Differentiating the 2D Passivation from Amorphous Passivation in Perovskite Solar Cells
Corresponding Author: Zeguo Tang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 62
Abstract
The introduction of two-dimensional (2D) perovskite layers on top of three-dimensional (3D) perovskite films enhances the performance and stability of perovskite solar cells (PSCs). However, the electronic effect of the spacer cation and the quality of the 2D capping layer are critical factors in achieving the required results. In this study, we compared two fluorinated salts: 4-(trifluoromethyl) benzamidine hydrochloride (4TF-BA·HCl) and 4-fluorobenzamidine hydrochloride (4F-BA·HCl) to engineer the 3D/2D perovskite films. Surprisingly, 4F-BA formed a high-performance 3D/2D heterojunction, while 4TF-BA produced an amorphous layer on the perovskite films. Our findings indicate that the balanced intramolecular charge polarization, which leads to effective hydrogen bonding, is more favorable in 4F-BA than in 4TF-BA, promoting the formation of a crystalline 2D perovskite. Nevertheless, 4TF-BA managed to improve efficiency to 24%, surpassing the control device, primarily due to the natural passivation capabilities of benzamidine. Interestingly, the devices based on 4F-BA demonstrated an efficiency exceeding 25% with greater longevity under various storage conditions compared to 4TF-BA-based and the control devices.
Highlights:
1 Benzamidine derivatives are utilized to differentiate between 2D passivation and amorphous passivation.
2 Introducing an n-type 2D passivation layer enhances the charge extraction and transportation and reduces the interface recombination in inverted perovskite solar cells.
3 The intramolecular charge of organic ligands is critical for the formation of crystalline 2D capping layers on 3D perovskite layers.
4 The long-term stability of inverted perovskite solar cells is improved owing to hydrophobic sealing of 3D perovskite via crystalline 2D capping.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- National Renewable Energy Laboratory, 2025, Best research-cell efficiency chart, https://www.nrel.gov/pv/cell-efficiency.html (Accessed: July 2025).
- J. Du, J. Chen, B. Ouyang, A. Sun, C. Tian et al., Face-on oriented self-assembled molecules with enhanced π–π stacking for highly efficient inverted perovskite solar cells on rough FTO substrates. Energy Environ. Sci. 18(7), 3196–3210 (2025). https://doi.org/10.1039/D4EE05849F
- G. Qu, S. Cai, Y. Qiao, D. Wang, S. Gong et al., Conjugated linker-boosted self-assembled monolayer molecule for inverted perovskite solar cells. Joule 8(7), 2123–2134 (2024). https://doi.org/10.1016/j.joule.2024.05.005
- S. Li, Y. Xiao, R. Su, W. Xu, D. Luo et al., Coherent growth of high-Miller-index facets enhances perovskite solar cells. Nature 635(8040), 874–881 (2024). https://doi.org/10.1038/s41586-024-08159-5
- P. Chen, Y. Xiao, J. Hu, S. Li, D. Luo et al., Multifunctional ytterbium oxide buffer for perovskite solar cells. Nature 625(7995), 516–522 (2024). https://doi.org/10.1038/s41586-023-06892-x
- L. Duan, D. Walter, N. Chang, J. Bullock, D. Kang et al., Stability challenges for the commercialization of perovskite–silicon tandem solar cells. Nat. Rev. Mater. 8(4), 261–281 (2023). https://doi.org/10.1038/s41578-022-00521-1
- D. Khan, G. Qu, I. Muhammad, Z. Tang, Z.-X. Xu, Overcoming two key challenges in monolithic perovskite-silicon tandem solar cell development: wide bandgap and textured substrate: a comprehensive review. Adv. Energy Mater. 13(42), 2302124 (2023). https://doi.org/10.1002/aenm.202302124
- H. Zhang, L. Pfeifer, S.M. Zakeeruddin, J. Chu, M. Grätzel, Tailoring passivators for highly efficient and stable perovskite solar cells. Nat. Rev. Chem. 7(9), 632–652 (2023). https://doi.org/10.1038/s41570-023-00510-0
