Electron-Deficient Zn-N6 Configuration Enabling Polymeric Carbon Nitride for Visible-Light Photocatalytic Overall Water Splitting
Corresponding Author: Shaohua Shen
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 223
Abstract
Despite of suitable band structures for harvesting solar light and driving water redox reactions, polymeric carbon nitride (PCN) has suffered from poor charge transfer ability and sluggish surface reaction kinetics, which limit its photocatalytic activity for water splitting. Herein, atomically dispersed Zn-coordinated three-dimensional (3D) sponge-like PCN (Zn-PCN) is synthesized through a novel intermediate coordination strategy. Advanced characterizations and theoretical calculations well evidence that Zn single atoms are coordinated and stabilized on PCN in the form of Zn-N6 configuration featured with an electron-deficient state. Such an electronic configuration has been demonstrated contributive to promoted electron excitation, accelerated charge separation and transfer as well as reduced water redox barriers. Further benefited from the abundant surface active sites derived from the 3D porous structure, Zn-PCN realizes visible-light photocatalysis for overall water splitting with H2 and O2 simultaneously evolved at a stoichiometric ratio of 2:1. This work brings new insights into the design of novel single-atom photocatalysts by deepening the understanding of electronic configurations and reactive sites favorable to excellent photocatalysis for water splitting and related solar energy conversion reactions.
Highlights:
1 Atomically dispersed Zn-anchored 3D sponge-like polymeric carbon nitride (Zn-PCN) characteristic of a unique Zn-N6 electron-deficient configuration is synthesized via an intermediate coordination strategy.
2 The electron-deficient Zn-N6 configuration contributes to enhanced electron excitation, accelerated charge separation and transfer as well as reduced overpotentials of water redox reactions.
3 The obtained Zn-PCN realizes photocatalytic overall water splitting to stoichiometrically produce H2 and O2 with good durability under visible light.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.J. Bard, M.A. Fox, Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 28(3), 141–145 (1995). https://doi.org/10.1021/ar00051a007
- X. Chen, S. Shen, L. Guo, S.S. Mao, Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110(11), 6503–6570 (2010). https://doi.org/10.1021/cr1001645
- H.L. Tan, F.F. Abdi, Y.H. Ng, Heterogeneous photocatalysts: an overview of classic and modern approaches for optical, electronic, and charge dynamics evaluation. Chem. Soc. Rev. 48(5), 1255–1271 (2019). https://doi.org/10.1039/C8CS00882E
- C. Bie, L. Wang, J. Yu, Challenges for photocatalytic overall water splitting. Chem 8(6), 1567–1574 (2022). https://doi.org/10.1016/j.chempr.2022.04.013
- G. Zhang, Z.A. Lan, X. Wang, Conjugated polymers: catalysts for photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 55(51), 15712–15727 (2016). https://doi.org/10.1002/anie.201607375
- L. Wang, Y. Zhang, L. Chen, H. Xu, Y. Xiong, 2D polymers as emerging materials for photocatalytic overall water splitting. Adv. Mater. 30(48), 1801955 (2018). https://doi.org/10.1002/adma.201801955
- M. Thangamuthu, Q. Ruan, P.O. Ohemeng, B. Luo, D. Jing et al., Polymer photoelectrodes for solar fuel production: progress and challenges. Chem. Rev. 122(13), 11778–11829 (2022). https://doi.org/10.1021/acs.chemrev.1c00971
