Two-Dimensional Materials, the Ultimate Solution for Future Electronics and Very-Large-Scale Integrated Circuits
Corresponding Author: Li Wang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 255
Abstract
The relentless down-scaling of electronics grands the modern integrated circuits (ICs) with the high speed, low power dissipation and low cost, fulfilling diverse demands of modern life. Whereas, with the semiconductor industry entering into sub-10 nm technology nodes, degrading device performance and increasing power consumption give rise to insurmountable roadblocks confronted by modern ICs that need to be conquered to sustain the Moore law’s life. Bulk semiconductors like prevalent Si are plagued by seriously degraded carrier mobility as thickness thinning down to sub-5 nm, which is imperative to maintain sufficient gate electrostatic controllability to combat the increasingly degraded short channel effects. Nowadays, the emergence of two-dimensional (2D) materials opens up new gateway to eschew the hurdles laid in front of the scaling trend of modern IC, mainly ascribed to their ultimately atomic thickness, capability to maintain carrier mobility with thickness thinning down, dangling-bonds free surface, wide bandgaps tunability and feasibility to constitute diverse heterostructures. Blossoming breakthroughs in discrete electronic device, such as contact engineering, dielectric integration and vigorous channel-length scaling, or large circuits arrays, as boosted yields, improved variations and full-functioned processor fabrication, based on 2D materials have been achieved nowadays, facilitating 2D materials to step under the spotlight of IC industry to be treated as the most potential future successor or complementary counterpart of incumbent Si to further sustain the down-scaling of modern IC.
Highlights:
1 With the incessant down-scaling of electronics, traditional semiconductors like Si are encountered with insurmountable hurdles to maintain performance increase without bringing about additional issues of power consumption escalating, in this context, two-dimensional (2D) materials emerge as superior candidates to supersede or complement Si attributed to their marvelous electronic properties to further sustain the Moore’s law life.
2 2D materials-based electronics in More Moore and More than Moore’ regimes have attained promising achievements and showcased monumental potentials applications in low power consumption integrated circuits
3 2D materials-based integrated circuits have gone through a promising development, evolving from small-scale integrated circuits (ICs) to full-functioned processors. Whereas enormous endeavors are waited to be dedicated to realize large-scale ICs attributed to lack of large-scale 2D materials of electronic qualities and immature fabricating techniques.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G.E. Moore, Cramming more components onto integrated circuits. Proc. IEEE 86(1), 82–85 (1998). https://doi.org/10.1109/JPROC.1998.658762
- M. Chhowalla, D. Jena, H. Zhang, Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1(11), 16052 (2016). https://doi.org/10.1038/natrevmats.2016.52
- H. Li, Q. Li, Y. Li, Z. Yang, R. Quhe et al., Recent experimental breakthroughs on 2D transistors: approaching the theoretical limit. Adv. Funct. Mater. 34(38), 2402474 (2024). https://doi.org/10.1002/adfm.202402474
- D. Bol, R. Ambroise, D. Flandre, J.-D. Legat, Interests and limitations of technology scaling for subthreshold logic. IEEE T. VLSI Syst. 17(10), 1508–1519 (2009). https://doi.org/10.1109/TVLSI.2008.2005413
- W. Zhao, Y. Cao, New generation of predictive technology model for sub-45 nm early design exploration. IEEE Trans. Electron Devices 53(11), 2816–2823 (2006). https://doi.org/10.1109/TED.2006.884077
- Q. Yang, Z.-D. Luo, H. Duan, X. Gan, D. Zhang et al., Steep-slope vertical-transport transistors built from sub-5 nm Thin van der Waals heterostructures. Nat. Commun. 15(1), 1138 (2024). https://doi.org/10.1038/s41467-024-45482-x
- T. Pei, L. Bao, G. Wang, R. Ma, H. Yang et al., Few-layer SnSe2 transistors with high on/off ratios. Appl. Phys. Lett. 108(5), 053506 (2016). https://doi.org/10.1063/1.4941394
- J. Seo, J. Lee, M. Shin, Analysis of drain-induced barrier rising in short-channel negative-capacitance FETs and its applications. IEEE Trans. Electron Devices 64(4), 1793–1798 (2017). https://doi.org/10.1109/TED.2017.2658673
- J.-S. Yoon, J. Jeong, S. Lee, R.-H. Baek, Bottom oxide bulk FinFETs without punch-through-stopper for extending toward 5-nm node. IEEE Access 7, 75762 (2019). https://doi.org/10.1109/ACCESS.2019.2920902
- I. Ferain, C.A. Colinge, J. Colinge, Multigate transistors as the future of classical metal-oxide-semiconductor field-effect transistors. Nature 479, 310 (2011). https://doi.org/10.1038/nature10676
- H. Wang, S. Gao, F. Zhang, F. Meng, Z. Guo et al., Repression of interlayer recombination by graphene generates a sensitive nanostructured 2D vdW heterostructure based photodetector. Adv. Sci. 8, 2100503 (2021). https://doi.org/10.1002/advs.202100503
- L. Yin, R. Cheng, J. Ding, J. Jiang, Y. Hou et al., Two-dimensional semiconductors and transistors for future integrated circuits. ACS Nano 18(11), 7739–7768 (2024). https://doi.org/10.1021/acsnano.3c10900
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
- X. Jing, Y. Illarionov, E. Yalon, P. Zhou, T. Grasser et al., Engineering field effect transistors with 2D semiconducting channels: status and prospects. Adv. Funct. Mater. 30(18), 1901971 (2020). https://doi.org/10.1002/adfm.201901971
- F. Schwierz, J. Pezoldt, R. Granzner, Two-dimensional materials and their prospects in transistor electronics. Nanoscale 7(18), 8261–8283 (2015). https://doi.org/10.1039/c5nr01052g
- Y. Liu, X. Duan, H.-J. Shin, S. Park, Y. Huang et al., Promises and prospects of two-dimensional transistors. Nature 591(7848), 43–53 (2021). https://doi.org/10.1038/s41586-021-03339-z
- Y. Liu, X. Duan, Y. Huang, X. Duan, Two-dimensional transistors beyond graphene and TMDCs. Chem. Soc. Rev. 47(16), 6388–6409 (2018). https://doi.org/10.1039/c8cs00318a
- M.C. Lemme, L. Li, T. Palacios, F. Schwierz, Two-dimensional materials for electronic applications. MRS Bull. 39, 711–718 (2014). https://doi.org/10.1557/mrs.2014.138
- X. Zhang, Software system research in post-Moore’s Law era: a historical perspective for the future. Sci. China Inf. Sci. 62(9), 196101 (2019). https://doi.org/10.1007/s11432-019-9860-1
- H. Xu, H. Zhang, Z. Guo, Y. Shan, S. Wu et al., High-performance wafer-scale MoS2 transistors toward practical application. Small 14(48), e1803465 (2018). https://doi.org/10.1002/smll.201803465
- J. Chen, M. Sun, Z. Wang, Z. Zhang, K. Zhang et al., Performance limits and advancements in single 2d transition metal dichalcogenide transistor. Nano-Micro Lett. 16, 264 (2024). https://doi.org/10.1007/s40820-024-01461-x
- A.E. Naclerio, P.R. Kidambi, A review of scalable hexagonal boron nitride (h-BN) synthesis for present and future applications. Adv. Mater. 35(6), e2207374 (2023). https://doi.org/10.1002/adma.202207374
- Z. Dong, Q. Hua, J. Xi, Y. Shi, T. Huang et al., Ultrafast and low-power 2D Bi2O2Se memristors for neuromorphic computing applications. Nano Lett. 23(9), 3842–3850 (2023). https://doi.org/10.1021/acs.nanolett.3c00322
- J.-K. Huang, Y. Wan, J. Shi, J. Zhang, Z. Wang et al., High-κ perovskite membranes as insulators for two-dimensional transistors. Nature 605(7909), 262–267 (2022). https://doi.org/10.1038/s41586-022-04588-2
- Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012). https://doi.org/10.1038/nnano.2012.193
- W. Zhu, T. Low, H. Wang, P. Ye, X. Duan, Nanoscale electronic devices based on transition metal dichalcogenides. D Mater. 6(3), 032004 (2019). https://doi.org/10.1088/2053-1583/ab1ed9
- A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183 (2007). https://doi.org/10.1038/nmat1849
- Z. Guan, H. Hu, X. Shen, P. Xiang, N. Zhong et al., Recent progress in two-dimensional ferroelectric materials. Adv. Electron. Mater. 6(1), 1900818 (2020). https://doi.org/10.1002/aelm.201900818
- X. Zou, H. Liang, Y. Li, Y. Zou, F. Tian et al., 2D Bi2O2Te semiconductor with single-crystal native oxide layer. Adv. Funct. Mater. 33(18), 2213807 (2023). https://doi.org/10.1002/adfm.202213807
- H. Song, F. Zhou, S. Yan, X. Su, H. Wu et al., Enhanced transport and optoelectronic properties of van der waals materials on CaF2 films. Nano Lett. 23(11), 4983–4990 (2023). https://doi.org/10.1021/acs.nanolett.3c00818
- J. Jiang, L. Xu, C. Qiu, L.-M. Peng, Ballistic two-dimensional InSe transistors. Nature 616(7957), 470–475 (2023). https://doi.org/10.1038/s41586-023-05819-w
- S. Zeng, C. Liu, P. Zhou, Transistor engineering based on 2D materials in the post-silicon era. Nat. Rev. Electr. Eng. 1(5), 335–348 (2024). https://doi.org/10.1038/s44287-024-00045-6
- Y. Zhai, Z. Feng, Y. Zhou, S.-T. Han, Energy-efficient transistors: suppressing the subthreshold swing below the physical limit. Mater. Horiz. 8(6), 1601–1617 (2021). https://doi.org/10.1039/d0mh02029j
- L. Qin, H. Tian, C. Li, Z. Xie, Y. Wei et al., Steep slope field effect transistors based on 2D materials. Adv. Electron. Mater. 10(8), 2300625 (2024). https://doi.org/10.1002/aelm.202300625
- D. Daw, H. Bouzid, M. Jung, D. Suh, C. Biswas et al., Ultrafast negative capacitance transition for 2D ferroelectric MoS2/graphene transistor. Adv. Mater. 36(13), e2304338 (2024). https://doi.org/10.1002/adma.202304338
- K. Nakamura, N. Nagamura, K. Ueno, T. Taniguchi, K. Watanabe et al., All 2D heterostructure tunnel field-effect transistors: impact of band alignment and heterointerface quality. ACS Appl. Mater. Interfaces 12(46), 51598–51606 (2020). https://doi.org/10.1021/acsami.0c13233
- X. Xie, Z. Wang, X. Liu, F. Liu, Ternary cold source transistors for multivalue logic applications. Phys. Rev. Appl. 22, 014053 (2024). https://doi.org/10.1103/PhysRevApplied.22.014053
- E.C. Ahn, 2D materials for spintronic devices. NPJ 2D Mater. Appl. 4, 17 (2020). https://doi.org/10.1038/s41699-020-0152-0
- L. Meng, J. Zhang, X. Yuan, M. Yang, B. Wang et al., Gate voltage dependence ultrahigh sensitivity WS₂ avalanche field-effect transistor. IEEE Trans. Electron Devices 69(6), 3225–3229 (2022). https://doi.org/10.1109/TED.2022.3166714
- A. Razavieh, P. Zeitzoff, E.J. Nowak, Challenges and limitations of CMOS scaling for FinFET and beyond architectures. IEEE Trans. Nanotechnol. 18, 999–1004 (2019). https://doi.org/10.1109/TNANO.2019.2942456
- J. Ajayan, D. Nirmal, S. Tayal, S. Bhattacharya, L. Arivazhagan et al., Nanosheet field effect transistors-a next generation device to keep Moore’s law alive: an intensive study. Microelectron. J. 114, 105141 (2021). https://doi.org/10.1016/j.mejo.2021.105141
- Y.-J. Lee, G.-L. Luo, F.-J. Hou, M.-C. Chen, C.-C. Yang et al., Ge GAA FETs and TMD FinFETs for the applications beyond Si: a review. IEEE J. Electron Devices Soc. 4(5), 286–293 (2016). https://doi.org/10.1109/JEDS.2016.2590580
- U.K. Das, M.M. Hussain, Benchmarking silicon FinFET with the carbon nanotube and 2D-FETs for advanced node CMOS logic application. IEEE Trans. Electron Devices 68(7), 3643–3648 (2021). https://doi.org/10.1109/TED.2021.3081076
- X. Huang, C. Liu, S. Zeng, Z. Tang, S. Wang et al., Ultrathin multibridge channel transistor enabled by van der waals assembly. Adv. Mater. 33(37), e2102201 (2021). https://doi.org/10.1002/adma.202102201
- C. Liu, H. Chen, S. Wang, Q. Liu, Y.-G. Jiang et al., Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 15(7), 545–557 (2020). https://doi.org/10.1038/s41565-020-0724-3
- L. Yin, R. Cheng, Y. Wen, C. Liu, J. He, Emerging 2D memory devices for in-memory computing. Adv. Mater. 33(29), 2007081 (2021). https://doi.org/10.1002/adma.202007081
- Y. Wang, Q. Sun, J. Yu, N. Xu, Y. Wei et al., Boolean logic computing based on neuromorphic transistor. Adv. Funct. Mater. 33(47), 2305791 (2023). https://doi.org/10.1002/adfm.202305791
- H. Yoo, C.-H. Kim, Multi-valued logic system: new opportunities from emerging materials and devices. J. Mater. Chem. C 9(12), 4092–4104 (2021). https://doi.org/10.1039/d1tc00148e
- N. Li, Q. Wang, C. He, J. Li, X. Li et al., 2D semiconductor based flexible photoresponsive ring oscillators for artificial vision pixels. ACS Nano 17, 991–999 (2023). https://doi.org/10.1021/acsnano.2c06921
- S.B. Jo, J. Kang, J.H. Cho, Recent advances on multivalued logic gates: a materials perspective. Adv. Sci. 8(8), 2004216 (2021). https://doi.org/10.1002/advs.202004216
- K. Ashokbhai Patel, R.W. Grady, K.K.H. Smithe, E. Pop, R. Sordan, Ultra-scaled MoS2 transistors and circuits fabricated without nanolithography. 2D Mater. 7(1), 015018 (2020). https://doi.org/10.1088/2053-1583/ab4ef0
- D. Jayachandran, N.U. Sakib, S. Das, 3D integration of 2D electronics. Nat. Rev. Electr. Eng. 1(5), 300–316 (2024). https://doi.org/10.1038/s44287-024-00038-5
- D. Jayachandran, R. Pendurthi, M.U.K. Sadaf, N.U. Sakib, A. Pannone et al., Three-dimensional integration of two-dimensional field-effect transistors. Nature 625(7994), 276–281 (2024). https://doi.org/10.1038/s41586-023-06860-5
- Y. Shen, Z. Dong, Y. Sun, H. Guo, F. Wu et al., The trend of 2D transistors toward integrated circuits: scaling down and new mechanisms. Adv. Mater. 34(48), 2201916 (2022). https://doi.org/10.1002/adma.202201916
- G.V. Resta, A. Leonhardt, Y. Balaji, S. De Gendt, P.-E. Gaillardon et al., Devices and circuits using novel 2-D materials: a perspective for future VLSI systems. IEEE T. VLSI Syst. 27(7), 1486–1503 (2019). https://doi.org/10.1109/TVLSI.2019.2914609
- C. Sheng, X. Dong, Y. Zhu, X. Wang, X. Chen et al., Two-dimensional semiconductors: from device processing to circuit integration. Adv. Funct. Mater. 33(50), 2304778 (2023). https://doi.org/10.1002/adfm.202304778
- M. Turunen, M. Brotons-Gisbert, Y. Dai, Y. Wang, E. Scerri et al., Quantum photonics with layered 2D materials. Nat. Rev. Phys. 4(4), 219–236 (2022). https://doi.org/10.1038/s42254-021-00408-0
- K. Khan, A.K. Tareen, M. Aslam, R. Wang, Y. Zhang et al., Recent developments in emerging two-dimensional materials and their applications. J. Mater. Chem. C 8(2), 387–440 (2020). https://doi.org/10.1039/c9tc04187g
- P. Kumbhakar, J.S. Jayan, A.S. Madhavikutty, P.R. Sreeram, A. Saritha et al., Prospective applications of two-dimensional materials beyond laboratory frontiers: a review. iScience 26(5), 106671 (2023). https://doi.org/10.1016/j.isci.2023.106671
- Y. Wang, S. Sarkar, H. Yan, M. Chhowalla, Critical challenges in the development of electronics based on two-dimensional transition metal dichalcogenides. Nat. Electron. 7(8), 638–645 (2024). https://doi.org/10.1038/s41928-024-01210-3
- R.F. Frindt, Single crystals of MoS2 several molecular layers thick. J. Appl. Phys. 37(4), 1928–1929 (1966). https://doi.org/10.1063/1.1708627
- P. Joensen, R.F. Frindt, S.R. Morrison, Single-layer MoS2. Mater. Res. Bull. 21(4), 457–461 (1986). https://doi.org/10.1016/0025-5408(86)90011-5
- N. Thomas, S. Mathew, K.M. Nair, K. O’Dowd, P. Forouzandeh et al., 2D MoS2: structure, mechanisms, and photocatalytic applications. Mater. Today Sustain. 13, 100073 (2021). https://doi.org/10.1016/j.mtsust.2021.100073
- B. Liu, A. Abbas, C. Zhou, Two-dimensional semiconductors: from materials preparation to electronic applications. Adv. Electron. Mater. 3(7), 1700045 (2017). https://doi.org/10.1002/aelm.201700045
- S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, A. Kis, 2D transition metal dichalcogenides. Nat. Rev. Mater. 2(8), 17033 (2017). https://doi.org/10.1038/natrevmats.2017.33
- Z. Cheng, X. Jia, B. Han, M. Li, W. Xu et al., P/N-type conversion of 2D MoTe2 controlled by top gate engineering for logic circuits. ACS Appl. Mater. Interfaces 16(28), 36539–36546 (2024). https://doi.org/10.1021/acsami.4c03090
- B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6(3), 147–150 (2011). https://doi.org/10.1038/nnano.2010.279
- S.G. Seo, J. Jeong, S.Y. Kim, A. Kumar, S.H. Jin, Reversible and controllable threshold voltage modulation for n-channel MoS2 and p-channel MoTe2 field-effect transistors via multiple counter doping with ODTS/poly-L-lysine charge enhancers. Nano Res. 14(9), 3214–3227 (2021). https://doi.org/10.1007/s12274-021-3523-8
- L. Tang, J. Zou, P-type two-dimensional semiconductors: from materials preparation to electronic applications. Nano-Micro Lett. 15(1), 230 (2023). https://doi.org/10.1007/s40820-023-01211-5
