Electrically Insulating Rigid Multi-Channel Electrolyte Container for Customizable Electron Transfer in Zn-Halogen Batteries
Corresponding Author: Xinxin Cao
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 168
Abstract
Recent advancements in Zn-halogen batteries have focused on enhancing the adsorptive or catalytic capability of host materials and stabilizing complex intermediates with electrolyte additives, while the halogen-ion electrolyte modifications exhibit strong potential for integrated interfacial regulation. Herein, we design an electrically insulating rigid electrolyte container to immobilize a liquid halogen-ion electrolyte for separator-free Zn-halogen batteries with customizable electron transfer. Robust hydrogen bonding of hydroxyl groups in SiO2 with fluorinated moieties in PVDF-hfp regulates Zn2+ solvation and suppresses H2O activity, while multi-channels formed by microcracks and interparticle gaps not only enhance mass transfer but also buffer interfacial electric field, jointly enabling a durable Zn plating/stripping. Effective confinement of intermediates also ensures the high reversibility across single-(I−/I0), double-(I−/I0/I⁺), and triple-(I−/I0/I⁺, Cl−/Cl0) electron transfer mechanisms at cathode, as evidenced by the double-electron transfer systems exhibiting a low capacity decay rate of 0.02‰ over 4500 cycles at 10 mA cm−2 and a high areal capacity of 11.9 mAh cm−2 at 2 mA cm−2. This work presents a novel “container engineering” approach to halogen-ion electrolyte design and provides fundamental insights into the relationships between redox reversibility and reaction kinetics.
Highlights:
1 A rigid electrolyte container (SiO2@PVDF-hfp) was designed to immobilize the liquid halogen-ion electrolyte, enabling separator-free Zn-halogen batteries.
2 The container regulates Zn2+ solvation via hydrogen bonding regulation, while providing multi-channel structure for enhanced mass transfer, jointly enabling durable Zn plating/stripping.
3 Effective confinement of intermediates ensures high reversibility across multi-electron transfer mechanisms, achieving an exceptionally low-capacity decay of 0.02‰ over 4500 cycles and a high areal capacity of 11.9 mAh cm−2.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Tang, L. Shan, S. Liang, J. Zhou, Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci. 12(11), 3288–3304 (2019). https://doi.org/10.1039/c9ee02526j
- X. Jia, C. Liu, Z.G. Neale, J. Yang, G. Cao, Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev. 120(15), 7795–7866 (2020). https://doi.org/10.1021/acs.chemrev.9b00628
- D. Lin, Y. Li, Recent advances of aqueous rechargeable zinc-iodine batteries: challenges, solutions, and prospects. Adv. Mater. 34(23), 2108856 (2022). https://doi.org/10.1002/adma.202108856
- C. Zhou, Z. Ding, S. Ying, H. Jiang, Y. Wang et al., Electrode/electrolyte optimization-induced double-layered architecture for high-performance aqueous zinc-(dual) halogen batteries. Nano-Micro Lett. 17(1), 58 (2024). https://doi.org/10.1007/s40820-024-01551-w
- Y. Yang, S. Liang, J. Zhou, Progress and prospect of the zinc–iodine battery. Curr. Opin. Electrochem. 30, 100761 (2021). https://doi.org/10.1016/j.coelec.2021.100761
- S. Wang, Z. Wei, H. Hong, X. Guo, Y. Wang et al., A tellurium iodide perovskite structure enabling eleven-electron transfer in zinc ion batteries. Nat. Commun. 16(1), 511 (2025). https://doi.org/10.1038/s41467-024-55385-6
- Y. Zou, T. Liu, Q. Du, Y. Li, H. Yi et al., A four-electron Zn-I2 aqueous battery enabled by reversible I-/I2/I+ conversion. Nat. Commun. 12(1), 170 (2021). https://doi.org/10.1038/s41467-020-20331-9
- L. She, H. Cheng, Z. Yuan, Z. Shen, Q. Wu et al., Rechargeable aqueous zinc–halogen batteries: fundamental mechanisms, research issues, and future perspectives. Adv. Sci. 11(8), 2305061 (2024). https://doi.org/10.1002/advs.202305061
