BaTiO3 Nanoparticle-Induced Interfacial Electric Field Optimization in Chloride Solid Electrolytes for 4.8 V All-Solid-State Lithium Batteries
Corresponding Author: Guangliang Gary Liu
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 52
Abstract
Chloride-based solid electrolytes are considered promising candidates for next-generation high-energy–density all-solid-state batteries (ASSBs). However, their relatively low oxidative decomposition threshold (~ 4.2 V vs. Li+/Li) constrains their use in ultrahigh-voltage systems (e.g., 4.8 V). In this work, ferroelectric BaTiO3 (BTO) nanoparticles with optimized thickness of ~ 50–100 nm were successfully coated onto Li2.5Y0.5Zr0.5Cl6 (LYZC@5BTO) electrolytes using a time-efficient ball-milling process. The nanoparticle-induced interfacial ionic conduction enhancement mechanism contributed to the preservation of LYZC’s high ionic conductivity, which remained at 1.06 mS cm−1 for LYZC@5BTO. Furthermore, this surface electric field engineering strategy effectively mitigates the voltage-induced self-decomposition of chloride-based solid electrolytes, suppresses parasitic interfacial reactions with single-crystal NCM811 (SCNCM811), and inhibits the irreversible phase transition of SCNCM811. Consequently, the cycling stability of LYZC under high-voltage conditions (4.8 V vs. Li⁺/Li) is significantly improved. Specifically, ASSB cells employing LYZC@5BTO exhibited a superior discharge capacity of 95.4 mAh g−1 over 200 cycles at 1 C, way outperforming cell using pristine LYZC that only shows a capacity of 55.4 mAh g−1. Furthermore, time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy analysis revealed that Metal-O-Cl by-products from cumulative interfacial side reactions accounted for 6% of the surface species initially, rising to 26% after 200 cycles in pristine LYZC. In contrast, LYZC@5BTO limited this increase to only 14%, confirming the effectiveness of BTO in stabilizing the interfacial chemistry. This electric field modulation strategy offers a promising route toward the commercialization of high-voltage solid-state electrolytes and energy-dense ASSBs.
Highlights:
1 Time efficient ball milling achieves uniform BaTiO3 ( coating without sacrificing ionic conductivity (1.06 mS cm−1).
2 Ferroelectric BTO coating suppresses Li2.5Y0.5Zr0.5Cl6 (LYZC decomposition at 4.8 V via electric field modulation, enabling 76% capacity retention after 150 cycles.
3 BTO effectively minimizes the formation of interfacial ZrCl3O /YCl2O byproducts and mitigates the irreversible phase transition of single crystal NCM811 (SCNCM811), thereby improving the compatibility between LYZC and SCNCM811.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y.-C. Yin, J.-T. Yang, J.-D. Luo, G.-X. Lu, Z. Huang et al., A LaCl3-based lithium superionic conductor compatible with lithium metal. Nature 616(7955), 77–83 (2023). https://doi.org/10.1038/s41586-023-05899-8
- S. Kalnaus, N.J. Dudney, A.S. Westover, E. Herbert, S. Hackney, Solid-state batteries: the critical role of mechanics. Science 381(6664), eabg5998 (2023). https://doi.org/10.1126/science.abg5998
- C. Guo, Y. Shen, P. Mao, K. Liao, M. Du et al., Grafting of lithiophilic and electron-blocking interlayer for garnet-based solid-state Li metal batteries via one-step anhydrous poly-phosphoric acid post-treatment. Adv. Funct. Mater. 33(10), 2213443 (2023). https://doi.org/10.1002/adfm.202213443
- H. Wan, Z. Wang, W. Zhang, X. He, C. Wang, Interface design for all-solid-state lithium batteries. Nature 623(7988), 739–744 (2023). https://doi.org/10.1038/s41586-023-06653-w
- L. Ye, X. Li, A dynamic stability design strategy for lithium metal solid state batteries. Nature 593(7858), 218–222 (2021). https://doi.org/10.1038/s41586-021-03486-3
- Z. Zhang, W.-Q. Han, From liquid to solid-state lithium metal batteries: fundamental issues and recent developments. Nano-Micro Lett. 16(1), 24 (2023). https://doi.org/10.1007/s40820-023-01234-y