- Y.J. Park, A.K. Katiyar, A.T. Hoang, J. Ahn, Controllable P- and N-type conversion of MoTe2 via oxide interfacial layer for logic circuits. Small 15, 1901772 (2019). https://doi.org/10.1002/smll.201901772
- R. Kappera, D. Voiry, S.E. Yalcin, B. Branch, G. Gupta et al., Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13(12), 1128–1134 (2014). https://doi.org/10.1038/nmat4080
- D.S. Schulman, A.J. Arnold, S. Das, Contact engineering for 2D materials and devices. Chem. Soc. Rev. 47(9), 3037–3058 (2018). https://doi.org/10.1039/c7cs00828g
- B. Luo, G. Liu, L. Wang, Recent advances in 2D materials for photocatalysis. Nanoscale 8(13), 6904–6920 (2016). https://doi.org/10.1039/c6nr00546b
- H.R. Banjade, J. Pan, Q. Yan, Monolayer 2D semiconducting tellurides for high-mobility electronics. Phys. Rev. Mater. 5, 014005 (2021). https://doi.org/10.1103/physrevmaterials.5.014005
- A. Castellanos-Gomez, Black phosphorus: narrow gap, wide applications. J. Phys. Chem. Lett. 6(21), 4280–4291 (2015). https://doi.org/10.1021/acs.jpclett.5b01686
- H. Du, X. Lin, Z. Xu, D. Chu, Recent developments in black phosphorus transistors. J. Mater. Chem. C 3(34), 8760–8775 (2015). https://doi.org/10.1039/c5tc01484k
- L. Li, M. Engel, D.B. Farmer, S.J. Han, H.S. Wong, High-performance p-type black phosphorus transistor with scandium contact. ACS Nano 10(4), 4672–4677 (2016). https://doi.org/10.1021/acsnano.6b01008
- X. Li, Z. Yu, X. Xiong, T. Li, T. Gao et al., High-speed black phosphorus field-effect transistors approaching ballistic limit. Sci. Adv. 5(6), eaau3194 (2019). https://doi.org/10.1126/sciadv.aau3194
- D. He, Y. Wang, Y. Huang, Y. Shi, X. Wang et al., High-performance black phosphorus field-effect transistors with long-term air stability. Nano Lett. 19(1), 331–337 (2019). https://doi.org/10.1021/acs.nanolett.8b03940
- P.C. Debnath, K. Park, Y.-W. Song, Recent advances in black-phosphorus-based photonics and optoelectronics devices. Small Meth. 2(4), 1700315 (2018). https://doi.org/10.1002/smtd.201700315
- M. Zhang, Q. Wu, F. Zhang, L. Chen, X. Jin et al., 2D black phosphorus saturable absorbers for ultrafast photonics. Adv. Opt. Mater. 7(1), 1800224 (2019). https://doi.org/10.1002/adom.201800224
- L. Huang, K.-W. Ang, Black phosphorus photonics toward on-chip applications. Appl. Phys. Rev. 7(3), 031302 (2020). https://doi.org/10.1063/5.0005641
- X. Liu, K. Chen, X. Li, Q. Xu, J. Weng et al., Electron matters: recent advances in passivation and applications of black phosphorus. Adv. Mater. 33(50), 2005924 (2021). https://doi.org/10.1002/adma.202005924
- D.K. Sang, H. Wang, Z. Guo, N. Xie, H. Zhang, Recent developments in stability and passivation techniques of phosphorene toward next-generation device applications. Adv. Funct. Mater. 29(45), 1903419 (2019). https://doi.org/10.1002/adfm.201903419
- A. Pon, A. Bhattacharyya, R. Rathinam, Recent developments in black phosphorous transistors: a review. J. Electron. Mater. 50(11), 6020–6036 (2021). https://doi.org/10.1007/s11664-021-09183-1
- H. Cai, Y. Gu, Y.-C. Lin, Y. Yu, D.B. Geohegan et al., Synthesis and emerging properties of 2D layered III–VI metal chalcogenides. Appl. Phys. Rev. 6(4), 041312 (2019). https://doi.org/10.1063/1.5123487
- B. Chitara, A. Ya’akobovitz, Elastic properties and breaking strengths of GaS, GaSe and GaTe nanosheets. Nanoscale 10(27), 13022–13027 (2018). https://doi.org/10.1039/C8NR01065J
- H. Arora, A. Erbe, Recent progress in contact, mobility, and encapsulation engineering of InSe and GaSe. InfoMat 3(6), 662–693 (2021). https://doi.org/10.1002/inf2.12160
- M. Li, C.-Y. Lin, S.-H. Yang, Y.-M. Chang, J.-K. Chang et al., High mobilities in layered InSe transistors with indium-encapsulation-induced surface charge doping. Adv. Mater. 30(44), 1803690 (2018). https://doi.org/10.1002/adma.201803690
- D.A. Bandurin, A.V. Tyurnina, G.L. Yu, A. Mishchenko, V. Zólyomi et al., High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nat. Nanotechnol. 12(3), 223–227 (2017). https://doi.org/10.1038/nnano.2016.242
- S. Chandra, P. Dutta, K. Biswas, High-performance thermoelectrics based on solution-grown SnSe nanostructures. ACS Nano 16(1), 7–14 (2022). https://doi.org/10.1021/acsnano.1c10584
- S. Yang, Y. Liu, M. Wu, L.-D. Zhao, Z. Lin et al., Highly-anisotropic optical and electrical properties in layered SnSe. Nano Res. 11(1), 554–564 (2018). https://doi.org/10.1007/s12274-017-1712-2
- T. Knobloch, Y.Y. Illarionov, F. Ducry, C. Schleich, S. Wachter et al., The performance limits of hexagonal boron nitride as an insulator for scaled CMOS devices based on two-dimensional materials. Nat. Electron. 4(2), 98–108 (2021). https://doi.org/10.1038/s41928-020-00529-x
- K. Yi, Y. Wu, L. An, Y. Deng, R. Duan et al., Van der waals encapsulation by ultrathin oxide for air-sensitive 2D materials. Adv. Mater. 36(33), 2403494 (2024). https://doi.org/10.1002/adma.202403494
- S. Ahn, G. Kim, P.K. Nayak, S.I. Yoon, H. Lim et al., Prevention of transition metal dichalcogenide photodegradation by encapsulation with h-BN layers. ACS Nano 10(9), 8973–8979 (2016). https://doi.org/10.1021/acsnano.6b05042
- N. Petrone, T. Chari, I. Meric, L. Wang, K.L. Shepard et al., Flexible graphene field-effect transistors encapsulated in hexagonal boron nitride. ACS Nano 9(9), 8953–8959 (2015). https://doi.org/10.1021/acsnano.5b02816
- N.A.N. Phan, H. Noh, J. Kim, Y. Kim, H. Kim et al., Enhanced performance of WS2 field-effect transistor through mono and bilayer h-BN tunneling contacts. Small 18(13), 2105753 (2022). https://doi.org/10.1002/smll.202105753
- T. Li, H. Peng, 2D Bi2O2Se: an emerging material platform for the next-generation electronic industry. Acc. Mater. Res. 2(9), 842–853 (2021). https://doi.org/10.1021/accountsmr.1c00130
- A.J. Yang, K. Han, K. Huang, C. Ye, W. Wen et al., Van der Waals integration of high-κ perovskite oxides and two-dimensional semiconductors. Nat. Electron. 5(4), 233–240 (2022). https://doi.org/10.1038/s41928-022-00753-7
- T. Li, T. Tu, Y. Sun, H. Fu, J. Yu et al., A native oxide high-κ gate dielectric for two-dimensional electronics. Nat. Electron. 3(8), 473–478 (2020). https://doi.org/10.1038/s41928-020-0444-6
- X. Huang, Z. Zeng, Z. Fan, J. Liu, H. Zhang, Graphene-based electrodes. Adv. Mater. 24(45), 5979–6004 (2012). https://doi.org/10.1002/adma.201201587
- H. Lv, H. Wu, J. Liu, J. Yu, J. Niu et al., High carrier mobility in suspended-channel graphene field effect transistors. Appl. Phys. Lett. 103(19), 193102 (2013). https://doi.org/10.1063/1.4828835
- J.M. Marmolejo-Tejada, J. Velasco-Medina, Review on graphene nanoribbon devices for logic applications. Microelectron. J. 48, 18–38 (2016). https://doi.org/10.1016/j.mejo.2015.11.006
- S. Lone, A. Bhardwaj, A.K. Pandit, S. Gupta, S. Mahajan, A review of graphene nanoribbon field-effect transistor structures. J. Electron. Mater. 50(6), 3169–3186 (2021). https://doi.org/10.1007/s11664-021-08859-y
- I. Colmiais, V. Silva, J. Borme, P. Alpuim, P.M. Mendes, Towards RF graphene devices: a review. FlatChem 35, 100409 (2022). https://doi.org/10.1016/j.flatc.2022.100409
- A. Dimoulas, Silicene and germanene: silicon and germanium in the “flatland.” Microelectron. Eng. 131, 68–78 (2015). https://doi.org/10.1016/j.mee.2014.08.013
- Z. Ni, Q. Liu, K. Tang, J. Zheng, J. Zhou et al., Tunable bandgap in silicene and germanene. Nano Lett. 12(1), 113–118 (2012). https://doi.org/10.1021/nl203065e
- W. Li, H. Shen, H. Qiu, Y. Shi, X. Wang, Two-dimensional semiconductor transistors and integrated circuits for advanced technology nodes. Nat. Sci. Rev. 11(3), nwae001 (2024). https://doi.org/10.1093/nsr/nwae001
- E. Gnani, E. Baravelli, P. Maiorano, A. Gnudi, S. Reggiani et al., Steep-slope devices: prospects and challenges. J. Nano Res. 39, 3–16 (2016). https://doi.org/10.4028/www.scientific.net/jnanor.39.3
- J. Lyu, J. Pei, Y. Guo, J. Gong, H. Li, A new opportunity for 2D van der waals heterostructures: making steep-slope transistors. Adv. Mater. 32(2), 1906000 (2020). https://doi.org/10.1002/adma.201906000
- U.E. Avci, D.H. Morris, I.A. Young, Tunnel field-effect transistors: prospects and challenges. IEEE J. Electron Devices Soc. 3(3), 88–95 (2015). https://doi.org/10.1109/JEDS.2015.2390591
- K.R.N. Karthik, C.K. Pandey, A review of tunnel field-effect transistors for improved ON-state behaviour. SILICON 15(1), 1–23 (2023). https://doi.org/10.1007/s12633-022-02028-4
- A.M. Ionescu, H. Riel, Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479(7373), 329–337 (2011). https://doi.org/10.1038/nature10679
- N. Oliva, J. Backman, L. Capua, M. Cavalieri, M. Luisier et al., WSe2/SnSe2 vdW heterojunction Tunnel FET with subthermionic characteristic and MOSFET co-integrated on same WSe2 flake. NPJ 2D Mater. Appl. 4, 5 (2020). https://doi.org/10.1038/s41699-020-0142-2
- Y. Lv, W. Qin, C. Wang, L. Liao, X. Liu, Recent advances in low-dimensional heterojunction-based tunnel field effect transistors. Adv. Electron. Mater. 5(1), 1800569 (2019). https://doi.org/10.1002/aelm.201800569
- A. Afzalian, E. Akhoundi, G. Gaddemane, R. Duflou, M. Houssa, Advanced DFT–NEGF transport techniques for novel 2-D material and device exploration including HfS2/WSe2 van der waals heterojunction TFET and WTe2/WS2 metal/semiconductor contact. IEEE Trans. Electron Devices 68(11), 5372–5379 (2021). https://doi.org/10.1109/TED.2021.3078412
- Y. Balaji, Q. Smets, C.J.L. De La Rosa, A.K.A. Lu, D. Chiappe et al., Tunneling transistors based on MoS2/MoTe2 van der waals heterostructures. IEEE J. Electron Devices Soc. 6, 1048–1055 (2018). https://doi.org/10.1109/JEDS.2018.2815781
- T. Roy, M. Tosun, M. Hettick, G.H. Ahn, C. Hu et al., 2D–2D tunneling field-effect transistors using WSe2/SnSe2 heterostructures. Appl. Phys. Lett. 108(8), 083111 (2016). https://doi.org/10.1063/1.4942647
- D. Sarkar, X. Xie, W. Liu, W. Cao, J. Kang et al., A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature 526(7571), 91–95 (2015). https://doi.org/10.1038/nature15387
- G.H. Shin, B. Koo, H. Park, Y. Woo, J.E. Lee et al., Vertical-tunnel field-effect transistor based on a silicon-MoS2 three-dimensional-two-dimensional heterostructure. ACS Appl. Mater. Interfaces 10(46), 40212–40218 (2018). https://doi.org/10.1021/acsami.8b11396
- M. Huang, S. Li, Z. Zhang, X. Xiong, X. Li et al., Multifunctional high-performance van der waals heterostructures. Nat. Nanotechnol. 12(12), 1148–1154 (2017). https://doi.org/10.1038/nnano.2017.208
- S. Kim, G. Myeong, W. Shin, H. Lim, B. Kim et al., Thickness-controlled black phosphorus tunnel field-effect transistor for low-power switches. Nat. Nanotechnol. 15(3), 203–206 (2020). https://doi.org/10.1038/s41565-019-0623-7
- S. Kim, G. Myeong, J. Park, K. Watanabe, T. Taniguchi et al., Monolayer hexagonal boron nitride tunnel barrier contact for low-power black phosphorus heterojunction tunnel field-effect transistors. Nano Lett. 20(5), 3963–3969 (2020). https://doi.org/10.1021/acs.nanolett.0c01115
- W. Cao, K. Banerjee, Is negative capacitance FET a steep-slope logic switch? Nat. Commun. 11(1), 196 (2020). https://doi.org/10.1038/s41467-019-13797-9
- W.-X. You, P. Su, C. Hu, Evaluation of NC-FinFET based subsystem-level logic circuits. IEEE Trans. Electron Devices 66(4), 2004–2009 (2019). https://doi.org/10.1109/TED.2019.2898445
- V. Chauhan, D.P. Samajdar, Recent advances in negative capacitance FinFETs for low-power applications: a review. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 68(10), 3056–3068 (2021). https://doi.org/10.1109/TUFFC.2021.3095616
- L. Tu, X. Wang, J. Wang, X. Meng, J. Chu, Ferroelectric negative capacitance field effect transistor. Adv. Electron. Mater. 4(11), 1800231 (2018). https://doi.org/10.1002/aelm.201800231
- I. Luk’yanchuk, A. Razumnaya, A. Sené, Y. Tikhonov, V.M. Vinokur, The ferroelectric field-effect transistor with negative capacitance. NPJ Comput. Mater. 8, 52 (2022). https://doi.org/10.1038/s41524-022-00738-2
- H.H. Radamson, H. Zhu, Z. Wu, X. He, H. Lin et al., State of the art and future perspectives in advanced CMOS technology. Nanomaterials 10(8), 1555 (2020). https://doi.org/10.3390/nano10081555
- R.-S. Chen, Y. Lu, Negative capacitance field effect transistors based on van der waals 2D materials. Small 20(39), 2304445 (2024). https://doi.org/10.1002/smll.202304445
- Z.-D. Luo, M.-M. Yang, Y. Liu, M. Alexe, Emerging opportunities for 2D semiconductor/ferroelectric transistor-structure devices. Adv. Mater. 33(12), e2005620 (2021). https://doi.org/10.1002/adma.202005620
- X. Wang, Y. Chen, G. Wu, D. Li, L. Tu et al., Two-dimensional negative capacitance transistor with polyvinylidene fluoride-based ferroelectric polymer gating. NPJ 2D Mater. Appl. 1, 38 (2017). https://doi.org/10.1038/s41699-017-0040-4
- Si M, Su C, Jiang C, Conrad NJ, Zhou H et al. (2017) Steep Slope MoS2 2D transistors: negative capacitance and negative differential resistance, Cornell university library 2017
- F.A. McGuire, Y.-C. Lin, K. Price, G.B. Rayner, S. Khandelwal et al., Sustained sub-60 mV/decade switching via the negative capacitance effect in MoS2 transistors. Nano Lett. 17(8), 4801–4806 (2017). https://doi.org/10.1021/acs.nanolett.7b01584
- R. Khosla, S.K. Sharma, Integration of ferroelectric materials: an ultimate solution for next-generation computing and storage devices. ACS Appl. Electron. Mater. 3(7), 2862–2897 (2021). https://doi.org/10.1021/acsaelm.0c00851
- L. Qi, S. Ruan, Y.-J. Zeng, Review on recent developments in 2D ferroelectrics: theories and applications. Adv. Mater. 33(13), 2005098 (2021). https://doi.org/10.1002/adma.202005098
- C. Wang, L. You, D. Cobden, J. Wang, Towards two-dimensional van der waals ferroelectrics. Nat. Mater. 22(5), 542–552 (2023). https://doi.org/10.1038/s41563-022-01422-y
- X. Wang, P. Yu, Z. Lei, C. Zhu, X. Cao et al., Van der waals negative capacitance transistors. Nat. Commun. 10, 3037 (2019). https://doi.org/10.1038/s41467-019-10738-4
- J. Jin, Z. Wang, Z. Peng, H. Liu, K. Peng et al., Multifunctional dual gated coupling device using van der waals ferroelectric heterostructure. Adv. Electron. Mater. 8(9), 2200210 (2022). https://doi.org/10.1002/aelm.202200210
- W. Wang, Y. Meng, W. Wang, Y. Zhang, B. Li et al., 2D ferroelectric materials: Emerging paradigms for next-generation ferroelectronics. Mater. Today Electron. 6, 100080 (2023). https://doi.org/10.1016/j.mtelec.2023.100080
- S. Song, J. Lyu, L. Qin, Z. Wang, J. Gong et al., Lateral graphene/MoS2 heterostructures for steep-slope Dirac-source field-effect transistors. Phys. Rev. B 110(12), 125407 (2024). https://doi.org/10.1103/physrevb.110.125407
- C. Kang, H. Choi, H. Son, T. Kang, S.-M. Lee et al., A steep-switching impact ionization-based threshold switching field-effect transistor. Nanoscale 15(12), 5771–5777 (2023). https://doi.org/10.1039/d2nr06547a
- S. Wang, J. Wang, T. Zhi, J. Xue, D. Chen et al., Cold source field-effect transistors: breaking the 60-mV/decade switching limit at room temperature. Phys. Rep. 1013, 1–33 (2023). https://doi.org/10.1016/j.physrep.2023.03.001
- L. Zhang, F. Liu, High-throughput approach to explore cold metals for electronic and thermoelectric devices. NPJ Comput. Mater. 10, 78 (2024). https://doi.org/10.1038/s41524-024-01267-w
- C. Qiu, F. Liu, L. Xu, B. Deng, M. Xiao et al., Dirac-source field-effect transistors as energy-efficient, high-performance electronic switches. Science 361(6400), 387–392 (2018). https://doi.org/10.1126/science.aap9195
- E.G. Marin, D. Marian, M. Perucchini, G. Fiori, G. Iannaccone, Lateral heterostructure field-effect transistors based on two-dimensional material stacks with varying thickness and energy filtering source. ACS Nano 14(2), 1982–1989 (2020). https://doi.org/10.1021/acsnano.9b08489
- F. Liu, C. Qiu, Z. Zhang, L.-M. Peng, J. Wang et al., Dirac electrons at the source: breaking the 60-mV/decade switching limit. IEEE Trans. Electron Devices 65(7), 2736–2743 (2018). https://doi.org/10.1109/TED.2018.2836387
- Y. Yin, Z. Zhang, C. Shao, J. Robertson, Y. Guo, Computational study of transition metal dichalcogenide cold source MOSFETs with sub-60 mV per decade and negative differential resistance effect. NPJ 2D Mater. Appl. 6, 55 (2022). https://doi.org/10.1038/s41699-022-00332-6
- L. Zhang, G. Yao, X. Liu, F. Liu, Three-dimensional cold metals in realizing steep-slope transistors based on monolayer MoS2. IEEE Electron Device Lett. 44(10), 1764–1767 (2023). https://doi.org/10.1109/LED.2023.3305577