- W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem. Rev. 116(12), 7159–7329 (2016). https://doi.org/10.1021/acs.chemrev.6b00075
- Y. Li, T. Kong, S. Shen, Artificial photosynthesis with polymeric carbon nitride: when meeting metal nanops, single atoms, and molecular complexes. Small 15(32), 1900772 (2019). https://doi.org/10.1002/smll.201900772
- Q. Zhang, X. Liu, M. Chaker, D. Ma, Advancing graphitic carbon nitride-based photocatalysts toward broadband solar energy harvesting. ACS Mater. Lett. 3(6), 663–697 (2021). https://doi.org/10.1021/acsmaterialslett.1c00160
- D. Zhao, X. Guan, S. Shen, Design of polymeric carbon nitride-based heterojunctions for photocatalytic water splitting: a review. Environ. Chem. Lett. (2022). https://doi.org/10.1007/s10311-022-01429-6
- X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin et al., A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8(1), 76–80 (2009). https://doi.org/10.1038/nmat2317
- B. Li, Y. Si, Q. Fang, Y. Shi, W.Q. Huang et al., Hierarchical self-assembly of well-defined louver-like P-doped carbon nitride nanowire arrays with highly efficient hydrogen evolution. Nano-Micro Lett. 12, 52 (2020). https://doi.org/10.1007/s40820-020-0399-1
- F. Xue, Y. Si, M. Wang, M. Liu, L. Guo, Toward efficient photocatalytic pure water splitting for simultaneous H2 and H2O2 production. Nano Energy 62, 823–831 (2019). https://doi.org/10.1016/j.nanoen.2019.05.086
- X. Chen, R. Shi, Q. Chen, Z. Zhang, W. Jiang et al., Three-dimensional porous g-C3N4 for highly efficient photocatalytic overall water splitting. Nano Energy 59, 644–650 (2019). https://doi.org/10.1016/j.nanoen.2019.03.010
- D. Zhao, Y. Wang, C.L. Dong, Y.C. Huang, J. Chen et al., Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting. Nat. Energy 6(4), 388–397 (2021). https://doi.org/10.1038/s41560-021-00795-9
- X. Chen, J. Wang, Y. Chai, Z. Zhang, Y. Zhu, Efficient photocatalytic overall water splitting induced by the giant internal electric field of a g-C3N4/rGO/PDIP Z-scheme heterojunction. Adv. Mater. 33(7), 2007479 (2021). https://doi.org/10.1002/adma.202007479
- Q. Zhang, X. Chen, Z. Yang, T. Yu, L. Liu et al., Precisely tailoring nitrogen defects in carbon nitride for efficient photocatalytic overall water splitting. ACS Appl. Mater. Interf. 14(3), 3970–3979 (2022). https://doi.org/10.1021/acsami.1c19638
- B. Wang, H. Cai, S. Shen, Single metal atom photocatalysis. Small. Methods 3(9), 1800447 (2019). https://doi.org/10.1002/smtd.201800447
- Z. Pu, I.S. Amiinu, R. Cheng, P. Wang, C. Zhang et al., Single-atom catalysts for electrochemical hydrogen evolution reaction: recent advances and future perspectives. Nano-Micro Lett. 12, 21 (2020). https://doi.org/10.1007/s40820-019-0349-y
- Y.S. Wei, M. Zhang, R. Zou, Q. Xu, Metal-organic framework-based catalysts with single metal sites. Chem. Rev. 120(21), 12089–12174 (2020). https://doi.org/10.1021/acs.chemrev.9b00757
- C. Gao, J. Low, R. Long, T. Kong, J. Zhu et al., Heterogeneous single-atom photocatalysts: fundamentals and applications. Chem. Rev. 120(21), 12175–12216 (2020). https://doi.org/10.1021/acs.chemrev.9b00840
- X. Wu, H. Zhang, S. Zuo, J. Dong, Y. Li et al., Engineering the coordination sphere of isolated active sites to explore the intrinsic activity in single-atom catalysts. Nano-Micro Lett. 13, 136 (2021). https://doi.org/10.1007/s40820-021-00668-6