- B. Qiu, Y. Zhou, H. Liang, M. Zhang, K. Gu et al., Negative thermal expansion and oxygen-redox electrochemistry. Nature 640(8060), 941–946 (2025). https://doi.org/10.1038/s41586-025-08765-x
- D. Wu, F. Wu, Toward better batteries: solid-state battery roadmap 2035+. eTransportation 16, 100224 (2023). https://doi.org/10.1016/j.etran.2022.100224
- H. Du, X. Zhang, H. Yu, Design of high-energy-density lithium batteries: liquid to all solid state. eTransportation 23, 100382 (2025). https://doi.org/10.1016/j.etran.2024.100382
- D. Wu, L. Chen, H. Li, F. Wu, Solid-state lithium batteries-from fundamental research to industrial progress. Prog. Mater. Sci. 139, 101182 (2023). https://doi.org/10.1016/j.pmatsci.2023.101182
- X. Zhu, J. Wu, J. Lu, Insight into inorganic solid-state electrolytes: ionic transport and failure mechanisms. Adv. Funct. Mater. 34(49), 2409547 (2024). https://doi.org/10.1002/adfm.202409547
- H. Zhao, H. Mo, P. Mao, R. Ran, W. Zhou et al., Tape-casting fabrication techniques for garnet-based membranes in solid-state lithium-metal batteries: a comprehensive review. ACS Appl. Mater. Interfaces 16(50), 68772–68793 (2024). https://doi.org/10.1021/acsami.4c18516
- B. He, F. Zhang, Y. Xin, C. Xu, X. Hu et al., Halogen chemistry of solid electrolytes in all-solid-state batteries. Nat. Rev. Chem. 7, 826–842 (2023). https://doi.org/10.1038/s41570-023-00541-7
- H. Kwak, S. Wang, J. Park, Y. Liu, K.T. Kim et al., Emerging halide superionic conductors for all-solid-state batteries: design, synthesis, and practical applications. ACS Energy Lett. 7(5), 1776–1805 (2022). https://doi.org/10.1021/acsenergylett.2c00438
- J. Hu, Z. Yao, K. Chen, C. Li, High-conductivity open framework fluorinated electrolyte bonded by solidified ionic liquid wires for solid-state Li metal batteries. Energy Storage Mater. 28, 37–46 (2020). https://doi.org/10.1016/j.ensm.2020.02.018
- W. Li, Z. Chen, Y. Chen, L. Zhang, G. Liu et al., High-entropy argyrodite-type sulfide electrolyte with high conductivity and electro-chemo-mechanical stability for fast-charging all-solid-state batteries. Adv. Funct. Mater. 34(23), 2312832 (2024). https://doi.org/10.1002/adfm.202312832
- J. Wu, J. Li, X. Yao, Exploring the potential of halide electrolytes for next-generation all-solid-state lithium batteries. Adv. Funct. Mater. 35(10), 2416671 (2025). https://doi.org/10.1002/adfm.202416671
- Q. Wang, Y. Zhou, X. Wang, H. Guo, S. Gong et al., Designing lithium halide solid electrolytes. Nat. Commun. 15, 1050 (2024). https://doi.org/10.1038/s41467-024-45258-3
- S. Wang, Q. Bai, A.M. Nolan, Y. Liu, S. Gong et al., Lithium chlorides and bromides as promising solid-state chemistries for fast ion conductors with good electrochemical stability. Angew. Chem. Int. Ed. 58(24), 8039–8043 (2019). https://doi.org/10.1002/anie.201901938
- Z. Wang, J. Tan, Z. Jia, J. Cui, X. Wang et al., Deciphering chemical/electrochemical compatibility of Li3InCl6 in 5.2 V high-voltage LiCoO2 all-solid-state batteries. ACS Energy Lett. 9(9), 4485–4492 (2024). https://doi.org/10.1021/acsenergylett.4c01472
- J.Y. Jung, H. Jeong, Y.J. Kim, S.M. Cho, Y. Jang et al., Hierarchically coated halide layers: enhancing the performance at composite cathode interfaces in solid-state Li–metal batteries. J. Mater. Chem. A 12(21), 12405–12411 (2024). https://doi.org/10.1039/D4TA01912A
- Y. Tan, M. Beltran, J. Ke, J. Zhang, J. Choi et al., Interfacial challenges of halide-based all-solid-state batteries. Adv. Energy Mater. 15(13), 2403986 (2025). https://doi.org/10.1002/aenm.202403986
- H.-S. Zhang, X.-C. Lei, D. Su, S.-J. Guo, J.-C. Zhu et al., Surface lattice modulation enables stable cycling of high-loading all-solid-state batteries at high voltages. Angew. Chem. Int. Ed. 63(16), e202400562 (2024). https://doi.org/10.1002/anie.202400562
- I. Kochetkov, T.-T. Zuo, R. Ruess, B. Singh, L. Zhou et al., Different interfacial reactivity of lithium metal chloride electrolytes with high voltage cathodes determines solid-state battery performance. Energy Environ. Sci. 15(9), 3933–3944 (2022). https://doi.org/10.1039/D2EE00803C