- Z. Tang, C. Liu, X. Huang, S. Zeng, L. Liu et al., A steep-slope MoS2/graphene Dirac-source field-effect transistor with a large drive current. Nano Lett. 21(4), 1758–1764 (2021). https://doi.org/10.1021/acs.nanolett.0c04657
- H. Zhu, Y. Yang, X. Zhu, P. Raju, D.E. Ioannou et al., Graphene-integrated negative quantum capacitance field-effect transistor with sub-60-mV/dec switching. IEEE Trans. Electron Devices 70(9), 4899–4904 (2023). https://doi.org/10.1109/TED.2023.3294365
- Y. Liu, J. Guo, W. Song, P. Wang, V. Gambin et al., Ultra-steep slope impact ionization transistors based on graphene/InAs heterostructures. Small Struct. 2(1), 2000039 (2021). https://doi.org/10.1002/sstr.202000039
- H. Choi, J. Li, T. Kang, C. Kang, H. Son et al., A steep switching WSe2 impact ionization field-effect transistor. Nat. Commun. 13, 6076 (2022). https://doi.org/10.1038/s41467-022-33770-3
- A. Gao, Z. Zhang, L. Li, B. Zheng, C. Wang et al., Robust impact-ionization field-effect transistor based on nanoscale vertical graphene/black phosphorus/indium selenide heterostructures. ACS Nano 14(1), 434–441 (2020). https://doi.org/10.1021/acsnano.9b06140
- B. Yuan, Z. Chen, Y. Chen, C. Tang, W. Chen et al., High drain field impact ionization transistors as ideal switches. Nat. Commun. 15, 9038 (2024). https://doi.org/10.1038/s41467-024-53337-8
- T. Kang, H. Choi, J. Li, C. Kang, E. Hwang et al., Anisotropy of impact ionization in WSe2 field effect transistors. Nano Converg. 10(1), 13 (2023). https://doi.org/10.1186/s40580-023-00361-x
- U.K. Das, T.K. Bhattacharyya, Opportunities in device scaling for 3-nm node and beyond: FinFET versus GAA-FET versus UFET. IEEE Trans. Electron Devices 67(6), 2633–2638 (2020). https://doi.org/10.1109/TED.2020.2987139
- G.V. Angelov, D.N. Nikolov, M.H. Hristov, Technology and modeling of nonclassical transistor devices. J. Electr. Comput. Eng. 2019, 4792461 (2019). https://doi.org/10.1155/2019/4792461
- K. Majumdar, C. Hobbs, P.D. Kirsch, Benchmarking transition metal dichalcogenide MOSFET in the ultimate physical scaling limit. IEEE Electron Device Lett. 35(3), 402–404 (2014). https://doi.org/10.1109/LED.2014.2300013
- Chen MC, Li KS, Li LJ, Lu AY, Li MY et al. (2015) TMD FinFET with 4 nm thin body and back gate control for future low power technology. In: 2015 IEEE international electron devices meeting (IEDM). December 7–9, 2015, Washington, DC, USA. IEEE, 32.2.1–32.2.4
- Y. Pan, H. Yin, K. Huang, Z. Zhang, Q. Zhang et al., Novel 10-nm gate length MoS2 transistor fabricated on Si fin substrate. IEEE J. Electron Devices Soc. 7, 483–488 (2019). https://doi.org/10.1109/JEDS.2019.2910271
- M.-L. Chen, X. Sun, H. Liu, H. Wang, Q. Zhu et al., A FinFET with one atomic layer channel. Nat. Commun. 11(1), 1205 (2020). https://doi.org/10.1038/s41467-020-15096-0
- C. Tan, M. Yu, J. Tang, X. Gao, Y. Yin et al., 2D fin field-effect transistors integrated with epitaxial high-k gate oxide. Nature 616(7955), 66–72 (2023). https://doi.org/10.1038/s41586-023-05797-z
- Zhou R, Appenzeller J (2018) Three-dimensional integration of multi-channel MoS2 devices for high drive current FETs. In: 2018 76th device research conference (DRC). June 24-27, 2018, Santa Barbara, CA, USA. IEEE, pp 1–2
- Ahmed F, Paul R, Saha JK (2020) Comparative performance analysis of TMD based multi-bridge channel field effect transistor. In: 2020 IEEE 10th international conference nanomaterials: applications & properties (NAP). November 9–13, 2020. Sumy, Ukraine. IEEE, 01TPNS04-1-01TPNS04-5. https://doi.org/10.1109/nap51477.2020.9309688
- Huang X, Liu C, Tang Z, Zeng S, Liu L et al. (2020) High drive and low leakage current MBC FET with channel thickness 1.2nm/0.6nm. In: 2020 IEEE international electron devices meeting (IEDM). December 12–18, 2020, San Francisco, CA, USA. IEEE, 12.1.1–12.1.4
- S. Hitesh, P. Dasika, K. Watanabe, T. Taniguchi, K. Majumdar, Integration of 3-level MoS multibridge channel FET with 2D layered contact and gate dielectric. IEEE Electron Device Lett. 43(11), 1993–1996 (2022). https://doi.org/10.1109/LED.2022.3206866
- Y. Xia, L. Zong, Y. Pan, X. Chen, L. Zhou et al., Wafer-scale demonstration of MBC-FET and C-FET arrays based on two-dimensional semiconductors. Small 18(20), 2107650 (2022). https://doi.org/10.1002/smll.202107650
- Xiong X, Tong A, Wang X, Liu S, Li X et al. (2021) Demonstration of vertically-stacked CVD monolayer channels: MoS2 nanosheets GAA-FET with Ion>700 µA/µm and MoS2/WSe2 CFET. In: 2021 IEEE international electron devices meeting (IEDM). December 11–16, 2021, San Francisco, CA, USA. IEEE, 7.5.1–7.5.4
- J. Ma, H. Liu, N. Yang, J. Zou, S. Lin et al., Circuit-level memory technologies and applications based on 2D materials. Adv. Mater. 34(48), e2202371 (2022). https://doi.org/10.1002/adma.202202371
- C.U. Kshirsagar, W. Xu, Y. Su, M.C. Robbins, C.H. Kim et al., Dynamic memory cells using MoS2 field-effect transistors demonstrating femtoampere leakage currents. ACS Nano 10(9), 8457–8464 (2016). https://doi.org/10.1021/acsnano.6b03440
- Y. Wang, H. Tang, Y. Xie, X. Chen, S. Ma et al., An in-memory computing architecture based on two-dimensional semiconductors for multiply-accumulate operations. Nat. Commun. 12(1), 3347 (2021). https://doi.org/10.1038/s41467-021-23719-3
- M. Raoofi, M. Gholipour, Transition metal dichalcogenide FET-based dynamic random-access memory. Int. J. Circuit Theory Appl. 53(3), 1764–1774 (2025). https://doi.org/10.1002/cta.4173
- H. Wang, L. Yu, Y.-H. Lee, Y. Shi, A. Hsu et al., Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 12(9), 4674–4680 (2012). https://doi.org/10.1021/nl302015v
- Pang CS, Thakuria N, Gupta SK, Chen Z (2018) First demonstration of WSe2 based CMOS-SRAM. In: 2018 IEEE international electron devices meeting (IEDM). December 1–5, 2018, San Francisco, CA, USA. IEEE, 22.2.1–22.2.4
- Li J, Zhou P, Li J, Ding Y, Liu C et al. (2019) Highly area-efficient low-power SRAM cell with 2 transistors and 2 resistors. In: 2019 IEEE international electron devices meeting (IEDM). December 7–11, 2019. San Francisco, CA, USA. IEEE, 23.3.1–23.3.4. https://doi.org/10.1109/iedm19573.2019.8993520
- F. Wang, J. Li, Z. Zhang, Y. Ding, Y. Xiong et al., Multifunctional computing-in-memory SRAM cells based on two-surface-channel MoS2 transistors. iScience 24(10), 103138 (2021). https://doi.org/10.1016/j.isci.2021.103138
- N. Li, Q. Wang, C. Shen, Z. Wei, H. Yu et al., Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors. Nat. Electron. 3(11), 711–717 (2020). https://doi.org/10.1038/s41928-020-00475-8
- Y.C. Lu, J.K. Huang, K.Y. Chao, L.J. Li, V.P. Hu, Projected performance of Si- and 2D-material-based SRAM circuits ranging from 16 nm to 1 nm technology nodes. Nat. Nanotechnol. 19(7), 1066–1072 (2024). https://doi.org/10.1038/s41565-024-01693-3
- L. Liu, C. Liu, L. Jiang, J. Li, Y. Ding et al., Ultrafast non-volatile flash memory based on van der Waals heterostructures. Nat. Nanotechnol. 16(8), 874–881 (2021). https://doi.org/10.1038/s41565-021-00921-4
- S. Bertolazzi, D. Krasnozhon, A. Kis, Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano 7(4), 3246–3252 (2013). https://doi.org/10.1021/nn3059136
- M.S. Choi, G.H. Lee, Y.J. Yu, D.Y. Lee, S.H. Lee et al., Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices. Nat. Commun. 4, 1624 (2013). https://doi.org/10.1038/ncomms2652
- Q. Feng, F. Yan, W. Luo, K. Wang, Charge trap memory based on few-layer black phosphorus. Nanoscale 8(5), 2686–2692 (2016). https://doi.org/10.1039/c5nr08065g
- H. Wang, H. Guo, R. Guzman, N. JiaziLa, K. Wu et al., Ultrafast non-volatile floating-gate memory based on all-2D materials. Adv. Mater. 36(24), e2311652 (2024). https://doi.org/10.1002/adma.202311652
- S.S. Kim, S.K. Yong, W. Kim, S. Kang, H.W. Park et al., Review of semiconductor flash memory devices for material and process issues. Adv. Mater. 35(43), 2200659 (2023). https://doi.org/10.1002/adma.202200659
- G. Dastgeer, S. Nisar, A. Rasheed, K. Akbar, V.D. Chavan et al., Atomically engineered, high-speed non-volatile flash memory device exhibiting multibit data storage operations. Nano Energy 119, 109106 (2024). https://doi.org/10.1016/j.nanoen.2023.109106
- C. Li, X. Chen, Z. Zhang, X. Wu, T. Yu et al., Charge-selective 2D heterointerface-driven multifunctional floating gate memory for in situ sensing-memory-computing. Nano Lett. 24(47), 15025–15034 (2024). https://doi.org/10.1021/acs.nanolett.4c03828
- T.P.A. Bach, S. Cho, H. Kim, D.A. Nguyen, H. Im, 2D van der waals heterostructure with tellurene floating-gate for wide range and multi-bit optoelectronic memory. ACS Nano 18(5), 4131–4139 (2024). https://doi.org/10.1021/acsnano.3c08567
- X. Huang, C. Liu, Y.-G. Jiang, P. Zhou, In-memory computing to break the memory wall. Chin. Phys. B 29(7), 078504 (2020). https://doi.org/10.1088/1674-1056/ab90e7
- H. Abbas, Y. Abbas, S.N. Truong, K.-S. Min, M.R. Park et al., A memristor crossbar array of titanium oxide for non-volatile memory and neuromorphic applications. Semicond. Sci. Technol. 32(6), 065014 (2017). https://doi.org/10.1088/1361-6641/aa6a3a
- W. Wang, F. Yin, H. Niu, Y. Li, E.S. Kim et al., Tantalum pentoxide (Ta2O5 and Ta2O5-x)-based memristor for photonic in-memory computing application. Nano Energy 106, 108072 (2023). https://doi.org/10.1016/j.nanoen.2022.108072
- B. Mohammad, M.A. Jaoude, V. Kumar, D.M. Al Homouz, H. Abu Nahla et al., State of the art of metal oxide memristor devices. Nanotechnol. Rev. 5(3), 311–329 (2016). https://doi.org/10.1515/ntrev-2015-0029
- M. Xu, X. Mai, J. Lin, W. Zhang, Y. Li et al., Recent advances on neuromorphic devices based on chalcogenide phase-change materials. Adv. Funct. Mater. 30(50), 2003419 (2020). https://doi.org/10.1002/adfm.202003419
- M. Wang, S. Cai, C. Pan, C. Wang, X. Lian et al., Robust memristors based on layered two-dimensional materials. Nat. Electron. 1(2), 130–136 (2018). https://doi.org/10.1038/s41928-018-0021-4
- J. Xie, S. Afshari, I. Sanchez Esqueda, Hexagonal boron nitride (h-BN) memristor arrays for analog-based machine learning hardware. NPJ 2D Mater. Appl. 6, 50 (2022). https://doi.org/10.1038/s41699-022-00328-2
- H. Zhou, V. Sorkin, S. Chen, Z. Yu, K.-W. Ang et al., Design-dependent switching mechanisms of Schottky-barrier-modulated memristors based on 2D semiconductor. Adv. Electron. Mater. 9(6), 2201252 (2023). https://doi.org/10.1002/aelm.202201252
- Y. Qiao, T. Hirtz, F. Wu, G. Deng, X. Li et al., Fabricating molybdenum disulfide memristors. ACS Appl. Electron. Mater. 2(2), 346–370 (2020). https://doi.org/10.1021/acsaelm.9b00655
- H. Zhou, S. Li, K.-W. Ang, Y.-W. Zhang, Recent advances in in-memory computing: exploring memristor and memtransistor arrays with 2D materials. Nano-Micro Lett. 16(1), 121 (2024). https://doi.org/10.1007/s40820-024-01335-2
- S.-C. Tsai, H.-Y. Lo, C.-Y. Huang, M.-C. Wu, Y.-T. Tseng et al., Structural analysis and performance in a dual-mechanism conductive filament memristor. Adv. Electron. Mater. 7(10), 2100605 (2021). https://doi.org/10.1002/aelm.202100605
- K. Tang, Y. Wang, C. Gong, C. Yin, M. Zhang et al., Electronic and photoelectronic memristors based on 2D materials. Adv. Electron. Mater. 8(4), 2101099 (2022). https://doi.org/10.1002/aelm.202101099
- C. Fernandes, A. Santa, Â. Santos, P. Bahubalindruni, J. Deuermeier et al., A sustainable approach to flexible electronics with zinc-tin oxide thin-film transistors. Adv. Electron. Mater. 4(7), 1800032 (2018). https://doi.org/10.1002/aelm.201800032
- S. Park, M. Vosguerichian, Z. Bao, A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale 5(5), 1727–1752 (2013). https://doi.org/10.1039/C3NR33560G
- A.K. Katiyar, A.T. Hoang, D. Xu, J. Hong, B.J. Kim et al., 2D materials in flexible electronics: recent advances and future prospectives. Chem. Rev. 124(2), 318–419 (2024). https://doi.org/10.1021/acs.chemrev.3c00302
- R.C. Andrew, R.E. Mapasha, A.M. Ukpong, N. Chetty, Mechanical properties of graphene and boronitrene. Phys. Rev. B 85(12), 125428 (2012). https://doi.org/10.1103/physrevb.85.125428
- I.-J. Park, T.I. Kim, S. Kang, G.W. Shim, Y. Woo et al., Stretchable thin-film transistors with molybdenum disulfide channels and graphene electrodes. Nanoscale 10(34), 16069–16078 (2018). https://doi.org/10.1039/c8nr03173h
- S. Das, R. Gulotty, A.V. Sumant, A. Roelofs, All two-dimensional, flexible, transparent, and thinnest thin film transistor. Nano Lett. 14(5), 2861–2866 (2014). https://doi.org/10.1021/nl5009037
- A. Daus, S. Vaziri, V. Chen, Ç. Köroğlu, R.W. Grady et al., High-performance flexible nanoscale transistors based on transition metal dichalcogenides. Nat. Electron. 4(7), 495–501 (2021). https://doi.org/10.1038/s41928-021-00598-6
- N. Huo, G. Konstantatos, Recent progress and future prospects of 2D-based photodetectors. Adv. Mater. 30(51), e1801164 (2018). https://doi.org/10.1002/adma.201801164
- D. De Fazio, I. Goykhman, D. Yoon, M. Bruna, A. Eiden et al., High responsivity, large-area graphene/MoS2 flexible photodetectors. ACS Nano 10(9), 8252–8262 (2016). https://doi.org/10.1021/acsnano.6b05109
- J.S. Ko, D.H. Shin, W.J. Lee, C.W. Jang, S. Kim et al., All-two-dimensional semitransparent and flexible photodetectors employing graphene/MoS2/graphene vertical heterostructures. J. Alloys Compd. 864, 158118 (2021). https://doi.org/10.1016/j.jallcom.2020.158118
- C. An, F. Nie, R. Zhang, X. Ma, D. Wu et al., Two-dimensional material-enhanced flexible and self-healable photodetector for large-area photodetection. Adv. Funct. Mater. 31(22), 2100136 (2021). https://doi.org/10.1002/adfm.202100136
- T. Dong, J. Simões, Z. Yang, Flexible photodetector based on 2D materials: processing, architectures, and applications. Adv. Mater. Interfaces 7(4), 1901657 (2020). https://doi.org/10.1002/admi.201901657
- A. Abbas, Y. Luo, W. Ahmad, M. Mustaqeem, L. Kong et al., Recent progress, challenges, and opportunities in 2D materials for flexible displays. Nano Today 56, 102256 (2024). https://doi.org/10.1016/j.nantod.2024.102256
- H. Jiang, L. Zheng, Z. Liu, X. Wang, Two-dimensional materials: From mechanical properties to flexible mechanical sensors. InfoMat 2(6), 1077–1094 (2020). https://doi.org/10.1002/inf2.12072
- R. Cheng, S. Jiang, Y. Chen, Y. Liu, N. Weiss et al., Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. Nat. Commun. 5, 5143 (2014). https://doi.org/10.1038/ncomms6143
- M. Amani, R.A. Burke, R.M. Proie, M. Dubey, Flexible integrated circuits and multifunctional electronics based on single atomic layers of MoS2 and graphene. Nanotechnology 26(11), 115202 (2015). https://doi.org/10.1088/0957-4484/26/11/115202
- Y. Woo, W. Hong, S.Y. Yang, H.J. Kim, J.-H. Cha et al., Large-area CVD-grown MoS2 driver circuit array for flexible organic light-emitting diode display. Adv. Electron. Mater. 4(11), 1800251 (2018). https://doi.org/10.1002/aelm.201800251
- S.J. Kim, K. Choi, B. Lee, Y. Kim, B.H. Hong, Materials for flexible, stretchable electronics: graphene and 2D materials. Annu. Rev. Mater. Res. 45, 63–84 (2015). https://doi.org/10.1146/annurev-matsci-070214-020901
- L. Gao, Flexible device applications of 2D semiconductors. Small 13(35), 1603994 (2017). https://doi.org/10.1002/smll.201603994
- D. Tyagi, H. Wang, W. Huang, L. Hu, Y. Tang et al., Recent advances in two-dimensional-material-based sensing technology toward health and environmental monitoring applications. Nanoscale 12(6), 3535–3559 (2020). https://doi.org/10.1039/C9NR10178K
- Y. Xu, X. Hu, S. Kundu, A. Nag, N. Afsarimanesh et al., Silicon-based sensors for biomedical applications: a review. Sensors 19(13), 2908 (2019). https://doi.org/10.3390/s19132908
- S. Varghese, S. Varghese, S. Swaminathan, K. Singh, V. Mittal, Two-dimensional materials for sensing: graphene and beyond. Electronics 4(3), 651–687 (2015). https://doi.org/10.3390/electronics4030651
- F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake et al., Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6(9), 652–655 (2007). https://doi.org/10.1038/nmat1967
- M. Rodner, D. Puglisi, S. Ekeroth, U. Helmersson, I. Shtepliuk et al., Graphene decorated with iron oxide nanops for highly sensitive interaction with volatile organic compounds. Sensors 19(4), 918 (2019). https://doi.org/10.3390/s19040918
- A.N. Abbas, B. Liu, L. Chen, Y. Ma, S. Cong et al., Black phosphorus gas sensors. ACS Nano 9(5), 5618–5624 (2015). https://doi.org/10.1021/acsnano.5b01961
