PDOL-Based Solid Electrolyte Toward Practical Application: Opportunities and Challenges
Corresponding Author: Xiangming He
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 127
Abstract
Polymer solid-state lithium batteries (SSLB) are regarded as a promising energy storage technology to meet growing demand due to their high energy density and safety. Ion conductivity, interface stability and battery assembly process are still the main challenges to hurdle the commercialization of SSLB. As the main component of SSLB, poly(1,3-dioxolane) (PDOL)-based solid polymer electrolytes polymerized in-situ are becoming a promising candidate solid electrolyte, for their high ion conductivity at room temperature, good battery electrochemical performances, and simple assembly process. This review analyzes opportunities and challenges of PDOL electrolytes toward practical application for polymer SSLB. The focuses include exploring the polymerization mechanism of DOL, the performance of PDOL composite electrolytes, and the application of PDOL. Furthermore, we provide a perspective on future research directions that need to be emphasized for commercialization of PDOL-based electrolytes in SSLB. The exploration of these schemes facilitates a comprehensive and profound understanding of PDOL-based polymer electrolyte and provides new research ideas to boost them toward practical application in solid-state batteries.
Highlights:
1 The poly(1,3-dioxolane) (PDOL) electrolyte demonstrates promising potential for practical application due to its advantages in in-situ polymerization process, high ionic conductivity, and long cycle life.
2 This review focuses on the polymerization mechanism, composite innovation, and application of PDOL electrolytes.
3 This review provides a comprehensive summary of the challenges associated with the PDOL electrolyte and makes forward-looking recommendations.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.B. Goodenough, K.-S. Park, The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013). https://doi.org/10.1021/ja3091438
- Y. Wu, W. Wang, J. Ming, M. Li, L. Xie et al., An exploration of new energy storage system: high energy density, high safety, and fast charging lithium ion battery. Adv. Funct. Mater. 29, 1805978 (2019). https://doi.org/10.1002/adfm.201805978
- H. Wang, L. Sheng, G. Yasin, L. Wang, H. Xu et al., Reviewing the current status and development of polymer electrolytes for solid-state lithium batteries. Energy Storage Mater. 33, 188–215 (2020). https://doi.org/10.1016/j.ensm.2020.08.014
- H.-J. Ha, E.-H. Kil, Y.H. Kwon, J.Y. Kim, C.K. Lee et al., UV-curable semi-interpenetrating polymer network-integrated, highly bendable plastic crystal composite electrolytes for shape-conformable all-solid-state lithium ion batteries. Energy Environ. Sci. 5, 6491–6499 (2012). https://doi.org/10.1039/C2EE03025J
- A.L. Ahmad, U.R. Farooqui, N.A. Hamid, Synthesis and characterization of porous poly(vinylidene fluoride-co-hexafluoro propylene) (PVDF-co-HFP)/poly(aniline) (PANI)/graphene oxide (GO) ternary hybrid polymer electrolyte membrane. Electrochim. Acta 283, 842–849 (2018). https://doi.org/10.1016/j.electacta.2018.07.001
- P. Ding, Z. Lin, X. Guo, L. Wu, Y. Wang et al., Polymer electrolytes and interfaces in solid-state lithium metal batteries. Mater. Today 51, 449–474 (2021). https://doi.org/10.1016/j.mattod.2021.08.005
- K.K. Fu, Y. Gong, J. Dai, A. Gong, X. Han et al., Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc. Natl. Acad. Sci. U.S.A. 113, 7094–7099 (2016). https://doi.org/10.1073/pnas.1600422113
- X. Ban, W. Zhang, N. Chen, C. Sun, A high-performance and durable poly(ethylene oxide)-based composite solid electrolyte for all solid-state lithium battery. J. Phys. Chem. C 122, 9852–9858 (2018). https://doi.org/10.1021/acs.jpcc.8b02556
- B.K. Choi, Y.W. Kim, H.K. Shin, Ionic conduction in PEO–PAN blend polymer electrolytes. Electrochim. Acta 45, 1371–1374 (2000). https://doi.org/10.1016/s0013-4686(99)00345-x
- J. Feng, L. Wang, Y. Chen, P. Wang, H. Zhang et al., PEO based polymer-ceramic hybrid solid electrolytes: a review. Nano Converg. 8, 2 (2021). https://doi.org/10.1186/s40580-020-00252-5
- Y. Liu, S. Gorgutsa, C. Santato, M. Skorobogatiy, Flexible, solid electrolyte-based lithium battery composed of LiFePO4 cathode and Li4Ti5O12 anode for applications in smart textiles. J. Electrochem. Soc. 159, A349–A356 (2012). https://doi.org/10.1149/2.020204jes
- M.-K. Song, J.-Y. Cho, B.W. Cho, H.-W. Rhee, Characterization of UV-cured gel polymer electrolytes for rechargeable lithium batteries. J. Power. Sources 110, 209–215 (2002). https://doi.org/10.1016/s0378-7753(02)00258-6
- F. Liu, N. Awanis Hashim, Y. Liu, M.R. Moghareh Abed, K. Li, Progress in the production and modification of PVDF membranes. J. Membr. Sci. 375, 1–27 (2011). https://doi.org/10.1016/j.memsci.2011.03.014
- F. Chen, J. Luo, M.-X. Jing, J. Li, Z.-H. Huang et al., A sandwich structure composite solid electrolyte with enhanced interface stability and electrochemical properties for solid-state lithium batteries. J. Electrochem. Soc. 168, 070513 (2021). https://doi.org/10.1149/1945-7111/ac0f89
- J. Hu, P. He, B. Zhang, B. Wang, L.-Z. Fan, Porous film host-derived 3D composite polymer electrolyte for high-voltage solid state lithium batteries. Energy Storage Mater. 26, 283–289 (2020). https://doi.org/10.1016/j.ensm.2020.01.006
- K. Yang, L. Chen, J. Ma, C. Lai, Y. Huang et al., Stable interface chemistry and multiple ion transport of composite electrolyte contribute to ultra-long cycling solid-state LiNi0.8Co0.1Mn0.1O2/lithium metal batteries. Angew. Chem. Int. Ed. 60, 24668–24675 (2021). https://doi.org/10.1002/anie.202110917
- A. Rahimpour, M. Jahanshahi, A. Mollahosseini, B. Rajaeian, Structural and performance properties of UV-assisted TiO2 deposited nano-composite PVDF/SPES membranes. Desalination 285, 31–38 (2011). https://doi.org/10.1016/j.desal.2011.09.026
- S. Golcuk, A.E. Muftuoglu, S.U. Celik, A. Bozkurt, Synthesis and characterization of polymer electrolyte membranes based on PVDF and styrene via photoinduced grafting. J. Polym. Res. 20, 144 (2013). https://doi.org/10.1007/s10965-013-0144-2
- S. Rajendran, Experimental investigations on PAN–PEO hybrid polymer electrolytes. Solid State Ion. 130, 143–148 (2000). https://doi.org/10.1016/s0167-2738(00)00283-6
- X. He, J. Ren, L. Wang, W. Pu, C. Jiang et al., Synthesis of PAN/SnCl2 composite as Li-ion battery anode material. Ionics 12, 323–326 (2006). https://doi.org/10.1007/s11581-006-0051-1
- W.-P. Chen, H. Duan, J.-L. Shi, Y. Qian, J. Wan et al., Bridging interp Li+ conduction in a soft ceramic oxide electrolyte. J. Am. Chem. Soc. 143, 5717–5726 (2021). https://doi.org/10.1021/jacs.0c12965
- X. He, Q. Shi, X. Zhou, C. Wan, C. Jiang, In situ composite of nano SiO2–P(VDF-HFP) porous polymer electrolytes for Li-ion batteries. Electrochim. Acta 51, 1069–1075 (2005). https://doi.org/10.1016/j.electacta.2005.05.048
- J. Cao, L. Wang, M. Fang, Y. Shang, L. Deng et al., Interfacial compatibility of gel polymer electrolyte and electrode on performance of Li-ion battery. Electrochim. Acta 114, 527–532 (2013). https://doi.org/10.1016/j.electacta.2013.10.052
- J. Cao, L. Wang, M. Fang, X. He, J. Li et al., Structure and electrochemical properties of composite polymer electrolyte based on poly vinylidene fluoride–hexafluoropropylene/titania–poly(methyl methacrylate) for lithium-ion batteries. J. Power. Sources 246, 499–504 (2014). https://doi.org/10.1016/j.jpowsour.2013.07.107
- W. Pu, X. He, L. Wang, Z. Tian, C. Jiang et al., Preparation of P(AN-MMA) gel electrolyte for Li-ion batteries. Ionics 14, 27–31 (2008). https://doi.org/10.1007/s11581-007-0155-2
- J. Cao, L. Wang, X. He, M. Fang, J. Gao et al., In situ prepared nano-crystalline TiO2–poly(methyl methacrylate) hybrid enhanced composite polymer electrolyte for Li-ion batteries. J. Mater. Chem. A 1, 5955–5961 (2013). https://doi.org/10.1039/C3TA00086A
- S. Zhang, J. Cao, Y. Shang, L. Wang, X. He et al., Nanocomposite polymer membrane derived from nano TiO2-PMMA and glass fiber nonwoven: high thermal endurance and cycle stability in lithium ion battery applications. J. Mater. Chem. A 3, 17697–17703 (2015). https://doi.org/10.1039/C5TA02781K
- Y. Li, H. Shimizu, Compatibilization by homopolymer: significant improvements in the modulus and tensile strength of PPC/PMMA blends by the addition of a small amount of PVAc. ACS Appl. Mater. Interfaces 1, 1650–1655 (2009). https://doi.org/10.1021/am900314k
- P. Pal, A. Ghosh, Influence of TiO2 nano-ps on charge carrier transport and cell performance of PMMA-LiClO4 based nano-composite electrolytes. Electrochim. Acta 260, 157–167 (2018). https://doi.org/10.1016/j.electacta.2017.11.070
- Z. Tian, W. Pu, X. He, C. Wan, C. Jiang, Preparation of a microporous polymer electrolyte based on poly(vinyl chloride)/poly(acrylonitrile-butyl acrylate) blend for Li-ion batteries. Electrochim. Acta 52, 3199–3206 (2007). https://doi.org/10.1016/j.electacta.2006.09.068
- H. Buschmann, J. Dölle, S. Berendts, A. Kuhn, P. Bottke et al., Structure and dynamics of the fast lithium ion conductor “Li7La3Zr2O12.” Phys. Chem. Chem. Phys. 13, 19378–19392 (2011). https://doi.org/10.1039/c1cp22108f
- J.B. Bates, N.J. Dudney, G.R. Gruzalski, R.A. Zuhr, A. Choudhury et al., Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries. J. Power. Sources 43, 103–110 (1993). https://doi.org/10.1016/0378-7753(93)80106-y
- V. Thangadurai, W. Weppner, Li6ALa2Ta2O12 (A = Sr, Ba): novel garnet-like oxides for fast lithium ion conduction. Adv. Funct. Mater. 15, 107–112 (2005). https://doi.org/10.1002/adfm.200400044
- R. Kanno, M. Murayama, Lithium ionic conductor thio-LISICON: the Li2S–GeS2–P2S5 system. J. Electrochem. Soc. 148, A742 (2001). https://doi.org/10.1149/1.1379028
- M. Murayama, R. Kanno, M. Irie, S. Ito, T. Hata et al., Synthesis of new lithium ionic conductor thio-LISICON—lithium silicon sulfides system. J. Solid State Chem. 168, 140–148 (2002). https://doi.org/10.1006/jssc.2002.9701
- H. Ben youcef, O. Garcia-Calvo, N. Lago, S. Devaraj, M. Armand, Cross-linked solid polymer electrolyte for all-solid-state rechargeable lithium batteries. Electrochim. Acta 220, 587–594 (2016). https://doi.org/10.1016/j.electacta.2016.10.122
- L. Long, S. Wang, M. Xiao, Y. Meng, Polymer electrolytes for lithium polymer batteries. J. Mater. Chem. A 4, 10038–10069 (2016). https://doi.org/10.1039/C6TA02621D
- Z. Wei, Z. Zhang, S. Chen, Z. Wang, X. Yao et al., UV-cured polymer electrolyte for LiNi0.85Co0.05Al0.1O2// Li solid state battery working at ambient temperature. Energy Storage Mater. 22, 337–345 (2019). https://doi.org/10.1016/j.ensm.2019.02.004