- Z. Song, T. Wang, H. Yang, W.H. Kan, Y. Chen et al., Promoting high-voltage stability through local lattice distortion of halide solid electrolytes. Nat. Commun. 15, 1481 (2024). https://doi.org/10.1038/s41467-024-45864-1
- S. Zhang, F. Zhao, S. Wang, J. Liang, J. Wang et al., Advanced high-voltage all-solid-state Li-ion batteries enabled by a dual-halogen solid electrolyte. Adv. Energy Mater. 11(32), 2100836 (2021). https://doi.org/10.1002/aenm.202100836
- H. Duan, C. Wang, X.-S. Zhang, J. Fu, W. Li et al., Amorphous AlOCl compounds enabling nanocrystalline LiCl with abnormally high ionic conductivity. J. Am. Chem. Soc. 146(43), 29335–29343 (2024). https://doi.org/10.1021/jacs.4c06498
- X. Zhang, S. Cheng, C. Fu, G. Yin, L. Wang et al., Advancements and challenges in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries. Nano-Micro Lett. 17(1), 2 (2024). https://doi.org/10.1007/s40820-024-01498-y
- B.K. Park, H. Kim, K.S. Kim, H.-S. Kim, S.H. Han et al., Interface design considering intrinsic properties of dielectric materials to minimize space-charge layer effect between oxide cathode and sulfide solid electrolyte in all-solid-state batteries. Adv. Energy Mater. 12(37), 2201208 (2022). https://doi.org/10.1002/aenm.202201208
- L. Wang, R. Xie, B. Chen, X. Yu, J. Ma et al., In-situ visualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries. Nat. Commun. 11(1), 5889 (2020). https://doi.org/10.1038/s41467-020-19726-5
- L. Wu, H. Lv, R. Zhang, P. Ding, M. Tang et al., Ferroelectric BaTiO3 regulating the local electric field for interfacial stability in solid-state lithium metal batteries. ACS Nano 18(7), 5498–5509 (2024). https://doi.org/10.1021/acsnano.3c10870
- H. Zhao, M. Du, H. Mo, C. Wang, W. Zhou et al., Garnet-based solid Li-metal batteries operable under high external pressure with HCOOH-induced electron-blocking and lithiophilic interlayer. ACS Appl. Mater. Interfaces 16(34), 44997–45005 (2024). https://doi.org/10.1021/acsami.4c10546
- N. Sun, H. Zhao, R. Ran, W. Zhou, C. Wang et al., Upgrading garnet–polymer composite electrolytes for solid-state lithium batteries: the role of the hydrogen bonds and PTFE fibers. Energy Fuels 39(21), 10083–10091 (2025). https://doi.org/10.1021/acs.energyfuels.5c01761
- T. Asano, A. Sakai, S. Ouchi, M. Sakaida, A. Miyazaki et al., Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries. Adv. Mater. 30(44), 1803075 (2018). https://doi.org/10.1002/adma.201803075
- P. Shi, J. Ma, M. Liu, S. Guo, Y. Huang et al., A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries. Nat. Nanotechnol. 18(6), 602–610 (2023). https://doi.org/10.1038/s41565-023-01341-2
- K.-H. Park, K. Kaup, A. Assoud, Q. Zhang, X. Wu et al., High-voltage superionic halide solid electrolytes for all-solid-state Li-ion batteries. ACS Energy Lett. 5(2), 533–539 (2020). https://doi.org/10.1021/acsenergylett.9b02599
- C. Srilakshmi, R. Saraf, V. Prashanth, G.M. Rao, C. Shivakumara, Structure and catalytic activity of Cr-doped BaTiO3 nanocatalysts synthesized by conventional oxalate and microwave assisted hydrothermal methods. Inorg. Chem. 55(10), 4795–4805 (2016). https://doi.org/10.1021/acs.inorgchem.6b00240
- K. Deng, W. Li, P. An, C. Liu, J. Wu et al., Surface to bulk synergistic restructuring of ultrahigh nickel-rich LiNi0.96Co0.02Mn0.02O2 cathode for high-performance sulfide-based all-solid-state batteries. Powder Technol. 454, 120691 (2025). https://doi.org/10.1016/j.powtec.2025.120691
- X. Wang, Y. Fan, G. Luo, R. Tu, Q. Shen et al., Effect of yttrium (Y) substitution on the structure and dielectric properties of BaTiO3. Ceram. Int. 49(6), 9042–9051 (2023). https://doi.org/10.1016/j.ceramint.2022.11.060
- S.-D. Kim, G.-T. Hwang, K. Song, C.K. Jeong, K.-I. Park et al., Inverse size-dependence of piezoelectricity in single BaTiO3 nanops. Nano Energy 58, 78–84 (2019). https://doi.org/10.1016/j.nanoen.2018.12.096