- Z. Liu, J. Huang, Q. Wang, J. Zhou, J. Ye et al., Indium oxide-black phosphorus composites for ultrasensitive nitrogen dioxide sensing at room temperature. Sens. Actuat. B Chem. 308, 127650 (2020). https://doi.org/10.1016/j.snb.2019.127650
- G. Deokar, P. Vancsó, R. Arenal, F. Ravaux, J. Casanova-Cháfer et al., MoS2–carbon nanotube hybrid material growth and gas sensing. Adv. Mater. Interfaces 4(24), 1700801 (2017). https://doi.org/10.1002/admi.201700801
- T. Järvinen, G.S. Lorite, J. Peräntie, G. Toth, S. Saarakkala et al., WS2 and MoS2 thin film gas sensors with high response to NH3 in air at low temperature. Nanotechnology 30(40), 405501 (2019). https://doi.org/10.1088/1361-6528/ab2d48
- X. Chen, S. Hao, B. Zong, C. Liu, S. Mao, Ultraselective antibiotic sensing with complementary strand DNA assisted aptamer/MoS2 field-effect transistors. Biosens. Bioelectron. 145, 111711 (2019). https://doi.org/10.1016/j.bios.2019.111711
- T. Pham, G. Li, E. Bekyarova, M.E. Itkis, A. Mulchandani, MoS2-based optoelectronic gas sensor with sub-parts-per-billion limit of NO2 gas detection. ACS Nano 13(3), 3196–3205 (2019). https://doi.org/10.1021/acsnano.8b08778
- W. Zhao, R. Yan, H. Li, K. Ding, Y. Chen et al., Highly sensitive NO2 gas sensor with a low detection limit based on Pt-modified MoS2 flakes. Mater. Lett. 330, 133386 (2023). https://doi.org/10.1016/j.matlet.2022.133386
- Q. Li, Y. Cen, J. Huang, X. Li, H. Zhang et al., Zinc oxide-black phosphorus composites for ultrasensitive nitrogen dioxide sensing. Nanoscale Horiz. 3(5), 525–531 (2018). https://doi.org/10.1039/c8nh00052b
- M.R. Mohammadzadeh, A. Hasani, T. Hussain, H. Ghanbari, M. Fawzy et al., Enhanced sensitivity in photovoltaic 2D MoS2/Te heterojunction VOC sensors. Small 20(49), e2402464 (2024). https://doi.org/10.1002/smll.202402464
- K. Zhu, C. Wen, A.A. Aljarb, F. Xue, X. Xu et al., The development of integrated circuits based on two-dimensional materials. Nat. Electron. 4(11), 775–785 (2021). https://doi.org/10.1038/s41928-021-00672-z
- X. Huang, C. Liu, P. Zhou, 2D semiconductors for specific electronic applications: from device to system. NPJ 2D Mater. Appl. 6, 51 (2022). https://doi.org/10.1038/s41699-022-00327-3
- B. Radisavljevic, M.B. Whitwick, A. Kis, Integrated circuits and logic operations based on single-layer MoS2. ACS Nano 5(12), 9934–9938 (2011). https://doi.org/10.1021/nn203715c
- H.S. Song, S.L. Li, L. Gao, Y. Xu, K. Ueno et al., High-performance top-gated monolayer SnS2 field-effect transistors and their integrated logic circuits. Nanoscale 5(20), 9666–9670 (2013). https://doi.org/10.1039/C3NR01899G
- M. Tosun, S. Chuang, H. Fang, A.B. Sachid, M. Hettick et al., High-gain inverters based on WSe2 complementary field-effect transistors. ACS Nano 8(5), 4948–4953 (2014). https://doi.org/10.1021/nn5009929
- Y. Liu, K.-W. Ang, Monolithically integrated flexible black phosphorus complementary inverter circuits. ACS Nano 11(7), 7416–7423 (2017). https://doi.org/10.1021/acsnano.7b03703
- Y.J. Park, A.K. Katiyar, A.T. Hoang, J.-H. Ahn, Controllable P- and N-type conversion of MoTe2 via oxide interfacial layer for logic circuits. Small 15(28), 1901772 (2019). https://doi.org/10.1002/smll.201901772
- C.-Y. Lin, K.B. Simbulan, C.-J. Hong, K.-S. Li, Y.-L. Zhong et al., Polarity-controllable MoS2 transistor for adjustable complementary logic inverter applications. Nanoscale Horiz. 5(1), 163–170 (2020). https://doi.org/10.1039/c9nh00275h
- L. Chen, S. Li, X. Feng, L. Wang, X. Huang et al., Gigahertz integrated circuits based on complementary black phosphorus transistors. Adv. Electron. Mater. 4(9), 1800274 (2018). https://doi.org/10.1002/aelm.201800274
- A. Dathbun, Y. Kim, S. Kim, Y. Yoo, M.S. Kang et al., Large-area CVD-grown sub-2 V ReS2 transistors and logic gates. Nano Lett. 17(5), 2999–3005 (2017). https://doi.org/10.1021/acs.nanolett.7b00315
- J. Kwon, Y. Shin, H. Kwon, J.Y. Lee, H. Park et al., All-2D ReS2 transistors with split gates for logic circuitry. Sci. Rep. 9(1), 10354 (2019). https://doi.org/10.1038/s41598-019-46730-7
- Z. Lin, Y. Liu, U. Halim, M. Ding, Y. Liu et al., Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 562(7726), 254–258 (2018). https://doi.org/10.1038/s41586-018-0574-4
- H. Lee, K. Lee, Y. Kim, H. Ji, J. Choi et al., Transfer of transition-metal dichalcogenide circuits onto arbitrary substrates for flexible device applications. Nanoscale 11(45), 22118–22124 (2019). https://doi.org/10.1039/C9NR05065E
- M.-H. Chuang, K.-C. Chiu, Y.-T. Lin, G. Tulevski, P.-H. Chen et al., Integrated low-dimensional semiconductors for scalable low-power CMOS logic. Adv. Funct. Mater. 33(27), 2212722 (2023). https://doi.org/10.1002/adfm.202212722
- L. Tong, J. Wan, K. Xiao, J. Liu, J. Ma, X. Guo, L. Zhou, X. Chen, Y. Xia, S. Dai, X. Zihan, W. Bao, P. Zhou, Heterogeneous complementary field-effect transistors based on silicon and molybdenum disulfide. Nat. Electron. (2022). https://doi.org/10.1038/s41928-022-00881-0
- D. Fan, W. Li, H. Qiu, Y. Xu, S. Gao et al., Two-dimensional semiconductor integrated circuits operating at gigahertz frequencies. Nat. Electron. 6(11), 879–887 (2023). https://doi.org/10.1038/s41928-023-01052-5
- X. Jia, Z. Cheng, B. Han, X. Cheng, Q. Wang et al., High-performance CMOS inverter array with monolithic 3D architecture based on CVD-grown n-MoS2 and p-MoTe2. Small 19(19), 2207927 (2023). https://doi.org/10.1002/smll.202207927
- M. Liu, J. Niu, G. Yang, K. Chen, W. Lu et al., Large-scale ultrathin channel nanosheet-stacked CFET based on CVD 1L MoS2/WSe2. Adv. Electron. Mater. 9(2), 2200722 (2023). https://doi.org/10.1002/aelm.202200722
- X. Wei, X. Zhang, H. Yu, L. Gao, W. Tang et al., Homojunction-loaded inverters based on self-biased molybdenum disulfide transistors for sub-picowatt computing. Nat. Electron. 7(2), 138–146 (2024). https://doi.org/10.1038/s41928-023-01112-w
- J. Tang, Q. Wang, Z. Wei, C. Shen, X. Lu et al., Vertical integration of 2D building blocks for all-2D electronics. Adv. Electron. Mater. 6(12), 2000550 (2020). https://doi.org/10.1002/aelm.202000550
- Xi F, Sharma H, Wu X, Schram T, Cott D et al. (2024) Integration of GAA monolayer MoS2 nanosheet FETs with gate first process for future 2D CFET scaling. In: 2024 IEEE European solid-state electronics research conference (ESSERC). September 9–12, 2024, Bruges, Belgium. IEEE, pp 121–124
- M. Xie, Y. Jia, C. Nie, Z. Liu, A. Tang et al., Monolithic 3D integration of 2D transistors and vertical RRAMs in 1T–4R structure for high-density memory. Nat. Commun. 14(1), 5952 (2023). https://doi.org/10.1038/s41467-023-41736-2
- J.-H. Kang, H. Shin, K.S. Kim, M.-K. Song, D. Lee et al., Monolithic 3D integration of 2D materials-based electronics towards ultimate edge computing solutions. Nat. Mater. 22(12), 1470–1477 (2023). https://doi.org/10.1038/s41563-023-01704-z
- R. Pendurthi, N.U. Sakib, M.U.K. Sadaf, Z. Zhang, Y. Sun et al., Monolithic three-dimensional integration of complementary two-dimensional field-effect transistors. Nat. Nanotechnol. 19(7), 970–977 (2024). https://doi.org/10.1038/s41565-024-01705-2
- S. Ghosh, Y. Zheng, Z. Zhang, Y. Sun, T.F. Schranghamer et al., Monolithic and heterogeneous three-dimensional integration of two-dimensional materials with high-density vias. Nat. Electron. 7(10), 892–903 (2024). https://doi.org/10.1038/s41928-024-01251-8
- D. Ielmini, H.S.P. Wong, In-memory computing with resistive switching devices. Nat. Electron. 1(6), 333–343 (2018). https://doi.org/10.1038/s41928-018-0092-2
- L. Yin, R. Cheng, Z. Wang, F. Wang, M.G. Sendeku et al., Two-dimensional unipolar memristors with logic and memory functions. Nano Lett. 20(6), 4144–4152 (2020). https://doi.org/10.1021/acs.nanolett.0c00002
- S. Chakrabarti, A. Wali, H. Ravichandran, S. Kundu, T.F. Schranghamer et al., Logic locking of integrated circuits enabled by nanoscale MoS2-based memtransistors. ACS Appl. Nano Mater. 5(10), 14447–14455 (2022). https://doi.org/10.1021/acsanm.2c02807
- B. Tang, H. Veluri, Y. Li, Z.G. Yu, M. Waqar et al., Wafer-scale solution-processed 2D material analog resistive memory array for memory-based computing. Nat. Commun. 13(1), 3037 (2022). https://doi.org/10.1038/s41467-022-30519-w
- Y. Li, L. Loh, S. Li, L. Chen, B. Li et al., Anomalous resistive switching in memristors based on two-dimensional palladium diselenide using heterophase grain boundaries. Nat. Electron. 4(5), 348–356 (2021). https://doi.org/10.1038/s41928-021-00573-1
- C. Liu, H. Chen, X. Hou, H. Zhang, J. Han et al., Small footprint transistor architecture for photoswitching logic and in situ memory. Nat. Nanotechnol. 14(7), 662–667 (2019). https://doi.org/10.1038/s41565-019-0462-6
- S. Wachter, D.K. Polyushkin, O. Bethge, T. Mueller, A microprocessor based on a two-dimensional semiconductor. Nat. Commun. 8, 14948 (2017). https://doi.org/10.1038/ncomms14948
- X. Chen, Y. Xie, Y. Sheng, H. Tang, Z. Wang et al., Wafer-scale functional circuits based on two dimensional semiconductors with fabrication optimized by machine learning. Nat. Commun. 12(1), 5953 (2021). https://doi.org/10.1038/s41467-021-26230-x
- S. Zeng, C. Liu, X. Huang, Z. Tang, L. Liu et al., An application-specific image processing array based on WSe2 transistors with electrically switchable logic functions. Nat. Commun. 13(1), 56 (2022). https://doi.org/10.1038/s41467-021-27644-3
- D.K. Polyushkin, S. Wachter, L. Mennel, M. Paur, M. Paliy et al., Analogue two-dimensional semiconductor electronics. Nat. Electron. 3(8), 486–491 (2020). https://doi.org/10.1038/s41928-020-0460-6
- J. Tang, Q. Wang, J. Tian, X. Li, N. Li et al., Low power flexible monolayer MoS2 integrated circuits. Nat. Commun. 14, 3633 (2023). https://doi.org/10.1038/s41467-023-39390-9
- Y. Peng, C. Cui, L. Li, Y. Wang, Q. Wang et al., Medium-scale flexible integrated circuits based on 2D semiconductors. Nat. Commun. 15(1), 10833 (2024). https://doi.org/10.1038/s41467-024-55142-9
- G. Migliato Marega, Y. Zhao, A. Avsar, Z. Wang, M. Tripathi et al., Logic-in-memory based on an atomically thin semiconductor. Nature 587(7832), 72–77 (2020). https://doi.org/10.1038/s41586-020-2861-0
- Q. Huo, Y. Yang, Y. Wang, D. Lei, X. Fu et al., A computing-in-memory macro based on three-dimensional resistive random-access memory. Nat. Electron. 5(7), 469–477 (2022). https://doi.org/10.1038/s41928-022-00795-x
- A. Dodda, N. Trainor, J.M. Redwing, S. Das, All-in-one, bio-inspired, and low-power crypto engines for near-sensor security based on two-dimensional memtransistors. Nat. Commun. 13(1), 3587 (2022). https://doi.org/10.1038/s41467-022-31148-z
- P. Kumar, K. Zhu, X. Gao, S.D. Wang, M. Lanza, C.S. Thakur, Hybrid architecture based on two-dimensional memristor crossbar array and CMOS integrated circuit for edge computing. NPJ 2D Mater. Appl. 6(1), 8 (2022). https://doi.org/10.1038/s41699-021-00284-3
- Y. Liu, H. Tian, F. Wu, A. Liu, Y. Li et al., Cellular automata imbedded memristor-based recirculated logic in-memory computing. Nat. Commun. 14(1), 2695 (2023). https://doi.org/10.1038/s41467-023-38299-7
- A. Dodda, D. Jayachandran, A. Pannone, N. Trainor, S.P. Stepanoff et al., Active pixel sensor matrix based on monolayer MoS2 phototransistor array. Nat. Mater. 21(12), 1379–1387 (2022). https://doi.org/10.1038/s41563-022-01398-9
- R. Pendurthi, D. Jayachandran, A. Kozhakhmetov, N. Trainor, J.A. Robinson et al., Heterogeneous integration of atomically thin semiconductors for non-von Neumann CMOS. Small 18(33), e2202590 (2022). https://doi.org/10.1002/smll.202202590
- S. Wang, X. Liu, M. Xu, L. Liu, D. Yang et al., Two-dimensional devices and integration towards the silicon lines. Nat. Mater. 21(11), 1225–1239 (2022). https://doi.org/10.1038/s41563-022-01383-2
- Y.-M. Lin, A. Valdes-Garcia, S.-J. Han, D.B. Farmer, I. Meric et al., Wafer-scale graphene integrated circuit. Science 332(6035), 1294–1297 (2011). https://doi.org/10.1126/science.1204428
- O. Habibpour, Z.S. He, W. Strupinski, N. Rorsman, H. Zirath, Wafer scale millimeter-wave integrated circuits based on epitaxial graphene in high data rate communication. Sci. Rep. 7, 41828 (2017). https://doi.org/10.1038/srep41828
- A. Dodda, S. Subbulakshmi Radhakrishnan, T.F. Schranghamer, D. Buzzell, P. Sengupta et al., Graphene-based physically unclonable functions that are reconfigurable and resilient to machine learning attacks. Nat. Electron. 4(5), 364–374 (2021). https://doi.org/10.1038/s41928-021-00569-x
- K.P. Soundarapandian, S. Castilla, S.M. Koepfli, S. Marconi, L. Kulmer et al., High-speed graphene-based sub-terahertz receivers enabling wireless communications for 6G and beyond. arXiv:2411.02269 (2024). https://doi.org/10.48550/arXiv.2411.02269
- A. Pannone, A. Raj, H. Ravichandran, S. Das, Z. Chen et al., Robust chemical analysis with graphene chemosensors and machine learning. Nature 634(8034), 572–578 (2024). https://doi.org/10.1038/s41586-024-08003-w
- A. Sebastian, A. Pannone, S. Subbulakshmi Radhakrishnan, S. Das, Gaussian synapses for probabilistic neural networks. Nat. Commun. 10, 4199 (2019). https://doi.org/10.1038/s41467-019-12035-6
- S. Das, A. Dodda, S. Das, A biomimetic 2D transistor for audiomorphic computing. Nat. Commun. 10(1), 3450 (2019). https://doi.org/10.1038/s41467-019-11381-9
- T.F. Schranghamer, A. Oberoi, S. Das, Graphene memristive synapses for high precision neuromorphic computing. Nat. Commun. 11(1), 5474 (2020). https://doi.org/10.1038/s41467-020-19203-z
- D. Jayachandran, A. Oberoi, A. Sebastian, T.H. Choudhury, B. Shankar et al., A low-power biomimetic collision detector based on an in-memory molybdenum disulfide photodetector. Nat. Electron. 3(10), 646–655 (2020). https://doi.org/10.1038/s41928-020-00466-9
- S. Ghosh, A. Pannone, D. Sen, A. Wali, H. Ravichandran et al., An all 2D bio-inspired gustatory circuit for mimicking physiology and psychology of feeding behavior. Nat. Commun. 14(1), 6021 (2023). https://doi.org/10.1038/s41467-023-41046-7
- M.U.K. Sadaf, N.U. Sakib, A. Pannone, H. Ravichandran, S. Das, A bio-inspired visuotactile neuron for multisensory integration. Nat. Commun. 14(1), 5729 (2023). https://doi.org/10.1038/s41467-023-40686-z
- Y. Ding, Y. Cao, X. Luo, E. Shang, S. Hu et al., A device design for 5 nm logic FinFET technology. J. Microelectron. Manuf. 3(1), 1–8 (2019). https://doi.org/10.33079/jomm.20030105
- D. Qi, P. Li, H. Ou, D. Wu, W. Lian et al., Graphene-enhanced metal transfer printing for strong van der waals contacts between 3D metals and 2D semiconductors. Adv. Funct. Mater. 33(27), 2301704 (2023). https://doi.org/10.1002/adfm.202301704
- N. Kaushik, D. Karmakar, A. Nipane, S. Karande, S. Lodha, Interfacial n-doping using an ultrathin TiO2 layer for contact resistance reduction in MoS2. ACS Appl. Mater. Interfaces 8(1), 256–263 (2016). https://doi.org/10.1021/acsami.5b08559
- W. Li, X. Gong, Z. Yu, L. Ma, W. Sun et al., Approaching the quantum limit in two-dimensional semiconductor contacts. Nature 613(7943), 274–279 (2023). https://doi.org/10.1038/s41586-022-05431-4
- P.-C. Shen, C. Su, Y. Lin, A.-S. Chou, C.-C. Cheng et al., Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593(7858), 211–217 (2021). https://doi.org/10.1038/s41586-021-03472-9
- J. Jiang, L. Xu, L. Du, L. Li, G. Zhang et al., Yttrium-doping-induced metallization of molybdenum disulfide for ohmic contacts in two-dimensional transistors. Nat. Electron. 7(7), 545–556 (2024). https://doi.org/10.1038/s41928-024-01176-2
- L. Kong, R. Wu, Y. Chen, Y. Huangfu, L. Liu et al., Wafer-scale and universal van der Waals metal semiconductor contact. Nat. Commun. 14(1), 1014 (2023). https://doi.org/10.1038/s41467-023-36715-6
- X. Zhang, C. Huang, Z. Li, J. Fu, J. Tian et al., Reliable wafer-scale integration of two-dimensional materials and metal electrodes with van der Waals contacts. Nat. Commun. 15, 4619 (2024). https://doi.org/10.1038/s41467-024-49058-7
- M. Das, D. Sen, N.U. Sakib, H. Ravichandran, Y. Sun et al., High-performance p-type field-effect transistors using substitutional doping and thickness control of two-dimensional materials. Nat. Electron. 8(1), 24–35 (2024). https://doi.org/10.1038/s41928-024-01265-2
- M.J. Mleczko, C. Zhang, H.R. Lee, H.H. Kuo, B. Magyari-Köpe et al., HfSe2 and ZrSe2: two-dimensional semiconductors with native high-κ oxides. Sci. Adv. 3(8), e1700481 (2017). https://doi.org/10.1126/sciadv.1700481