- Z. Chen, S. Mitchell, E. Vorobyeva, R.K. Leary, R. Hauert et al., Stabilization of single metal atoms on graphitic carbon nitride. Adv. Funct. Mater. 27(8), 1605785 (2017). https://doi.org/10.1002/adfm.201605785
- P. Zhou, N. Li, Y. Chao, W. Zhang, F. Lv et al., Thermolysis of noble metal nanops into electron-rich phosphorus-coordinated noble metal single atoms at low temperature. Angew. Chem. Int. Ed. 58(40), 14184–14188 (2019). https://doi.org/10.1002/anie.201908351
- L. Zhang, R. Long, Y. Zhang, D. Duan, Y. Xiong et al., Direct observation for dynamic bond evolution in single-atom Pt/C3N4 catalysts. Angew. Chem. Int. Ed. 59(15), 6224–6229 (2020). https://doi.org/10.1002/anie.201915774
- X. Jin, R. Wang, L. Zhang, R. Si, M. Shen et al., Electron configuration modulation of nickel single atoms for elevated photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 59(17), 6827–6831 (2020). https://doi.org/10.1002/anie.201914565
- X. Xiao, Y. Gao, L. Zhang, J. Zhang, Q. Zhang et al., A promoted charge separation/transfer system from Cu single atoms and C3N4 layers for efficient photocatalysis. Adv. Mater. 32(33), 2003082 (2020). https://doi.org/10.1002/adma.202003082
- Z. Lin, Y. Wang, Z. Peng, Y.C. Huang, F. Meng et al., Single-metal atoms and ultra-small clusters manipulating charge carrier migration in polymeric perylene diimide for efficient photocatalytic oxygen production. Adv. Energy Mater. 12(26), 2200716 (2022). https://doi.org/10.1002/aenm.202200716
- S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I. Probert et al., First principles methods using CASTEP. Z. Kristallogr. Cryst. Mater. 220(5–6), 567–570 (2005). https://doi.org/10.1524/zkri.220.5.567.65075
- Y. Li, Y. Wang, C.L. Dong, Y.C. Huang, J. Chen et al., Single-atom nickel terminating sp2 and sp3 nitride in polymeric carbon nitride for visible-light photocatalytic overall water splitting. Chem. Sci. 12(10), 3633–3643 (2021). https://doi.org/10.1039/D0SC07093A
- D. Zhao, J. Chen, C.L. Dong, W. Zhou, Y.C. Huang et al., Interlayer interaction in ultrathin nanosheets of graphitic carbon nitride for efficient photocatalytic hydrogen evolution. J. Catal. 352, 491–497 (2017). https://doi.org/10.1016/j.jcat.2017.06.020
- L. Shi, K. Chang, H. Zhang, X. Hai, L. Yang et al., Drastic enhancement of photocatalytic activities over phosphoric acid protonated porous g-C3N4 nanosheets under visible light. Small 12(32), 4431–4439 (2016). https://doi.org/10.1002/smll.201601668
- Q. Han, B. Wang, J. Gao, Z. Cheng, Y. Zhao et al., Atomically thin mesoporous nanomesh of graphitic C3N4 for high-efficiency photocatalytic hydrogen evolution. ACS Nano 10(2), 2745–2751 (2016). https://doi.org/10.1021/acsnano.5b07831
- X. Liu, Y. Deng, L. Zheng, M.R. Kesama, C. Tang et al., Engineering low-coordination single-atom cobalt on graphitic carbon nitride catalyst for hydrogen evolution. ACS Catal. 12(9), 5517–5526 (2022). https://doi.org/10.1021/acscatal.2c01253
- J. Wang, Y. Xia, H. Zhao, G. Wang, L. Xiang et al., Oxygen defects-mediated Z-scheme charge separation in g-C3N4/ZnO photocatalysts for enhanced visible-light degradation of 4-chlorophenol and hydrogen evolution. Appl. Catal. B 206, 406–416 (2017). https://doi.org/10.1016/j.apcatb.2017.01.067