- L. Hu, J. Zhu, C. Duan, J. Zhu, J. Wang et al., Revealing the Pnma crystal structure and ion-transport mechanism of the Li3YCl6 solid electrolyte. Cell Rep. Phys. Sci. 4(6), 101428 (2023). https://doi.org/10.1016/j.xcrp.2023.101428
- S.C. Sand, J.L.M. Rupp, B. Yildiz, A critical review on Li-ion transport, chemistry and structure of ceramic–polymer composite electrolytes for solid state batteries. Chem. Soc. Rev. 54(1), 178–200 (2025). https://doi.org/10.1039/D4CS00214H
- D. Lin, P.Y. Yuen, Y. Liu, W. Liu, N. Liu et al., A silica-aerogel-reinforced composite polymer electrolyte with high ionic conductivity and high modulus. Adv. Mater. 30(32), 1802661 (2018). https://doi.org/10.1002/adma.201802661
- H. Kwak, J.-S. Kim, D. Han, J.S. Kim, J. Park et al., Boosting the interfacial superionic conduction of halide solid electrolytes for all-solid-state batteries. Nat. Commun. 14(1), 2459 (2023). https://doi.org/10.1038/s41467-023-38037-z
- W. Li, Z. Chen, Y. Chen, W. Duan, G. Liu et al., High-voltage superionic and humidity-tolerant Li2.5Sc0.5Zr0.5Cl6 conductor for lithium batteries via preferred orientation. Chem. Eng. J. 455, 140509 (2023). https://doi.org/10.1016/j.cej.2022.140509
- W. Wang, L. Wu, Z. Li, S. Ma, H. Dou et al., Rational design of a piezoelectric BaTiO3 nanodot surface-modified LiNi0.6Co0.2Mn0.2O2 cathode material for high-rate lithium-ion batteries. ChemElectroChem 7(17), 3646–3652 (2020). https://doi.org/10.1002/celc.202000750
- W. Li, J. Zhang, Y. Zhou, W. Huang, X. Liu et al., Regulating the grain orientation and surface structure of primary ps through tungsten modification to comprehensively enhance the performance of nickel-rich cathode materials. ACS Appl. Mater. Interfaces 12(42), 47513–47525 (2020). https://doi.org/10.1021/acsami.0c12893
- J. Shan, R. Gu, J. Xu, S. Gong, S. Guo et al., Heterojunction ferroelectric materials enhance ion transport and fast charging of polymer solid electrolytes for lithium metal batteries. Adv. Energy Mater. 15(18), 2405220 (2025). https://doi.org/10.1002/aenm.202405220
- S. Deng, M. Jiang, N. Chen, W. Li, M. Zheng et al., Regulating electronic conductivity at cathode interface for low-temperature halide-based all-solid-state batteries. Adv. Funct. Mater. 32(45), 2205594 (2022). https://doi.org/10.1002/adfm.202205594
- Y. Li, J. Li, Z. Zeng, X. Xu, J. Cheng et al., Surface to bulk design empowering Ni-rich layered oxide cathode in sulfide-based all-solid-state batteries. Chem. Eng. J. 498, 155029 (2024). https://doi.org/10.1016/j.cej.2024.155029
- S. Zhang, F. Zhao, J. Chen, J. Fu, J. Luo et al., A family of oxychloride amorphous solid electrolytes for long-cycling all-solid-state lithium batteries. Nat. Commun. 14(1), 3780 (2023). https://doi.org/10.1038/s41467-023-39197-8
- Y. Wu, L. Wang, S. Wei, X. Bi, H. Zhuo et al., Exploiting the mixed entropy strategy for the design of fast ion conductors. Adv. Energy Mater. 14(38), 2401528 (2024). https://doi.org/10.1002/aenm.202401528
- L. Shen, J.-L. Li, W.-J. Kong, C.-X. Bi, P. Xu et al., Anion-engineering toward high-voltage-stable halide superionic conductors for all-solid-state lithium batteries. Adv. Funct. Mater. 34(48), 2408571 (2024). https://doi.org/10.1002/adfm.202408571
- R. Zhang, Y. Ma, Y. Tang, D. Goonetilleke, T. Diemant et al., Conformal Li2HfO3/HfO2 nanop coatings on layered Ni-rich oxide cathodes for stabilizing interfaces in all-solid-state batteries. Chem. Mater. 35(17), 6835–6844 (2023). https://doi.org/10.1021/acs.chemmater.3c01116
- C. Liu, W. Li, K. Deng, P. An, R. Wang et al., A stable all-solid-state lithium metal battery achieved by optimizing the cathode-electrolyte interface through perovskite-coating-stabilized single crystal LiNi0.9Co0.05Mn0.05O2 cathode. Chem. Eng. J. 517, 164576 (2025). https://doi.org/10.1016/j.cej.2025.164576