- S.H. Siyal, M. Li, H. Li, J.-L. Lan, Y. Yu et al., Ultraviolet irradiated PEO/LATP composite gel polymer electrolytes for lithium-metallic batteries (LMBs). Appl. Surf. Sci. 494, 1119–1126 (2019). https://doi.org/10.1016/j.apsusc.2019.07.179
- C. Liu, S. Wang, X. Wu, S. Xiao, C. Liu et al., In situ construction of zwitterionic polymer electrolytes with synergistic cation–anion regulation functions for lithium metal batteries. Adv. Funct. Mater. 34, 2307248 (2024). https://doi.org/10.1002/adfm.202307248
- Y.M. Jeon, S. Kim, M. Lee, W.B. Lee, J.H. Park, Polymer-clay nanocomposite solid-state electrolyte with selective cation transport boosting and retarded lithium dendrite formation. Adv. Energy Mater. 10, 2003114 (2020). https://doi.org/10.1002/aenm.202003114
- Y. Li, X. Wang, H. Zhou, X. Xing, A. Banerjee et al., Thin solid electrolyte layers enabled by nanoscopic polymer binding. ACS Energy Lett. 5, 955–961 (2020). https://doi.org/10.1021/acsenergylett.0c00040
- H. Wu, B. Tang, X. Du, J. Zhang, X. Yu et al., LiDFOB initiated in situ polymerization of novel eutectic solution enables room-temperature solid lithium metal batteries. Adv. Sci. 7, 2003370 (2020). https://doi.org/10.1002/advs.202003370
- Y. Wang, J. Ju, S. Dong, Y. Yan, F. Jiang et al., Facile design of sulfide-based all solid-state lithium metal battery: in situ polymerization within self-supported porous argyrodite skeleton. Adv. Funct. Mater. 31, 2101523 (2021). https://doi.org/10.1002/adfm.202101523
- Y. Yan, J. Ju, S. Dong, Y. Wang, L. Huang et al., In situ polymerization permeated three-dimensional Li+-percolated porous oxide ceramic framework boosting all solid-state lithium metal battery. Adv. Sci. 8, 2003887 (2021). https://doi.org/10.1002/advs.202003887
- K. Zhang, F. Wu, X. Wang, L. Zheng, X. Yang et al., An ion-dipole-reinforced polyether electrolyte with ion-solvation cages enabling high–voltage-tolerant and ion-conductive solid-state lithium metal batteries. Adv. Funct. Mater. 32, 2270031 (2022). https://doi.org/10.1002/adfm.202270031
- S. Huo, L. Sheng, W. Xue, L. Wang, H. Xu et al., Challenges of stable ion pathways in cathode electrode for all-solid-state lithium batteries: a review. Adv. Energy Mater. 13, 2204343 (2023). https://doi.org/10.1002/aenm.202204343
- Y.Q. Mi, W. Deng, C. He, O. Eksik, Y.P. Zheng et al., In situ polymerized 1, 3-dioxolane electrolyte for integrated solid-state lithium batteries. Angew. Chem. Int. Ed. 62, e202218621 (2023). https://doi.org/10.1002/anie.202218621
- B. Deng, M.-X. Jing, L.-X. Li, R. Li, H. Yang et al., Nano-zirconia boosting the ionic conductivity and lithium dendrite inhibition ability of a poly(1, 3-dioxolane) solid electrolyte for high-voltage solid-state lithium batteries. Sustain. Energy Fuels 5, 5461–5470 (2021). https://doi.org/10.1039/D1SE01132D
- T. Chen, H. Wu, J. Wan, M. Li, Y. Zhang et al., Synthetic poly-dioxolane as universal solid electrolyte interphase for stable lithium metal anodes. J. Energy Chem. 62, 172–178 (2021). https://doi.org/10.1016/j.jechem.2021.03.018
- H. Huang, D. Li, L. Hou, H. Du, H. Wei et al., Advanced protective layer design on the surface of Mg-based metal and application in batteries: challenges and progress. J. Power. Sources 542, 231755 (2022). https://doi.org/10.1016/j.jpowsour.2022.231755
- G. Zheng, C. Wang, A. Pei, J. Lopez, F. Shi et al., High-performance lithium metal negative electrode with a soft and flowable polymer coating. ACS Energy Lett. 1, 1247–1255 (2016). https://doi.org/10.1021/acsenergylett.6b00456
- J. Chen, H. Lu, X. Zhang, Y. Zhang, J. Yang et al., Electrochemical polymerization of nonflammable electrolyte enabling fast-charging lithium-sulfur battery. Energy Storage Mater. 50, 387–394 (2022). https://doi.org/10.1016/j.ensm.2022.05.044
- N. Wang, X. Zhang, Z. Ju, X. Yu, Y. Wang et al., Thickness-independent scalable high-performance Li–S batteries with high areal sulfur loading via electron-enriched carbon framework. Nat. Commun. 12, 4519 (2021). https://doi.org/10.1038/s41467-021-24873-4
- X. Gao, X. Zheng, Y. Tsao, P. Zhang, X. Xiao et al., All-solid-state lithium–sulfur batteries enhanced by redox mediators. J. Am. Chem. Soc. 143, 18188–18195 (2021). https://doi.org/10.1021/jacs.1c07754
- G. Xu, A. Kushima, J. Yuan, H. Dou, W. Xue et al., Ad hoc solid electrolyte on acidized carbon nanotube paper improves cycle life of lithium–sulfur batteries. Energy Environ. Sci. 10, 2544–2551 (2017). https://doi.org/10.1039/C7EE01898C
- L. Ma, M.S. Kim, L.A. Archer, Stable artificial solid electrolyte interphases for lithium batteries. Chem. Mater. 29, 4181–4189 (2017). https://doi.org/10.1021/acs.chemmater.6b03687
- F.-Q. Liu, W.-P. Wang, Y.-X. Yin, S.-F. Zhang, J.-L. Shi et al., Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries. Sci. Adv. 4, eaat5383 (2018). https://doi.org/10.1126/sciadv.aat5383
- W.-P. Wang, J. Zhang, Y.-X. Yin, H. Duan, J. Chou et al., A rational reconfiguration of electrolyte for high-energy and long-life lithium-chalcogen batteries. Adv. Mater. 32, e2000302 (2020). https://doi.org/10.1002/adma.202000302
- Y. Yamashita, M. Okada, H. Kasahara, Kinetic studies on the polymerization of 1,3-dioxolane catalyzed by triethyl oxonium tetrafluoroborate. Makromol. Chem. 117, 256–264 (1968). https://doi.org/10.1002/macp.1968.021170124
- Y. Yamashita, M. Okada, K. Suyama, H. Kasahara, Equilibrium polymerization of 1,3-dioxolane. Makromol. Chem. 114, 146–154 (1968). https://doi.org/10.1002/macp.1968.021140111
- S. Sasaki, Y. Takahashi, H. Tadokoro, Structural studies of polyformals. II. Crystal structure of poly-1, 3-dioxolane: modification II. J. Polym. Sci. Polym. Phys. Ed. 10, 2363–2378 (1972). https://doi.org/10.1002/pol.1972.180101206
- L. Kong, H. Zhan, Y. Li, Y. Zhou, In situ fabrication of lithium polymer battery basing on a novel electro-polymerization technique. Electrochem. Commun. 9, 2557–2563 (2007). https://doi.org/10.1016/j.elecom.2007.08.001
- Q. Zhao, X. Liu, S. Stalin, K. Khan, L.A. Archer, Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat. Energy 4, 365–373 (2019). https://doi.org/10.1038/s41560-019-0349-7
- J. Zhou, T. Qian, J. Liu, M. Wang, L. Zhang et al., High-safety all-solid-state lithium-metal battery with high-ionic-conductivity thermoresponsive solid polymer electrolyte. Nano Lett. 19, 3066–3073 (2019). https://doi.org/10.1021/acs.nanolett.9b00450
- C.-Z. Zhao, Q. Zhao, X. Liu, J. Zheng, S. Stalin et al., Rechargeable lithium metal batteries with an In-built solid-state polymer electrolyte and a high voltage/loading Ni-rich layered cathode. Adv. Mater. 32, e1905629 (2020). https://doi.org/10.1002/adma.201905629
- Y. Huang, S. Liu, Q. Chen, K. Jiao, B. Ding et al., Constructing highly conductive and thermomechanical stable quasi-solid electrolytes by self-polymerization of liquid electrolytes within porous polyimide nanofiber films. Adv. Funct. Mater. 32, 2201496 (2022). https://doi.org/10.1002/adfm.202201496
- H. Yang, B. Zhang, M. Jing, X. Shen, L. Wang et al., In situ catalytic polymerization of a highly homogeneous PDOL composite electrolyte for long-cycle high-voltage solid-state lithium batteries. Adv. Energy Mater. 12, 2270162 (2022). https://doi.org/10.1002/aenm.202270162
- H. Xu, J. Zhang, H. Zhang, J. Long, L. Xu et al., In situ topological interphases boosting stable solid-state lithium metal batteries. Adv. Energy Mater. 13, 2204411 (2023). https://doi.org/10.1002/aenm.202204411
- P.H. Plesch, P.H. Westermann, The polymerization of 1,3-dioxolane. I. Structure of the polymer and thermodynamics of its formation. J. Polym. Sci C Polym. Symp. 16, 3837–3843 (1967). https://doi.org/10.1002/polc.5070160724
- D. Aurbach, O. Youngman, P. Dan, The electrochemical behavior of 1, 3-dioxolane—LiClO4 solutions—II. Contaminated solutions. Electrochim. Acta 35, 639–655 (1990). https://doi.org/10.1016/0013-4686(90)87056-8
- H. Xu, H. Zhang, J. Ma, G. Xu, T. Dong et al., Overcoming the challenges of 5 V spinel LiNi0.5Mn1.5O4 cathodes with solid polymer electrolytes. ACS Energy Lett. 4, 2871–2886 (2019). https://doi.org/10.1021/acsenergylett.9b01871
- G.H. Newman, R.W. Francis, L.H. Gaines, B.M.L. Rao, Hazard investigations of LiClO4/dioxolane electrolyte. J. Electrochem. Soc. 127, 2025–2027 (1980). https://doi.org/10.1149/1.2130056
- Q. Liu, L. Wang, X. He, Toward practical solid-state polymer lithium batteries by in situ polymerization process: a review. Adv. Energy Mater. 13, 2300798 (2023). https://doi.org/10.1002/aenm.202300798
- Q. Liu, B. Cai, S. Li, Q. Yu, F. Lv et al., Long-cycling and safe lithium metal batteries enabled by the synergetic strategy of ex situ anodic pretreatment and an in-built gel polymer electrolyte. J. Mater. Chem. A 8, 7197–7204 (2020). https://doi.org/10.1039/D0TA02148B
- S. Wen, C. Luo, Q. Wang, Z. Wei, Y. Zeng et al., Integrated design of ultrathin crosslinked network polymer electrolytes for flexible and stable all-solid-state lithium batteries. Energy Storage Mater. 47, 453–461 (2022). https://doi.org/10.1016/j.ensm.2022.02.035
- H. Cheng, J. Zhu, H. Jin, C. Gao, H. Liu et al., In situ initiator-free gelation of highly concentrated lithium bis(fluorosulfonyl)imide-1, 3-dioxolane solid polymer electrolyte for high performance lithium-metal batteries. Mater. Today Energy 20, 100623 (2021). https://doi.org/10.1016/j.mtener.2020.100623
- J. Zheng, W. Zhang, C. Huang, Z. Shen, X. Wang et al., In-situ polymerization with dual-function electrolyte additive toward future lithium metal batteries. Mater. Today Energy 26, 100984 (2022). https://doi.org/10.1016/j.mtener.2022.100984
- W. Li, J. Gao, H. Tian, X. Li, S. He et al., SnF2-catalyzed formation of polymerized dioxolane as solid electrolyte and its thermal decomposition behavior. Angew. Chem. Int. Ed. 61, e202114805 (2022). https://doi.org/10.1002/anie.202114805
- S. Zheng, Y. Chen, K. Chen, S. Yang, R. Bagherzadeh et al., In situ construction of polyether-based composite electrolyte with bi-phase ion conductivity and stable electrolyte/electrode interphase for solid-state lithium metal batteries. J. Mater. Chem. A 10, 19641–19648 (2022). https://doi.org/10.1039/D2TA02229J
- Z. Li, W. Tang, Y. Deng, M. Zhou, X. Wang et al., Enabling highly stable lithium metal batteries by using dual-function additive catalyzed in-built quasi-solid-state polymer electrolytes. J. Mater. Chem. A 10, 23047–23057 (2022). https://doi.org/10.1039/D2TA06153H
- S. Wang, L. Zhou, M.K. Tufail, L. Yang, P. Zhai et al., In-Situ synthesized Non-flammable gel polymer electrolyte enable highly safe and Dendrite-Free lithium metal batteries. Chem. Eng. J. 415, 128846 (2021). https://doi.org/10.1016/j.cej.2021.128846
- J. Xiang, Y. Zhang, B. Zhang, L. Yuan, X. Liu et al., A flame-retardant polymer electrolyte for high performance lithium metal batteries with an expanded operation temperature. Energy Environ. Sci. 14, 3510–3521 (2021). https://doi.org/10.1039/D1EE00049G