- C. Liu, Y. Qiu, F. Wang, K. Wang, Q. Liang et al., Design of core-shell-structured ZnO/ZnS hybridized with graphite-like C3N4 for highly efficient photoelectrochemical water splitting. Adv. Mater. Interf. 4(21), 1700681 (2017). https://doi.org/10.1002/admi.201700681
- F. Yang, P. Song, X. Liu, B. Mei, W. Xing et al., Highly efficient CO2 electroreduction on ZnN4-based single-atom catalyst. Angew. Chem. Int. Ed. 57(38), 12303–12307 (2018). https://doi.org/10.1002/anie.201805871
- T. Zhang, F. Wang, C. Yang, X. Han, C. Liang et al., Boosting ORR performance by single atomic divacancy Zn-N3C-C8 sites on ultrathin N-doped carbon nanosheets. Chem. Catal. 2(4), 836–852 (2022). https://doi.org/10.1016/j.checat.2022.02.006
- H. Yu, R. Shi, Y. Zhao, T. Bian, Y. Zhao et al., Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution. Adv. Mater. 29(16), 1605148 (2017). https://doi.org/10.1002/adma.201605148
- X.H. Jiang, L.S. Zhang, H.Y. Liu, D.S. Wu, F.Y. Wu et al., Silver single atom in carbon nitride catalyst for highly efficient photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 59(51), 23112–23116 (2020). https://doi.org/10.1002/anie.202011495
- P. Kumar, E. Vahidzadeh, U.K. Thakur, P. Kar, K. Alam et al., C3N5: a low bandgap semiconductor containing an AZO-linked carbon nitride framework for photocatalytic, photovoltaic and adsorbent applications. J. Am. Chem. Soc. 141(13), 5415–5436 (2019). https://doi.org/10.1021/jacs.9b00144
- J. Chen, C.L. Dong, D. Zhao, Y.C. Huang, X. Wang et al., Molecular design of polymer heterojunctions for efficient solar-hydrogen conversion. Adv. Mater. 29(21), 1606198 (2017). https://doi.org/10.1002/adma.201606198
- D. Zhao, M. Wang, T. Kong, Y. Shang, X. Du et al., Electronic pump boosting photocatalytic hydrogen evolution over graphitic carbon nitride. Mater. Today Chem. 11, 296–302 (2019). https://doi.org/10.1016/j.mtchem.2018.11.011
- T. Jiang, T. Xie, Y. Zhang, L. Chen, L. Peng et al., Photoinduced charge transfer in ZnO/Cu2O heterostructure films studied by surface photovoltage technique. Phys. Chem. Chem. Phys. 12(47), 15476–15481 (2010). https://doi.org/10.1039/C0CP01228A
- D.B. Seo, T.N. Trung, D.O. Kim, D.V. Duc, S. Hong et al., Plasmonic Ag-decorated few-layer MoS2 nanosheets vertically grown on graphene for efficient photoelectrochemical water splitting. Nano-Micro Lett. 12, 172 (2020). https://doi.org/10.1007/s40820-020-00512-3
- M.G. Lee, J.W. Yang, H. Park, C.W. Moon, D.M. Andoshe et al., Crystal facet engineering of TiO2 nanostructures for enhancing photoelectrochemical water splitting with BiVO4 nanodots. Nano-Micro Lett. 14, 48 (2022). https://doi.org/10.1007/s40820-022-00795-8
- H. Cai, B. Wang, L. Xiong, J. Bi, H. Hao et al., Boosting photocatalytic hydrogen evolution of g-C3N4 catalyst via lowering the Fermi level of co-catalyst. Nano Res. 15(2), 1128–1134 (2022). https://doi.org/10.1007/s12274-021-3615-5
References
A.J. Bard, M.A. Fox, Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 28(3), 141–145 (1995). https://doi.org/10.1021/ar00051a007
X. Chen, S. Shen, L. Guo, S.S. Mao, Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110(11), 6503–6570 (2010). https://doi.org/10.1021/cr1001645
H.L. Tan, F.F. Abdi, Y.H. Ng, Heterogeneous photocatalysts: an overview of classic and modern approaches for optical, electronic, and charge dynamics evaluation. Chem. Soc. Rev. 48(5), 1255–1271 (2019). https://doi.org/10.1039/C8CS00882E