- J. Duan, J. Li, G. Divitini, D. Cortecchia, F. Yuan et al., 2D hybrid perovskites: from static and dynamic structures to potential applications. Adv. Mater. 36(30), 2403455 (2024). https://doi.org/10.1002/adma.202403455
- S. Teale, M. Degani, B. Chen, E.H. Sargent, G. Grancini, Molecular cation and low-dimensional perovskite surface passivation in perovskite solar cells. Nat. Energy 9(7), 779–792 (2024). https://doi.org/10.1038/s41560-024-01529-3
- R. Azmi, E. Ugur, A. Seitkhan, F. Aljamaan, A.S. Subbiah et al., Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science 376(6588), 73–77 (2022). https://doi.org/10.1126/science.abm5784
- S. Sidhik, Y. Wang, M. De Siena, R. Asadpour, A.J. Torma et al., Deterministic fabrication of 3D/2D perovskite bilayer stacks for durable and efficient solar cells. Science 377(6613), 1425–1430 (2022). https://doi.org/10.1126/science.abq7652
- S.M. Park, M. Wei, J. Xu, H.R. Atapattu, F.T. Eickemeyer et al., Engineering ligand reactivity enables high-temperature operation of stable perovskite solar cells. Science 381(6654), 209–215 (2023). https://doi.org/10.1126/science.adi4107
- X. Han, X. Liu, Y. Yu, D. He, J. Feng et al., Minimizing interfacial energy losses via fluorination strategy toward high-performance air-fabricated perovskite solar cells. Chem. Eng. J. 501, 157430 (2024). https://doi.org/10.1016/j.cej.2024.157430
- T. Yang, C. Ma, W. Cai, S. Wang, Y. Wu et al., Amidino-based dion-jacobson 2D perovskite for efficient and stable 2D/3D heterostructure perovskite solar cells. Joule 7(3), 574–586 (2023). https://doi.org/10.1016/j.joule.2023.02.003
- Y. Lin, J. Tang, H. Yan, J. Lin, W. Wang et al., Ultra-large dipole moment organic cations derived 3D/2D p–n heterojunction for high-efficiency carbon-based perovskite solar cells. Energy Environ. Sci. 17(13), 4692–4702 (2024). https://doi.org/10.1039/D4EE00568F
- X. Chang, R. Azmi, T. Yang, N. Wu, S.Y. Jeong et al., Solvent-dripping modulated 3D/2D heterostructures for high-performance perovskite solar cells. Nat. Commun. 16, 1042 (2025). https://doi.org/10.1038/s41467-025-56409-5
- Z. Wang, Q. Wei, X. Liu, L. Liu, X. Tang et al., Spacer cation tuning enables vertically oriented and graded quasi-2D perovskites for efficient solar cells. Adv. Funct. Mater. 31(5), 2008404 (2021). https://doi.org/10.1002/adfm.202008404
- H. Chen, S. Teale, B. Chen, Y. Hou, L. Grater et al., Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells. Nat. Photonics 16(5), 352–358 (2022). https://doi.org/10.1038/s41566-022-00985-1
- Y. Liu, S. Akin, L. Pan, R. Uchida, N. Arora et al., Ultrahydrophobic 3D/2D fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22. Sci. Adv. 5(6), eaaw2543 (2019). https://doi.org/10.1126/sciadv.aaw2543
- G. Liu, H. Zheng, H. Xu, L. Zhang, X. Xu et al., Interface passivation treatment by halogenated low-dimensional perovskites for high-performance and stable perovskite photovoltaics. Nano Energy 73, 104753 (2020). https://doi.org/10.1016/j.nanoen.2020.104753
- M. Wang, Y. Yin, W. Cai, J. Liu, Y. Han et al., Synergetic co-modulation of crystallization and co-passivation of defects for FAPbI3 perovskite solar cells. Adv. Funct. Mater. 32(6), 2108567 (2022). https://doi.org/10.1002/adfm.202108567
- M. Degani, Q. An, M. Albaladejo-Siguan, Y.J. Hofstetter, C. Cho et al., 23.7% efficient inverted perovskite solar cells by dual interfacial modification. Sci. Adv. 7(49), eabj7930 (2021). https://doi.org/10.1126/sciadv.abj7930
- Y. Huang, Z. Yuan, J. Yang, S. Yin, A. Liang et al., Highly efficient perovskite solar cells by building 2D/3D perovskite heterojuction in situ for interfacial passivation and energy level adjustment. Sci. China Chem. 66(2), 449–458 (2023). https://doi.org/10.1007/s11426-022-1436-7
- Y. Wang, R. Lin, C. Liu, X. Wang, C. Chosy et al., Homogenized contact in all-perovskite tandems using tailored 2D perovskite. Nature 635(8040), 867–873 (2024). https://doi.org/10.1038/s41586-024-08158-6
