (2014). https://doi.org/10.1039/C3NR05246J
M. Guan, C. Xiao, J. Zhang, S. Fan, R. An et al., Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets. J. Am. Chem. Soc. 135(28), 10411–10417 (2013). https://doi.org/10.1021/ja402956f
X. Zhao, Y. Xia, H. Li, X. Wang, J. Wei et al., Oxygen vacancy dependent photocatalytic CO2 reduction activity in liquid-exfoliated atomically thin BiOCl nanosheets. Appl. Catal. B Environ. 297, 120426 (2021). https://doi.org/10.1016/j.apcatb.2021.120426
J. Wu, X. Li, W. Shi, P. Ling, Y. Sun et al., Efficient visible-light-driven CO2 reduction mediated by defect-engineered BiOBr atomic layers. Angew. Chem. Int. Ed. 57(28), 8719–8723 (2018). https://doi.org/10.1002/anie.201803514
M. Li, Y. Zhang, X. Li, Y. Wang, F. Dong et al., Nature-derived approach to oxygen and chlorine dual-vacancies for efficient photocatalysis and photoelectrochemistry. ACS Sustain. Chem. Eng. 6(2), 2395–2406 (2018). https://doi.org/10.1021/acssuschemeng.7b03847
X. Zhang, X.B. Wang, L.W. Wang, W.K. Wang, L.L. Long et al., Synthesis of a highly efficient BiOCl single-crystal nanodisk photocatalyst with exposing{001}facets. ACS Appl. Mater. Interfaces 6(10), 7766–7772 (2014). https://doi.org/10.1021/am5010392
Y. Shi, J. Li, C. Mao, S. Liu, X. Wang et al., Van Der Waals gap-rich BiOCl atomic layers realizing efficient, pure-water CO2-to-CO photocatalysis. Nat. Commun. 12(1), 5923 (2021). https://doi.org/10.1038/s41467-021-26219-6
M. Li, S. Yu, H. Huang, X. Li, Y. Feng et al., Unprecedented eighteen-faceted BiOCl with a ternary facet junction boosting cascade charge flow and photo-redox. Angew. Chem. Int. Ed. 58(28), 9517–9521 (2019). https://doi.org/10.1002/anie.201904921
W. Li, Y. Mao, Z. Liu, J. Zhang, J. Luo et al., Chelated ion-exchange strategy toward BiOCl mesoporous single-crystalline nanosheets for boosting photocatalytic selective aromatic alcohols oxidation. Adv. Mater. 35(18), e2300396 (2023). https://doi.org/10.1002/adma.202300396
Y. Guo, Q. Zhou, J. Nan, W. Shi, F. Cui et al., Perylenetetracarboxylic acid nanosheets with internal electric fields and anisotropic charge migration for photocatalytic hydrogen evolution. Nat. Commun. 13(1), 2067 (2022). https://doi.org/10.1038/s41467-022-29826-z
Z. Zhang, X. Chen, H. Zhang, W. Liu, W. Zhu et al., A highly crystalline perylene imide polymer with the robust built-In electric field for efficient photocatalytic water oxidation. Adv. Mater. 32(32), 1907746 (2020). https://doi.org/10.1002/adma.201907746
K. Zhao, L. Zhang, J. Wang, Q. Li, W. He et al., Surface structure-dependent molecular oxygen activation of BiOCl single-crystalline nanosheets. J. Am. Chem. Soc. 135(42), 15750–15753 (2013). https://doi.org/10.1021/ja4092903
H. Li, J. Li, Z. Ai, F. Jia, L. Zhang, Oxygen vacancy-mediated photocatalysis of BiOCl: reactivity, selectivity, and perspectives. Angew. Chem. Int. Ed. 57(1), 122–138 (2018). https://doi.org/10.1002/anie.201705628
D. Cui, L. Wang, K. Xu, L. Ren, L. Wang et al., Band-gap engineering of BiOCl with oxygen vacancies for efficient photooxidation properties under visible-light irradiation. J. Mater. Chem. A 6(5), 2193–2199 (2018). https://doi.org/10.1039/C7TA09897A
J. Kang, X. Chen, R. Si, X. Gao, S. Zhang et al., Activating Bi p-orbitals in dispersed clusters of amorphous BiOx for electrocatalytic nitrogen reduction. Angew. Chem. Int. Ed. 62(15), e202217428 (2023). https://doi.org/10.1002/anie.202217428