C. Bie, L. Wang, J. Yu, Challenges for photocatalytic overall water splitting. Chem 8(6), 1567–1574 (2022). https://doi.org/10.1016/j.chempr.2022.04.013
G. Zhang, Z.A. Lan, X. Wang, Conjugated polymers: catalysts for photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 55(51), 15712–15727 (2016). https://doi.org/10.1002/anie.201607375
L. Wang, Y. Zhang, L. Chen, H. Xu, Y. Xiong, 2D polymers as emerging materials for photocatalytic overall water splitting. Adv. Mater. 30(48), 1801955 (2018). https://doi.org/10.1002/adma.201801955
M. Thangamuthu, Q. Ruan, P.O. Ohemeng, B. Luo, D. Jing et al., Polymer photoelectrodes for solar fuel production: progress and challenges. Chem. Rev. 122(13), 11778–11829 (2022). https://doi.org/10.1021/acs.chemrev.1c00971
W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem. Rev. 116(12), 7159–7329 (2016). https://doi.org/10.1021/acs.chemrev.6b00075
Y. Li, T. Kong, S. Shen, Artificial photosynthesis with polymeric carbon nitride: when meeting metal nanops, single atoms, and molecular complexes. Small 15(32), 1900772 (2019). https://doi.org/10.1002/smll.201900772
Q. Zhang, X. Liu, M. Chaker, D. Ma, Advancing graphitic carbon nitride-based photocatalysts toward broadband solar energy harvesting. ACS Mater. Lett. 3(6), 663–697 (2021). https://doi.org/10.1021/acsmaterialslett.1c00160
D. Zhao, X. Guan, S. Shen, Design of polymeric carbon nitride-based heterojunctions for photocatalytic water splitting: a review. Environ. Chem. Lett. (2022). https://doi.org/10.1007/s10311-022-01429-6
X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin et al., A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8(1), 76–80 (2009). https://doi.org/10.1038/nmat2317
B. Li, Y. Si, Q. Fang, Y. Shi, W.Q. Huang et al., Hierarchical self-assembly of well-defined louver-like P-doped carbon nitride nanowire arrays with highly efficient hydrogen evolution. Nano-Micro Lett. 12, 52 (2020). https://doi.org/10.1007/s40820-020-0399-1
F. Xue, Y. Si, M. Wang, M. Liu, L. Guo, Toward efficient photocatalytic pure water splitting for simultaneous H2 and H2O2 production. Nano Energy 62, 823–831 (2019). https://doi.org/10.1016/j.nanoen.2019.05.086
X. Chen, R. Shi, Q. Chen, Z. Zhang, W. Jiang et al., Three-dimensional porous g-C3N4 for highly efficient photocatalytic overall water splitting. Nano Energy 59, 644–650 (2019). https://doi.org/10.1016/j.nanoen.2019.03.010
D. Zhao, Y. Wang, C.L. Dong, Y.C. Huang, J. Chen et al., Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting. Nat. Energy 6(4), 388–397 (2021). https://doi.org/10.1038/s41560-021-00795-9
X. Chen, J. Wang, Y. Chai, Z. Zhang, Y. Zhu, Efficient photocatalytic overall water splitting induced by the giant internal electric field of a g-C3N4/rGO/PDIP Z-scheme heterojunction. Adv. Mater. 33(7), 2007479 (2021). https://doi.org/10.1002/adma.202007479
Q. Zhang, X. Chen, Z. Yang, T. Yu, L. Liu et al., Precisely tailoring nitrogen defects in carbon nitride for efficient photocatalytic overall water splitting. ACS Appl. Mater. Interf. 14(3), 3970–3979 (2022). https://doi.org/10.1021/acsami.1c19638
B. Wang, H. Cai, S. Shen, Single metal atom photocatalysis. Small. Methods 3(9), 1800447 (2019). https://doi.org/10.1002/smtd.201800447
Z. Pu, I.S. Amiinu, R. Cheng, P. Wang, C. Zhang et al., Single-atom catalysts for electrochemical hydrogen evolution reaction: recent advances and future perspectives. Nano-Micro Lett. 12, 21 (2020). https://doi.org/10.1007/s40820-019-0349-y