- D. Zeng, Z. Zhang, Z. Xue, M. Zhang, P.K. Chu et al., Single-crystalline metal-oxide dielectrics for top-gate 2D transistors. Nature 632(8026), 788–794 (2024). https://doi.org/10.1038/s41586-024-07786-2
- Y.Y. Illarionov, A.G. Banshchikov, D.K. Polyushkin, S. Wachter, T. Knobloch et al., Ultrathin calcium fluoride insulators for two-dimensional field-effect transistors. Nat. Electron. 2(6), 230–235 (2019). https://doi.org/10.1038/s41928-019-0256-8
- F. Xu, Z. Wu, G. Liu, F. Chen, J. Guo et al., Few-layered MnAl2S4 dielectrics for high-performance van der waals stacked transistors. ACS Appl. Mater. Interfaces 14(22), 25920–25927 (2022). https://doi.org/10.1021/acsami.2c04477
- W. Xu, J. Jiang, Y. Chen, N. Tang, C. Jiang et al., Single-crystalline High-κ GdOCl dielectric for two-dimensional field-effect transistors. Nat. Commun. 15(1), 9469 (2024). https://doi.org/10.1038/s41467-024-53907-w
- C.-Y. Zhu, M.-R. Zhang, Q. Chen, L.-Q. Yue, R. Song et al., Magnesium niobate as a high-κ gate dielectric for two-dimensional electronics. Nat. Electron. 7(12), 1137–1146 (2024). https://doi.org/10.1038/s41928-024-01245-6
- D. Sen, H. Ravichandran, M. Das, P. Venkatram, S. Choo et al., Multifunctional 2D FETs exploiting incipient ferroelectricity in freestanding SrTiO3 nanomembranes at sub-ambient temperatures. Nat. Commun. 15(1), 10739 (2024). https://doi.org/10.1038/s41467-024-54231-z
- Z. Lu, Y. Chen, W. Dang, L. Kong, Q. Tao et al., Wafer-scale high-κ dielectrics for two-dimensional circuits via van der Waals integration. Nat. Commun. 14(1), 2340 (2023). https://doi.org/10.1038/s41467-023-37887-x
- J.H. Ryu, Y.G. You, S.W. Kim, J.H. Hong, J.H. Na et al., Effect of Al2O3 deposition on carrier mobility and ambient stability of few-la
References
G.E. Moore, Cramming more components onto integrated circuits. Proc. IEEE 86(1), 82–85 (1998). https://doi.org/10.1109/JPROC.1998.658762
M. Chhowalla, D. Jena, H. Zhang, Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1(11), 16052 (2016). https://doi.org/10.1038/natrevmats.2016.52
H. Li, Q. Li, Y. Li, Z. Yang, R. Quhe et al., Recent experimental breakthroughs on 2D transistors: approaching the theoretical limit. Adv. Funct. Mater. 34(38), 2402474 (2024). https://doi.org/10.1002/adfm.202402474
D. Bol, R. Ambroise, D. Flandre, J.-D. Legat, Interests and limitations of technology scaling for subthreshold logic. IEEE T. VLSI Syst. 17(10), 1508–1519 (2009). https://doi.org/10.1109/TVLSI.2008.2005413
W. Zhao, Y. Cao, New generation of predictive technology model for sub-45 nm early design exploration. IEEE Trans. Electron Devices 53(11), 2816–2823 (2006). https://doi.org/10.1109/TED.2006.884077
Q. Yang, Z.-D. Luo, H. Duan, X. Gan, D. Zhang et al., Steep-slope vertical-transport transistors built from sub-5 nm Thin van der Waals heterostructures. Nat. Commun. 15(1), 1138 (2024). https://doi.org/10.1038/s41467-024-45482-x
T. Pei, L. Bao, G. Wang, R. Ma, H. Yang et al., Few-layer SnSe2 transistors with high on/off ratios. Appl. Phys. Lett. 108(5), 053506 (2016). https://doi.org/10.1063/1.4941394
J. Seo, J. Lee, M. Shin, Analysis of drain-induced barrier rising in short-channel negative-capacitance FETs and its applications. IEEE Trans. Electron Devices 64(4), 1793–1798 (2017). https://doi.org/10.1109/TED.2017.2658673
J.-S. Yoon, J. Jeong, S. Lee, R.-H. Baek, Bottom oxide bulk FinFETs without punch-through-stopper for extending toward 5-nm node. IEEE Access 7, 75762 (2019). https://doi.org/10.1109/ACCESS.2019.2920902
I. Ferain, C.A. Colinge, J. Colinge, Multigate transistors as the future of classical metal-oxide-semiconductor field-effect transistors. Nature 479, 310 (2011). https://doi.org/10.1038/nature10676
H. Wang, S. Gao, F. Zhang, F. Meng, Z. Guo et al., Repression of interlayer recombination by graphene generates a sensitive nanostructured 2D vdW heterostructure based photodetector. Adv. Sci. 8, 2100503 (2021). https://doi.org/10.1002/advs.202100503
L. Yin, R. Cheng, J. Ding, J. Jiang, Y. Hou et al., Two-dimensional semiconductors and transistors for future integrated circuits. ACS Nano 18(11), 7739–7768 (2024). https://doi.org/10.1021/acsnano.3c10900
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
X. Jing, Y. Illarionov, E. Yalon, P. Zhou, T. Grasser et al., Engineering field effect transistors with 2D semiconducting channels: status and prospects. Adv. Funct. Mater. 30(18), 1901971 (2020). https://doi.org/10.1002/adfm.201901971
F. Schwierz, J. Pezoldt, R. Granzner, Two-dimensional materials and their prospects in transistor electronics. Nanoscale 7(18), 8261–8283 (2015). https://doi.org/10.1039/c5nr01052g
Y. Liu, X. Duan, H.-J. Shin, S. Park, Y. Huang et al., Promises and prospects of two-dimensional transistors. Nature 591(7848), 43–53 (2021). https://doi.org/10.1038/s41586-021-03339-z
Y. Liu, X. Duan, Y. Huang, X. Duan, Two-dimensional transistors beyond graphene and TMDCs. Chem. Soc. Rev. 47(16), 6388–6409 (2018). https://doi.org/10.1039/c8cs00318a
M.C. Lemme, L. Li, T. Palacios, F. Schwierz, Two-dimensional materials for electronic applications. MRS Bull. 39, 711–718 (2014). https://doi.org/10.1557/mrs.2014.138
X. Zhang, Software system research in post-Moore’s Law era: a historical perspective for the future. Sci. China Inf. Sci. 62(9), 196101 (2019). https://doi.org/10.1007/s11432-019-9860-1
H. Xu, H. Zhang, Z. Guo, Y. Shan, S. Wu et al., High-performance wafer-scale MoS2 transistors toward practical application. Small 14(48), e1803465 (2018). https://doi.org/10.1002/smll.201803465
J. Chen, M. Sun, Z. Wang, Z. Zhang, K. Zhang et al., Performance limits and advancements in single 2d transition metal dichalcogenide transistor. Nano-Micro Lett. 16, 264 (2024). https://doi.org/10.1007/s40820-024-01461-x
A.E. Naclerio, P.R. Kidambi, A review of scalable hexagonal boron nitride (h-BN) synthesis for present and future applications. Adv. Mater. 35(6), e2207374 (2023). https://doi.org/10.1002/adma.202207374
Z. Dong, Q. Hua, J. Xi, Y. Shi, T. Huang et al., Ultrafast and low-power 2D Bi2O2Se memristors for neuromorphic computing applications. Nano Lett. 23(9), 3842–3850 (2023). https://doi.org/10.1021/acs.nanolett.3c00322
J.-K. Huang, Y. Wan, J. Shi, J. Zhang, Z. Wang et al., High-κ perovskite membranes as insulators for two-dimensional transistors. Nature 605(7909), 262–267 (2022). https://doi.org/10.1038/s41586-022-04588-2
Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012). https://doi.org/10.1038/nnano.2012.193
W. Zhu, T. Low, H. Wang, P. Ye, X. Duan, Nanoscale electronic devices based on transition metal dichalcogenides. D Mater. 6(3), 032004 (2019). https://doi.org/10.1088/2053-1583/ab1ed9
A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183 (2007). https://doi.org/10.1038/nmat1849
Z. Guan, H. Hu, X. Shen, P. Xiang, N. Zhong et al., Recent progress in two-dimensional ferroelectric materials. Adv. Electron. Mater. 6(1), 1900818 (2020). https://doi.org/10.1002/aelm.201900818
X. Zou, H. Liang, Y. Li, Y. Zou, F. Tian et al., 2D Bi2O2Te semiconductor with single-crystal native oxide layer. Adv. Funct. Mater. 33(18), 2213807 (2023). https://doi.org/10.1002/adfm.202213807
H. Song, F. Zhou, S. Yan, X. Su, H. Wu et al., Enhanced transport and optoelectronic properties of van der waals materials on CaF2 films. Nano Lett. 23(11), 4983–4990 (2023). https://doi.org/10.1021/acs.nanolett.3c00818
J. Jiang, L. Xu, C. Qiu, L.-M. Peng, Ballistic two-dimensional InSe transistors. Nature 616(7957), 470–475 (2023). https://doi.org/10.1038/s41586-023-05819-w
S. Zeng, C. Liu, P. Zhou, Transistor engineering based on 2D materials in the post-silicon era. Nat. Rev. Electr. Eng. 1(5), 335–348 (2024). https://doi.org/10.1038/s44287-024-00045-6
Y. Zhai, Z. Feng, Y. Zhou, S.-T. Han, Energy-efficient transistors: suppressing the subthreshold swing below the physical limit. Mater. Horiz. 8(6), 1601–1617 (2021). https://doi.org/10.1039/d0mh02029j
L. Qin, H. Tian, C. Li, Z. Xie, Y. Wei et al., Steep slope field effect transistors based on 2D materials. Adv. Electron. Mater. 10(8), 2300625 (2024). https://doi.org/10.1002/aelm.202300625
D. Daw, H. Bouzid, M. Jung, D. Suh, C. Biswas et al., Ultrafast negative capacitance transition for 2D ferroelectric MoS2/graphene transistor. Adv. Mater. 36(13), e2304338 (2024). https://doi.org/10.1002/adma.202304338
K. Nakamura, N. Nagamura, K. Ueno, T. Taniguchi, K. Watanabe et al., All 2D heterostructure tunnel field-effect transistors: impact of band alignment and heterointerface quality. ACS Appl. Mater. Interfaces 12(46), 51598–51606 (2020). https://doi.org/10.1021/acsami.0c13233
X. Xie, Z. Wang, X. Liu, F. Liu, Ternary cold source transistors for multivalue logic applications. Phys. Rev. Appl. 22, 014053 (2024). https://doi.org/10.1103/PhysRevApplied.22.014053
E.C. Ahn, 2D materials for spintronic devices. NPJ 2D Mater. Appl. 4, 17 (2020). https://doi.org/10.1038/s41699-020-0152-0
L. Meng, J. Zhang, X. Yuan, M. Yang, B. Wang et al., Gate voltage dependence ultrahigh sensitivity WS₂ avalanche field-effect transistor. IEEE Trans. Electron Devices 69(6), 3225–3229 (2022). https://doi.org/10.1109/TED.2022.3166714
A. Razavieh, P. Zeitzoff, E.J. Nowak, Challenges and limitations of CMOS scaling for FinFET and beyond architectures. IEEE Trans. Nanotechnol. 18, 999–1004 (2019). https://doi.org/10.1109/TNANO.2019.2942456
J. Ajayan, D. Nirmal, S. Tayal, S. Bhattacharya, L. Arivazhagan et al., Nanosheet field effect transistors-a next generation device to keep Moore’s law alive: an intensive study. Microelectron. J. 114, 105141 (2021). https://doi.org/10.1016/j.mejo.2021.105141
Y.-J. Lee, G.-L. Luo, F.-J. Hou, M.-C. Chen, C.-C. Yang et al., Ge GAA FETs and TMD FinFETs for the applications beyond Si: a review. IEEE J. Electron Devices Soc. 4(5), 286–293 (2016). https://doi.org/10.1109/JEDS.2016.2590580
U.K. Das, M.M. Hussain, Benchmarking silicon FinFET with the carbon nanotube and 2D-FETs for advanced node CMOS logic application. IEEE Trans. Electron Devices 68(7), 3643–3648 (2021). https://doi.org/10.1109/TED.2021.3081076
X. Huang, C. Liu, S. Zeng, Z. Tang, S. Wang et al., Ultrathin multibridge channel transistor enabled by van der waals assembly. Adv. Mater. 33(37), e2102201 (2021). https://doi.org/10.1002/adma.202102201
C. Liu, H. Chen, S. Wang, Q. Liu, Y.-G. Jiang et al., Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 15(7), 545–557 (2020). https://doi.org/10.1038/s41565-020-0724-3
L. Yin, R. Cheng, Y. Wen, C. Liu, J. He, Emerging 2D memory devices for in-memory computing. Adv. Mater. 33(29), 2007081 (2021). https://doi.org/10.1002/adma.202007081
Y. Wang, Q. Sun, J. Yu, N. Xu, Y. Wei et al., Boolean logic computing based on neuromorphic transistor. Adv. Funct. Mater. 33(47), 2305791 (2023). https://doi.org/10.1002/adfm.202305791
H. Yoo, C.-H. Kim, Multi-valued logic system: new opportunities from emerging materials and devices. J. Mater. Chem. C 9(12), 4092–4104 (2021). https://doi.org/10.1039/d1tc00148e
N. Li, Q. Wang, C. He, J. Li, X. Li et al., 2D semiconductor based flexible photoresponsive ring oscillators for artificial vision pixels. ACS Nano 17, 991–999 (2023). https://doi.org/10.1021/acsnano.2c06921
S.B. Jo, J. Kang, J.H. Cho, Recent advances on multivalued logic gates: a materials perspective. Adv. Sci. 8(8), 2004216 (2021). https://doi.org/10.1002/advs.202004216
K. Ashokbhai Patel, R.W. Grady, K.K.H. Smithe, E. Pop, R. Sordan, Ultra-scaled MoS2 transistors and circuits fabricated without nanolithography. 2D Mater. 7(1), 015018 (2020). https://doi.org/10.1088/2053-1583/ab4ef0
D. Jayachandran, N.U. Sakib, S. Das, 3D integration of 2D electronics. Nat. Rev. Electr. Eng. 1(5), 300–316 (2024). https://doi.org/10.1038/s44287-024-00038-5
D. Jayachandran, R. Pendurthi, M.U.K. Sadaf, N.U. Sakib, A. Pannone et al., Three-dimensional integration of two-dimensional field-effect transistors. Nature 625(7994), 276–281 (2024). https://doi.org/10.1038/s41586-023-06860-5
Y. Shen, Z. Dong, Y. Sun, H. Guo, F. Wu et al., The trend of 2D transistors toward integrated circuits: scaling down and new mechanisms. Adv. Mater. 34(48), 2201916 (2022). https://doi.org/10.1002/adma.202201916
G.V. Resta, A. Leonhardt, Y. Balaji, S. De Gendt, P.-E. Gaillardon et al., Devices and circuits using novel 2-D materials: a perspective for future VLSI systems. IEEE T. VLSI Syst. 27(7), 1486–1503 (2019). https://doi.org/10.1109/TVLSI.2019.2914609
C. Sheng, X. Dong, Y. Zhu, X. Wang, X. Chen et al., Two-dimensional semiconductors: from device processing to circuit integration. Adv. Funct. Mater. 33(50), 2304778 (2023). https://doi.org/10.1002/adfm.202304778
M. Turunen, M. Brotons-Gisbert, Y. Dai, Y. Wang, E. Scerri et al., Quantum photonics with layered 2D materials. Nat. Rev. Phys. 4(4), 219–236 (2022). https://doi.org/10.1038/s42254-021-00408-0
K. Khan, A.K. Tareen, M. Aslam, R. Wang, Y. Zhang et al., Recent developments in emerging two-dimensional materials and their applications. J. Mater. Chem. C 8(2), 387–440 (2020). https://doi.org/10.1039/c9tc04187g
P. Kumbhakar, J.S. Jayan, A.S. Madhavikutty, P.R. Sreeram, A. Saritha et al., Prospective applications of two-dimensional materials beyond laboratory frontiers: a review. iScience 26(5), 106671 (2023). https://doi.org/10.1016/j.isci.2023.106671
Y. Wang, S. Sarkar, H. Yan, M. Chhowalla, Critical challenges in the development of electronics based on two-dimensional transition metal dichalcogenides. Nat. Electron. 7(8), 638–645 (2024). https://doi.org/10.1038/s41928-024-01210-3
R.F. Frindt, Single crystals of MoS2 several molecular layers thick. J. Appl. Phys. 37(4), 1928–1929 (1966). https://doi.org/10.1063/1.1708627
P. Joensen, R.F. Frindt, S.R. Morrison, Single-layer MoS2. Mater. Res. Bull. 21(4), 457–461 (1986). https://doi.org/10.1016/0025-5408(86)90011-5
N. Thomas, S. Mathew, K.M. Nair, K. O’Dowd, P. Forouzandeh et al., 2D MoS2: structure, mechanisms, and photocatalytic applications. Mater. Today Sustain. 13, 100073 (2021). https://doi.org/10.1016/j.mtsust.2021.100073
B. Liu, A. Abbas, C. Zhou, Two-dimensional semiconductors: from materials preparation to electronic applications. Adv. Electron. Mater. 3(7), 1700045 (2017). https://doi.org/10.1002/aelm.201700045
S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, A. Kis, 2D transition metal dichalcogenides. Nat. Rev. Mater. 2(8), 17033 (2017). https://doi.org/10.1038/natrevmats.2017.33
Z. Cheng, X. Jia, B. Han, M. Li, W. Xu et al., P/N-type conversion of 2D MoTe2 controlled by top gate engineering for logic circuits. ACS Appl. Mater. Interfaces 16(28), 36539–36546 (2024). https://doi.org/10.1021/acsami.4c03090
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6(3), 147–150 (2011). https://doi.org/10.1038/nnano.2010.279
S.G. Seo, J. Jeong, S.Y. Kim, A. Kumar, S.H. Jin, Reversible and controllable threshold voltage modulation for n-channel MoS2 and p-channel MoTe2 field-effect transistors via multiple counter doping with ODTS/poly-L-lysine charge enhancers. Nano Res. 14(9), 3214–3227 (2021). https://doi.org/10.1007/s12274-021-3523-8
L. Tang, J. Zou, P-type two-dimensional semiconductors: from materials preparation to electronic applications. Nano-Micro Lett. 15(1), 230 (2023). https://doi.org/10.1007/s40820-023-01211-5
Y.J. Park, A.K. Katiyar, A.T. Hoang, J. Ahn, Controllable P- and N-type conversion of MoTe2 via oxide interfacial layer for logic circuits. Small 15, 1901772 (2019). https://doi.org/10.1002/smll.201901772
R. Kappera, D. Voiry, S.E. Yalcin, B. Branch, G. Gupta et al., Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13(12), 1128–1134 (2014). https://doi.org/10.1038/nmat4080
D.S. Schulman, A.J. Arnold, S. Das, Contact engineering for 2D materials and devices. Chem. Soc. Rev. 47(9), 3037–3058 (2018). https://doi.org/10.1039/c7cs00828g
B. Luo, G. Liu, L. Wang, Recent advances in 2D materials for photocatalysis. Nanoscale 8(13), 6904–6920 (2016). https://doi.org/10.1039/c6nr00546b
H.R. Banjade, J. Pan, Q. Yan, Monolayer 2D semiconducting tellurides for high-mobility electronics. Phys. Rev. Mater. 5, 014005 (2021). https://doi.org/10.1103/physrevmaterials.5.014005
A. Castellanos-Gomez, Black phosphorus: narrow gap, wide applications. J. Phys. Chem. Lett. 6(21), 4280–4291 (2015). https://doi.org/10.1021/acs.jpclett.5b01686
H. Du, X. Lin, Z. Xu, D. Chu, Recent developments in black phosphorus transistors. J. Mater. Chem. C 3(34), 8760–8775 (2015). https://doi.org/10.1039/c5tc01484k