- J. Zhao, M. Li, H. Su, Y. Liu, P. Bai et al., In situ fabricated non-flammable quasi-solid electrolytes for Li-metal batteries. Small Meth. 7, 2300228 (2023). https://doi.org/10.1002/smtd.202300228
- J. Wei, H. Yue, Z. Shi, Z. Li, X. Li et al., In situ gel polymer electrolyte with inhibited lithium dendrite growth and enhanced interfacial stability for lithium-metal batteries. ACS Appl. Mater. Interfaces 13, 32486–32494 (2021). https://doi.org/10.1021/acsami.1c07032
- M. Xie, Y. Wu, Y. Liu, P.P. Yu, R. Jia et al., Pathway of in situ polymerization of 1, 3-dioxolane in LiPF6 electrolyte on Li metal anode. Mater. Today Energy 21, 100730 (2021). https://doi.org/10.1016/j.mtener.2021.100730
- A. Hu, Z. Liao, J. Huang, Y. Zhang, Q. Yang et al., In-situ construction of dual lithium-ion migration channels in polymer electrolytes for lithium metal batteries. Chem. Eng. J. 448, 137661 (2022). https://doi.org/10.1016/j.cej.2022.137661
- P. Cheng, H. Zhang, Q. Ma, W. Feng, H. Yu et al., Highly salt-concentrated electrolyte comprising lithium bis(fluorosulfonyl)imide and 1, 3-dioxolane-based ether solvents for 4-V-class rechargeable lithium metal cell. Electrochim. Acta 363, 137198 (2020). https://doi.org/10.1016/j.electacta.2020.137198
- G. Yang, W. Hou, Y. Zhai, Z. Chen, C. Liu et al., Polymeric concentrated electrolyte enables simultaneous stabilization of electrode/electrolyte interphases for quasi-solid-state lithium metal batteries. EcoMat 5, e12325 (2023). https://doi.org/10.1002/eom2.12325
- Y. Wu, J. Ma, H. Jiang, L. Wang, F. Zhang et al., Confined in situ polymerization of poly(1, 3-dioxolane) and poly(vinylene carbonate)-based quasi-solid polymer electrolyte with improved uniformity for lithium metal batteries. Mater. Today Energy 32, 101239 (2023). https://doi.org/10.1016/j.mtener.2022.101239
- G. Yang, Y. Zhai, J. Yao, S. Song, L. Lin et al., Synthesis and properties of poly(1, 3-dioxolane) in situ quasi-solid-state electrolytes via a rare-earth triflate catalyst. Chem. Commun. 57, 7934–7937 (2021). https://doi.org/10.1039/d1cc02916a
- L. Zhang, H. Gao, S. Xiao, J. Li, T. Ma et al., In-situ construction of ceramic–polymer all-solid-state electrolytes for high-performance room-temperature lithium metal batteries. ACS Mater. Lett. 4, 1297–1305 (2022). https://doi.org/10.1021/acsmaterialslett.2c00238
- W. Zhang, S. Zhang, L. Fan, L. Gao, X. Kong et al., Tuning the LUMO energy of an organic interphase to stabilize lithium metal batteries. ACS Energy Lett. 4, 644–650 (2019). https://doi.org/10.1021/acsenergylett.8b02483
- Y.-K. Han, J. Yoo, T. Yim, Distinct reaction characteristics of electrolyte additives for high-voltage lithium-ion batteries: tris(trimethylsilyl) phosphite, borate, and phosphate. Electrochim. Acta 215, 455–465 (2016). https://doi.org/10.1016/j.electacta.2016.08.131
- Y. Liu, X. Tao, Y. Wang, C. Jiang, C. Ma et al., Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science 375, 739–745 (2022). https://doi.org/10.1126/science.abn1818
- Q. Zhao, S. Stalin, L.A. Archer, Stabilizing metal battery anodes through the design of solid electrolyte interphases. Joule 5, 1119–1142 (2021). https://doi.org/10.1016/j.joule.2021.03.024
- P. Zhai, T. Wang, H. Jiang, J. Wan, Y. Wei et al., 3D artificial solid-electrolyte interphase for lithium metal anodes enabled by insulator-metal-insulator layered heterostructures. Adv. Mater. 33, e2006247 (2021). https://doi.org/10.1002/adma.202006247
- L. Ye, X. Li, A dynamic stability design strategy for lithium metal solid state batteries. Nature 593, 218–222 (2021). https://doi.org/10.1038/s41586-021-03486-3
- H. Xie, C. Yang, Y. Ren, S. Xu, T.R. Hamann et al., Amorphous-carbon-coated 3D solid electrolyte for an electro-chemomechanically stable lithium metal anode in solid-state batteries. Nano Lett. 21, 6163–6170 (2021). https://doi.org/10.1021/acs.nanolett.1c01748
- Y. Wang, Z. Wang, L. Zhao, Q. Fan, X. Zeng et al., Lithium metal electrode with increased air stability and robust solid electrolyte interphase realized by silane coupling agent modification. Adv. Mater. 33, e2008133 (2021). https://doi.org/10.1002/adma.202008133
- H. Wan, Z. Wang, S. Liu, B. Zhang, X. He et al., Critical interphase overpotential as a lithium dendrite-suppression criterion for all-solid-state lithium battery design. Nat. Energy 8, 473–481 (2023). https://doi.org/10.1038/s41560-023-01231-w
- P. Jiang, J. Cao, B. Wei, G. Qian, S. Wang et al., LiF involved interphase layer enabling thousand cycles of LAGP-based solid-state Li metal batteries with 80% capacity retention. Energy Storage Mater. 48, 145–154 (2022). https://doi.org/10.1016/j.ensm.2022.03.017
- J. Li, H. Hu, W. Fang, J. Ding, D. Yuan et al., Impact of fluorine-based lithium salts on SEI for all-solid-state PEO-based lithium metal batteries. Adv. Funct. Mater. 33, 2303718 (2023). https://doi.org/10.1002/adfm.202303718
- C. Guo, K. Du, R. Tao, Y. Guo, S. Yao et al., Inorganic filler enhanced formation of stable inorganic-rich solid electrolyte interphase for high performance lithium metal batteries. Adv. Funct. Mater. 33, 2301111 (2023). https://doi.org/10.1002/adfm.202301111
- H. Sun, X. Xie, Q. Huang, Z. Wang, K. Chen et al., Fluorinated poly-oxalate electrolytes stabilizing both anode and cathode interfaces for all-solid-state Li/NMC811 batteries. Angew. Chem. Int. Ed. 60, 18335–18343 (2021). https://doi.org/10.1002/anie.202107667
- J. Xie, S.-Y. Sun, X. Chen, L.-P. Hou, B.-Q. Li et al., Fluorinating the solid electrolyte interphase by rational molecular design for practical lithium-metal batteries. Angew. Chem. Int. Ed. 61, e202204776 (2022). https://doi.org/10.1002/anie.202204776
- A. Hu, W. Chen, X. Du, Y. Hu, T. Lei et al., An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode. Energy Environ. Sci. 14, 4115–4124 (2021). https://doi.org/10.1039/D1EE00508A
- X. Pei, Y. Li, T. Ou, X. Liang, Y. Yang et al., Li-N interaction induced deep eutectic gel polymer electrolyte for high performance lithium-metal batteries. Angew. Chem. Int. Ed. 61, e202205075 (2022). https://doi.org/10.1002/anie.202205075
- X. Yi, Y. Guo, S. Chi, S. Pan, C. Geng et al., Surface Li2CO3 mediated phosphorization enables compatible interfaces of composite polymer electrolyte for solid-state lithium batteries. Adv. Funct. Mater. 33, 2303574 (2023). https://doi.org/10.1002/adfm.202303574
- M.-X. Jing, H. Yang, C. Han, F. Chen, L.-K. Zhang et al., Synergistic enhancement effects of LLZO fibers and interfacial modification for polymer solid electrolyte on the ambient-temperature electrochemical performances of solid-state battery. J. Electrochem. Soc. 166, A3019–A3027 (2019). https://doi.org/10.1149/2.1171913jes
- M.-X. Jing, H. Yang, C. Han, F. Chen, W.-Y. Yuan et al., Improving room-temperature electrochemical performance of solid-state lithium battery by using electrospun La2Zr2O7 fibers-filled composite solid electrolyte. Ceram. Int. 45, 18614–18622 (2019). https://doi.org/10.1016/j.ceramint.2019.06.085
- J.Y. Kim, O.B. Chae, M. Wu, E. Lim, G. Kim et al., Extraordinary dendrite-free Li deposition on highly uniform facet wrinkled Cu substrates in carbonate electrolytes. Nano Energy 82, 105736 (2021). https://doi.org/10.1016/j.nanoen.2020.105736
- J. Wang, Q. Kang, J. Yuan, Q. Fu, C. Chen et al., Dendrite-free lithium and sodium metal anodes with deep plating/stripping properties for lithium and sodium batteries. Carbon Energy 3, 153–166 (2021). https://doi.org/10.1002/cey2.94
- J. Duan, L. Huang, T. Wang, Y. Huang, H. Fu et al., Shaping the contact between Li metal anode and solid-state electrolytes. Adv. Funct. Mater. 30, 1908701 (2020). https://doi.org/10.1002/adfm.201908701
- Q. Li, S. Zhu, Y. Lu, 3D porous Cu current collector/Li-metal composite anode for stable lithium-metal batteries. Adv. Funct. Mater. 27, 1606422 (2017). https://doi.org/10.1002/adfm.201606422
- Q. Wu, M. Fang, S. Jiao, S. Li, S. Zhang et al., Phase regulation enabling dense polymer-based composite electrolytes for solid-state lithium metal batteries. Nat. Commun. 14, 6296 (2023). https://doi.org/10.1038/s41467-023-41808-3
- J. Li, Y. Ji, H. Song, S. Chen, S. Ding et al., Insights into the interfacial degradation of high-voltage all-solid-state lithium batteries. Nano-Micro Lett. 14, 191 (2022). https://doi.org/10.1007/s40820-022-00936-z
- Y. Ma, J.H. Teo, F. Walther, Y. Ma, R. Zhang et al., Advanced nanop coatings for stabilizing layered Ni-rich oxide cathodes in solid-state batteries. Adv. Funct. Mater. 32, 2270135 (2022). https://doi.org/10.1002/adfm.202270135
- W. Bao, G. Qian, L. Zhao, Y. Yu, L. Su et al., Simultaneous enhancement of interfacial stability and kinetics of single-crystal LiNi0.6Mn0.2Co0.2O2 through optimized surface coating and doping. Nano Lett. 20, 8832–8840 (2020). https://doi.org/10.1021/acs.nanolett.0c03778
- J. Zhao, J. Zhang, P. Hu, J. Ma, X. Wang et al., A sustainable and rigid-flexible coupling cellulose-supported poly(propylene carbonate) polymer electrolyte towards 5 V high voltage lithium batteries. Electrochim. Acta 188, 23–30 (2016). https://doi.org/10.1016/j.electacta.2015.11.088
- M. Liu, D. Zhou, Y.-B. He, Y. Fu, X. Qin et al., Novel gel polymer electrolyte for high-performance lithium–sulfur batteries. Nano Energy 22, 278–289 (2016). https://doi.org/10.1016/j.nanoen.2016.02.008
- L.-X. Li, R. Li, Z.-H. Huang, M.-Q. Liu, J. Xiang et al., High-performance gel electrolyte for enhanced interface compatibility and lithium metal stability in high-voltage lithium battery. Colloids Surf. A Physicochem. Eng. Aspects 651, 129665 (2022). https://doi.org/10.1016/j.colsurfa.2022.129665
- Y. Liu, Y. Xu, Porous membrane host-derived in situ polymer electrolytes with double-stabilized electrode interface enable long cycling lithium metal batteries. Chem. Eng. J. 433, 134471 (2022). https://doi.org/10.1016/j.cej.2021.134471
- Z. Geng, Y. Huang, G. Sun, R. Chen, W. Cao et al., In-situ polymerized solid-state electrolytes with stable cycling for Li/LiCoO2 batteries. Nano Energy 91, 106679 (2022). https://doi.org/10.1016/j.nanoen.2021.106679
- J. Ma, X. Feng, Y. Wu, Y. Wang, P. Liu et al., Stable sodium anodes for sodium metal batteries (SMBs) enabled by in situ formed quasi solid-state polymer electrolyte. J. Energy Chem. 77, 290–299 (2023). https://doi.org/10.1016/j.jechem.2022.09.040
- S. Song, W. Gao, G. Yang, Y. Zhai, J. Yao et al., Hybrid poly-ether/carbonate ester electrolyte engineering enables high oxidative stability for quasi-solid-state lithium metal batteries. Mater. Today Energy 23, 100893 (2022). https://doi.org/10.1016/j.mtener.2021.100893