- Y. Yin, S. Wang, Q. Zhang, Y. Song, N. Chang et al., Dendrite-free zinc deposition induced by tin-modified multifunctional 3D host for stable zinc-based flow battery. Adv. Mater. 32(6), 1906803 (2020). https://doi.org/10.1002/adma.201906803
- M. Liu, Q. Chen, X. Cao, D. Tan, J. Ma et al., Physicochemical confinement effect enables high-performing zinc-iodine batteries. J. Am. Chem. Soc. 144(47), 21683–21691 (2022). https://doi.org/10.1021/jacs.2c09445
- J. Zhao, Y. Qi, Y. Chen, M. Zhang, Z. An et al., High-performance zinc halogen aqueous battery exploiting [BrCl2]- storage in ketjenblack by reconstructing electrolyte structure. Angew. Chem. Int. Ed. 64(17), e202421905 (2025). https://doi.org/10.1002/anie.202421905
- W. Ma, T. Liu, C. Xu, C. Lei, P. Jiang et al., A twelve-electron conversion iodine cathode enabled by interhalogen chemistry in aqueous solution. Nat. Commun. 14(1), 5508 (2023). https://doi.org/10.1038/s41467-023-41071-6
- F. Wang, J. Tseng, Z. Liu, P. Zhang, G. Wang et al., A stimulus-responsive zinc-iodine battery with smart overcharge self-protection function. Adv. Mater. 32(16), e2000287 (2020). https://doi.org/10.1002/adma.202000287
- W. Li, H. Xu, H. Zhang, F. Wei, T. Zhang et al., Designing ternary hydrated eutectic electrolyte capable of four-electron conversion for advanced Zn–I2 full batteries. Energy Environ. Sci. 16(10), 4502–4510 (2023). https://doi.org/10.1039/d3ee01567j
- X. Yang, Y. Lu, Z. Liu, H. Ji, Z. Chen et al., Facet-governed Zn homoepitaxy via lattice potential regulation. Energy Environ. Sci. 17(15), 5563–5575 (2024). https://doi.org/10.1039/d4ee00881b
- Z. Dong, C. Zhong, H. Chai, G. Weng, J. Chen et al., Emerging in situ thermal treatment strategies for tailoring uniform Zn deposition toward stable Zn anodes. Adv. Funct. Mater. 35(39), 2503502 (2025). https://doi.org/10.1002/adfm.202503502
- T. Wang, Q. Xi, K. Yao, Y. Liu, H. Fu et al., Surface patterning of metal zinc electrode with an in-region zincophilic interface for high-rate and long-cycle-life zinc metal anode. Nano-Micro Lett. 16(1), 112 (2024). https://doi.org/10.1007/s40820-024-01327-2
- C. Dai, L. Hu, X. Jin, Y. Wang, R. Wang et al., Fast constructing polarity-switchable zinc-bromine microbatteries with high areal energy density. Sci. Adv. 8(28), eabo6688 (2022). https://doi.org/10.1126/sciadv.abo6688
- P. Blöchl, O. Jepsen, O. Andersen, Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 49(23), 16223–16233 (1994). https://doi.org/10.1103/physrevb.49.16223
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865
- T. Nishiyama, T. Sumihara, E. Sato, H. Horibe, Effect of solvents on the crystal formation of poly(vinylidene fluoride) film prepared by a spin-coating process. Polym. J. 49(3), 319–325 (2017). https://doi.org/10.1038/pj.2016.116
- E. Kabir, M. Khatun, L. Nasrin, M.J. Raihan, M. Rahman, Pureβ-phase formation in polyvinylidene fluoride (PVDF)-carbon nanotube composites. J. Phys. D Appl. Phys. 50(16), 163002 (2017). https://doi.org/10.1088/1361-6463/aa5f85
- D. Yuan, Z. Li, W. Thitsartarn, X. Fan, J. Sun et al., β phase PVDF-hfp induced by mesoporous SiO2 nanorods: synthesis and formation mechanism. J. Mater. Chem. C 3(15), 3708–3713 (2015). https://doi.org/10.1039/C5TC00005J
- X. Meng, Y. Liu, M. Guan, J. Qiu, Z. Wang, A high-energy and safe lithium battery enabled by solid-state redox chemistry in a fireproof gel electrolyte. Adv. Mater. 34(28), 2201981 (2022). https://doi.org/10.1002/adma.202201981
- Q. Liu, G. Yang, X. Li, S. Zhang, R. Chen et al., Polymer electrolytes based on interactions between [solvent-Li+] complex and solvent-modified polymer. Energy Storage Mater. 51, 443–452 (2022). https://doi.org/10.1016/j.ensm.2022.06.040