L. Li, M. Engel, D.B. Farmer, S.J. Han, H.S. Wong, High-performance p-type black phosphorus transistor with scandium contact. ACS Nano 10(4), 4672–4677 (2016). https://doi.org/10.1021/acsnano.6b01008
X. Li, Z. Yu, X. Xiong, T. Li, T. Gao et al., High-speed black phosphorus field-effect transistors approaching ballistic limit. Sci. Adv. 5(6), eaau3194 (2019). https://doi.org/10.1126/sciadv.aau3194
D. He, Y. Wang, Y. Huang, Y. Shi, X. Wang et al., High-performance black phosphorus field-effect transistors with long-term air stability. Nano Lett. 19(1), 331–337 (2019). https://doi.org/10.1021/acs.nanolett.8b03940
P.C. Debnath, K. Park, Y.-W. Song, Recent advances in black-phosphorus-based photonics and optoelectronics devices. Small Meth. 2(4), 1700315 (2018). https://doi.org/10.1002/smtd.201700315
M. Zhang, Q. Wu, F. Zhang, L. Chen, X. Jin et al., 2D black phosphorus saturable absorbers for ultrafast photonics. Adv. Opt. Mater. 7(1), 1800224 (2019). https://doi.org/10.1002/adom.201800224
L. Huang, K.-W. Ang, Black phosphorus photonics toward on-chip applications. Appl. Phys. Rev. 7(3), 031302 (2020). https://doi.org/10.1063/5.0005641
X. Liu, K. Chen, X. Li, Q. Xu, J. Weng et al., Electron matters: recent advances in passivation and applications of black phosphorus. Adv. Mater. 33(50), 2005924 (2021). https://doi.org/10.1002/adma.202005924
D.K. Sang, H. Wang, Z. Guo, N. Xie, H. Zhang, Recent developments in stability and passivation techniques of phosphorene toward next-generation device applications. Adv. Funct. Mater. 29(45), 1903419 (2019). https://doi.org/10.1002/adfm.201903419
A. Pon, A. Bhattacharyya, R. Rathinam, Recent developments in black phosphorous transistors: a review. J. Electron. Mater. 50(11), 6020–6036 (2021). https://doi.org/10.1007/s11664-021-09183-1
H. Cai, Y. Gu, Y.-C. Lin, Y. Yu, D.B. Geohegan et al., Synthesis and emerging properties of 2D layered III–VI metal chalcogenides. Appl. Phys. Rev. 6(4), 041312 (2019). https://doi.org/10.1063/1.5123487
B. Chitara, A. Ya’akobovitz, Elastic properties and breaking strengths of GaS, GaSe and GaTe nanosheets. Nanoscale 10(27), 13022–13027 (2018). https://doi.org/10.1039/C8NR01065J
H. Arora, A. Erbe, Recent progress in contact, mobility, and encapsulation engineering of InSe and GaSe. InfoMat 3(6), 662–693 (2021). https://doi.org/10.1002/inf2.12160
M. Li, C.-Y. Lin, S.-H. Yang, Y.-M. Chang, J.-K. Chang et al., High mobilities in layered InSe transistors with indium-encapsulation-induced surface charge doping. Adv. Mater. 30(44), 1803690 (2018). https://doi.org/10.1002/adma.201803690
D.A. Bandurin, A.V. Tyurnina, G.L. Yu, A. Mishchenko, V. Zólyomi et al., High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nat. Nanotechnol. 12(3), 223–227 (2017). https://doi.org/10.1038/nnano.2016.242
S. Chandra, P. Dutta, K. Biswas, High-performance thermoelectrics based on solution-grown SnSe nanostructures. ACS Nano 16(1), 7–14 (2022). https://doi.org/10.1021/acsnano.1c10584
S. Yang, Y. Liu, M. Wu, L.-D. Zhao, Z. Lin et al., Highly-anisotropic optical and electrical properties in layered SnSe. Nano Res. 11(1), 554–564 (2018). https://doi.org/10.1007/s12274-017-1712-2
T. Knobloch, Y.Y. Illarionov, F. Ducry, C. Schleich, S. Wachter et al., The performance limits of hexagonal boron nitride as an insulator for scaled CMOS devices based on two-dimensional materials. Nat. Electron. 4(2), 98–108 (2021). https://doi.org/10.1038/s41928-020-00529-x
K. Yi, Y. Wu, L. An, Y. Deng, R. Duan et al., Van der waals encapsulation by ultrathin oxide for air-sensitive 2D materials. Adv. Mater. 36(33), 2403494 (2024). https://doi.org/10.1002/adma.202403494
S. Ahn, G. Kim, P.K. Nayak, S.I. Yoon, H. Lim et al., Prevention of transition metal dichalcogenide photodegradation by encapsulation with h-BN layers. ACS Nano 10(9), 8973–8979 (2016). https://doi.org/10.1021/acsnano.6b05042
N. Petrone, T. Chari, I. Meric, L. Wang, K.L. Shepard et al., Flexible graphene field-effect transistors encapsulated in hexagonal boron nitride. ACS Nano 9(9), 8953–8959 (2015). https://doi.org/10.1021/acsnano.5b02816
N.A.N. Phan, H. Noh, J. Kim, Y. Kim, H. Kim et al., Enhanced performance of WS2 field-effect transistor through mono and bilayer h-BN tunneling contacts. Small 18(13), 2105753 (2022). https://doi.org/10.1002/smll.202105753
T. Li, H. Peng, 2D Bi2O2Se: an emerging material platform for the next-generation electronic industry. Acc. Mater. Res. 2(9), 842–853 (2021). https://doi.org/10.1021/accountsmr.1c00130
A.J. Yang, K. Han, K. Huang, C. Ye, W. Wen et al., Van der Waals integration of high-κ perovskite oxides and two-dimensional semiconductors. Nat. Electron. 5(4), 233–240 (2022). https://doi.org/10.1038/s41928-022-00753-7
T. Li, T. Tu, Y. Sun, H. Fu, J. Yu et al., A native oxide high-κ gate dielectric for two-dimensional electronics. Nat. Electron. 3(8), 473–478 (2020). https://doi.org/10.1038/s41928-020-0444-6
X. Huang, Z. Zeng, Z. Fan, J. Liu, H. Zhang, Graphene-based electrodes. Adv. Mater. 24(45), 5979–6004 (2012). https://doi.org/10.1002/adma.201201587
H. Lv, H. Wu, J. Liu, J. Yu, J. Niu et al., High carrier mobility in suspended-channel graphene field effect transistors. Appl. Phys. Lett. 103(19), 193102 (2013). https://doi.org/10.1063/1.4828835
J.M. Marmolejo-Tejada, J. Velasco-Medina, Review on graphene nanoribbon devices for logic applications. Microelectron. J. 48, 18–38 (2016). https://doi.org/10.1016/j.mejo.2015.11.006
S. Lone, A. Bhardwaj, A.K. Pandit, S. Gupta, S. Mahajan, A review of graphene nanoribbon field-effect transistor structures. J. Electron. Mater. 50(6), 3169–3186 (2021). https://doi.org/10.1007/s11664-021-08859-y
I. Colmiais, V. Silva, J. Borme, P. Alpuim, P.M. Mendes, Towards RF graphene devices: a review. FlatChem 35, 100409 (2022). https://doi.org/10.1016/j.flatc.2022.100409
A. Dimoulas, Silicene and germanene: silicon and germanium in the “flatland.” Microelectron. Eng. 131, 68–78 (2015). https://doi.org/10.1016/j.mee.2014.08.013
Z. Ni, Q. Liu, K. Tang, J. Zheng, J. Zhou et al., Tunable bandgap in silicene and germanene. Nano Lett. 12(1), 113–118 (2012). https://doi.org/10.1021/nl203065e
W. Li, H. Shen, H. Qiu, Y. Shi, X. Wang, Two-dimensional semiconductor transistors and integrated circuits for advanced technology nodes. Nat. Sci. Rev. 11(3), nwae001 (2024). https://doi.org/10.1093/nsr/nwae001
E. Gnani, E. Baravelli, P. Maiorano, A. Gnudi, S. Reggiani et al., Steep-slope devices: prospects and challenges. J. Nano Res. 39, 3–16 (2016). https://doi.org/10.4028/www.scientific.net/jnanor.39.3
J. Lyu, J. Pei, Y. Guo, J. Gong, H. Li, A new opportunity for 2D van der waals heterostructures: making steep-slope transistors. Adv. Mater. 32(2), 1906000 (2020). https://doi.org/10.1002/adma.201906000
U.E. Avci, D.H. Morris, I.A. Young, Tunnel field-effect transistors: prospects and challenges. IEEE J. Electron Devices Soc. 3(3), 88–95 (2015). https://doi.org/10.1109/JEDS.2015.2390591
K.R.N. Karthik, C.K. Pandey, A review of tunnel field-effect transistors for improved ON-state behaviour. SILICON 15(1), 1–23 (2023). https://doi.org/10.1007/s12633-022-02028-4
A.M. Ionescu, H. Riel, Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479(7373), 329–337 (2011). https://doi.org/10.1038/nature10679
N. Oliva, J. Backman, L. Capua, M. Cavalieri, M. Luisier et al., WSe2/SnSe2 vdW heterojunction Tunnel FET with subthermionic characteristic and MOSFET co-integrated on same WSe2 flake. NPJ 2D Mater. Appl. 4, 5 (2020). https://doi.org/10.1038/s41699-020-0142-2
Y. Lv, W. Qin, C. Wang, L. Liao, X. Liu, Recent advances in low-dimensional heterojunction-based tunnel field effect transistors. Adv. Electron. Mater. 5(1), 1800569 (2019). https://doi.org/10.1002/aelm.201800569
A. Afzalian, E. Akhoundi, G. Gaddemane, R. Duflou, M. Houssa, Advanced DFT–NEGF transport techniques for novel 2-D material and device exploration including HfS2/WSe2 van der waals heterojunction TFET and WTe2/WS2 metal/semiconductor contact. IEEE Trans. Electron Devices 68(11), 5372–5379 (2021). https://doi.org/10.1109/TED.2021.3078412
Y. Balaji, Q. Smets, C.J.L. De La Rosa, A.K.A. Lu, D. Chiappe et al., Tunneling transistors based on MoS2/MoTe2 van der waals heterostructures. IEEE J. Electron Devices Soc. 6, 1048–1055 (2018). https://doi.org/10.1109/JEDS.2018.2815781
T. Roy, M. Tosun, M. Hettick, G.H. Ahn, C. Hu et al., 2D–2D tunneling field-effect transistors using WSe2/SnSe2 heterostructures. Appl. Phys. Lett. 108(8), 083111 (2016). https://doi.org/10.1063/1.4942647
D. Sarkar, X. Xie, W. Liu, W. Cao, J. Kang et al., A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature 526(7571), 91–95 (2015). https://doi.org/10.1038/nature15387
G.H. Shin, B. Koo, H. Park, Y. Woo, J.E. Lee et al., Vertical-tunnel field-effect transistor based on a silicon-MoS2 three-dimensional-two-dimensional heterostructure. ACS Appl. Mater. Interfaces 10(46), 40212–40218 (2018). https://doi.org/10.1021/acsami.8b11396
M. Huang, S. Li, Z. Zhang, X. Xiong, X. Li et al., Multifunctional high-performance van der waals heterostructures. Nat. Nanotechnol. 12(12), 1148–1154 (2017). https://doi.org/10.1038/nnano.2017.208
S. Kim, G. Myeong, W. Shin, H. Lim, B. Kim et al., Thickness-controlled black phosphorus tunnel field-effect transistor for low-power switches. Nat. Nanotechnol. 15(3), 203–206 (2020). https://doi.org/10.1038/s41565-019-0623-7
S. Kim, G. Myeong, J. Park, K. Watanabe, T. Taniguchi et al., Monolayer hexagonal boron nitride tunnel barrier contact for low-power black phosphorus heterojunction tunnel field-effect transistors. Nano Lett. 20(5), 3963–3969 (2020). https://doi.org/10.1021/acs.nanolett.0c01115
W. Cao, K. Banerjee, Is negative capacitance FET a steep-slope logic switch? Nat. Commun. 11(1), 196 (2020). https://doi.org/10.1038/s41467-019-13797-9
W.-X. You, P. Su, C. Hu, Evaluation of NC-FinFET based subsystem-level logic circuits. IEEE Trans. Electron Devices 66(4), 2004–2009 (2019). https://doi.org/10.1109/TED.2019.2898445
V. Chauhan, D.P. Samajdar, Recent advances in negative capacitance FinFETs for low-power applications: a review. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 68(10), 3056–3068 (2021). https://doi.org/10.1109/TUFFC.2021.3095616
L. Tu, X. Wang, J. Wang, X. Meng, J. Chu, Ferroelectric negative capacitance field effect transistor. Adv. Electron. Mater. 4(11), 1800231 (2018). https://doi.org/10.1002/aelm.201800231
I. Luk’yanchuk, A. Razumnaya, A. Sené, Y. Tikhonov, V.M. Vinokur, The ferroelectric field-effect transistor with negative capacitance. NPJ Comput. Mater. 8, 52 (2022). https://doi.org/10.1038/s41524-022-00738-2
H.H. Radamson, H. Zhu, Z. Wu, X. He, H. Lin et al., State of the art and future perspectives in advanced CMOS technology. Nanomaterials 10(8), 1555 (2020). https://doi.org/10.3390/nano10081555
R.-S. Chen, Y. Lu, Negative capacitance field effect transistors based on van der waals 2D materials. Small 20(39), 2304445 (2024). https://doi.org/10.1002/smll.202304445
Z.-D. Luo, M.-M. Yang, Y. Liu, M. Alexe, Emerging opportunities for 2D semiconductor/ferroelectric transistor-structure devices. Adv. Mater. 33(12), e2005620 (2021). https://doi.org/10.1002/adma.202005620
X. Wang, Y. Chen, G. Wu, D. Li, L. Tu et al., Two-dimensional negative capacitance transistor with polyvinylidene fluoride-based ferroelectric polymer gating. NPJ 2D Mater. Appl. 1, 38 (2017). https://doi.org/10.1038/s41699-017-0040-4
Si M, Su C, Jiang C, Conrad NJ, Zhou H et al. (2017) Steep Slope MoS2 2D transistors: negative capacitance and negative differential resistance, Cornell university library 2017
F.A. McGuire, Y.-C. Lin, K. Price, G.B. Rayner, S. Khandelwal et al., Sustained sub-60 mV/decade switching via the negative capacitance effect in MoS2 transistors. Nano Lett. 17(8), 4801–4806 (2017). https://doi.org/10.1021/acs.nanolett.7b01584
R. Khosla, S.K. Sharma, Integration of ferroelectric materials: an ultimate solution for next-generation computing and storage devices. ACS Appl. Electron. Mater. 3(7), 2862–2897 (2021). https://doi.org/10.1021/acsaelm.0c00851
L. Qi, S. Ruan, Y.-J. Zeng, Review on recent developments in 2D ferroelectrics: theories and applications. Adv. Mater. 33(13), 2005098 (2021). https://doi.org/10.1002/adma.202005098
C. Wang, L. You, D. Cobden, J. Wang, Towards two-dimensional van der waals ferroelectrics. Nat. Mater. 22(5), 542–552 (2023). https://doi.org/10.1038/s41563-022-01422-y
X. Wang, P. Yu, Z. Lei, C. Zhu, X. Cao et al., Van der waals negative capacitance transistors. Nat. Commun. 10, 3037 (2019). https://doi.org/10.1038/s41467-019-10738-4
J. Jin, Z. Wang, Z. Peng, H. Liu, K. Peng et al., Multifunctional dual gated coupling device using van der waals ferroelectric heterostructure. Adv. Electron. Mater. 8(9), 2200210 (2022). https://doi.org/10.1002/aelm.202200210
W. Wang, Y. Meng, W. Wang, Y. Zhang, B. Li et al., 2D ferroelectric materials: Emerging paradigms for next-generation ferroelectronics. Mater. Today Electron. 6, 100080 (2023). https://doi.org/10.1016/j.mtelec.2023.100080
S. Song, J. Lyu, L. Qin, Z. Wang, J. Gong et al., Lateral graphene/MoS2 heterostructures for steep-slope Dirac-source field-effect transistors. Phys. Rev. B 110(12), 125407 (2024). https://doi.org/10.1103/physrevb.110.125407
C. Kang, H. Choi, H. Son, T. Kang, S.-M. Lee et al., A steep-switching impact ionization-based threshold switching field-effect transistor. Nanoscale 15(12), 5771–5777 (2023). https://doi.org/10.1039/d2nr06547a
S. Wang, J. Wang, T. Zhi, J. Xue, D. Chen et al., Cold source field-effect transistors: breaking the 60-mV/decade switching limit at room temperature. Phys. Rep. 1013, 1–33 (2023). https://doi.org/10.1016/j.physrep.2023.03.001
L. Zhang, F. Liu, High-throughput approach to explore cold metals for electronic and thermoelectric devices. NPJ Comput. Mater. 10, 78 (2024). https://doi.org/10.1038/s41524-024-01267-w
C. Qiu, F. Liu, L. Xu, B. Deng, M. Xiao et al., Dirac-source field-effect transistors as energy-efficient, high-performance electronic switches. Science 361(6400), 387–392 (2018). https://doi.org/10.1126/science.aap9195
E.G. Marin, D. Marian, M. Perucchini, G. Fiori, G. Iannaccone, Lateral heterostructure field-effect transistors based on two-dimensional material stacks with varying thickness and energy filtering source. ACS Nano 14(2), 1982–1989 (2020). https://doi.org/10.1021/acsnano.9b08489
F. Liu, C. Qiu, Z. Zhang, L.-M. Peng, J. Wang et al., Dirac electrons at the source: breaking the 60-mV/decade switching limit. IEEE Trans. Electron Devices 65(7), 2736–2743 (2018). https://doi.org/10.1109/TED.2018.2836387
Y. Yin, Z. Zhang, C. Shao, J. Robertson, Y. Guo, Computational study of transition metal dichalcogenide cold source MOSFETs with sub-60 mV per decade and negative differential resistance effect. NPJ 2D Mater. Appl. 6, 55 (2022). https://doi.org/10.1038/s41699-022-00332-6
L. Zhang, G. Yao, X. Liu, F. Liu, Three-dimensional cold metals in realizing steep-slope transistors based on monolayer MoS2. IEEE Electron Device Lett. 44(10), 1764–1767 (2023). https://doi.org/10.1109/LED.2023.3305577
Z. Tang, C. Liu, X. Huang, S. Zeng, L. Liu et al., A steep-slope MoS2/graphene Dirac-source field-effect transistor with a large drive current. Nano Lett. 21(4), 1758–1764 (2021). https://doi.org/10.1021/acs.nanolett.0c04657
H. Zhu, Y. Yang, X. Zhu, P. Raju, D.E. Ioannou et al., Graphene-integrated negative quantum capacitance field-effect transistor with sub-60-mV/dec switching. IEEE Trans. Electron Devices 70(9), 4899–4904 (2023). https://doi.org/10.1109/TED.2023.3294365
Y. Liu, J. Guo, W. Song, P. Wang, V. Gambin et al., Ultra-steep slope impact ionization transistors based on graphene/InAs heterostructures. Small Struct. 2(1), 2000039 (2021). https://doi.org/10.1002/sstr.202000039
H. Choi, J. Li, T. Kang, C. Kang, H. Son et al., A steep switching WSe2 impact ionization field-effect transistor. Nat. Commun. 13, 6076 (2022). https://doi.org/10.1038/s41467-022-33770-3
A. Gao, Z. Zhang, L. Li, B. Zheng, C. Wang et al., Robust impact-ionization field-effect transistor based on nanoscale vertical graphene/black phosphorus/indium selenide heterostructures. ACS Nano 14(1), 434–441 (2020). https://doi.org/10.1021/acsnano.9b06140
B. Yuan, Z. Chen, Y. Chen, C. Tang, W. Chen et al., High drain field impact ionization transistors as ideal switches. Nat. Commun. 15, 9038 (2024). https://doi.org/10.1038/s41467-024-53337-8