- R. Lin, J. Xu, M. Wei, Y. Wang, Z. Qin et al., All-perovskite tandem solar cells with improved grain surface passivation. Nature 603(7899), 73–78 (2022). https://doi.org/10.1038/s41586-021-04372-8
- J. Zhou, M. Li, S. Wang, L. Tan, Y. Liu et al., 2-CF3-PEAI to eliminate Pb0 traps and form a 2D perovskite layer to enhance the performance and stability of perovskite solar cells. Nano Energy 95, 107036 (2022). https://doi.org/10.1016/j.nanoen.2022.107036
- J. Byeon, S.H. Cho, J. Jiang, J. Jang, C. Katan et al., Structural isomer of fluorinated ruddlesden-popper perovskites toward efficient and stable 2D/3D perovskite solar cells. ACS Appl. Mater. Interfaces 15(23), 27853–27864 (2023). https://doi.org/10.1021/acsami.3c01754
- C. Ma, M.-C. Kang, S.-H. Lee, Y. Zhang, D.-H. Kang et al., Facet-dependent passivation for efficient perovskite solar cells. J. Am. Chem. Soc. 145(44), 24349–24357 (2023). https://doi.org/10.1021/jacs.3c09327
- T. Yang, L. Gao, J. Lu, C. Ma, Y. Du et al., One-stone-for-two-birds strategy to attain beyond 25% perovskite solar cells. Nat. Commun. 14(1), 839 (2023). https://doi.org/10.1038/s41467-023-36229-1
- A. Liang, K. Wang, Y. Gao, B.P. Finkenauer, C. Zhu et al., Highly efficient halide perovskite light-emitting diodes via molecular passivation. Angew. Chem. Int. Ed. 60(15), 8337–8343 (2021). https://doi.org/10.1002/anie.202100243
- G. Xu, I. Muhammad, Y. Zhang, X. Zheng, M. Xin et al., Amidinopyridine ion docking in crown ether cavity to modulate the top interface in inverted perovskite solar cells. Adv. Energy Mater. 15(18), 2405088 (2025). https://doi.org/10.1002/aenm.202405088
- L. Mao, C.C. Stoumpos, M.G. Kanatzidis, Two-dimensional hybrid halide perovskites: principles and promises. J. Am. Chem. Soc. 141(3), 1171–1190 (2019). https://doi.org/10.1021/jacs.8b10851
- K.D. Feng Rao, Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing. Science 358(6369), 1423–1427 (2017). https://doi.org/10.2307/26401092
- V.L. Deringer, A.L. Tchougréeff, R. Dronskowski, Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets. J. Phys. Chem. A 115(21), 5461–5466 (2011). https://doi.org/10.1021/jp202489s
- S. Ahmed, X. Wang, H. Li, Y. Zhou, Y. Chen et al., Change in structure of amorphous Sb–Te phase-change materials as a function of stoichiometry. Phys. Status Solidi RRL 15(6), 2100064 (2021). https://doi.org/10.1002/pssr.202100064
- K. Joulain, R. Carminati, J. Mulet, J. Greffet, Definition and measurement of the local density of electromagnetic states close to an interface. International Quantum Electronics Conference, 2004. (IQEC). May 21-21, 2004, San Francisco, CA, USA. IEEE, (2004), pp. 538–539. https://doi.org/10.1364/IQEC.2004.IWA29
- B. Zhao, Y. Lian, L. Cui, G. Divitini, G. Kusch et al., Efficient light-emitting diodes from mixed-dimensional perovskites on a fluoride interface. Nat. Electron. 3(11), 704–710 (2020). https://doi.org/10.1038/s41928-020-00487-4
- Y. Wen, T. Zhang, X. Wang, T. Liu, Y. Wang et al., Amorphous (lysine)2PbI2 layer enhanced perovskite photovoltaics. Nat. Commun. 15(1), 7085 (2024). https://doi.org/10.1038/s41467-024-51551-y
- Y. Sui, W. Zhou, D. Khan, S. Wang, T. Zhang et al., Understanding the role of crown ether functionalization in inverted perovskite solar cells. ACS Energy Lett. 9(4), 1518–1526 (2024). https://doi.org/10.1021/acsenergylett.3c02322
- J. Liang, X. Hu, C. Wang, C. Liang, C. Chen et al., Origins and influences of metallic lead in perovskite solar cells. Joule 6(4), 816–833 (2022). https://doi.org/10.1016/j.joule.2022.03.005
- D. Khan, I. Muhammad, G. Qu, C. Gao, J. Xu et al., Unraveling the reasons behind SnO2/perovskite defects and their cure through multifunctional Ti3C2Tx. Adv. Funct. Mater. 34(32), 2316169 (2024). https://doi.org/10.1002/adfm.202316169
References
National Renewable Energy Laboratory, 2025, Best research-cell efficiency chart, https://www.nrel.gov/pv/cell-efficiency.html (Accessed: July 2025).