- K. Khan, Z. Tu, Q. Zhao, C. Zhao, L.A. Archer, Synthesis and properties of poly-ether/ethylene carbonate electrolytes with high oxidative stability. Chem. Mater. 31, 8466–8472 (2019). https://doi.org/10.1021/acs.chemmater.9b02823
- J. Yu, X. Lin, J. Liu, J.T.T. Yu, M.J. Robson et al., In situ fabricated quasi-solid polymer electrolyte for high-energy-density lithium metal battery capable of subzero operation. Adv. Energy Mater. 12, 2102932 (2022). https://doi.org/10.1002/aenm.202102932
- H. Yang, M.-X. Jing, H.-P. Li, W.-Y. Yuan, B. Deng et al., ‘Environment-friendly’ polymer solid electrolyte membrane via a rapid surface-initiating polymeration strategy. Chem. Eng. J. 421, 129710 (2021). https://doi.org/10.1016/j.cej.2021.129710
- Z.K. Liu, J. Guan, H.X. Yang, P.X. Sun, N.W. Li et al., Ternary-salt solid polymer electrolyte for high-rate and long-life lithium metal batteries. Chem. Commun. 58, 10973–10976 (2022). https://doi.org/10.1039/D2CC04128F
- L.-X. Li, R. Li, Z.-H. Huang, H. Yang, M.-Q. Liu et al., A multifunctional gradient solid electrolyte remarkably improving interface compatibility and ion transport in solid-state lithium battery. ACS Appl. Mater. Interfaces 14, 30786–30795 (2022). https://doi.org/10.1021/acsami.2c05578
- J. Ma, Y. Wu, H. Jiang, X. Yao, F. Zhang et al., In situ directional polymerization of poly(1, 3-dioxolane) solid electrolyte induced by cellulose paper-based composite separator for lithium metal batteries. Energy Environ. Mater. 6, 12370 (2023). https://doi.org/10.1002/eem2.12370
- X. Li, L. Cong, S. Ma, S. Shi, Y. Li et al., Low resistance and high stable solid–liquid electrolyte interphases enable high-voltage solid-state lithium metal batteries. Adv. Funct. Mater. 31, 2010611 (2021). https://doi.org/10.1002/adfm.202010611
- B. Han, P. Jiang, S. Li, X. Lu, Functionalized gel polymer electrolyte membrane for high performance Li metal batteries. Solid State Ion. 361, 115572 (2021). https://doi.org/10.1016/J.SSI.2021.115572
- J. Sun, X. Yao, Y. Li, Q. Zhang, C. Hou et al., Composite solid electrolytes: facilitating interfacial stability via bilayer heterostructure solid electrolyte toward high-energy, safe and adaptable lithium batteries. Adv. Energy Mater. 10, 2070131 (2020). https://doi.org/10.1002/aenm.202070131
- Y. Liu, Y. Xu, Y. Zhang, C. Yu, X. Sun, Thin Li1.3Al0.3Ti1.7(PO4)3-based composite solid electrolyte with a reinforced interface of in situ formed poly(1, 3-dioxolane) for lithium metal batteries. J. Colloid Interface Sci. 644, 53–63 (2023). https://doi.org/10.1016/j.jcis.2023.03.182
- D. Chen, M. Zhu, P. Kang, T. Zhu, H. Yuan et al., Self-enhancing gel polymer electrolyte by in situ construction for enabling safe lithium metal battery. Adv. Sci. 9, e2103663 (2022). https://doi.org/10.1002/advs.202103663
- Y. Li, W. Zhang, Q. Dou, K.W. Wong, K.M. Ng, Li7La3Zr2O12 ceramic nanofiber-incorporated composite polymer electrolytes for lithium metal batteries. J. Mater. Chem. A 7, 3391–3398 (2019). https://doi.org/10.1039/C8TA11449H
- Z. Shen, J. Zhong, J. Chen, W. Xie, K. Yang et al., SiO2 nanofiber composite gel polymer electrolyte by in situ polymerization for stable Li metal batteries. Chin. Chemical Lett. 34, 107370 (2023). https://doi.org/10.1016/j.cclet.2022.03.093
- D. Lin, W. Liu, Y. Liu, H.R. Lee, P.C. Hsu et al., High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide). Nano Lett. 16, 459–465 (2016). https://doi.org/10.1021/acs.nanolett.5b04117
- Y.-Y. Lin, Y.-M. Chen, S.-S. Hou, J.-S. Jan, Y.-L. Lee et al., Diode-like gel polymer electrolytes for full-cell lithium ion batteries. J. Mater. Chem. A 5, 17476–17481 (2017). https://doi.org/10.1039/C7TA04886F
- L.-H. Chen, Z.-Y. Huang, S.-L. Chen, R.-A. Tong, H.-L. Wang et al., In situ polymerization of 1, 3-dioxolane infiltrating 3D garnet framework with high ionic conductivity and excellent interfacial stability for integrated solid-state Li metal battery. Rare Met. 41, 3694–3705 (2022). https://doi.org/10.1007/s12598-022-02080-4
- H. Huo, Y. Chen, J. Luo, X. Yang, X. Guo et al., Rational design of hierarchical “ceramic-in-polymer” and “polymer-in-ceramic” electrolytes for dendrite-free solid-state batteries. Adv. Energy Mater. 9, 1804004 (2019). https://doi.org/10.1002/aenm.201804004
- H. Liang, L. Wang, A. Wang, Y. Song, Y. Wu et al., Tailoring practically accessible polymer/inorganic composite electrolytes for all-solid-state lithium metal batteries: a review. Nano-Micro Lett. 15, 42 (2023). https://doi.org/10.1007/s40820-022-00996-1
- Z. Wan, D. Lei, W. Yang, C. Liu, K. Shi et al., All-solid-state batteries: low resistance–integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder. Adv. Funct. Mater. 29, 1970006 (2019). https://doi.org/10.1002/adfm.201970006
- X. Zhang, S. Wang, C. Xue, C. Xin, Y. Lin et al., Self-suppression of lithium dendrite in all-solid-state lithium metal batteries with poly(vinylidene difluoride)-based solid electrolytes. Adv. Mater. 31, e1806082 (2019). https://doi.org/10.1002/adma.201806082
- Z. Zou, Y. Li, Z. Lu, D. Wang, Y. Cui et al., Mobile ions in composite solids. Chem. Rev. 120, 4169–4221 (2020). https://doi.org/10.1021/acs.chemrev.9b00760
- L. Han, C. Liao, X. Mu, N. Wu, Z. Xu et al., Flame-retardant ADP/PEO solid polymer electrolyte for dendrite-free and long-life lithium battery by generating Al P-rich SEI layer. Nano Lett. 21, 4447–4453 (2021). https://doi.org/10.1021/acs.nanolett.1c01137
- B. Xu, X. Li, C. Yang, Y. Li, N.S. Grundish et al., Interfacial chemistry enables stable cycling of all-solid-state Li metal batteries at high current densities. J. Am. Chem. Soc. 143, 6542–6550 (2021). https://doi.org/10.1021/jacs.1c00752
- W. Liu, D. Lin, J. Sun, G. Zhou, Y. Cui, Improved lithium ionic conductivity in composite polymer electrolytes with oxide-ion conducting nanowires. ACS Nano 10, 11407–11413 (2016). https://doi.org/10.1021/acsnano.6b06797
- N.W. Utomo, Y. Deng, Q. Zhao, X. Liu, L.A. Archer, Structure and evolution of quasi-solid-state hybrid electrolytes formed inside electrochemical cells. Adv. Mater. 34, e2110333 (2022). https://doi.org/10.1002/adma.202110333
- S. Huo, L. Sheng, W. Xue, L. Wang, H. Xu et al., Challenges of polymer electrolyte with wide electrochemical window for high energy solid-state lithium batteries. InfoMat 5, e12394 (2023). https://doi.org/10.1002/inf2.12394
- S. Xue, S. Yao, M. Jing, L. Zhu, X. Shen et al., Three-dimension ivy-structured MoS2 nanoflakes-embedded nitrogen doped carbon nanofibers composite membrane as free-standing electrodes for Li/polysulfides batteries. Electrochim. Acta 299, 549–559 (2019). https://doi.org/10.1016/j.electacta.2019.01.044
- S. Li, S. Pang, X. Wu, X. Qian, S. Yao et al., Improve redox activity and cycling stability of the lithium–sulfur batteries via in situ formation of a sponge-like separator modification layer. Int. J. Energy Res. 44, 4933–4943 (2020). https://doi.org/10.1002/er.5201
- B. Deng, M.-X. Jing, R. Li, L.-X. Li, H. Yang et al., Integrating high ionic conductive PDOL solid/gel composite electrolyte for enhancement of interface combination and lithium dentrite inhibition of solid-state lithium battery. J. Colloid Interface Sci. 620, 199–208 (2022). https://doi.org/10.1016/j.jcis.2022.04.008
- Z. Zhuang, Y. Tang, B. Ju, F. Tu, In situ synthesis of graphitic C3N4–poly(1, 3-dioxolane) composite interlayers for stable lithium metal anodes. Sustain. Energy Fuels 5, 2433–2440 (2021). https://doi.org/10.1039/D1SE00212K
- X. Wang, X. Shen, P. Zhang, A.-J. Zhou, J.-B. Zhao, Promoted Li+ conduction in PEO-based all-solid-state electrolyte by hydroxyl-modified glass fiber fillers. Rare Met. 42, 875–884 (2023). https://doi.org/10.1007/s12598-022-02218-4
- P. Yao, B. Zhu, H. Zhai, X. Liao, Y. Zhu et al., PVDF/palygorskite nanowire composite electrolyte for 4 V rechargeable lithium batteries with high energy density. Nano Lett. 18, 6113–6120 (2018). https://doi.org/10.1021/acs.nanolett.8b01421
- J. Wu, T. Zhou, B. Zhong, Q. Wang, W. Liu et al., Designing anion-derived solid electrolyte interphase in a siloxane-based electrolyte for lithium-metal batteries. ACS Appl. Mater. Interfaces 14, 27873–27881 (2022). https://doi.org/10.1021/acsami.2c05098
- J. Fu, X. Ji, J. Chen, L. Chen, X. Fan et al., Lithium nitrate regulated sulfone electrolytes for lithium metal batteries. Angew. Chem. Int. Ed. 59, 22194–22201 (2020). https://doi.org/10.1002/anie.202009575
- F. Chen, M.-X. Jing, H. Yang, W.-Y. Yuan, M.-Q. Liu et al., Improved ionic conductivity and Li dendrite suppression of PVDF-based solid electrolyte membrane by LLZO incorporation and mechanical reinforcement. Ionics 27, 1101–1111 (2021). https://doi.org/10.1007/s11581-020-03891-0
- J. Li, L. Zhu, J. Zhang, M. Jing, S. Yao et al., Approaching high performancePVDF-HFPbased solid composite electrolytes withLLTOnanorods for solid-state lithium-ion batteries. Int. J. Energy Res. 45, 7663–7674 (2021). https://doi.org/10.1002/er.6347
- W.-W. Shao, J.-X. Li, L. Zhong, H.-F. Wu, M.-Q. Liu et al., A high ion conductive solid electrolyte film and interface stabilization strategy for solid-state Li–S battery. Colloids Surf. A Physicochem. Eng. Aspects 679, 132593 (2023). https://doi.org/10.1016/j.colsurfa.2023.132593
- L. Han, L. Wang, Z. Chen, Y. Kan, Y. Hu et al., Incombustible polymer electrolyte boosting safety of solid-state lithium batteries: a review. Adv. Funct. Mater. 33, 2300892 (2023). https://doi.org/10.1002/adfm.202300892
- C.-B. Jin, N. Yao, Y. Xiao, J. Xie, Z. Li et al., Taming solvent–solute interaction accelerates interfacial kinetics in low-temperature lithium-metal batteries. Adv. Mater. 35, 2208340 (2023). https://doi.org/10.1002/adma.202208340
- J. Zhou, H. Ji, Y. Qian, J. Liu, T. Yan et al., Molecular simulations guided polymer electrolyte towards superior low-temperature solid lithium-metal batteries. ACS Appl. Mater. Interfaces 13, 48810–48817 (2021). https://doi.org/10.1021/acsami.1c14825
- L.E. Camacho-Forero, P.B. Balbuena, Effects of charged interfaces on electrolyte decomposition at the lithium metal anode. J. Power. Sources 472, 228449 (2020). https://doi.org/10.1016/j.jpowsour.2020.228449
- F. Liu, T. Li, Y. Yang, J. Yan, N. Li et al., Investigation on the copolymer electrolyte of poly(1, 3-dioxolane-co-formaldehyde). Macromol. Rapid Commun. 41, e2000047 (2020). https://doi.org/10.1002/marc.202000047
- Y. Du, L. Zhao, C. Xiong, Z. Sun, S. Liu et al., Ameliorating structural and electrochemical properties of traditional poly-dioxolane electrolytes via integrated design of ultra-stable network for solid-state batteries. Energy Storage Mater. 56, 310–318 (2023). https://doi.org/10.1016/j.ensm.2023.01.017
- J. Cui, Y. Du, L. Zhao, X. Li, Z. Sun et al., Thermal stable poly-dioxolane based electrolytes via a robust crosslinked network for dendrite-free solid-state li-metal batteries. Chem. Eng. J. 461, 141973 (2023). https://doi.org/10.1016/j.cej.2023.141973