T. Kang, H. Choi, J. Li, C. Kang, E. Hwang et al., Anisotropy of impact ionization in WSe2 field effect transistors. Nano Converg. 10(1), 13 (2023). https://doi.org/10.1186/s40580-023-00361-x
U.K. Das, T.K. Bhattacharyya, Opportunities in device scaling for 3-nm node and beyond: FinFET versus GAA-FET versus UFET. IEEE Trans. Electron Devices 67(6), 2633–2638 (2020). https://doi.org/10.1109/TED.2020.2987139
G.V. Angelov, D.N. Nikolov, M.H. Hristov, Technology and modeling of nonclassical transistor devices. J. Electr. Comput. Eng. 2019, 4792461 (2019). https://doi.org/10.1155/2019/4792461
K. Majumdar, C. Hobbs, P.D. Kirsch, Benchmarking transition metal dichalcogenide MOSFET in the ultimate physical scaling limit. IEEE Electron Device Lett. 35(3), 402–404 (2014). https://doi.org/10.1109/LED.2014.2300013
Chen MC, Li KS, Li LJ, Lu AY, Li MY et al. (2015) TMD FinFET with 4 nm thin body and back gate control for future low power technology. In: 2015 IEEE international electron devices meeting (IEDM). December 7–9, 2015, Washington, DC, USA. IEEE, 32.2.1–32.2.4
Y. Pan, H. Yin, K. Huang, Z. Zhang, Q. Zhang et al., Novel 10-nm gate length MoS2 transistor fabricated on Si fin substrate. IEEE J. Electron Devices Soc. 7, 483–488 (2019). https://doi.org/10.1109/JEDS.2019.2910271
M.-L. Chen, X. Sun, H. Liu, H. Wang, Q. Zhu et al., A FinFET with one atomic layer channel. Nat. Commun. 11(1), 1205 (2020). https://doi.org/10.1038/s41467-020-15096-0
C. Tan, M. Yu, J. Tang, X. Gao, Y. Yin et al., 2D fin field-effect transistors integrated with epitaxial high-k gate oxide. Nature 616(7955), 66–72 (2023). https://doi.org/10.1038/s41586-023-05797-z
Zhou R, Appenzeller J (2018) Three-dimensional integration of multi-channel MoS2 devices for high drive current FETs. In: 2018 76th device research conference (DRC). June 24-27, 2018, Santa Barbara, CA, USA. IEEE, pp 1–2
Ahmed F, Paul R, Saha JK (2020) Comparative performance analysis of TMD based multi-bridge channel field effect transistor. In: 2020 IEEE 10th international conference nanomaterials: applications & properties (NAP). November 9–13, 2020. Sumy, Ukraine. IEEE, 01TPNS04-1-01TPNS04-5. https://doi.org/10.1109/nap51477.2020.9309688
Huang X, Liu C, Tang Z, Zeng S, Liu L et al. (2020) High drive and low leakage current MBC FET with channel thickness 1.2nm/0.6nm. In: 2020 IEEE international electron devices meeting (IEDM). December 12–18, 2020, San Francisco, CA, USA. IEEE, 12.1.1–12.1.4
S. Hitesh, P. Dasika, K. Watanabe, T. Taniguchi, K. Majumdar, Integration of 3-level MoS multibridge channel FET with 2D layered contact and gate dielectric. IEEE Electron Device Lett. 43(11), 1993–1996 (2022). https://doi.org/10.1109/LED.2022.3206866
Y. Xia, L. Zong, Y. Pan, X. Chen, L. Zhou et al., Wafer-scale demonstration of MBC-FET and C-FET arrays based on two-dimensional semiconductors. Small 18(20), 2107650 (2022). https://doi.org/10.1002/smll.202107650
Xiong X, Tong A, Wang X, Liu S, Li X et al. (2021) Demonstration of vertically-stacked CVD monolayer channels: MoS2 nanosheets GAA-FET with Ion>700 µA/µm and MoS2/WSe2 CFET. In: 2021 IEEE international electron devices meeting (IEDM). December 11–16, 2021, San Francisco, CA, USA. IEEE, 7.5.1–7.5.4
J. Ma, H. Liu, N. Yang, J. Zou, S. Lin et al., Circuit-level memory technologies and applications based on 2D materials. Adv. Mater. 34(48), e2202371 (2022). https://doi.org/10.1002/adma.202202371
C.U. Kshirsagar, W. Xu, Y. Su, M.C. Robbins, C.H. Kim et al., Dynamic memory cells using MoS2 field-effect transistors demonstrating femtoampere leakage currents. ACS Nano 10(9), 8457–8464 (2016). https://doi.org/10.1021/acsnano.6b03440
Y. Wang, H. Tang, Y. Xie, X. Chen, S. Ma et al., An in-memory computing architecture based on two-dimensional semiconductors for multiply-accumulate operations. Nat. Commun. 12(1), 3347 (2021). https://doi.org/10.1038/s41467-021-23719-3
M. Raoofi, M. Gholipour, Transition metal dichalcogenide FET-based dynamic random-access memory. Int. J. Circuit Theory Appl. 53(3), 1764–1774 (2025). https://doi.org/10.1002/cta.4173
H. Wang, L. Yu, Y.-H. Lee, Y. Shi, A. Hsu et al., Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 12(9), 4674–4680 (2012). https://doi.org/10.1021/nl302015v
Pang CS, Thakuria N, Gupta SK, Chen Z (2018) First demonstration of WSe2 based CMOS-SRAM. In: 2018 IEEE international electron devices meeting (IEDM). December 1–5, 2018, San Francisco, CA, USA. IEEE, 22.2.1–22.2.4
Li J, Zhou P, Li J, Ding Y, Liu C et al. (2019) Highly area-efficient low-power SRAM cell with 2 transistors and 2 resistors. In: 2019 IEEE international electron devices meeting (IEDM). December 7–11, 2019. San Francisco, CA, USA. IEEE, 23.3.1–23.3.4. https://doi.org/10.1109/iedm19573.2019.8993520
F. Wang, J. Li, Z. Zhang, Y. Ding, Y. Xiong et al., Multifunctional computing-in-memory SRAM cells based on two-surface-channel MoS2 transistors. iScience 24(10), 103138 (2021). https://doi.org/10.1016/j.isci.2021.103138
N. Li, Q. Wang, C. Shen, Z. Wei, H. Yu et al., Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors. Nat. Electron. 3(11), 711–717 (2020). https://doi.org/10.1038/s41928-020-00475-8
Y.C. Lu, J.K. Huang, K.Y. Chao, L.J. Li, V.P. Hu, Projected performance of Si- and 2D-material-based SRAM circuits ranging from 16 nm to 1 nm technology nodes. Nat. Nanotechnol. 19(7), 1066–1072 (2024). https://doi.org/10.1038/s41565-024-01693-3
L. Liu, C. Liu, L. Jiang, J. Li, Y. Ding et al., Ultrafast non-volatile flash memory based on van der Waals heterostructures. Nat. Nanotechnol. 16(8), 874–881 (2021). https://doi.org/10.1038/s41565-021-00921-4
S. Bertolazzi, D. Krasnozhon, A. Kis, Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano 7(4), 3246–3252 (2013). https://doi.org/10.1021/nn3059136
M.S. Choi, G.H. Lee, Y.J. Yu, D.Y. Lee, S.H. Lee et al., Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices. Nat. Commun. 4, 1624 (2013). https://doi.org/10.1038/ncomms2652
Q. Feng, F. Yan, W. Luo, K. Wang, Charge trap memory based on few-layer black phosphorus. Nanoscale 8(5), 2686–2692 (2016). https://doi.org/10.1039/c5nr08065g
H. Wang, H. Guo, R. Guzman, N. JiaziLa, K. Wu et al., Ultrafast non-volatile floating-gate memory based on all-2D materials. Adv. Mater. 36(24), e2311652 (2024). https://doi.org/10.1002/adma.202311652
S.S. Kim, S.K. Yong, W. Kim, S. Kang, H.W. Park et al., Review of semiconductor flash memory devices for material and process issues. Adv. Mater. 35(43), 2200659 (2023). https://doi.org/10.1002/adma.202200659
G. Dastgeer, S. Nisar, A. Rasheed, K. Akbar, V.D. Chavan et al., Atomically engineered, high-speed non-volatile flash memory device exhibiting multibit data storage operations. Nano Energy 119, 109106 (2024). https://doi.org/10.1016/j.nanoen.2023.109106
C. Li, X. Chen, Z. Zhang, X. Wu, T. Yu et al., Charge-selective 2D heterointerface-driven multifunctional floating gate memory for in situ sensing-memory-computing. Nano Lett. 24(47), 15025–15034 (2024). https://doi.org/10.1021/acs.nanolett.4c03828
T.P.A. Bach, S. Cho, H. Kim, D.A. Nguyen, H. Im, 2D van der waals heterostructure with tellurene floating-gate for wide range and multi-bit optoelectronic memory. ACS Nano 18(5), 4131–4139 (2024). https://doi.org/10.1021/acsnano.3c08567
X. Huang, C. Liu, Y.-G. Jiang, P. Zhou, In-memory computing to break the memory wall. Chin. Phys. B 29(7), 078504 (2020). https://doi.org/10.1088/1674-1056/ab90e7
H. Abbas, Y. Abbas, S.N. Truong, K.-S. Min, M.R. Park et al., A memristor crossbar array of titanium oxide for non-volatile memory and neuromorphic applications. Semicond. Sci. Technol. 32(6), 065014 (2017). https://doi.org/10.1088/1361-6641/aa6a3a
W. Wang, F. Yin, H. Niu, Y. Li, E.S. Kim et al., Tantalum pentoxide (Ta2O5 and Ta2O5-x)-based memristor for photonic in-memory computing application. Nano Energy 106, 108072 (2023). https://doi.org/10.1016/j.nanoen.2022.108072
B. Mohammad, M.A. Jaoude, V. Kumar, D.M. Al Homouz, H. Abu Nahla et al., State of the art of metal oxide memristor devices. Nanotechnol. Rev. 5(3), 311–329 (2016). https://doi.org/10.1515/ntrev-2015-0029
M. Xu, X. Mai, J. Lin, W. Zhang, Y. Li et al., Recent advances on neuromorphic devices based on chalcogenide phase-change materials. Adv. Funct. Mater. 30(50), 2003419 (2020). https://doi.org/10.1002/adfm.202003419
M. Wang, S. Cai, C. Pan, C. Wang, X. Lian et al., Robust memristors based on layered two-dimensional materials. Nat. Electron. 1(2), 130–136 (2018). https://doi.org/10.1038/s41928-018-0021-4
J. Xie, S. Afshari, I. Sanchez Esqueda, Hexagonal boron nitride (h-BN) memristor arrays for analog-based machine learning hardware. NPJ 2D Mater. Appl. 6, 50 (2022). https://doi.org/10.1038/s41699-022-00328-2
H. Zhou, V. Sorkin, S. Chen, Z. Yu, K.-W. Ang et al., Design-dependent switching mechanisms of Schottky-barrier-modulated memristors based on 2D semiconductor. Adv. Electron. Mater. 9(6), 2201252 (2023). https://doi.org/10.1002/aelm.202201252
Y. Qiao, T. Hirtz, F. Wu, G. Deng, X. Li et al., Fabricating molybdenum disulfide memristors. ACS Appl. Electron. Mater. 2(2), 346–370 (2020). https://doi.org/10.1021/acsaelm.9b00655
H. Zhou, S. Li, K.-W. Ang, Y.-W. Zhang, Recent advances in in-memory computing: exploring memristor and memtransistor arrays with 2D materials. Nano-Micro Lett. 16(1), 121 (2024). https://doi.org/10.1007/s40820-024-01335-2
S.-C. Tsai, H.-Y. Lo, C.-Y. Huang, M.-C. Wu, Y.-T. Tseng et al., Structural analysis and performance in a dual-mechanism conductive filament memristor. Adv. Electron. Mater. 7(10), 2100605 (2021). https://doi.org/10.1002/aelm.202100605
K. Tang, Y. Wang, C. Gong, C. Yin, M. Zhang et al., Electronic and photoelectronic memristors based on 2D materials. Adv. Electron. Mater. 8(4), 2101099 (2022). https://doi.org/10.1002/aelm.202101099
C. Fernandes, A. Santa, Â. Santos, P. Bahubalindruni, J. Deuermeier et al., A sustainable approach to flexible electronics with zinc-tin oxide thin-film transistors. Adv. Electron. Mater. 4(7), 1800032 (2018). https://doi.org/10.1002/aelm.201800032
S. Park, M. Vosguerichian, Z. Bao, A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale 5(5), 1727–1752 (2013). https://doi.org/10.1039/C3NR33560G
A.K. Katiyar, A.T. Hoang, D. Xu, J. Hong, B.J. Kim et al., 2D materials in flexible electronics: recent advances and future prospectives. Chem. Rev. 124(2), 318–419 (2024). https://doi.org/10.1021/acs.chemrev.3c00302
R.C. Andrew, R.E. Mapasha, A.M. Ukpong, N. Chetty, Mechanical properties of graphene and boronitrene. Phys. Rev. B 85(12), 125428 (2012). https://doi.org/10.1103/physrevb.85.125428
I.-J. Park, T.I. Kim, S. Kang, G.W. Shim, Y. Woo et al., Stretchable thin-film transistors with molybdenum disulfide channels and graphene electrodes. Nanoscale 10(34), 16069–16078 (2018). https://doi.org/10.1039/c8nr03173h
S. Das, R. Gulotty, A.V. Sumant, A. Roelofs, All two-dimensional, flexible, transparent, and thinnest thin film transistor. Nano Lett. 14(5), 2861–2866 (2014). https://doi.org/10.1021/nl5009037
A. Daus, S. Vaziri, V. Chen, Ç. Köroğlu, R.W. Grady et al., High-performance flexible nanoscale transistors based on transition metal dichalcogenides. Nat. Electron. 4(7), 495–501 (2021). https://doi.org/10.1038/s41928-021-00598-6
N. Huo, G. Konstantatos, Recent progress and future prospects of 2D-based photodetectors. Adv. Mater. 30(51), e1801164 (2018). https://doi.org/10.1002/adma.201801164
D. De Fazio, I. Goykhman, D. Yoon, M. Bruna, A. Eiden et al., High responsivity, large-area graphene/MoS2 flexible photodetectors. ACS Nano 10(9), 8252–8262 (2016). https://doi.org/10.1021/acsnano.6b05109
J.S. Ko, D.H. Shin, W.J. Lee, C.W. Jang, S. Kim et al., All-two-dimensional semitransparent and flexible photodetectors employing graphene/MoS2/graphene vertical heterostructures. J. Alloys Compd. 864, 158118 (2021). https://doi.org/10.1016/j.jallcom.2020.158118
C. An, F. Nie, R. Zhang, X. Ma, D. Wu et al., Two-dimensional material-enhanced flexible and self-healable photodetector for large-area photodetection. Adv. Funct. Mater. 31(22), 2100136 (2021). https://doi.org/10.1002/adfm.202100136
T. Dong, J. Simões, Z. Yang, Flexible photodetector based on 2D materials: processing, architectures, and applications. Adv. Mater. Interfaces 7(4), 1901657 (2020). https://doi.org/10.1002/admi.201901657
A. Abbas, Y. Luo, W. Ahmad, M. Mustaqeem, L. Kong et al., Recent progress, challenges, and opportunities in 2D materials for flexible displays. Nano Today 56, 102256 (2024). https://doi.org/10.1016/j.nantod.2024.102256
H. Jiang, L. Zheng, Z. Liu, X. Wang, Two-dimensional materials: From mechanical properties to flexible mechanical sensors. InfoMat 2(6), 1077–1094 (2020). https://doi.org/10.1002/inf2.12072
R. Cheng, S. Jiang, Y. Chen, Y. Liu, N. Weiss et al., Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. Nat. Commun. 5, 5143 (2014). https://doi.org/10.1038/ncomms6143
M. Amani, R.A. Burke, R.M. Proie, M. Dubey, Flexible integrated circuits and multifunctional electronics based on single atomic layers of MoS2 and graphene. Nanotechnology 26(11), 115202 (2015). https://doi.org/10.1088/0957-4484/26/11/115202
Y. Woo, W. Hong, S.Y. Yang, H.J. Kim, J.-H. Cha et al., Large-area CVD-grown MoS2 driver circuit array for flexible organic light-emitting diode display. Adv. Electron. Mater. 4(11), 1800251 (2018). https://doi.org/10.1002/aelm.201800251
S.J. Kim, K. Choi, B. Lee, Y. Kim, B.H. Hong, Materials for flexible, stretchable electronics: graphene and 2D materials. Annu. Rev. Mater. Res. 45, 63–84 (2015). https://doi.org/10.1146/annurev-matsci-070214-020901
L. Gao, Flexible device applications of 2D semiconductors. Small 13(35), 1603994 (2017). https://doi.org/10.1002/smll.201603994
D. Tyagi, H. Wang, W. Huang, L. Hu, Y. Tang et al., Recent advances in two-dimensional-material-based sensing technology toward health and environmental monitoring applications. Nanoscale 12(6), 3535–3559 (2020). https://doi.org/10.1039/C9NR10178K
Y. Xu, X. Hu, S. Kundu, A. Nag, N. Afsarimanesh et al., Silicon-based sensors for biomedical applications: a review. Sensors 19(13), 2908 (2019). https://doi.org/10.3390/s19132908
S. Varghese, S. Varghese, S. Swaminathan, K. Singh, V. Mittal, Two-dimensional materials for sensing: graphene and beyond. Electronics 4(3), 651–687 (2015). https://doi.org/10.3390/electronics4030651
F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake et al., Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6(9), 652–655 (2007). https://doi.org/10.1038/nmat1967
M. Rodner, D. Puglisi, S. Ekeroth, U. Helmersson, I. Shtepliuk et al., Graphene decorated with iron oxide nanops for highly sensitive interaction with volatile organic compounds. Sensors 19(4), 918 (2019). https://doi.org/10.3390/s19040918
A.N. Abbas, B. Liu, L. Chen, Y. Ma, S. Cong et al., Black phosphorus gas sensors. ACS Nano 9(5), 5618–5624 (2015). https://doi.org/10.1021/acsnano.5b01961
Z. Liu, J. Huang, Q. Wang, J. Zhou, J. Ye et al., Indium oxide-black phosphorus composites for ultrasensitive nitrogen dioxide sensing at room temperature. Sens. Actuat. B Chem. 308, 127650 (2020). https://doi.org/10.1016/j.snb.2019.127650
G. Deokar, P. Vancsó, R. Arenal, F. Ravaux, J. Casanova-Cháfer et al., MoS2–carbon nanotube hybrid material growth and gas sensing. Adv. Mater. Interfaces 4(24), 1700801 (2017). https://doi.org/10.1002/admi.201700801
T. Järvinen, G.S. Lorite, J. Peräntie, G. Toth, S. Saarakkala et al., WS2 and MoS2 thin film gas sensors with high response to NH3 in air at low temperature. Nanotechnology 30(40), 405501 (2019). https://doi.org/10.1088/1361-6528/ab2d48
X. Chen, S. Hao, B. Zong, C. Liu, S. Mao, Ultraselective antibiotic sensing with complementary strand DNA assisted aptamer/MoS2 field-effect transistors. Biosens. Bioelectron. 145, 111711 (2019). https://doi.org/10.1016/j.bios.2019.111711
T. Pham, G. Li, E. Bekyarova, M.E. Itkis, A. Mulchandani, MoS2-based optoelectronic gas sensor with sub-parts-per-billion limit of NO2 gas detection. ACS Nano 13(3), 3196–3205 (2019). https://doi.org/10.1021/acsnano.8b08778
W. Zhao, R. Yan, H. Li, K. Ding, Y. Chen et al., Highly sensitive NO2 gas sensor with a low detection limit based on Pt-modified MoS2 flakes. Mater. Lett. 330, 133386 (2023). https://doi.org/10.1016/j.matlet.2022.133386
Q. Li, Y. Cen, J. Huang, X. Li, H. Zhang et al., Zinc oxide-black phosphorus composites for ultrasensitive nitrogen dioxide sensing. Nanoscale Horiz. 3(5), 525–531 (2018). https://doi.org/10.1039/c8nh00052b