J. Du, J. Chen, B. Ouyang, A. Sun, C. Tian et al., Face-on oriented self-assembled molecules with enhanced π–π stacking for highly efficient inverted perovskite solar cells on rough FTO substrates. Energy Environ. Sci. 18(7), 3196–3210 (2025). https://doi.org/10.1039/D4EE05849F
G. Qu, S. Cai, Y. Qiao, D. Wang, S. Gong et al., Conjugated linker-boosted self-assembled monolayer molecule for inverted perovskite solar cells. Joule 8(7), 2123–2134 (2024). https://doi.org/10.1016/j.joule.2024.05.005
S. Li, Y. Xiao, R. Su, W. Xu, D. Luo et al., Coherent growth of high-Miller-index facets enhances perovskite solar cells. Nature 635(8040), 874–881 (2024). https://doi.org/10.1038/s41586-024-08159-5
P. Chen, Y. Xiao, J. Hu, S. Li, D. Luo et al., Multifunctional ytterbium oxide buffer for perovskite solar cells. Nature 625(7995), 516–522 (2024). https://doi.org/10.1038/s41586-023-06892-x
L. Duan, D. Walter, N. Chang, J. Bullock, D. Kang et al., Stability challenges for the commercialization of perovskite–silicon tandem solar cells. Nat. Rev. Mater. 8(4), 261–281 (2023). https://doi.org/10.1038/s41578-022-00521-1
D. Khan, G. Qu, I. Muhammad, Z. Tang, Z.-X. Xu, Overcoming two key challenges in monolithic perovskite-silicon tandem solar cell development: wide bandgap and textured substrate: a comprehensive review. Adv. Energy Mater. 13(42), 2302124 (2023). https://doi.org/10.1002/aenm.202302124
H. Zhang, L. Pfeifer, S.M. Zakeeruddin, J. Chu, M. Grätzel, Tailoring passivators for highly efficient and stable perovskite solar cells. Nat. Rev. Chem. 7(9), 632–652 (2023). https://doi.org/10.1038/s41570-023-00510-0
J. Duan, J. Li, G. Divitini, D. Cortecchia, F. Yuan et al., 2D hybrid perovskites: from static and dynamic structures to potential applications. Adv. Mater. 36(30), 2403455 (2024). https://doi.org/10.1002/adma.202403455
S. Teale, M. Degani, B. Chen, E.H. Sargent, G. Grancini, Molecular cation and low-dimensional perovskite surface passivation in perovskite solar cells. Nat. Energy 9(7), 779–792 (2024). https://doi.org/10.1038/s41560-024-01529-3
R. Azmi, E. Ugur, A. Seitkhan, F. Aljamaan, A.S. Subbiah et al., Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science 376(6588), 73–77 (2022). https://doi.org/10.1126/science.abm5784
S. Sidhik, Y. Wang, M. De Siena, R. Asadpour, A.J. Torma et al., Deterministic fabrication of 3D/2D perovskite bilayer stacks for durable and efficient solar cells. Science 377(6613), 1425–1430 (2022). https://doi.org/10.1126/science.abq7652
S.M. Park, M. Wei, J. Xu, H.R. Atapattu, F.T. Eickemeyer et al., Engineering ligand reactivity enables high-temperature operation of stable perovskite solar cells. Science 381(6654), 209–215 (2023). https://doi.org/10.1126/science.adi4107
X. Han, X. Liu, Y. Yu, D. He, J. Feng et al., Minimizing interfacial energy losses via fluorination strategy toward high-performance air-fabricated perovskite solar cells. Chem. Eng. J. 501, 157430 (2024). https://doi.org/10.1016/j.cej.2024.157430