- P.J. Kwon, C. Juarez-Yescas, H. Jeong, S. Moradi, E. Gao et al., Chemo-electrochemical evolution of cathode–solid electrolyte interface in all-solid-state batteries. ACS Energy Lett. 9(10), 4746–4752 (2024). https://doi.org/10.1021/acsenergylett.4c02062
- Y. Wang, Z. Wang, X. Xu, S.J.A. Oh, J. Sun et al., Ultra-stable sodium-ion battery enabled by all-solid-state ferroelectric-engineered composite electrolytes. Nano-Micro Lett. 16(1), 254 (2024). https://doi.org/10.1007/s40820-024-01474-6
- W. Li, W. Zhuang, M. Gao, Y. Zhou, J. Zhang et al., New insight into the role of Mn doping on the bulk structure stability and interfacial stability of Ni-rich layered oxide. ChemNanoMat 6(3), 451–460 (2020). https://doi.org/10.1002/cnma.201900640
- C. Hu, Y. Li, S. Li, D. Luo, Y. Bai et al., Tailoring stabilized multilevel dynamic structure evolution enables 4.6 V high-voltage single-crystal Ni-rich cathode. Small (2025). https://doi.org/10.1002/smll.202505331
- Y.-Q. Zhang, Y. Tian, Y. Xiao, L.J. Miara, Y. Aihara et al., Direct visualization of the interfacial degradation of cathode coatings in solid state batteries: a combined experimental and computational study. Adv. Energy Mater. 10(27), 1903778 (2020). https://doi.org/10.1002/aenm.201903778
- X. Zhou, B. Zhang, P. Lyu, L. Xi, F. Li et al., Chemo-mechanical stable cathode interphase via interface in situ catalytic-conversion integrated design for all solid-state batteries. Energy Environ. Sci. 17(21), 8174–8188 (2024). https://doi.org/10.1039/D4EE02827A
References
Y.-C. Yin, J.-T. Yang, J.-D. Luo, G.-X. Lu, Z. Huang et al., A LaCl3-based lithium superionic conductor compatible with lithium metal. Nature 616(7955), 77–83 (2023). https://doi.org/10.1038/s41586-023-05899-8
S. Kalnaus, N.J. Dudney, A.S. Westover, E. Herbert, S. Hackney, Solid-state batteries: the critical role of mechanics. Science 381(6664), eabg5998 (2023). https://doi.org/10.1126/science.abg5998
C. Guo, Y. Shen, P. Mao, K. Liao, M. Du et al., Grafting of lithiophilic and electron-blocking interlayer for garnet-based solid-state Li metal batteries via one-step anhydrous poly-phosphoric acid post-treatment. Adv. Funct. Mater. 33(10), 2213443 (2023). https://doi.org/10.1002/adfm.202213443
H. Wan, Z. Wang, W. Zhang, X. He, C. Wang, Interface design for all-solid-state lithium batteries. Nature 623(7988), 739–744 (2023). https://doi.org/10.1038/s41586-023-06653-w
L. Ye, X. Li, A dynamic stability design strategy for lithium metal solid state batteries. Nature 593(7858), 218–222 (2021). https://doi.org/10.1038/s41586-021-03486-3
Z. Zhang, W.-Q. Han, From liquid to solid-state lithium metal batteries: fundamental issues and recent developments. Nano-Micro Lett. 16(1), 24 (2023). https://doi.org/10.1007/s40820-023-01234-y
B. Qiu, Y. Zhou, H. Liang, M. Zhang, K. Gu et al., Negative thermal expansion and oxygen-redox electrochemistry. Nature 640(8060), 941–946 (2025). https://doi.org/10.1038/s41586-025-08765-x
D. Wu, F. Wu, Toward better batteries: solid-state battery roadmap 2035+. eTransportation 16, 100224 (2023). https://doi.org/10.1016/j.etran.2022.100224
H. Du, X. Zhang, H. Yu, Design of high-energy-density lithium batteries: liquid to all solid state. eTransportation 23, 100382 (2025). https://doi.org/10.1016/j.etran.2024.100382
D. Wu, L. Chen, H. Li, F. Wu, Solid-state lithium batteries-from fundamental research to industrial progress. Prog. Mater. Sci. 139, 101182 (2023). https://doi.org/10.1016/j.pmatsci.2023.101182
X. Zhu, J. Wu, J. Lu, Insight into inorganic solid-state electrolytes: ionic transport and failure mechanisms. Adv. Funct. Mater. 34(49), 2409547 (2024). https://doi.org/10.1002/adfm.202409547
H. Zhao, H. Mo, P. Mao, R. Ran, W. Zhou et al., Tape-casting fabrication techniques for garnet-based membranes in solid-state lithium-metal batteries: a comprehensive review. ACS Appl. Mater. Interfaces 16(50), 68772–68793 (2024). https://doi.org/10.1021/acsami.4c18516
B. He, F. Zhang, Y. Xin, C. Xu, X. Hu et al., Halogen chemistry of solid electrolytes in all-solid-state batteries. Nat. Rev. Chem. 7, 826–842 (2023). https://doi.org/10.1038/s41570-023-00541-7