M.R. Mohammadzadeh, A. Hasani, T. Hussain, H. Ghanbari, M. Fawzy et al., Enhanced sensitivity in photovoltaic 2D MoS2/Te heterojunction VOC sensors. Small 20(49), e2402464 (2024). https://doi.org/10.1002/smll.202402464
K. Zhu, C. Wen, A.A. Aljarb, F. Xue, X. Xu et al., The development of integrated circuits based on two-dimensional materials. Nat. Electron. 4(11), 775–785 (2021). https://doi.org/10.1038/s41928-021-00672-z
X. Huang, C. Liu, P. Zhou, 2D semiconductors for specific electronic applications: from device to system. NPJ 2D Mater. Appl. 6, 51 (2022). https://doi.org/10.1038/s41699-022-00327-3
B. Radisavljevic, M.B. Whitwick, A. Kis, Integrated circuits and logic operations based on single-layer MoS2. ACS Nano 5(12), 9934–9938 (2011). https://doi.org/10.1021/nn203715c
H.S. Song, S.L. Li, L. Gao, Y. Xu, K. Ueno et al., High-performance top-gated monolayer SnS2 field-effect transistors and their integrated logic circuits. Nanoscale 5(20), 9666–9670 (2013). https://doi.org/10.1039/C3NR01899G
M. Tosun, S. Chuang, H. Fang, A.B. Sachid, M. Hettick et al., High-gain inverters based on WSe2 complementary field-effect transistors. ACS Nano 8(5), 4948–4953 (2014). https://doi.org/10.1021/nn5009929
Y. Liu, K.-W. Ang, Monolithically integrated flexible black phosphorus complementary inverter circuits. ACS Nano 11(7), 7416–7423 (2017). https://doi.org/10.1021/acsnano.7b03703
Y.J. Park, A.K. Katiyar, A.T. Hoang, J.-H. Ahn, Controllable P- and N-type conversion of MoTe2 via oxide interfacial layer for logic circuits. Small 15(28), 1901772 (2019). https://doi.org/10.1002/smll.201901772
C.-Y. Lin, K.B. Simbulan, C.-J. Hong, K.-S. Li, Y.-L. Zhong et al., Polarity-controllable MoS2 transistor for adjustable complementary logic inverter applications. Nanoscale Horiz. 5(1), 163–170 (2020). https://doi.org/10.1039/c9nh00275h
L. Chen, S. Li, X. Feng, L. Wang, X. Huang et al., Gigahertz integrated circuits based on complementary black phosphorus transistors. Adv. Electron. Mater. 4(9), 1800274 (2018). https://doi.org/10.1002/aelm.201800274
A. Dathbun, Y. Kim, S. Kim, Y. Yoo, M.S. Kang et al., Large-area CVD-grown sub-2 V ReS2 transistors and logic gates. Nano Lett. 17(5), 2999–3005 (2017). https://doi.org/10.1021/acs.nanolett.7b00315
J. Kwon, Y. Shin, H. Kwon, J.Y. Lee, H. Park et al., All-2D ReS2 transistors with split gates for logic circuitry. Sci. Rep. 9(1), 10354 (2019). https://doi.org/10.1038/s41598-019-46730-7
Z. Lin, Y. Liu, U. Halim, M. Ding, Y. Liu et al., Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 562(7726), 254–258 (2018). https://doi.org/10.1038/s41586-018-0574-4
H. Lee, K. Lee, Y. Kim, H. Ji, J. Choi et al., Transfer of transition-metal dichalcogenide circuits onto arbitrary substrates for flexible device applications. Nanoscale 11(45), 22118–22124 (2019). https://doi.org/10.1039/C9NR05065E
M.-H. Chuang, K.-C. Chiu, Y.-T. Lin, G. Tulevski, P.-H. Chen et al., Integrated low-dimensional semiconductors for scalable low-power CMOS logic. Adv. Funct. Mater. 33(27), 2212722 (2023). https://doi.org/10.1002/adfm.202212722
L. Tong, J. Wan, K. Xiao, J. Liu, J. Ma, X. Guo, L. Zhou, X. Chen, Y. Xia, S. Dai, X. Zihan, W. Bao, P. Zhou, Heterogeneous complementary field-effect transistors based on silicon and molybdenum disulfide. Nat. Electron. (2022). https://doi.org/10.1038/s41928-022-00881-0
D. Fan, W. Li, H. Qiu, Y. Xu, S. Gao et al., Two-dimensional semiconductor integrated circuits operating at gigahertz frequencies. Nat. Electron. 6(11), 879–887 (2023). https://doi.org/10.1038/s41928-023-01052-5
X. Jia, Z. Cheng, B. Han, X. Cheng, Q. Wang et al., High-performance CMOS inverter array with monolithic 3D architecture based on CVD-grown n-MoS2 and p-MoTe2. Small 19(19), 2207927 (2023). https://doi.org/10.1002/smll.202207927
M. Liu, J. Niu, G. Yang, K. Chen, W. Lu et al., Large-scale ultrathin channel nanosheet-stacked CFET based on CVD 1L MoS2/WSe2. Adv. Electron. Mater. 9(2), 2200722 (2023). https://doi.org/10.1002/aelm.202200722
X. Wei, X. Zhang, H. Yu, L. Gao, W. Tang et al., Homojunction-loaded inverters based on self-biased molybdenum disulfide transistors for sub-picowatt computing. Nat. Electron. 7(2), 138–146 (2024). https://doi.org/10.1038/s41928-023-01112-w
J. Tang, Q. Wang, Z. Wei, C. Shen, X. Lu et al., Vertical integration of 2D building blocks for all-2D electronics. Adv. Electron. Mater. 6(12), 2000550 (2020). https://doi.org/10.1002/aelm.202000550
Xi F, Sharma H, Wu X, Schram T, Cott D et al. (2024) Integration of GAA monolayer MoS2 nanosheet FETs with gate first process for future 2D CFET scaling. In: 2024 IEEE European solid-state electronics research conference (ESSERC). September 9–12, 2024, Bruges, Belgium. IEEE, pp 121–124
M. Xie, Y. Jia, C. Nie, Z. Liu, A. Tang et al., Monolithic 3D integration of 2D transistors and vertical RRAMs in 1T–4R structure for high-density memory. Nat. Commun. 14(1), 5952 (2023). https://doi.org/10.1038/s41467-023-41736-2
J.-H. Kang, H. Shin, K.S. Kim, M.-K. Song, D. Lee et al., Monolithic 3D integration of 2D materials-based electronics towards ultimate edge computing solutions. Nat. Mater. 22(12), 1470–1477 (2023). https://doi.org/10.1038/s41563-023-01704-z
R. Pendurthi, N.U. Sakib, M.U.K. Sadaf, Z. Zhang, Y. Sun et al., Monolithic three-dimensional integration of complementary two-dimensional field-effect transistors. Nat. Nanotechnol. 19(7), 970–977 (2024). https://doi.org/10.1038/s41565-024-01705-2
S. Ghosh, Y. Zheng, Z. Zhang, Y. Sun, T.F. Schranghamer et al., Monolithic and heterogeneous three-dimensional integration of two-dimensional materials with high-density vias. Nat. Electron. 7(10), 892–903 (2024). https://doi.org/10.1038/s41928-024-01251-8
D. Ielmini, H.S.P. Wong, In-memory computing with resistive switching devices. Nat. Electron. 1(6), 333–343 (2018). https://doi.org/10.1038/s41928-018-0092-2
L. Yin, R. Cheng, Z. Wang, F. Wang, M.G. Sendeku et al., Two-dimensional unipolar memristors with logic and memory functions. Nano Lett. 20(6), 4144–4152 (2020). https://doi.org/10.1021/acs.nanolett.0c00002
S. Chakrabarti, A. Wali, H. Ravichandran, S. Kundu, T.F. Schranghamer et al., Logic locking of integrated circuits enabled by nanoscale MoS2-based memtransistors. ACS Appl. Nano Mater. 5(10), 14447–14455 (2022). https://doi.org/10.1021/acsanm.2c02807
B. Tang, H. Veluri, Y. Li, Z.G. Yu, M. Waqar et al., Wafer-scale solution-processed 2D material analog resistive memory array for memory-based computing. Nat. Commun. 13(1), 3037 (2022). https://doi.org/10.1038/s41467-022-30519-w
Y. Li, L. Loh, S. Li, L. Chen, B. Li et al., Anomalous resistive switching in memristors based on two-dimensional palladium diselenide using heterophase grain boundaries. Nat. Electron. 4(5), 348–356 (2021). https://doi.org/10.1038/s41928-021-00573-1
C. Liu, H. Chen, X. Hou, H. Zhang, J. Han et al., Small footprint transistor architecture for photoswitching logic and in situ memory. Nat. Nanotechnol. 14(7), 662–667 (2019). https://doi.org/10.1038/s41565-019-0462-6
S. Wachter, D.K. Polyushkin, O. Bethge, T. Mueller, A microprocessor based on a two-dimensional semiconductor. Nat. Commun. 8, 14948 (2017). https://doi.org/10.1038/ncomms14948
X. Chen, Y. Xie, Y. Sheng, H. Tang, Z. Wang et al., Wafer-scale functional circuits based on two dimensional semiconductors with fabrication optimized by machine learning. Nat. Commun. 12(1), 5953 (2021). https://doi.org/10.1038/s41467-021-26230-x
S. Zeng, C. Liu, X. Huang, Z. Tang, L. Liu et al., An application-specific image processing array based on WSe2 transistors with electrically switchable logic functions. Nat. Commun. 13(1), 56 (2022). https://doi.org/10.1038/s41467-021-27644-3
D.K. Polyushkin, S. Wachter, L. Mennel, M. Paur, M. Paliy et al., Analogue two-dimensional semiconductor electronics. Nat. Electron. 3(8), 486–491 (2020). https://doi.org/10.1038/s41928-020-0460-6
J. Tang, Q. Wang, J. Tian, X. Li, N. Li et al., Low power flexible monolayer MoS2 integrated circuits. Nat. Commun. 14, 3633 (2023). https://doi.org/10.1038/s41467-023-39390-9
Y. Peng, C. Cui, L. Li, Y. Wang, Q. Wang et al., Medium-scale flexible integrated circuits based on 2D semiconductors. Nat. Commun. 15(1), 10833 (2024). https://doi.org/10.1038/s41467-024-55142-9
G. Migliato Marega, Y. Zhao, A. Avsar, Z. Wang, M. Tripathi et al., Logic-in-memory based on an atomically thin semiconductor. Nature 587(7832), 72–77 (2020). https://doi.org/10.1038/s41586-020-2861-0
Q. Huo, Y. Yang, Y. Wang, D. Lei, X. Fu et al., A computing-in-memory macro based on three-dimensional resistive random-access memory. Nat. Electron. 5(7), 469–477 (2022). https://doi.org/10.1038/s41928-022-00795-x
A. Dodda, N. Trainor, J.M. Redwing, S. Das, All-in-one, bio-inspired, and low-power crypto engines for near-sensor security based on two-dimensional memtransistors. Nat. Commun. 13(1), 3587 (2022). https://doi.org/10.1038/s41467-022-31148-z
P. Kumar, K. Zhu, X. Gao, S.D. Wang, M. Lanza, C.S. Thakur, Hybrid architecture based on two-dimensional memristor crossbar array and CMOS integrated circuit for edge computing. NPJ 2D Mater. Appl. 6(1), 8 (2022). https://doi.org/10.1038/s41699-021-00284-3
Y. Liu, H. Tian, F. Wu, A. Liu, Y. Li et al., Cellular automata imbedded memristor-based recirculated logic in-memory computing. Nat. Commun. 14(1), 2695 (2023). https://doi.org/10.1038/s41467-023-38299-7
A. Dodda, D. Jayachandran, A. Pannone, N. Trainor, S.P. Stepanoff et al., Active pixel sensor matrix based on monolayer MoS2 phototransistor array. Nat. Mater. 21(12), 1379–1387 (2022). https://doi.org/10.1038/s41563-022-01398-9
R. Pendurthi, D. Jayachandran, A. Kozhakhmetov, N. Trainor, J.A. Robinson et al., Heterogeneous integration of atomically thin semiconductors for non-von Neumann CMOS. Small 18(33), e2202590 (2022). https://doi.org/10.1002/smll.202202590
S. Wang, X. Liu, M. Xu, L. Liu, D. Yang et al., Two-dimensional devices and integration towards the silicon lines. Nat. Mater. 21(11), 1225–1239 (2022). https://doi.org/10.1038/s41563-022-01383-2
Y.-M. Lin, A. Valdes-Garcia, S.-J. Han, D.B. Farmer, I. Meric et al., Wafer-scale graphene integrated circuit. Science 332(6035), 1294–1297 (2011). https://doi.org/10.1126/science.1204428
O. Habibpour, Z.S. He, W. Strupinski, N. Rorsman, H. Zirath, Wafer scale millimeter-wave integrated circuits based on epitaxial graphene in high data rate communication. Sci. Rep. 7, 41828 (2017). https://doi.org/10.1038/srep41828
A. Dodda, S. Subbulakshmi Radhakrishnan, T.F. Schranghamer, D. Buzzell, P. Sengupta et al., Graphene-based physically unclonable functions that are reconfigurable and resilient to machine learning attacks. Nat. Electron. 4(5), 364–374 (2021). https://doi.org/10.1038/s41928-021-00569-x
K.P. Soundarapandian, S. Castilla, S.M. Koepfli, S. Marconi, L. Kulmer et al., High-speed graphene-based sub-terahertz receivers enabling wireless communications for 6G and beyond. arXiv:2411.02269 (2024). https://doi.org/10.48550/arXiv.2411.02269
A. Pannone, A. Raj, H. Ravichandran, S. Das, Z. Chen et al., Robust chemical analysis with graphene chemosensors and machine learning. Nature 634(8034), 572–578 (2024). https://doi.org/10.1038/s41586-024-08003-w
A. Sebastian, A. Pannone, S. Subbulakshmi Radhakrishnan, S. Das, Gaussian synapses for probabilistic neural networks. Nat. Commun. 10, 4199 (2019). https://doi.org/10.1038/s41467-019-12035-6
S. Das, A. Dodda, S. Das, A biomimetic 2D transistor for audiomorphic computing. Nat. Commun. 10(1), 3450 (2019). https://doi.org/10.1038/s41467-019-11381-9
T.F. Schranghamer, A. Oberoi, S. Das, Graphene memristive synapses for high precision neuromorphic computing. Nat. Commun. 11(1), 5474 (2020). https://doi.org/10.1038/s41467-020-19203-z
D. Jayachandran, A. Oberoi, A. Sebastian, T.H. Choudhury, B. Shankar et al., A low-power biomimetic collision detector based on an in-memory molybdenum disulfide photodetector. Nat. Electron. 3(10), 646–655 (2020). https://doi.org/10.1038/s41928-020-00466-9
S. Ghosh, A. Pannone, D. Sen, A. Wali, H. Ravichandran et al., An all 2D bio-inspired gustatory circuit for mimicking physiology and psychology of feeding behavior. Nat. Commun. 14(1), 6021 (2023). https://doi.org/10.1038/s41467-023-41046-7
M.U.K. Sadaf, N.U. Sakib, A. Pannone, H. Ravichandran, S. Das, A bio-inspired visuotactile neuron for multisensory integration. Nat. Commun. 14(1), 5729 (2023). https://doi.org/10.1038/s41467-023-40686-z
Y. Ding, Y. Cao, X. Luo, E. Shang, S. Hu et al., A device design for 5 nm logic FinFET technology. J. Microelectron. Manuf. 3(1), 1–8 (2019). https://doi.org/10.33079/jomm.20030105
D. Qi, P. Li, H. Ou, D. Wu, W. Lian et al., Graphene-enhanced metal transfer printing for strong van der waals contacts between 3D metals and 2D semiconductors. Adv. Funct. Mater. 33(27), 2301704 (2023). https://doi.org/10.1002/adfm.202301704
N. Kaushik, D. Karmakar, A. Nipane, S. Karande, S. Lodha, Interfacial n-doping using an ultrathin TiO2 layer for contact resistance reduction in MoS2. ACS Appl. Mater. Interfaces 8(1), 256–263 (2016). https://doi.org/10.1021/acsami.5b08559
W. Li, X. Gong, Z. Yu, L. Ma, W. Sun et al., Approaching the quantum limit in two-dimensional semiconductor contacts. Nature 613(7943), 274–279 (2023). https://doi.org/10.1038/s41586-022-05431-4
P.-C. Shen, C. Su, Y. Lin, A.-S. Chou, C.-C. Cheng et al., Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593(7858), 211–217 (2021). https://doi.org/10.1038/s41586-021-03472-9
J. Jiang, L. Xu, L. Du, L. Li, G. Zhang et al., Yttrium-doping-induced metallization of molybdenum disulfide for ohmic contacts in two-dimensional transistors. Nat. Electron. 7(7), 545–556 (2024). https://doi.org/10.1038/s41928-024-01176-2
L. Kong, R. Wu, Y. Chen, Y. Huangfu, L. Liu et al., Wafer-scale and universal van der Waals metal semiconductor contact. Nat. Commun. 14(1), 1014 (2023). https://doi.org/10.1038/s41467-023-36715-6
X. Zhang, C. Huang, Z. Li, J. Fu, J. Tian et al., Reliable wafer-scale integration of two-dimensional materials and metal electrodes with van der Waals contacts. Nat. Commun. 15, 4619 (2024). https://doi.org/10.1038/s41467-024-49058-7
M. Das, D. Sen, N.U. Sakib, H. Ravichandran, Y. Sun et al., High-performance p-type field-effect transistors using substitutional doping and thickness control of two-dimensional materials. Nat. Electron. 8(1), 24–35 (2024). https://doi.org/10.1038/s41928-024-01265-2
M.J. Mleczko, C. Zhang, H.R. Lee, H.H. Kuo, B. Magyari-Köpe et al., HfSe2 and ZrSe2: two-dimensional semiconductors with native high-κ oxides. Sci. Adv. 3(8), e1700481 (2017). https://doi.org/10.1126/sciadv.1700481
D. Zeng, Z. Zhang, Z. Xue, M. Zhang, P.K. Chu et al., Single-crystalline metal-oxide dielectrics for top-gate 2D transistors. Nature 632(8026), 788–794 (2024). https://doi.org/10.1038/s41586-024-07786-2
Y.Y. Illarionov, A.G. Banshchikov, D.K. Polyushkin, S. Wachter, T. Knobloch et al., Ultrathin calcium fluoride insulators for two-dimensional field-effect transistors. Nat. Electron. 2(6), 230–235 (2019). https://doi.org/10.1038/s41928-019-0256-8
F. Xu, Z. Wu, G. Liu, F. Chen, J. Guo et al., Few-layered MnAl2S4 dielectrics for high-performance van der waals stacked transistors. ACS Appl. Mater. Interfaces 14(22), 25920–25927 (2022). https://doi.org/10.1021/acsami.2c04477
W. Xu, J. Jiang, Y. Chen, N. Tang, C. Jiang et al., Single-crystalline High-κ GdOCl dielectric for two-dimensional field-effect transistors. Nat. Commun. 15(1), 9469 (2024). https://doi.org/10.1038/s41467-024-53907-w
C.-Y. Zhu, M.-R. Zhang, Q. Chen, L.-Q. Yue, R. Song et al., Magnesium niobate as a high-κ gate dielectric for two-dimensional electronics. Nat. Electron. 7(12), 1137–1146 (2024). https://doi.org/10.1038/s41928-024-01245-6
D. Sen, H. Ravichandran, M. Das, P. Venkatram, S. Choo et al., Multifunctional 2D FETs exploiting incipient ferroelectricity in freestanding SrTiO3 nanomembranes at sub-ambient temperatures. Nat. Commun. 15(1), 10739 (2024). https://doi.org/10.1038/s41467-024-54231-z
Z. Lu, Y. Chen, W. Dang, L. Kong, Q. Tao et al., Wafer-scale high-κ dielectrics for two-dimensional circuits via van der Waals integration. Nat. Commun. 14(1), 2340 (2023). https://doi.org/10.1038/s41467-023-37887-x
J.H. Ryu, Y.G. You, S.W. Kim, J.H. Hong, J.H. Na et al., Effect of Al2O3 deposition on carrier mobility and ambient stability of few-la