T. Yang, C. Ma, W. Cai, S. Wang, Y. Wu et al., Amidino-based dion-jacobson 2D perovskite for efficient and stable 2D/3D heterostructure perovskite solar cells. Joule 7(3), 574–586 (2023). https://doi.org/10.1016/j.joule.2023.02.003
Y. Lin, J. Tang, H. Yan, J. Lin, W. Wang et al., Ultra-large dipole moment organic cations derived 3D/2D p–n heterojunction for high-efficiency carbon-based perovskite solar cells. Energy Environ. Sci. 17(13), 4692–4702 (2024). https://doi.org/10.1039/D4EE00568F
X. Chang, R. Azmi, T. Yang, N. Wu, S.Y. Jeong et al., Solvent-dripping modulated 3D/2D heterostructures for high-performance perovskite solar cells. Nat. Commun. 16, 1042 (2025). https://doi.org/10.1038/s41467-025-56409-5
Z. Wang, Q. Wei, X. Liu, L. Liu, X. Tang et al., Spacer cation tuning enables vertically oriented and graded quasi-2D perovskites for efficient solar cells. Adv. Funct. Mater. 31(5), 2008404 (2021). https://doi.org/10.1002/adfm.202008404
H. Chen, S. Teale, B. Chen, Y. Hou, L. Grater et al., Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells. Nat. Photonics 16(5), 352–358 (2022). https://doi.org/10.1038/s41566-022-00985-1
Y. Liu, S. Akin, L. Pan, R. Uchida, N. Arora et al., Ultrahydrophobic 3D/2D fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22. Sci. Adv. 5(6), eaaw2543 (2019). https://doi.org/10.1126/sciadv.aaw2543
G. Liu, H. Zheng, H. Xu, L. Zhang, X. Xu et al., Interface passivation treatment by halogenated low-dimensional perovskites for high-performance and stable perovskite photovoltaics. Nano Energy 73, 104753 (2020). https://doi.org/10.1016/j.nanoen.2020.104753
M. Wang, Y. Yin, W. Cai, J. Liu, Y. Han et al., Synergetic co-modulation of crystallization and co-passivation of defects for FAPbI3 perovskite solar cells. Adv. Funct. Mater. 32(6), 2108567 (2022). https://doi.org/10.1002/adfm.202108567
M. Degani, Q. An, M. Albaladejo-Siguan, Y.J. Hofstetter, C. Cho et al., 23.7% efficient inverted perovskite solar cells by dual interfacial modification. Sci. Adv. 7(49), eabj7930 (2021). https://doi.org/10.1126/sciadv.abj7930
Y. Huang, Z. Yuan, J. Yang, S. Yin, A. Liang et al., Highly efficient perovskite solar cells by building 2D/3D perovskite heterojuction in situ for interfacial passivation and energy level adjustment. Sci. China Chem. 66(2), 449–458 (2023). https://doi.org/10.1007/s11426-022-1436-7
Y. Wang, R. Lin, C. Liu, X. Wang, C. Chosy et al., Homogenized contact in all-perovskite tandems using tailored 2D perovskite. Nature 635(8040), 867–873 (2024). https://doi.org/10.1038/s41586-024-08158-6
R. Lin, J. Xu, M. Wei, Y. Wang, Z. Qin et al., All-perovskite tandem solar cells with improved grain surface passivation. Nature 603(7899), 73–78 (2022). https://doi.org/10.1038/s41586-021-04372-8
J. Zhou, M. Li, S. Wang, L. Tan, Y. Liu et al., 2-CF3-PEAI to eliminate Pb0 traps and form a 2D perovskite layer to enhance the performance and stability of perovskite solar cells. Nano Energy 95, 107036 (2022). https://doi.org/10.1016/j.nanoen.2022.107036
J. Byeon, S.H. Cho, J. Jiang, J. Jang, C. Katan et al., Structural isomer of fluorinated ruddlesden-popper perovskites toward efficient and stable 2D/3D perovskite solar cells. ACS Appl. Mater. Interfaces 15(23), 27853–27864 (2023). https://doi.org/10.1021/acsami.3c01754