- D.F. Miranda, C. Versek, M.T. Tuominen, T.P. Russell, J.J. Watkins, Cross-linked Block copolymer/ionic liquid self-assembled blends for polymer gel electrolytes with high ionic conductivity and mechanical strength. Macromolecules 46, 9313–9323 (2013). https://doi.org/10.1021/ma401302r
- S. Chen, B. Chen, J. Fan, J. Feng, Exploring the application of sustainable poly(propylene carbonate) copolymer in toughening epoxy thermosets. ACS Sustain. Chem. Eng. 3, 2077–2083 (2015). https://doi.org/10.1021/acssuschemeng.5b00343
- J. Qin, W. Luo, M. Li, P. Chen, S. Wang et al., A novel multiblock copolymer of CO2-based PPC-mb-PBS: from simulation to experiment. ACS Sustain. Chem. Eng. 5, 5922–5930 (2017). https://doi.org/10.1021/acssuschemeng.7b00634
- J.H. Han, J.Y. Lee, D.H. Suh, Y.T. Hong, T.-H. Kim, Electrode-impregnable and cross-linkable poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) triblock polymer electrolytes with high ionic conductivity and a large voltage window for flexible solid-state supercapacitors. ACS Appl. Mater. Interfaces 9, 33913–33924 (2017). https://doi.org/10.1021/acsami.7b09909
References
J.B. Goodenough, K.-S. Park, The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013). https://doi.org/10.1021/ja3091438
Y. Wu, W. Wang, J. Ming, M. Li, L. Xie et al., An exploration of new energy storage system: high energy density, high safety, and fast charging lithium ion battery. Adv. Funct. Mater. 29, 1805978 (2019). https://doi.org/10.1002/adfm.201805978
H. Wang, L. Sheng, G. Yasin, L. Wang, H. Xu et al., Reviewing the current status and development of polymer electrolytes for solid-state lithium batteries. Energy Storage Mater. 33, 188–215 (2020). https://doi.org/10.1016/j.ensm.2020.08.014
H.-J. Ha, E.-H. Kil, Y.H. Kwon, J.Y. Kim, C.K. Lee et al., UV-curable semi-interpenetrating polymer network-integrated, highly bendable plastic crystal composite electrolytes for shape-conformable all-solid-state lithium ion batteries. Energy Environ. Sci. 5, 6491–6499 (2012). https://doi.org/10.1039/C2EE03025J
A.L. Ahmad, U.R. Farooqui, N.A. Hamid, Synthesis and characterization of porous poly(vinylidene fluoride-co-hexafluoro propylene) (PVDF-co-HFP)/poly(aniline) (PANI)/graphene oxide (GO) ternary hybrid polymer electrolyte membrane. Electrochim. Acta 283, 842–849 (2018). https://doi.org/10.1016/j.electacta.2018.07.001
P. Ding, Z. Lin, X. Guo, L. Wu, Y. Wang et al., Polymer electrolytes and interfaces in solid-state lithium metal batteries. Mater. Today 51, 449–474 (2021). https://doi.org/10.1016/j.mattod.2021.08.005
K.K. Fu, Y. Gong, J. Dai, A. Gong, X. Han et al., Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc. Natl. Acad. Sci. U.S.A. 113, 7094–7099 (2016). https://doi.org/10.1073/pnas.1600422113
X. Ban, W. Zhang, N. Chen, C. Sun, A high-performance and durable poly(ethylene oxide)-based composite solid electrolyte for all solid-state lithium battery. J. Phys. Chem. C 122, 9852–9858 (2018). https://doi.org/10.1021/acs.jpcc.8b02556
B.K. Choi, Y.W. Kim, H.K. Shin, Ionic conduction in PEO–PAN blend polymer electrolytes. Electrochim. Acta 45, 1371–1374 (2000). https://doi.org/10.1016/s0013-4686(99)00345-x
J. Feng, L. Wang, Y. Chen, P. Wang, H. Zhang et al., PEO based polymer-ceramic hybrid solid electrolytes: a review. Nano Converg. 8, 2 (2021). https://doi.org/10.1186/s40580-020-00252-5
Y. Liu, S. Gorgutsa, C. Santato, M. Skorobogatiy, Flexible, solid electrolyte-based lithium battery composed of LiFePO4 cathode and Li4Ti5O12 anode for applications in smart textiles. J. Electrochem. Soc. 159, A349–A356 (2012). https://doi.org/10.1149/2.020204jes
M.-K. Song, J.-Y. Cho, B.W. Cho, H.-W. Rhee, Characterization of UV-cured gel polymer electrolytes for rechargeable lithium batteries. J. Power. Sources 110, 209–215 (2002). https://doi.org/10.1016/s0378-7753(02)00258-6
F. Liu, N. Awanis Hashim, Y. Liu, M.R. Moghareh Abed, K. Li, Progress in the production and modification of PVDF membranes. J. Membr. Sci. 375, 1–27 (2011). https://doi.org/10.1016/j.memsci.2011.03.014
F. Chen, J. Luo, M.-X. Jing, J. Li, Z.-H. Huang et al., A sandwich structure composite solid electrolyte with enhanced interface stability and electrochemical properties for solid-state lithium batteries. J. Electrochem. Soc. 168, 070513 (2021). https://doi.org/10.1149/1945-7111/ac0f89
J. Hu, P. He, B. Zhang, B. Wang, L.-Z. Fan, Porous film host-derived 3D composite polymer electrolyte for high-voltage solid state lithium batteries. Energy Storage Mater. 26, 283–289 (2020). https://doi.org/10.1016/j.ensm.2020.01.006
K. Yang, L. Chen, J. Ma, C. Lai, Y. Huang et al., Stable interface chemistry and multiple ion transport of composite electrolyte contribute to ultra-long cycling solid-state LiNi0.8Co0.1Mn0.1O2/lithium metal batteries. Angew. Chem. Int. Ed. 60, 24668–24675 (2021). https://doi.org/10.1002/anie.202110917
A. Rahimpour, M. Jahanshahi, A. Mollahosseini, B. Rajaeian, Structural and performance properties of UV-assisted TiO2 deposited nano-composite PVDF/SPES membranes. Desalination 285, 31–38 (2011). https://doi.org/10.1016/j.desal.2011.09.026
S. Golcuk, A.E. Muftuoglu, S.U. Celik, A. Bozkurt, Synthesis and characterization of polymer electrolyte membranes based on PVDF and styrene via photoinduced grafting. J. Polym. Res. 20, 144 (2013). https://doi.org/10.1007/s10965-013-0144-2
S. Rajendran, Experimental investigations on PAN–PEO hybrid polymer electrolytes. Solid State Ion. 130, 143–148 (2000). https://doi.org/10.1016/s0167-2738(00)00283-6
X. He, J. Ren, L. Wang, W. Pu, C. Jiang et al., Synthesis of PAN/SnCl2 composite as Li-ion battery anode material. Ionics 12, 323–326 (2006). https://doi.org/10.1007/s11581-006-0051-1
W.-P. Chen, H. Duan, J.-L. Shi, Y. Qian, J. Wan et al., Bridging interp Li+ conduction in a soft ceramic oxide electrolyte. J. Am. Chem. Soc. 143, 5717–5726 (2021). https://doi.org/10.1021/jacs.0c12965
X. He, Q. Shi, X. Zhou, C. Wan, C. Jiang, In situ composite of nano SiO2–P(VDF-HFP) porous polymer electrolytes for Li-ion batteries. Electrochim. Acta 51, 1069–1075 (2005). https://doi.org/10.1016/j.electacta.2005.05.048
J. Cao, L. Wang, M. Fang, Y. Shang, L. Deng et al., Interfacial compatibility of gel polymer electrolyte and electrode on performance of Li-ion battery. Electrochim. Acta 114, 527–532 (2013). https://doi.org/10.1016/j.electacta.2013.10.052
J. Cao, L. Wang, M. Fang, X. He, J. Li et al., Structure and electrochemical properties of composite polymer electrolyte based on poly vinylidene fluoride–hexafluoropropylene/titania–poly(methyl methacrylate) for lithium-ion batteries. J. Power. Sources 246, 499–504 (2014). https://doi.org/10.1016/j.jpowsour.2013.07.107
W. Pu, X. He, L. Wang, Z. Tian, C. Jiang et al., Preparation of P(AN-MMA) gel electrolyte for Li-ion batteries. Ionics 14, 27–31 (2008). https://doi.org/10.1007/s11581-007-0155-2
J. Cao, L. Wang, X. He, M. Fang, J. Gao et al., In situ prepared nano-crystalline TiO2–poly(methyl methacrylate) hybrid enhanced composite polymer electrolyte for Li-ion batteries. J. Mater. Chem. A 1, 5955–5961 (2013). https://doi.org/10.1039/C3TA00086A
S. Zhang, J. Cao, Y. Shang, L. Wang, X. He et al., Nanocomposite polymer membrane derived from nano TiO2-PMMA and glass fiber nonwoven: high thermal endurance and cycle stability in lithium ion battery applications. J. Mater. Chem. A 3, 17697–17703 (2015). https://doi.org/10.1039/C5TA02781K
Y. Li, H. Shimizu, Compatibilization by homopolymer: significant improvements in the modulus and tensile strength of PPC/PMMA blends by the addition of a small amount of PVAc. ACS Appl. Mater. Interfaces 1, 1650–1655 (2009). https://doi.org/10.1021/am900314k
P. Pal, A. Ghosh, Influence of TiO2 nano-ps on charge carrier transport and cell performance of PMMA-LiClO4 based nano-composite electrolytes. Electrochim. Acta 260, 157–167 (2018). https://doi.org/10.1016/j.electacta.2017.11.070
Z. Tian, W. Pu, X. He, C. Wan, C. Jiang, Preparation of a microporous polymer electrolyte based on poly(vinyl chloride)/poly(acrylonitrile-butyl acrylate) blend for Li-ion batteries. Electrochim. Acta 52, 3199–3206 (2007). https://doi.org/10.1016/j.electacta.2006.09.068
H. Buschmann, J. Dölle, S. Berendts, A. Kuhn, P. Bottke et al., Structure and dynamics of the fast lithium ion conductor “Li7La3Zr2O12.” Phys. Chem. Chem. Phys. 13, 19378–19392 (2011). https://doi.org/10.1039/c1cp22108f
J.B. Bates, N.J. Dudney, G.R. Gruzalski, R.A. Zuhr, A. Choudhury et al., Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries. J. Power. Sources 43, 103–110 (1993). https://doi.org/10.1016/0378-7753(93)80106-y
V. Thangadurai, W. Weppner, Li6ALa2Ta2O12 (A = Sr, Ba): novel garnet-like oxides for fast lithium ion conduction. Adv. Funct. Mater. 15, 107–112 (2005). https://doi.org/10.1002/adfm.200400044
R. Kanno, M. Murayama, Lithium ionic conductor thio-LISICON: the Li2S–GeS2–P2S5 system. J. Electrochem. Soc. 148, A742 (2001). https://doi.org/10.1149/1.1379028
M. Murayama, R. Kanno, M. Irie, S. Ito, T. Hata et al., Synthesis of new lithium ionic conductor thio-LISICON—lithium silicon sulfides system. J. Solid State Chem. 168, 140–148 (2002). https://doi.org/10.1006/jssc.2002.9701
H. Ben youcef, O. Garcia-Calvo, N. Lago, S. Devaraj, M. Armand, Cross-linked solid polymer electrolyte for all-solid-state rechargeable lithium batteries. Electrochim. Acta 220, 587–594 (2016). https://doi.org/10.1016/j.electacta.2016.10.122
L. Long, S. Wang, M. Xiao, Y. Meng, Polymer electrolytes for lithium polymer batteries. J. Mater. Chem. A 4, 10038–10069 (2016). https://doi.org/10.1039/C6TA02621D
Z. Wei, Z. Zhang, S. Chen, Z. Wang, X. Yao et al., UV-cured polymer electrolyte for LiNi0.85Co0.05Al0.1O2// Li solid state battery working at ambient temperature. Energy Storage Mater. 22, 337–345 (2019). https://doi.org/10.1016/j.ensm.2019.02.004
S.H. Siyal, M. Li, H. Li, J.-L. Lan, Y. Yu et al., Ultraviolet irradiated PEO/LATP composite gel polymer electrolytes for lithium-metallic batteries (LMBs). Appl. Surf. Sci. 494, 1119–1126 (2019). https://doi.org/10.1016/j.apsusc.2019.07.179
C. Liu, S. Wang, X. Wu, S. Xiao, C. Liu et al., In situ construction of zwitterionic polymer electrolytes with synergistic cation–anion regulation functions for lithium metal batteries. Adv. Funct. Mater. 34, 2307248 (2024). https://doi.org/10.1002/adfm.202307248
Y.M. Jeon, S. Kim, M. Lee, W.B. Lee, J.H. Park, Polymer-clay nanocomposite solid-state electrolyte with selective cation transport boosting and retarded lithium dendrite formation. Adv. Energy Mater. 10, 2003114 (2020). https://doi.org/10.1002/aenm.202003114
Y. Li, X. Wang, H. Zhou, X. Xing, A. Banerjee et al., Thin solid electrolyte layers enabled by nanoscopic polymer binding. ACS Energy Lett. 5, 955–961 (2020). https://doi.org/10.1021/acsenergylett.0c00040