- W. Yang, X. Du, J. Zhao, Z. Chen, J. Li et al., Hydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries. Joule 4(7), 1557–1574 (2020). https://doi.org/10.1016/j.joule.2020.05.018
- R. Chen, C. Zhang, J. Li, Z. Du, F. Guo et al., A hydrated deep eutectic electrolyte with finely-tuned solvation chemistry for high-performance zinc-ion batteries. Energy Environ. Sci. 16(6), 2540–2549 (2023). https://doi.org/10.1039/D3EE00462G
- X. Hu, Z. Zhao, Y. Yang, H. Zhang, G. Lai et al., Bifunctional self-segregated electrolyte realizing high-performance zinc-iodine batteries. InfoMat 6(12), e12620 (2024). https://doi.org/10.1002/inf2.12620
- Y. Yang, S. Liang, B. Lu, J. Zhou, Eutectic electrolyte based on N-methylacetamide for highly reversible zinc–iodine battery. Energy Environ. Sci. 15(3), 1192–1200 (2022). https://doi.org/10.1039/d1ee03268b
- L. Zhu, J. Chen, Y. Wang, W. Feng, Y. Zhu et al., Tunneling interpenetrative lithium ion conduction channels in polymer-in-ceramic composite solid electrolytes. J. Am. Chem. Soc. 146(10), 6591–6603 (2024). https://doi.org/10.1021/jacs.3c11988
- H. Qiu, X. Du, J. Zhao, Y. Wang, J. Ju et al., Zinc anode-compatible in situ solid electrolyte interphase via cation solvation modulation. Nat. Commun. 10(1), 5374 (2019). https://doi.org/10.1038/s41467-019-13436-3
- G.M. Pharr, W.C. Oliver, Measurement of thin film mechanical properties using nanoindentation. MRS Bull. 17(7), 28–33 (1992). https://doi.org/10.1557/S0883769400041634
- T. Zhang, J. Li, X. Li, R. Wang, C. Wang et al., A silica-reinforced composite electrolyte with greatly enhanced interfacial lithium-ion transfer kinetics for high-performance lithium metal batteries. Adv. Mater. 34(41), 2205575 (2022). https://doi.org/10.1002/adma.202205575
- H. Chen, P. Ruan, H. Zhang, Z.M. El-Bahy, M.M. Ibrahim et al., Achieving highly reversible Mn2+/MnO2 conversion reaction in electrolytic Zn-MnO2 batteries via electrochemical-chemical process regulation. Angew. Chem. Int. Ed. 64(18), e202423999 (2025). https://doi.org/10.1002/anie.202423999
- R. Deng, J. Chen, F. Chu, M. Qian, Z. He et al., Soggy-sand” chemistry for high-voltage aqueous zinc-ion batteries. Adv. Mater. 36(11), e2311153 (2024). https://doi.org/10.1002/adma.202311153
- P. Shi, J. Ma, M. Liu, S. Guo, Y. Huang et al., A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries. Nat. Nanotechnol. 18(6), 602–610 (2023). https://doi.org/10.1038/s41565-023-01341-2
- H. Ge, X. Xie, X. Xie, B. Zhang, S. Li et al., Critical challenges and solutions: quasi-solid-state electrolytes for zinc-based batteries. Energy Environ. Sci. 17(10), 3270–3306 (2024). https://doi.org/10.1039/d4ee00357h
- Y. Han, Y. Liu, Y. Zhang, X. He, X. Fu et al., Functionalized quasi-solid-state electrolytes in aqueous Zn-ion batteries for flexible devices: challenges and strategies. Adv. Mater. 37(1), 2412447 (2025). https://doi.org/10.1002/adma.202412447
- Y. Guo, L. Shan, Y. Yang, J. Zhou, Z. Zheng, Current-dependent coupling behaviors inspired wide-current cyclable Zn metal anode. EcoMat 7(5), e70013 (2025). https://doi.org/10.1002/eom2.70013
- G. Liang, B. Liang, A. Chen, J. Zhu, Q. Li et al., Development of rechargeable high-energy hybrid zinc-iodine aqueous batteries exploiting reversible chlorine-based redox reaction. Nat. Commun. 14(1), 1856 (2023). https://doi.org/10.1038/s41467-023-37565-y
- C.L. Bentley, A.M. Bond, A.F. Hollenkamp, P.J. Mahon, J. Zhang, Electrochemistry of iodide, iodine, and iodine monochloride in chloride containing nonhaloaluminate ionic liquids. Anal. Chem. 88(3), 1915–1921 (2016). https://doi.org/10.1021/acs.analchem.5b04332
- H. Wu, J. Hao, S. Zhang, Y. Jiang, Y. Zhu et al., Aqueous zinc–iodine pouch cells with long cycling life and low self-discharge. J. Am. Chem. Soc. 146(24), 16601–16608 (2024). https://doi.org/10.1021/jacs.4c03518