Y.S. Wei, M. Zhang, R. Zou, Q. Xu, Metal-organic framework-based catalysts with single metal sites. Chem. Rev. 120(21), 12089–12174 (2020). https://doi.org/10.1021/acs.chemrev.9b00757
C. Gao, J. Low, R. Long, T. Kong, J. Zhu et al., Heterogeneous single-atom photocatalysts: fundamentals and applications. Chem. Rev. 120(21), 12175–12216 (2020). https://doi.org/10.1021/acs.chemrev.9b00840
X. Wu, H. Zhang, S. Zuo, J. Dong, Y. Li et al., Engineering the coordination sphere of isolated active sites to explore the intrinsic activity in single-atom catalysts. Nano-Micro Lett. 13, 136 (2021). https://doi.org/10.1007/s40820-021-00668-6
Z. Chen, S. Mitchell, E. Vorobyeva, R.K. Leary, R. Hauert et al., Stabilization of single metal atoms on graphitic carbon nitride. Adv. Funct. Mater. 27(8), 1605785 (2017). https://doi.org/10.1002/adfm.201605785
P. Zhou, N. Li, Y. Chao, W. Zhang, F. Lv et al., Thermolysis of noble metal nanops into electron-rich phosphorus-coordinated noble metal single atoms at low temperature. Angew. Chem. Int. Ed. 58(40), 14184–14188 (2019). https://doi.org/10.1002/anie.201908351
L. Zhang, R. Long, Y. Zhang, D. Duan, Y. Xiong et al., Direct observation for dynamic bond evolution in single-atom Pt/C3N4 catalysts. Angew. Chem. Int. Ed. 59(15), 6224–6229 (2020). https://doi.org/10.1002/anie.201915774
X. Jin, R. Wang, L. Zhang, R. Si, M. Shen et al., Electron configuration modulation of nickel single atoms for elevated photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 59(17), 6827–6831 (2020). https://doi.org/10.1002/anie.201914565
X. Xiao, Y. Gao, L. Zhang, J. Zhang, Q. Zhang et al., A promoted charge separation/transfer system from Cu single atoms and C3N4 layers for efficient photocatalysis. Adv. Mater. 32(33), 2003082 (2020). https://doi.org/10.1002/adma.202003082
Z. Lin, Y. Wang, Z. Peng, Y.C. Huang, F. Meng et al., Single-metal atoms and ultra-small clusters manipulating charge carrier migration in polymeric perylene diimide for efficient photocatalytic oxygen production. Adv. Energy Mater. 12(26), 2200716 (2022). https://doi.org/10.1002/aenm.202200716
S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I. Probert et al., First principles methods using CASTEP. Z. Kristallogr. Cryst. Mater. 220(5–6), 567–570 (2005). https://doi.org/10.1524/zkri.220.5.567.65075
Y. Li, Y. Wang, C.L. Dong, Y.C. Huang, J. Chen et al., Single-atom nickel terminating sp2 and sp3 nitride in polymeric carbon nitride for visible-light photocatalytic overall water splitting. Chem. Sci. 12(10), 3633–3643 (2021). https://doi.org/10.1039/D0SC07093A
D. Zhao, J. Chen, C.L. Dong, W. Zhou, Y.C. Huang et al., Interlayer interaction in ultrathin nanosheets of graphitic carbon nitride for efficient photocatalytic hydrogen evolution. J. Catal. 352, 491–497 (2017). https://doi.org/10.1016/j.jcat.2017.06.020
L. Shi, K. Chang, H. Zhang, X. Hai, L. Yang et al., Drastic enhancement of photocatalytic activities over phosphoric acid protonated porous g-C3N4 nanosheets under visible light. Small 12(32), 4431–4439 (2016). https://doi.org/10.1002/smll.201601668
Q. Han, B. Wang, J. Gao, Z. Cheng, Y. Zhao et al., Atomically thin mesoporous nanomesh of graphitic C3N4 for high-efficiency photocatalytic hydrogen evolution. ACS Nano 10(2), 2745–2751 (2016). https://doi.org/10.1021/acsnano.5b07831