H. Wu, B. Tang, X. Du, J. Zhang, X. Yu et al., LiDFOB initiated in situ polymerization of novel eutectic solution enables room-temperature solid lithium metal batteries. Adv. Sci. 7, 2003370 (2020). https://doi.org/10.1002/advs.202003370
Y. Wang, J. Ju, S. Dong, Y. Yan, F. Jiang et al., Facile design of sulfide-based all solid-state lithium metal battery: in situ polymerization within self-supported porous argyrodite skeleton. Adv. Funct. Mater. 31, 2101523 (2021). https://doi.org/10.1002/adfm.202101523
Y. Yan, J. Ju, S. Dong, Y. Wang, L. Huang et al., In situ polymerization permeated three-dimensional Li+-percolated porous oxide ceramic framework boosting all solid-state lithium metal battery. Adv. Sci. 8, 2003887 (2021). https://doi.org/10.1002/advs.202003887
K. Zhang, F. Wu, X. Wang, L. Zheng, X. Yang et al., An ion-dipole-reinforced polyether electrolyte with ion-solvation cages enabling high–voltage-tolerant and ion-conductive solid-state lithium metal batteries. Adv. Funct. Mater. 32, 2270031 (2022). https://doi.org/10.1002/adfm.202270031
S. Huo, L. Sheng, W. Xue, L. Wang, H. Xu et al., Challenges of stable ion pathways in cathode electrode for all-solid-state lithium batteries: a review. Adv. Energy Mater. 13, 2204343 (2023). https://doi.org/10.1002/aenm.202204343
Y.Q. Mi, W. Deng, C. He, O. Eksik, Y.P. Zheng et al., In situ polymerized 1, 3-dioxolane electrolyte for integrated solid-state lithium batteries. Angew. Chem. Int. Ed. 62, e202218621 (2023). https://doi.org/10.1002/anie.202218621
B. Deng, M.-X. Jing, L.-X. Li, R. Li, H. Yang et al., Nano-zirconia boosting the ionic conductivity and lithium dendrite inhibition ability of a poly(1, 3-dioxolane) solid electrolyte for high-voltage solid-state lithium batteries. Sustain. Energy Fuels 5, 5461–5470 (2021). https://doi.org/10.1039/D1SE01132D
T. Chen, H. Wu, J. Wan, M. Li, Y. Zhang et al., Synthetic poly-dioxolane as universal solid electrolyte interphase for stable lithium metal anodes. J. Energy Chem. 62, 172–178 (2021). https://doi.org/10.1016/j.jechem.2021.03.018
H. Huang, D. Li, L. Hou, H. Du, H. Wei et al., Advanced protective layer design on the surface of Mg-based metal and application in batteries: challenges and progress. J. Power. Sources 542, 231755 (2022). https://doi.org/10.1016/j.jpowsour.2022.231755
G. Zheng, C. Wang, A. Pei, J. Lopez, F. Shi et al., High-performance lithium metal negative electrode with a soft and flowable polymer coating. ACS Energy Lett. 1, 1247–1255 (2016). https://doi.org/10.1021/acsenergylett.6b00456
J. Chen, H. Lu, X. Zhang, Y. Zhang, J. Yang et al., Electrochemical polymerization of nonflammable electrolyte enabling fast-charging lithium-sulfur battery. Energy Storage Mater. 50, 387–394 (2022). https://doi.org/10.1016/j.ensm.2022.05.044
N. Wang, X. Zhang, Z. Ju, X. Yu, Y. Wang et al., Thickness-independent scalable high-performance Li–S batteries with high areal sulfur loading via electron-enriched carbon framework. Nat. Commun. 12, 4519 (2021). https://doi.org/10.1038/s41467-021-24873-4
X. Gao, X. Zheng, Y. Tsao, P. Zhang, X. Xiao et al., All-solid-state lithium–sulfur batteries enhanced by redox mediators. J. Am. Chem. Soc. 143, 18188–18195 (2021). https://doi.org/10.1021/jacs.1c07754
G. Xu, A. Kushima, J. Yuan, H. Dou, W. Xue et al., Ad hoc solid electrolyte on acidized carbon nanotube paper improves cycle life of lithium–sulfur batteries. Energy Environ. Sci. 10, 2544–2551 (2017). https://doi.org/10.1039/C7EE01898C
L. Ma, M.S. Kim, L.A. Archer, Stable artificial solid electrolyte interphases for lithium batteries. Chem. Mater. 29, 4181–4189 (2017). https://doi.org/10.1021/acs.chemmater.6b03687
F.-Q. Liu, W.-P. Wang, Y.-X. Yin, S.-F. Zhang, J.-L. Shi et al., Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries. Sci. Adv. 4, eaat5383 (2018). https://doi.org/10.1126/sciadv.aat5383
W.-P. Wang, J. Zhang, Y.-X. Yin, H. Duan, J. Chou et al., A rational reconfiguration of electrolyte for high-energy and long-life lithium-chalcogen batteries. Adv. Mater. 32, e2000302 (2020). https://doi.org/10.1002/adma.202000302
Y. Yamashita, M. Okada, H. Kasahara, Kinetic studies on the polymerization of 1,3-dioxolane catalyzed by triethyl oxonium tetrafluoroborate. Makromol. Chem. 117, 256–264 (1968). https://doi.org/10.1002/macp.1968.021170124
Y. Yamashita, M. Okada, K. Suyama, H. Kasahara, Equilibrium polymerization of 1,3-dioxolane. Makromol. Chem. 114, 146–154 (1968). https://doi.org/10.1002/macp.1968.021140111
S. Sasaki, Y. Takahashi, H. Tadokoro, Structural studies of polyformals. II. Crystal structure of poly-1, 3-dioxolane: modification II. J. Polym. Sci. Polym. Phys. Ed. 10, 2363–2378 (1972). https://doi.org/10.1002/pol.1972.180101206
L. Kong, H. Zhan, Y. Li, Y. Zhou, In situ fabrication of lithium polymer battery basing on a novel electro-polymerization technique. Electrochem. Commun. 9, 2557–2563 (2007). https://doi.org/10.1016/j.elecom.2007.08.001
Q. Zhao, X. Liu, S. Stalin, K. Khan, L.A. Archer, Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat. Energy 4, 365–373 (2019). https://doi.org/10.1038/s41560-019-0349-7
J. Zhou, T. Qian, J. Liu, M. Wang, L. Zhang et al., High-safety all-solid-state lithium-metal battery with high-ionic-conductivity thermoresponsive solid polymer electrolyte. Nano Lett. 19, 3066–3073 (2019). https://doi.org/10.1021/acs.nanolett.9b00450
C.-Z. Zhao, Q. Zhao, X. Liu, J. Zheng, S. Stalin et al., Rechargeable lithium metal batteries with an In-built solid-state polymer electrolyte and a high voltage/loading Ni-rich layered cathode. Adv. Mater. 32, e1905629 (2020). https://doi.org/10.1002/adma.201905629
Y. Huang, S. Liu, Q. Chen, K. Jiao, B. Ding et al., Constructing highly conductive and thermomechanical stable quasi-solid electrolytes by self-polymerization of liquid electrolytes within porous polyimide nanofiber films. Adv. Funct. Mater. 32, 2201496 (2022). https://doi.org/10.1002/adfm.202201496
H. Yang, B. Zhang, M. Jing, X. Shen, L. Wang et al., In situ catalytic polymerization of a highly homogeneous PDOL composite electrolyte for long-cycle high-voltage solid-state lithium batteries. Adv. Energy Mater. 12, 2270162 (2022). https://doi.org/10.1002/aenm.202270162
H. Xu, J. Zhang, H. Zhang, J. Long, L. Xu et al., In situ topological interphases boosting stable solid-state lithium metal batteries. Adv. Energy Mater. 13, 2204411 (2023). https://doi.org/10.1002/aenm.202204411
P.H. Plesch, P.H. Westermann, The polymerization of 1,3-dioxolane. I. Structure of the polymer and thermodynamics of its formation. J. Polym. Sci C Polym. Symp. 16, 3837–3843 (1967). https://doi.org/10.1002/polc.5070160724
D. Aurbach, O. Youngman, P. Dan, The electrochemical behavior of 1, 3-dioxolane—LiClO4 solutions—II. Contaminated solutions. Electrochim. Acta 35, 639–655 (1990). https://doi.org/10.1016/0013-4686(90)87056-8
H. Xu, H. Zhang, J. Ma, G. Xu, T. Dong et al., Overcoming the challenges of 5 V spinel LiNi0.5Mn1.5O4 cathodes with solid polymer electrolytes. ACS Energy Lett. 4, 2871–2886 (2019). https://doi.org/10.1021/acsenergylett.9b01871
G.H. Newman, R.W. Francis, L.H. Gaines, B.M.L. Rao, Hazard investigations of LiClO4/dioxolane electrolyte. J. Electrochem. Soc. 127, 2025–2027 (1980). https://doi.org/10.1149/1.2130056
Q. Liu, L. Wang, X. He, Toward practical solid-state polymer lithium batteries by in situ polymerization process: a review. Adv. Energy Mater. 13, 2300798 (2023). https://doi.org/10.1002/aenm.202300798
Q. Liu, B. Cai, S. Li, Q. Yu, F. Lv et al., Long-cycling and safe lithium metal batteries enabled by the synergetic strategy of ex situ anodic pretreatment and an in-built gel polymer electrolyte. J. Mater. Chem. A 8, 7197–7204 (2020). https://doi.org/10.1039/D0TA02148B
S. Wen, C. Luo, Q. Wang, Z. Wei, Y. Zeng et al., Integrated design of ultrathin crosslinked network polymer electrolytes for flexible and stable all-solid-state lithium batteries. Energy Storage Mater. 47, 453–461 (2022). https://doi.org/10.1016/j.ensm.2022.02.035
H. Cheng, J. Zhu, H. Jin, C. Gao, H. Liu et al., In situ initiator-free gelation of highly concentrated lithium bis(fluorosulfonyl)imide-1, 3-dioxolane solid polymer electrolyte for high performance lithium-metal batteries. Mater. Today Energy 20, 100623 (2021). https://doi.org/10.1016/j.mtener.2020.100623
J. Zheng, W. Zhang, C. Huang, Z. Shen, X. Wang et al., In-situ polymerization with dual-function electrolyte additive toward future lithium metal batteries. Mater. Today Energy 26, 100984 (2022). https://doi.org/10.1016/j.mtener.2022.100984
W. Li, J. Gao, H. Tian, X. Li, S. He et al., SnF2-catalyzed formation of polymerized dioxolane as solid electrolyte and its thermal decomposition behavior. Angew. Chem. Int. Ed. 61, e202114805 (2022). https://doi.org/10.1002/anie.202114805
S. Zheng, Y. Chen, K. Chen, S. Yang, R. Bagherzadeh et al., In situ construction of polyether-based composite electrolyte with bi-phase ion conductivity and stable electrolyte/electrode interphase for solid-state lithium metal batteries. J. Mater. Chem. A 10, 19641–19648 (2022). https://doi.org/10.1039/D2TA02229J
Z. Li, W. Tang, Y. Deng, M. Zhou, X. Wang et al., Enabling highly stable lithium metal batteries by using dual-function additive catalyzed in-built quasi-solid-state polymer electrolytes. J. Mater. Chem. A 10, 23047–23057 (2022). https://doi.org/10.1039/D2TA06153H
S. Wang, L. Zhou, M.K. Tufail, L. Yang, P. Zhai et al., In-Situ synthesized Non-flammable gel polymer electrolyte enable highly safe and Dendrite-Free lithium metal batteries. Chem. Eng. J. 415, 128846 (2021). https://doi.org/10.1016/j.cej.2021.128846
J. Xiang, Y. Zhang, B. Zhang, L. Yuan, X. Liu et al., A flame-retardant polymer electrolyte for high performance lithium metal batteries with an expanded operation temperature. Energy Environ. Sci. 14, 3510–3521 (2021). https://doi.org/10.1039/D1EE00049G
J. Zhao, M. Li, H. Su, Y. Liu, P. Bai et al., In situ fabricated non-flammable quasi-solid electrolytes for Li-metal batteries. Small Meth. 7, 2300228 (2023). https://doi.org/10.1002/smtd.202300228
J. Wei, H. Yue, Z. Shi, Z. Li, X. Li et al., In situ gel polymer electrolyte with inhibited lithium dendrite growth and enhanced interfacial stability for lithium-metal batteries. ACS Appl. Mater. Interfaces 13, 32486–32494 (2021). https://doi.org/10.1021/acsami.1c07032
M. Xie, Y. Wu, Y. Liu, P.P. Yu, R. Jia et al., Pathway of in situ polymerization of 1, 3-dioxolane in LiPF6 electrolyte on Li metal anode. Mater. Today Energy 21, 100730 (2021). https://doi.org/10.1016/j.mtener.2021.100730
A. Hu, Z. Liao, J. Huang, Y. Zhang, Q. Yang et al., In-situ construction of dual lithium-ion migration channels in polymer electrolytes for lithium metal batteries. Chem. Eng. J. 448, 137661 (2022). https://doi.org/10.1016/j.cej.2022.137661