L. Zhang, C.-G. Niu, X.-F. Zhao, C. Liang, H. Guo et al., Ultrathin BiOCl single-crystalline nanosheets with large reactive facets area and high electron mobility efficiency: a superior candidate for high-performance dye self-photosensitization photocatalytic fuel cell. ACS Appl. Mater. Interfaces 10(46), 39723–39734 (2018). https://doi.org/10.1021/acsami.8b14227
X. Shi, X.-A. Dong, Y. He, P. Yan, F. Dong, Light-induced halogen defects as dynamic active sites for CO2 photoreduction to CO with 100% selectivity. Sci. Bull. 67(11), 1137–1144 (2022). https://doi.org/10.1016/j.scib.2022.01.013
Y. Li, Y. Xue, X. Gao, L. Wang, X. Liu et al., Cayanamide group functionalized crystalline carbon nitride aerogel for efficient CO2 photoreduction. Adv. Funct. Mater. 34(14), 2312634 (2024). https://doi.org/10.1002/adfm.202312634
W. Shangguan, Q. Liu, Y. Wang, N. Sun, Y. Liu et al., Molecular-level insight into photocatalytic CO2 reduction with H2O over Au nanops by interband transitions. Nat. Commun. 13(1), 3894 (2022). https://doi.org/10.1038/s41467-022-31474-2
M. Xia, C. Mao, A. Gu, A.A. Tountas, C. Qiu et al., Solar urea: towards a sustainable fertilizer industry. Angew. Chem. Int. Ed. 61(1), e202110158 (2022). https://doi.org/10.1002/anie.202110158
R. Long, Y. Li, Y. Liu, S. Chen, X. Zheng et al., Isolation of Cu atoms in Pd lattice: forming highly selective sites for photocatalytic conversion of CO2 to CH4. J. Am. Chem. Soc. 139(12), 4486–4492 (2017). https://doi.org/10.1021/jacs.7b00452
Z. Ma, P. Li, L. Ye, Y. Zhou, F. Su et al., Oxygen vacancies induced exciton dissociation of flexible BiOCl nanosheets for effective photocatalytic CO2 conversion. J. Mater. Chem. A 5(47), 24995–25004 (2017). https://doi.org/10.1039/c7ta08766g
S. Karmakar, S. Barman, F.A. Rahimi, S. Biswas, S. Nath et al., Developing post-modified Ce-MOF as a photocatalyst: a detail mechanistic insight into CO2 reduction toward selective C2 product formation. Energy Environ. Sci. 16(5), 2187–2198 (2023). https://doi.org/10.1039/D2EE03755F
J. Zhu, W. Shao, X. Li, X. Jiao, J. Zhu et al., Asymmetric triple-atom sites confined in ternary oxide enabling selective CO2 photothermal reduction to acetate. J. Am. Chem. Soc. 143(43), 18233–18241 (2021). https://doi.org/10.1021/jacs.1c08033
Z. Huang, J. Wu, M. Ma, J. Wang, S. Wu et al., The selective production of CH4 via photocatalytic CO2 reduction over Pd-modified BiOCl. New J. Chem. 46(35), 16889–16898 (2022). https://doi.org/10.1039/d2nj02725a
T. Qin, D. Wang, X. Zhang, Y. Wang, N.E. Drewett et al., Unlocking the optimal aqueous δ-Bi2O3 anode via unifying octahedrally liberated bi-atoms and spilled nano-Bi exsolution. Energy Storage Mater. 36, 376–386 (2021). https://doi.org/10.1016/j.ensm.2021.01.013
B. Wang, W. Zhang, G. Liu, H. Chen, Y.X. Weng et al., Excited electron-rich Bi(3–x)+ sites: a quantum well-like structure for highly promoted selective photocatalytic CO2 reduction performance. Adv. Funct. Mater. 32(35), 2202885 (2022). https://doi.org/10.1002/adfm.202202885
C. Lin, J.-L. Li, X. Li, S. Yang, W. Luo et al., In-situ reconstructed Ru atom array on α-MnO2 with enhanced performance for acidic water oxidation. Nat. Catal. 4(12), 1012–1023 (2021). https://doi.org/10.1038/s41929-021-00703-0
H. Kang, L. Zhu, S. Li, S. Yu, Y. Niu et al., Generation of oxide surface patches promoting H-spillover in Ru/(TiOx)MnO catalysts enables CO2 reduction to CO. Nat. Catal. 6(11), 1062–1072 (2023). https://doi.org/10.1038/s41929-023-01040-0