H. Kwak, S. Wang, J. Park, Y. Liu, K.T. Kim et al., Emerging halide superionic conductors for all-solid-state batteries: design, synthesis, and practical applications. ACS Energy Lett. 7(5), 1776–1805 (2022). https://doi.org/10.1021/acsenergylett.2c00438
J. Hu, Z. Yao, K. Chen, C. Li, High-conductivity open framework fluorinated electrolyte bonded by solidified ionic liquid wires for solid-state Li metal batteries. Energy Storage Mater. 28, 37–46 (2020). https://doi.org/10.1016/j.ensm.2020.02.018
W. Li, Z. Chen, Y. Chen, L. Zhang, G. Liu et al., High-entropy argyrodite-type sulfide electrolyte with high conductivity and electro-chemo-mechanical stability for fast-charging all-solid-state batteries. Adv. Funct. Mater. 34(23), 2312832 (2024). https://doi.org/10.1002/adfm.202312832
J. Wu, J. Li, X. Yao, Exploring the potential of halide electrolytes for next-generation all-solid-state lithium batteries. Adv. Funct. Mater. 35(10), 2416671 (2025). https://doi.org/10.1002/adfm.202416671
Q. Wang, Y. Zhou, X. Wang, H. Guo, S. Gong et al., Designing lithium halide solid electrolytes. Nat. Commun. 15, 1050 (2024). https://doi.org/10.1038/s41467-024-45258-3
S. Wang, Q. Bai, A.M. Nolan, Y. Liu, S. Gong et al., Lithium chlorides and bromides as promising solid-state chemistries for fast ion conductors with good electrochemical stability. Angew. Chem. Int. Ed. 58(24), 8039–8043 (2019). https://doi.org/10.1002/anie.201901938
Z. Wang, J. Tan, Z. Jia, J. Cui, X. Wang et al., Deciphering chemical/electrochemical compatibility of Li3InCl6 in 5.2 V high-voltage LiCoO2 all-solid-state batteries. ACS Energy Lett. 9(9), 4485–4492 (2024). https://doi.org/10.1021/acsenergylett.4c01472
J.Y. Jung, H. Jeong, Y.J. Kim, S.M. Cho, Y. Jang et al., Hierarchically coated halide layers: enhancing the performance at composite cathode interfaces in solid-state Li–metal batteries. J. Mater. Chem. A 12(21), 12405–12411 (2024). https://doi.org/10.1039/D4TA01912A
Y. Tan, M. Beltran, J. Ke, J. Zhang, J. Choi et al., Interfacial challenges of halide-based all-solid-state batteries. Adv. Energy Mater. 15(13), 2403986 (2025). https://doi.org/10.1002/aenm.202403986
H.-S. Zhang, X.-C. Lei, D. Su, S.-J. Guo, J.-C. Zhu et al., Surface lattice modulation enables stable cycling of high-loading all-solid-state batteries at high voltages. Angew. Chem. Int. Ed. 63(16), e202400562 (2024). https://doi.org/10.1002/anie.202400562
I. Kochetkov, T.-T. Zuo, R. Ruess, B. Singh, L. Zhou et al., Different interfacial reactivity of lithium metal chloride electrolytes with high voltage cathodes determines solid-state battery performance. Energy Environ. Sci. 15(9), 3933–3944 (2022). https://doi.org/10.1039/D2EE00803C
Z. Song, T. Wang, H. Yang, W.H. Kan, Y. Chen et al., Promoting high-voltage stability through local lattice distortion of halide solid electrolytes. Nat. Commun. 15, 1481 (2024). https://doi.org/10.1038/s41467-024-45864-1
S. Zhang, F. Zhao, S. Wang, J. Liang, J. Wang et al., Advanced high-voltage all-solid-state Li-ion batteries enabled by a dual-halogen solid electrolyte. Adv. Energy Mater. 11(32), 2100836 (2021). https://doi.org/10.1002/aenm.202100836
H. Duan, C. Wang, X.-S. Zhang, J. Fu, W. Li et al., Amorphous AlOCl compounds enabling nanocrystalline LiCl with abnormally high ionic conductivity. J. Am. Chem. Soc. 146(43), 29335–29343 (2024). https://doi.org/10.1021/jacs.4c06498
X. Zhang, S. Cheng, C. Fu, G. Yin, L. Wang et al., Advancements and challenges in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries. Nano-Micro Lett. 17(1), 2 (2024). https://doi.org/10.1007/s40820-024-01498-y
B.K. Park, H. Kim, K.S. Kim, H.-S. Kim, S.H. Han et al., Interface design considering intrinsic properties of dielectric materials to minimize space-charge layer effect between oxide cathode and sulfide solid electrolyte in all-solid-state batteries. Adv. Energy Mater. 12(37), 2201208 (2022). https://doi.org/10.1002/aenm.202201208