X. Liu, Y. Deng, L. Zheng, M.R. Kesama, C. Tang et al., Engineering low-coordination single-atom cobalt on graphitic carbon nitride catalyst for hydrogen evolution. ACS Catal. 12(9), 5517–5526 (2022). https://doi.org/10.1021/acscatal.2c01253
J. Wang, Y. Xia, H. Zhao, G. Wang, L. Xiang et al., Oxygen defects-mediated Z-scheme charge separation in g-C3N4/ZnO photocatalysts for enhanced visible-light degradation of 4-chlorophenol and hydrogen evolution. Appl. Catal. B 206, 406–416 (2017). https://doi.org/10.1016/j.apcatb.2017.01.067
C. Liu, Y. Qiu, F. Wang, K. Wang, Q. Liang et al., Design of core-shell-structured ZnO/ZnS hybridized with graphite-like C3N4 for highly efficient photoelectrochemical water splitting. Adv. Mater. Interf. 4(21), 1700681 (2017). https://doi.org/10.1002/admi.201700681
F. Yang, P. Song, X. Liu, B. Mei, W. Xing et al., Highly efficient CO2 electroreduction on ZnN4-based single-atom catalyst. Angew. Chem. Int. Ed. 57(38), 12303–12307 (2018). https://doi.org/10.1002/anie.201805871
T. Zhang, F. Wang, C. Yang, X. Han, C. Liang et al., Boosting ORR performance by single atomic divacancy Zn-N3C-C8 sites on ultrathin N-doped carbon nanosheets. Chem. Catal. 2(4), 836–852 (2022). https://doi.org/10.1016/j.checat.2022.02.006
H. Yu, R. Shi, Y. Zhao, T. Bian, Y. Zhao et al., Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution. Adv. Mater. 29(16), 1605148 (2017). https://doi.org/10.1002/adma.201605148
X.H. Jiang, L.S. Zhang, H.Y. Liu, D.S. Wu, F.Y. Wu et al., Silver single atom in carbon nitride catalyst for highly efficient photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 59(51), 23112–23116 (2020). https://doi.org/10.1002/anie.202011495
P. Kumar, E. Vahidzadeh, U.K. Thakur, P. Kar, K. Alam et al., C3N5: a low bandgap semiconductor containing an AZO-linked carbon nitride framework for photocatalytic, photovoltaic and adsorbent applications. J. Am. Chem. Soc. 141(13), 5415–5436 (2019). https://doi.org/10.1021/jacs.9b00144
J. Chen, C.L. Dong, D. Zhao, Y.C. Huang, X. Wang et al., Molecular design of polymer heterojunctions for efficient solar-hydrogen conversion. Adv. Mater. 29(21), 1606198 (2017). https://doi.org/10.1002/adma.201606198
D. Zhao, M. Wang, T. Kong, Y. Shang, X. Du et al., Electronic pump boosting photocatalytic hydrogen evolution over graphitic carbon nitride. Mater. Today Chem. 11, 296–302 (2019). https://doi.org/10.1016/j.mtchem.2018.11.011
T. Jiang, T. Xie, Y. Zhang, L. Chen, L. Peng et al., Photoinduced charge transfer in ZnO/Cu2O heterostructure films studied by surface photovoltage technique. Phys. Chem. Chem. Phys. 12(47), 15476–15481 (2010). https://doi.org/10.1039/C0CP01228A
D.B. Seo, T.N. Trung, D.O. Kim, D.V. Duc, S. Hong et al., Plasmonic Ag-decorated few-layer MoS2 nanosheets vertically grown on graphene for efficient photoelectrochemical water splitting. Nano-Micro Lett. 12, 172 (2020). https://doi.org/10.1007/s40820-020-00512-3
M.G. Lee, J.W. Yang, H. Park, C.W. Moon, D.M. Andoshe et al., Crystal facet engineering of TiO2 nanostructures for enhancing photoelectrochemical water splitting with BiVO4 nanodots. Nano-Micro Lett. 14, 48 (2022). https://doi.org/10.1007/s40820-022-00795-8
H. Cai, B. Wang, L. Xiong, J. Bi, H. Hao et al., Boosting photocatalytic hydrogen evolution of g-C3N4 catalyst via lowering the Fermi level of co-catalyst. Nano Res. 15(2), 1128–1134 (2022). https://doi.org/10.1007/s12274-021-3615-5