P. Cheng, H. Zhang, Q. Ma, W. Feng, H. Yu et al., Highly salt-concentrated electrolyte comprising lithium bis(fluorosulfonyl)imide and 1, 3-dioxolane-based ether solvents for 4-V-class rechargeable lithium metal cell. Electrochim. Acta 363, 137198 (2020). https://doi.org/10.1016/j.electacta.2020.137198
G. Yang, W. Hou, Y. Zhai, Z. Chen, C. Liu et al., Polymeric concentrated electrolyte enables simultaneous stabilization of electrode/electrolyte interphases for quasi-solid-state lithium metal batteries. EcoMat 5, e12325 (2023). https://doi.org/10.1002/eom2.12325
Y. Wu, J. Ma, H. Jiang, L. Wang, F. Zhang et al., Confined in situ polymerization of poly(1, 3-dioxolane) and poly(vinylene carbonate)-based quasi-solid polymer electrolyte with improved uniformity for lithium metal batteries. Mater. Today Energy 32, 101239 (2023). https://doi.org/10.1016/j.mtener.2022.101239
G. Yang, Y. Zhai, J. Yao, S. Song, L. Lin et al., Synthesis and properties of poly(1, 3-dioxolane) in situ quasi-solid-state electrolytes via a rare-earth triflate catalyst. Chem. Commun. 57, 7934–7937 (2021). https://doi.org/10.1039/d1cc02916a
L. Zhang, H. Gao, S. Xiao, J. Li, T. Ma et al., In-situ construction of ceramic–polymer all-solid-state electrolytes for high-performance room-temperature lithium metal batteries. ACS Mater. Lett. 4, 1297–1305 (2022). https://doi.org/10.1021/acsmaterialslett.2c00238
W. Zhang, S. Zhang, L. Fan, L. Gao, X. Kong et al., Tuning the LUMO energy of an organic interphase to stabilize lithium metal batteries. ACS Energy Lett. 4, 644–650 (2019). https://doi.org/10.1021/acsenergylett.8b02483
Y.-K. Han, J. Yoo, T. Yim, Distinct reaction characteristics of electrolyte additives for high-voltage lithium-ion batteries: tris(trimethylsilyl) phosphite, borate, and phosphate. Electrochim. Acta 215, 455–465 (2016). https://doi.org/10.1016/j.electacta.2016.08.131
Y. Liu, X. Tao, Y. Wang, C. Jiang, C. Ma et al., Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science 375, 739–745 (2022). https://doi.org/10.1126/science.abn1818
Q. Zhao, S. Stalin, L.A. Archer, Stabilizing metal battery anodes through the design of solid electrolyte interphases. Joule 5, 1119–1142 (2021). https://doi.org/10.1016/j.joule.2021.03.024
P. Zhai, T. Wang, H. Jiang, J. Wan, Y. Wei et al., 3D artificial solid-electrolyte interphase for lithium metal anodes enabled by insulator-metal-insulator layered heterostructures. Adv. Mater. 33, e2006247 (2021). https://doi.org/10.1002/adma.202006247
L. Ye, X. Li, A dynamic stability design strategy for lithium metal solid state batteries. Nature 593, 218–222 (2021). https://doi.org/10.1038/s41586-021-03486-3
H. Xie, C. Yang, Y. Ren, S. Xu, T.R. Hamann et al., Amorphous-carbon-coated 3D solid electrolyte for an electro-chemomechanically stable lithium metal anode in solid-state batteries. Nano Lett. 21, 6163–6170 (2021). https://doi.org/10.1021/acs.nanolett.1c01748
Y. Wang, Z. Wang, L. Zhao, Q. Fan, X. Zeng et al., Lithium metal electrode with increased air stability and robust solid electrolyte interphase realized by silane coupling agent modification. Adv. Mater. 33, e2008133 (2021). https://doi.org/10.1002/adma.202008133
H. Wan, Z. Wang, S. Liu, B. Zhang, X. He et al., Critical interphase overpotential as a lithium dendrite-suppression criterion for all-solid-state lithium battery design. Nat. Energy 8, 473–481 (2023). https://doi.org/10.1038/s41560-023-01231-w
P. Jiang, J. Cao, B. Wei, G. Qian, S. Wang et al., LiF involved interphase layer enabling thousand cycles of LAGP-based solid-state Li metal batteries with 80% capacity retention. Energy Storage Mater. 48, 145–154 (2022). https://doi.org/10.1016/j.ensm.2022.03.017
J. Li, H. Hu, W. Fang, J. Ding, D. Yuan et al., Impact of fluorine-based lithium salts on SEI for all-solid-state PEO-based lithium metal batteries. Adv. Funct. Mater. 33, 2303718 (2023). https://doi.org/10.1002/adfm.202303718
C. Guo, K. Du, R. Tao, Y. Guo, S. Yao et al., Inorganic filler enhanced formation of stable inorganic-rich solid electrolyte interphase for high performance lithium metal batteries. Adv. Funct. Mater. 33, 2301111 (2023). https://doi.org/10.1002/adfm.202301111
H. Sun, X. Xie, Q. Huang, Z. Wang, K. Chen et al., Fluorinated poly-oxalate electrolytes stabilizing both anode and cathode interfaces for all-solid-state Li/NMC811 batteries. Angew. Chem. Int. Ed. 60, 18335–18343 (2021). https://doi.org/10.1002/anie.202107667
J. Xie, S.-Y. Sun, X. Chen, L.-P. Hou, B.-Q. Li et al., Fluorinating the solid electrolyte interphase by rational molecular design for practical lithium-metal batteries. Angew. Chem. Int. Ed. 61, e202204776 (2022). https://doi.org/10.1002/anie.202204776
A. Hu, W. Chen, X. Du, Y. Hu, T. Lei et al., An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode. Energy Environ. Sci. 14, 4115–4124 (2021). https://doi.org/10.1039/D1EE00508A
X. Pei, Y. Li, T. Ou, X. Liang, Y. Yang et al., Li-N interaction induced deep eutectic gel polymer electrolyte for high performance lithium-metal batteries. Angew. Chem. Int. Ed. 61, e202205075 (2022). https://doi.org/10.1002/anie.202205075
X. Yi, Y. Guo, S. Chi, S. Pan, C. Geng et al., Surface Li2CO3 mediated phosphorization enables compatible interfaces of composite polymer electrolyte for solid-state lithium batteries. Adv. Funct. Mater. 33, 2303574 (2023). https://doi.org/10.1002/adfm.202303574
M.-X. Jing, H. Yang, C. Han, F. Chen, L.-K. Zhang et al., Synergistic enhancement effects of LLZO fibers and interfacial modification for polymer solid electrolyte on the ambient-temperature electrochemical performances of solid-state battery. J. Electrochem. Soc. 166, A3019–A3027 (2019). https://doi.org/10.1149/2.1171913jes
M.-X. Jing, H. Yang, C. Han, F. Chen, W.-Y. Yuan et al., Improving room-temperature electrochemical performance of solid-state lithium battery by using electrospun La2Zr2O7 fibers-filled composite solid electrolyte. Ceram. Int. 45, 18614–18622 (2019). https://doi.org/10.1016/j.ceramint.2019.06.085
J.Y. Kim, O.B. Chae, M. Wu, E. Lim, G. Kim et al., Extraordinary dendrite-free Li deposition on highly uniform facet wrinkled Cu substrates in carbonate electrolytes. Nano Energy 82, 105736 (2021). https://doi.org/10.1016/j.nanoen.2020.105736
J. Wang, Q. Kang, J. Yuan, Q. Fu, C. Chen et al., Dendrite-free lithium and sodium metal anodes with deep plating/stripping properties for lithium and sodium batteries. Carbon Energy 3, 153–166 (2021). https://doi.org/10.1002/cey2.94
J. Duan, L. Huang, T. Wang, Y. Huang, H. Fu et al., Shaping the contact between Li metal anode and solid-state electrolytes. Adv. Funct. Mater. 30, 1908701 (2020). https://doi.org/10.1002/adfm.201908701
Q. Li, S. Zhu, Y. Lu, 3D porous Cu current collector/Li-metal composite anode for stable lithium-metal batteries. Adv. Funct. Mater. 27, 1606422 (2017). https://doi.org/10.1002/adfm.201606422
Q. Wu, M. Fang, S. Jiao, S. Li, S. Zhang et al., Phase regulation enabling dense polymer-based composite electrolytes for solid-state lithium metal batteries. Nat. Commun. 14, 6296 (2023). https://doi.org/10.1038/s41467-023-41808-3
J. Li, Y. Ji, H. Song, S. Chen, S. Ding et al., Insights into the interfacial degradation of high-voltage all-solid-state lithium batteries. Nano-Micro Lett. 14, 191 (2022). https://doi.org/10.1007/s40820-022-00936-z
Y. Ma, J.H. Teo, F. Walther, Y. Ma, R. Zhang et al., Advanced nanop coatings for stabilizing layered Ni-rich oxide cathodes in solid-state batteries. Adv. Funct. Mater. 32, 2270135 (2022). https://doi.org/10.1002/adfm.202270135
W. Bao, G. Qian, L. Zhao, Y. Yu, L. Su et al., Simultaneous enhancement of interfacial stability and kinetics of single-crystal LiNi0.6Mn0.2Co0.2O2 through optimized surface coating and doping. Nano Lett. 20, 8832–8840 (2020). https://doi.org/10.1021/acs.nanolett.0c03778
J. Zhao, J. Zhang, P. Hu, J. Ma, X. Wang et al., A sustainable and rigid-flexible coupling cellulose-supported poly(propylene carbonate) polymer electrolyte towards 5 V high voltage lithium batteries. Electrochim. Acta 188, 23–30 (2016). https://doi.org/10.1016/j.electacta.2015.11.088
M. Liu, D. Zhou, Y.-B. He, Y. Fu, X. Qin et al., Novel gel polymer electrolyte for high-performance lithium–sulfur batteries. Nano Energy 22, 278–289 (2016). https://doi.org/10.1016/j.nanoen.2016.02.008
L.-X. Li, R. Li, Z.-H. Huang, M.-Q. Liu, J. Xiang et al., High-performance gel electrolyte for enhanced interface compatibility and lithium metal stability in high-voltage lithium battery. Colloids Surf. A Physicochem. Eng. Aspects 651, 129665 (2022). https://doi.org/10.1016/j.colsurfa.2022.129665
Y. Liu, Y. Xu, Porous membrane host-derived in situ polymer electrolytes with double-stabilized electrode interface enable long cycling lithium metal batteries. Chem. Eng. J. 433, 134471 (2022). https://doi.org/10.1016/j.cej.2021.134471
Z. Geng, Y. Huang, G. Sun, R. Chen, W. Cao et al., In-situ polymerized solid-state electrolytes with stable cycling for Li/LiCoO2 batteries. Nano Energy 91, 106679 (2022). https://doi.org/10.1016/j.nanoen.2021.106679
J. Ma, X. Feng, Y. Wu, Y. Wang, P. Liu et al., Stable sodium anodes for sodium metal batteries (SMBs) enabled by in situ formed quasi solid-state polymer electrolyte. J. Energy Chem. 77, 290–299 (2023). https://doi.org/10.1016/j.jechem.2022.09.040
S. Song, W. Gao, G. Yang, Y. Zhai, J. Yao et al., Hybrid poly-ether/carbonate ester electrolyte engineering enables high oxidative stability for quasi-solid-state lithium metal batteries. Mater. Today Energy 23, 100893 (2022). https://doi.org/10.1016/j.mtener.2021.100893
K. Khan, Z. Tu, Q. Zhao, C. Zhao, L.A. Archer, Synthesis and properties of poly-ether/ethylene carbonate electrolytes with high oxidative stability. Chem. Mater. 31, 8466–8472 (2019). https://doi.org/10.1021/acs.chemmater.9b02823
J. Yu, X. Lin, J. Liu, J.T.T. Yu, M.J. Robson et al., In situ fabricated quasi-solid polymer electrolyte for high-energy-density lithium metal battery capable of subzero operation. Adv. Energy Mater. 12, 2102932 (2022). https://doi.org/10.1002/aenm.202102932
H. Yang, M.-X. Jing, H.-P. Li, W.-Y. Yuan, B. Deng et al., ‘Environment-friendly’ polymer solid electrolyte membrane via a rapid surface-initiating polymeration strategy. Chem. Eng. J. 421, 129710 (2021). https://doi.org/10.1016/j.cej.2021.129710
Z.K. Liu, J. Guan, H.X. Yang, P.X. Sun, N.W. Li et al., Ternary-salt solid polymer electrolyte for high-rate and long-life lithium metal batteries. Chem. Commun. 58, 10973–10976 (2022). https://doi.org/10.1039/D2CC04128F
L.-X. Li, R. Li, Z.-H. Huang, H. Yang, M.-Q. Liu et al., A multifunctional gradient solid electrolyte remarkably improving interface compatibility and ion transport in solid-state lithium battery. ACS Appl. Mater. Interfaces 14, 30786–30795 (2022). https://doi.org/10.1021/acsami.2c05578