C. Ma, M.-C. Kang, S.-H. Lee, Y. Zhang, D.-H. Kang et al., Facet-dependent passivation for efficient perovskite solar cells. J. Am. Chem. Soc. 145(44), 24349–24357 (2023). https://doi.org/10.1021/jacs.3c09327
T. Yang, L. Gao, J. Lu, C. Ma, Y. Du et al., One-stone-for-two-birds strategy to attain beyond 25% perovskite solar cells. Nat. Commun. 14(1), 839 (2023). https://doi.org/10.1038/s41467-023-36229-1
A. Liang, K. Wang, Y. Gao, B.P. Finkenauer, C. Zhu et al., Highly efficient halide perovskite light-emitting diodes via molecular passivation. Angew. Chem. Int. Ed. 60(15), 8337–8343 (2021). https://doi.org/10.1002/anie.202100243
G. Xu, I. Muhammad, Y. Zhang, X. Zheng, M. Xin et al., Amidinopyridine ion docking in crown ether cavity to modulate the top interface in inverted perovskite solar cells. Adv. Energy Mater. 15(18), 2405088 (2025). https://doi.org/10.1002/aenm.202405088
L. Mao, C.C. Stoumpos, M.G. Kanatzidis, Two-dimensional hybrid halide perovskites: principles and promises. J. Am. Chem. Soc. 141(3), 1171–1190 (2019). https://doi.org/10.1021/jacs.8b10851
K.D. Feng Rao, Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing. Science 358(6369), 1423–1427 (2017). https://doi.org/10.2307/26401092
V.L. Deringer, A.L. Tchougréeff, R. Dronskowski, Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets. J. Phys. Chem. A 115(21), 5461–5466 (2011). https://doi.org/10.1021/jp202489s
S. Ahmed, X. Wang, H. Li, Y. Zhou, Y. Chen et al., Change in structure of amorphous Sb–Te phase-change materials as a function of stoichiometry. Phys. Status Solidi RRL 15(6), 2100064 (2021). https://doi.org/10.1002/pssr.202100064
K. Joulain, R. Carminati, J. Mulet, J. Greffet, Definition and measurement of the local density of electromagnetic states close to an interface. International Quantum Electronics Conference, 2004. (IQEC). May 21-21, 2004, San Francisco, CA, USA. IEEE, (2004), pp. 538–539. https://doi.org/10.1364/IQEC.2004.IWA29
B. Zhao, Y. Lian, L. Cui, G. Divitini, G. Kusch et al., Efficient light-emitting diodes from mixed-dimensional perovskites on a fluoride interface. Nat. Electron. 3(11), 704–710 (2020). https://doi.org/10.1038/s41928-020-00487-4
Y. Wen, T. Zhang, X. Wang, T. Liu, Y. Wang et al., Amorphous (lysine)2PbI2 layer enhanced perovskite photovoltaics. Nat. Commun. 15(1), 7085 (2024). https://doi.org/10.1038/s41467-024-51551-y
Y. Sui, W. Zhou, D. Khan, S. Wang, T. Zhang et al., Understanding the role of crown ether functionalization in inverted perovskite solar cells. ACS Energy Lett. 9(4), 1518–1526 (2024). https://doi.org/10.1021/acsenergylett.3c02322
J. Liang, X. Hu, C. Wang, C. Liang, C. Chen et al., Origins and influences of metallic lead in perovskite solar cells. Joule 6(4), 816–833 (2022). https://doi.org/10.1016/j.joule.2022.03.005
D. Khan, I. Muhammad, G. Qu, C. Gao, J. Xu et al., Unraveling the reasons behind SnO2/perovskite defects and their cure through multifunctional Ti3C2Tx. Adv. Funct. Mater. 34(32), 2316169 (2024). https://doi.org/10.1002/adfm.202316169