L. Wang, R. Xie, B. Chen, X. Yu, J. Ma et al., In-situ visualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries. Nat. Commun. 11(1), 5889 (2020). https://doi.org/10.1038/s41467-020-19726-5
L. Wu, H. Lv, R. Zhang, P. Ding, M. Tang et al., Ferroelectric BaTiO3 regulating the local electric field for interfacial stability in solid-state lithium metal batteries. ACS Nano 18(7), 5498–5509 (2024). https://doi.org/10.1021/acsnano.3c10870
H. Zhao, M. Du, H. Mo, C. Wang, W. Zhou et al., Garnet-based solid Li-metal batteries operable under high external pressure with HCOOH-induced electron-blocking and lithiophilic interlayer. ACS Appl. Mater. Interfaces 16(34), 44997–45005 (2024). https://doi.org/10.1021/acsami.4c10546
N. Sun, H. Zhao, R. Ran, W. Zhou, C. Wang et al., Upgrading garnet–polymer composite electrolytes for solid-state lithium batteries: the role of the hydrogen bonds and PTFE fibers. Energy Fuels 39(21), 10083–10091 (2025). https://doi.org/10.1021/acs.energyfuels.5c01761
T. Asano, A. Sakai, S. Ouchi, M. Sakaida, A. Miyazaki et al., Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries. Adv. Mater. 30(44), 1803075 (2018). https://doi.org/10.1002/adma.201803075
P. Shi, J. Ma, M. Liu, S. Guo, Y. Huang et al., A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries. Nat. Nanotechnol. 18(6), 602–610 (2023). https://doi.org/10.1038/s41565-023-01341-2
K.-H. Park, K. Kaup, A. Assoud, Q. Zhang, X. Wu et al., High-voltage superionic halide solid electrolytes for all-solid-state Li-ion batteries. ACS Energy Lett. 5(2), 533–539 (2020). https://doi.org/10.1021/acsenergylett.9b02599
C. Srilakshmi, R. Saraf, V. Prashanth, G.M. Rao, C. Shivakumara, Structure and catalytic activity of Cr-doped BaTiO3 nanocatalysts synthesized by conventional oxalate and microwave assisted hydrothermal methods. Inorg. Chem. 55(10), 4795–4805 (2016). https://doi.org/10.1021/acs.inorgchem.6b00240
K. Deng, W. Li, P. An, C. Liu, J. Wu et al., Surface to bulk synergistic restructuring of ultrahigh nickel-rich LiNi0.96Co0.02Mn0.02O2 cathode for high-performance sulfide-based all-solid-state batteries. Powder Technol. 454, 120691 (2025). https://doi.org/10.1016/j.powtec.2025.120691
X. Wang, Y. Fan, G. Luo, R. Tu, Q. Shen et al., Effect of yttrium (Y) substitution on the structure and dielectric properties of BaTiO3. Ceram. Int. 49(6), 9042–9051 (2023). https://doi.org/10.1016/j.ceramint.2022.11.060
S.-D. Kim, G.-T. Hwang, K. Song, C.K. Jeong, K.-I. Park et al., Inverse size-dependence of piezoelectricity in single BaTiO3 nanops. Nano Energy 58, 78–84 (2019). https://doi.org/10.1016/j.nanoen.2018.12.096
L. Hu, J. Zhu, C. Duan, J. Zhu, J. Wang et al., Revealing the Pnma crystal structure and ion-transport mechanism of the Li3YCl6 solid electrolyte. Cell Rep. Phys. Sci. 4(6), 101428 (2023). https://doi.org/10.1016/j.xcrp.2023.101428
S.C. Sand, J.L.M. Rupp, B. Yildiz, A critical review on Li-ion transport, chemistry and structure of ceramic–polymer composite electrolytes for solid state batteries. Chem. Soc. Rev. 54(1), 178–200 (2025). https://doi.org/10.1039/D4CS00214H
D. Lin, P.Y. Yuen, Y. Liu, W. Liu, N. Liu et al., A silica-aerogel-reinforced composite polymer electrolyte with high ionic conductivity and high modulus. Adv. Mater. 30(32), 1802661 (2018). https://doi.org/10.1002/adma.201802661
H. Kwak, J.-S. Kim, D. Han, J.S. Kim, J. Park et al., Boosting the interfacial superionic conduction of halide solid electrolytes for all-solid-state batteries. Nat. Commun. 14(1), 2459 (2023). https://doi.org/10.1038/s41467-023-38037-z
W. Li, Z. Chen, Y. Chen, W. Duan, G. Liu et al., High-voltage superionic and humidity-tolerant Li2.5Sc0.5Zr0.5Cl6 conductor for lithium batteries via preferred orientation. Chem. Eng. J. 455, 140509 (2023). https://doi.org/10.1016/j.cej.2022.140509
W. Wang, L. Wu, Z. Li, S. Ma, H. Dou et al., Rational design of a piezoelectric BaTiO3 nanodot surface-modified LiNi0.6Co0.2Mn0.2O2 cathode material for high-rate lithium-ion batteries. ChemElectroChem 7(17), 3646–3652 (2020). https://doi.org/10.1002/celc.202000750