J. Ma, Y. Wu, H. Jiang, X. Yao, F. Zhang et al., In situ directional polymerization of poly(1, 3-dioxolane) solid electrolyte induced by cellulose paper-based composite separator for lithium metal batteries. Energy Environ. Mater. 6, 12370 (2023). https://doi.org/10.1002/eem2.12370
X. Li, L. Cong, S. Ma, S. Shi, Y. Li et al., Low resistance and high stable solid–liquid electrolyte interphases enable high-voltage solid-state lithium metal batteries. Adv. Funct. Mater. 31, 2010611 (2021). https://doi.org/10.1002/adfm.202010611
B. Han, P. Jiang, S. Li, X. Lu, Functionalized gel polymer electrolyte membrane for high performance Li metal batteries. Solid State Ion. 361, 115572 (2021). https://doi.org/10.1016/J.SSI.2021.115572
J. Sun, X. Yao, Y. Li, Q. Zhang, C. Hou et al., Composite solid electrolytes: facilitating interfacial stability via bilayer heterostructure solid electrolyte toward high-energy, safe and adaptable lithium batteries. Adv. Energy Mater. 10, 2070131 (2020). https://doi.org/10.1002/aenm.202070131
Y. Liu, Y. Xu, Y. Zhang, C. Yu, X. Sun, Thin Li1.3Al0.3Ti1.7(PO4)3-based composite solid electrolyte with a reinforced interface of in situ formed poly(1, 3-dioxolane) for lithium metal batteries. J. Colloid Interface Sci. 644, 53–63 (2023). https://doi.org/10.1016/j.jcis.2023.03.182
D. Chen, M. Zhu, P. Kang, T. Zhu, H. Yuan et al., Self-enhancing gel polymer electrolyte by in situ construction for enabling safe lithium metal battery. Adv. Sci. 9, e2103663 (2022). https://doi.org/10.1002/advs.202103663
Y. Li, W. Zhang, Q. Dou, K.W. Wong, K.M. Ng, Li7La3Zr2O12 ceramic nanofiber-incorporated composite polymer electrolytes for lithium metal batteries. J. Mater. Chem. A 7, 3391–3398 (2019). https://doi.org/10.1039/C8TA11449H
Z. Shen, J. Zhong, J. Chen, W. Xie, K. Yang et al., SiO2 nanofiber composite gel polymer electrolyte by in situ polymerization for stable Li metal batteries. Chin. Chemical Lett. 34, 107370 (2023). https://doi.org/10.1016/j.cclet.2022.03.093
D. Lin, W. Liu, Y. Liu, H.R. Lee, P.C. Hsu et al., High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide). Nano Lett. 16, 459–465 (2016). https://doi.org/10.1021/acs.nanolett.5b04117
Y.-Y. Lin, Y.-M. Chen, S.-S. Hou, J.-S. Jan, Y.-L. Lee et al., Diode-like gel polymer electrolytes for full-cell lithium ion batteries. J. Mater. Chem. A 5, 17476–17481 (2017). https://doi.org/10.1039/C7TA04886F
L.-H. Chen, Z.-Y. Huang, S.-L. Chen, R.-A. Tong, H.-L. Wang et al., In situ polymerization of 1, 3-dioxolane infiltrating 3D garnet framework with high ionic conductivity and excellent interfacial stability for integrated solid-state Li metal battery. Rare Met. 41, 3694–3705 (2022). https://doi.org/10.1007/s12598-022-02080-4
H. Huo, Y. Chen, J. Luo, X. Yang, X. Guo et al., Rational design of hierarchical “ceramic-in-polymer” and “polymer-in-ceramic” electrolytes for dendrite-free solid-state batteries. Adv. Energy Mater. 9, 1804004 (2019). https://doi.org/10.1002/aenm.201804004
H. Liang, L. Wang, A. Wang, Y. Song, Y. Wu et al., Tailoring practically accessible polymer/inorganic composite electrolytes for all-solid-state lithium metal batteries: a review. Nano-Micro Lett. 15, 42 (2023). https://doi.org/10.1007/s40820-022-00996-1
Z. Wan, D. Lei, W. Yang, C. Liu, K. Shi et al., All-solid-state batteries: low resistance–integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder. Adv. Funct. Mater. 29, 1970006 (2019). https://doi.org/10.1002/adfm.201970006
X. Zhang, S. Wang, C. Xue, C. Xin, Y. Lin et al., Self-suppression of lithium dendrite in all-solid-state lithium metal batteries with poly(vinylidene difluoride)-based solid electrolytes. Adv. Mater. 31, e1806082 (2019). https://doi.org/10.1002/adma.201806082
Z. Zou, Y. Li, Z. Lu, D. Wang, Y. Cui et al., Mobile ions in composite solids. Chem. Rev. 120, 4169–4221 (2020). https://doi.org/10.1021/acs.chemrev.9b00760
L. Han, C. Liao, X. Mu, N. Wu, Z. Xu et al., Flame-retardant ADP/PEO solid polymer electrolyte for dendrite-free and long-life lithium battery by generating Al P-rich SEI layer. Nano Lett. 21, 4447–4453 (2021). https://doi.org/10.1021/acs.nanolett.1c01137
B. Xu, X. Li, C. Yang, Y. Li, N.S. Grundish et al., Interfacial chemistry enables stable cycling of all-solid-state Li metal batteries at high current densities. J. Am. Chem. Soc. 143, 6542–6550 (2021). https://doi.org/10.1021/jacs.1c00752
W. Liu, D. Lin, J. Sun, G. Zhou, Y. Cui, Improved lithium ionic conductivity in composite polymer electrolytes with oxide-ion conducting nanowires. ACS Nano 10, 11407–11413 (2016). https://doi.org/10.1021/acsnano.6b06797
N.W. Utomo, Y. Deng, Q. Zhao, X. Liu, L.A. Archer, Structure and evolution of quasi-solid-state hybrid electrolytes formed inside electrochemical cells. Adv. Mater. 34, e2110333 (2022). https://doi.org/10.1002/adma.202110333
S. Huo, L. Sheng, W. Xue, L. Wang, H. Xu et al., Challenges of polymer electrolyte with wide electrochemical window for high energy solid-state lithium batteries. InfoMat 5, e12394 (2023). https://doi.org/10.1002/inf2.12394
S. Xue, S. Yao, M. Jing, L. Zhu, X. Shen et al., Three-dimension ivy-structured MoS2 nanoflakes-embedded nitrogen doped carbon nanofibers composite membrane as free-standing electrodes for Li/polysulfides batteries. Electrochim. Acta 299, 549–559 (2019). https://doi.org/10.1016/j.electacta.2019.01.044
S. Li, S. Pang, X. Wu, X. Qian, S. Yao et al., Improve redox activity and cycling stability of the lithium–sulfur batteries via in situ formation of a sponge-like separator modification layer. Int. J. Energy Res. 44, 4933–4943 (2020). https://doi.org/10.1002/er.5201
B. Deng, M.-X. Jing, R. Li, L.-X. Li, H. Yang et al., Integrating high ionic conductive PDOL solid/gel composite electrolyte for enhancement of interface combination and lithium dentrite inhibition of solid-state lithium battery. J. Colloid Interface Sci. 620, 199–208 (2022). https://doi.org/10.1016/j.jcis.2022.04.008
Z. Zhuang, Y. Tang, B. Ju, F. Tu, In situ synthesis of graphitic C3N4–poly(1, 3-dioxolane) composite interlayers for stable lithium metal anodes. Sustain. Energy Fuels 5, 2433–2440 (2021). https://doi.org/10.1039/D1SE00212K
X. Wang, X. Shen, P. Zhang, A.-J. Zhou, J.-B. Zhao, Promoted Li+ conduction in PEO-based all-solid-state electrolyte by hydroxyl-modified glass fiber fillers. Rare Met. 42, 875–884 (2023). https://doi.org/10.1007/s12598-022-02218-4
P. Yao, B. Zhu, H. Zhai, X. Liao, Y. Zhu et al., PVDF/palygorskite nanowire composite electrolyte for 4 V rechargeable lithium batteries with high energy density. Nano Lett. 18, 6113–6120 (2018). https://doi.org/10.1021/acs.nanolett.8b01421
J. Wu, T. Zhou, B. Zhong, Q. Wang, W. Liu et al., Designing anion-derived solid electrolyte interphase in a siloxane-based electrolyte for lithium-metal batteries. ACS Appl. Mater. Interfaces 14, 27873–27881 (2022). https://doi.org/10.1021/acsami.2c05098
J. Fu, X. Ji, J. Chen, L. Chen, X. Fan et al., Lithium nitrate regulated sulfone electrolytes for lithium metal batteries. Angew. Chem. Int. Ed. 59, 22194–22201 (2020). https://doi.org/10.1002/anie.202009575
F. Chen, M.-X. Jing, H. Yang, W.-Y. Yuan, M.-Q. Liu et al., Improved ionic conductivity and Li dendrite suppression of PVDF-based solid electrolyte membrane by LLZO incorporation and mechanical reinforcement. Ionics 27, 1101–1111 (2021). https://doi.org/10.1007/s11581-020-03891-0
J. Li, L. Zhu, J. Zhang, M. Jing, S. Yao et al., Approaching high performancePVDF-HFPbased solid composite electrolytes withLLTOnanorods for solid-state lithium-ion batteries. Int. J. Energy Res. 45, 7663–7674 (2021). https://doi.org/10.1002/er.6347
W.-W. Shao, J.-X. Li, L. Zhong, H.-F. Wu, M.-Q. Liu et al., A high ion conductive solid electrolyte film and interface stabilization strategy for solid-state Li–S battery. Colloids Surf. A Physicochem. Eng. Aspects 679, 132593 (2023). https://doi.org/10.1016/j.colsurfa.2023.132593
L. Han, L. Wang, Z. Chen, Y. Kan, Y. Hu et al., Incombustible polymer electrolyte boosting safety of solid-state lithium batteries: a review. Adv. Funct. Mater. 33, 2300892 (2023). https://doi.org/10.1002/adfm.202300892
C.-B. Jin, N. Yao, Y. Xiao, J. Xie, Z. Li et al., Taming solvent–solute interaction accelerates interfacial kinetics in low-temperature lithium-metal batteries. Adv. Mater. 35, 2208340 (2023). https://doi.org/10.1002/adma.202208340
J. Zhou, H. Ji, Y. Qian, J. Liu, T. Yan et al., Molecular simulations guided polymer electrolyte towards superior low-temperature solid lithium-metal batteries. ACS Appl. Mater. Interfaces 13, 48810–48817 (2021). https://doi.org/10.1021/acsami.1c14825
L.E. Camacho-Forero, P.B. Balbuena, Effects of charged interfaces on electrolyte decomposition at the lithium metal anode. J. Power. Sources 472, 228449 (2020). https://doi.org/10.1016/j.jpowsour.2020.228449
F. Liu, T. Li, Y. Yang, J. Yan, N. Li et al., Investigation on the copolymer electrolyte of poly(1, 3-dioxolane-co-formaldehyde). Macromol. Rapid Commun. 41, e2000047 (2020). https://doi.org/10.1002/marc.202000047
Y. Du, L. Zhao, C. Xiong, Z. Sun, S. Liu et al., Ameliorating structural and electrochemical properties of traditional poly-dioxolane electrolytes via integrated design of ultra-stable network for solid-state batteries. Energy Storage Mater. 56, 310–318 (2023). https://doi.org/10.1016/j.ensm.2023.01.017
J. Cui, Y. Du, L. Zhao, X. Li, Z. Sun et al., Thermal stable poly-dioxolane based electrolytes via a robust crosslinked network for dendrite-free solid-state li-metal batteries. Chem. Eng. J. 461, 141973 (2023). https://doi.org/10.1016/j.cej.2023.141973
D.F. Miranda, C. Versek, M.T. Tuominen, T.P. Russell, J.J. Watkins, Cross-linked Block copolymer/ionic liquid self-assembled blends for polymer gel electrolytes with high ionic conductivity and mechanical strength. Macromolecules 46, 9313–9323 (2013). https://doi.org/10.1021/ma401302r
S. Chen, B. Chen, J. Fan, J. Feng, Exploring the application of sustainable poly(propylene carbonate) copolymer in toughening epoxy thermosets. ACS Sustain. Chem. Eng. 3, 2077–2083 (2015). https://doi.org/10.1021/acssuschemeng.5b00343
J. Qin, W. Luo, M. Li, P. Chen, S. Wang et al., A novel multiblock copolymer of CO2-based PPC-mb-PBS: from simulation to experiment. ACS Sustain. Chem. Eng. 5, 5922–5930 (2017). https://doi.org/10.1021/acssuschemeng.7b00634
J.H. Han, J.Y. Lee, D.H. Suh, Y.T. Hong, T.-H. Kim, Electrode-impregnable and cross-linkable poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) triblock polymer electrolytes with high ionic conductivity and a large voltage window for flexible solid-state supercapacitors. ACS Appl. Mater. Interfaces 9, 33913–33924 (2017). https://doi.org/10.1021/acsami.7b09909