W. Li, J. Zhang, Y. Zhou, W. Huang, X. Liu et al., Regulating the grain orientation and surface structure of primary ps through tungsten modification to comprehensively enhance the performance of nickel-rich cathode materials. ACS Appl. Mater. Interfaces 12(42), 47513–47525 (2020). https://doi.org/10.1021/acsami.0c12893
J. Shan, R. Gu, J. Xu, S. Gong, S. Guo et al., Heterojunction ferroelectric materials enhance ion transport and fast charging of polymer solid electrolytes for lithium metal batteries. Adv. Energy Mater. 15(18), 2405220 (2025). https://doi.org/10.1002/aenm.202405220
S. Deng, M. Jiang, N. Chen, W. Li, M. Zheng et al., Regulating electronic conductivity at cathode interface for low-temperature halide-based all-solid-state batteries. Adv. Funct. Mater. 32(45), 2205594 (2022). https://doi.org/10.1002/adfm.202205594
Y. Li, J. Li, Z. Zeng, X. Xu, J. Cheng et al., Surface to bulk design empowering Ni-rich layered oxide cathode in sulfide-based all-solid-state batteries. Chem. Eng. J. 498, 155029 (2024). https://doi.org/10.1016/j.cej.2024.155029
S. Zhang, F. Zhao, J. Chen, J. Fu, J. Luo et al., A family of oxychloride amorphous solid electrolytes for long-cycling all-solid-state lithium batteries. Nat. Commun. 14(1), 3780 (2023). https://doi.org/10.1038/s41467-023-39197-8
Y. Wu, L. Wang, S. Wei, X. Bi, H. Zhuo et al., Exploiting the mixed entropy strategy for the design of fast ion conductors. Adv. Energy Mater. 14(38), 2401528 (2024). https://doi.org/10.1002/aenm.202401528
L. Shen, J.-L. Li, W.-J. Kong, C.-X. Bi, P. Xu et al., Anion-engineering toward high-voltage-stable halide superionic conductors for all-solid-state lithium batteries. Adv. Funct. Mater. 34(48), 2408571 (2024). https://doi.org/10.1002/adfm.202408571
R. Zhang, Y. Ma, Y. Tang, D. Goonetilleke, T. Diemant et al., Conformal Li2HfO3/HfO2 nanop coatings on layered Ni-rich oxide cathodes for stabilizing interfaces in all-solid-state batteries. Chem. Mater. 35(17), 6835–6844 (2023). https://doi.org/10.1021/acs.chemmater.3c01116
C. Liu, W. Li, K. Deng, P. An, R. Wang et al., A stable all-solid-state lithium metal battery achieved by optimizing the cathode-electrolyte interface through perovskite-coating-stabilized single crystal LiNi0.9Co0.05Mn0.05O2 cathode. Chem. Eng. J. 517, 164576 (2025). https://doi.org/10.1016/j.cej.2025.164576
P.J. Kwon, C. Juarez-Yescas, H. Jeong, S. Moradi, E. Gao et al., Chemo-electrochemical evolution of cathode–solid electrolyte interface in all-solid-state batteries. ACS Energy Lett. 9(10), 4746–4752 (2024). https://doi.org/10.1021/acsenergylett.4c02062
Y. Wang, Z. Wang, X. Xu, S.J.A. Oh, J. Sun et al., Ultra-stable sodium-ion battery enabled by all-solid-state ferroelectric-engineered composite electrolytes. Nano-Micro Lett. 16(1), 254 (2024). https://doi.org/10.1007/s40820-024-01474-6
W. Li, W. Zhuang, M. Gao, Y. Zhou, J. Zhang et al., New insight into the role of Mn doping on the bulk structure stability and interfacial stability of Ni-rich layered oxide. ChemNanoMat 6(3), 451–460 (2020). https://doi.org/10.1002/cnma.201900640
C. Hu, Y. Li, S. Li, D. Luo, Y. Bai et al., Tailoring stabilized multilevel dynamic structure evolution enables 4.6 V high-voltage single-crystal Ni-rich cathode. Small (2025). https://doi.org/10.1002/smll.202505331
Y.-Q. Zhang, Y. Tian, Y. Xiao, L.J. Miara, Y. Aihara et al., Direct visualization of the interfacial degradation of cathode coatings in solid state batteries: a combined experimental and computational study. Adv. Energy Mater. 10(27), 1903778 (2020). https://doi.org/10.1002/aenm.201903778
X. Zhou, B. Zhang, P. Lyu, L. Xi, F. Li et al., Chemo-mechanical stable cathode interphase via interface in situ catalytic-conversion integrated design for all solid-state batteries. Energy Environ. Sci. 17(21), 8174–8188 (2024). https://doi.org/10.1039/D4EE02827A