- T.H. Wan, M. Saccoccio, C. Chen, F. Ciucci, Influence of the discretization methods on the distribution of relaxation times deconvolution: implementing radial basis functions with DRTtools. Electrochim. Acta 184, 483–499 (2015). https://doi.org/10.1016/j.electacta.2015.09.097
- Y. Lu, C.-Z. Zhao, J.-Q. Huang, Q. Zhang, The timescale identification decoupling complicated kinetic processes in lithium batteries. Joule 6(6), 1172–1198 (2022). https://doi.org/10.1016/j.joule.2022.05.005
- D.-Q. Cai, H. Xu, T. Xue, J.-L. Yang, H.J. Fan, A synchronous strategy to Zn-iodine battery by polycationic long-chain molecules. Nano-Micro Lett. 18(1), 3 (2025). https://doi.org/10.1007/s40820-025-01854-6
- X. Li, Y. Wang, J. Lu, S. Li, P. Li et al., Three-electron transfer-based high-capacity organic lithium-iodine (chlorine) batteries. Angew. Chem. Int. Ed. 62(42), e202310168 (2023). https://doi.org/10.1002/anie.202310168
References
B. Tang, L. Shan, S. Liang, J. Zhou, Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci. 12(11), 3288–3304 (2019). https://doi.org/10.1039/c9ee02526j
X. Jia, C. Liu, Z.G. Neale, J. Yang, G. Cao, Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev. 120(15), 7795–7866 (2020). https://doi.org/10.1021/acs.chemrev.9b00628
D. Lin, Y. Li, Recent advances of aqueous rechargeable zinc-iodine batteries: challenges, solutions, and prospects. Adv. Mater. 34(23), 2108856 (2022). https://doi.org/10.1002/adma.202108856
C. Zhou, Z. Ding, S. Ying, H. Jiang, Y. Wang et al., Electrode/electrolyte optimization-induced double-layered architecture for high-performance aqueous zinc-(dual) halogen batteries. Nano-Micro Lett. 17(1), 58 (2024). https://doi.org/10.1007/s40820-024-01551-w
Y. Yang, S. Liang, J. Zhou, Progress and prospect of the zinc–iodine battery. Curr. Opin. Electrochem. 30, 100761 (2021). https://doi.org/10.1016/j.coelec.2021.100761
S. Wang, Z. Wei, H. Hong, X. Guo, Y. Wang et al., A tellurium iodide perovskite structure enabling eleven-electron transfer in zinc ion batteries. Nat. Commun. 16(1), 511 (2025). https://doi.org/10.1038/s41467-024-55385-6
Y. Zou, T. Liu, Q. Du, Y. Li, H. Yi et al., A four-electron Zn-I2 aqueous battery enabled by reversible I-/I2/I+ conversion. Nat. Commun. 12(1), 170 (2021). https://doi.org/10.1038/s41467-020-20331-9
L. She, H. Cheng, Z. Yuan, Z. Shen, Q. Wu et al., Rechargeable aqueous zinc–halogen batteries: fundamental mechanisms, research issues, and future perspectives. Adv. Sci. 11(8), 2305061 (2024). https://doi.org/10.1002/advs.202305061
Y. Yin, S. Wang, Q. Zhang, Y. Song, N. Chang et al., Dendrite-free zinc deposition induced by tin-modified multifunctional 3D host for stable zinc-based flow battery. Adv. Mater. 32(6), 1906803 (2020). https://doi.org/10.1002/adma.201906803
M. Liu, Q. Chen, X. Cao, D. Tan, J. Ma et al., Physicochemical confinement effect enables high-performing zinc-iodine batteries. J. Am. Chem. Soc. 144(47), 21683–21691 (2022). https://doi.org/10.1021/jacs.2c09445
J. Zhao, Y. Qi, Y. Chen, M. Zhang, Z. An et al., High-performance zinc halogen aqueous battery exploiting [BrCl2]- storage in ketjenblack by reconstructing electrolyte structure. Angew. Chem. Int. Ed. 64(17), e202421905 (2025). https://doi.org/10.1002/anie.202421905
W. Ma, T. Liu, C. Xu, C. Lei, P. Jiang et al., A twelve-electron conversion iodine cathode enabled by interhalogen chemistry in aqueous solution. Nat. Commun. 14(1), 5508 (2023). https://doi.org/10.1038/s41467-023-41071-6
F. Wang, J. Tseng, Z. Liu, P. Zhang, G. Wang et al., A stimulus-responsive zinc-iodine battery with smart overcharge self-protection function. Adv. Mater. 32(16), e2000287 (2020). https://doi.org/10.1002/adma.202000287
W. Li, H. Xu, H. Zhang, F. Wei, T. Zhang et al., Designing ternary hydrated eutectic electrolyte capable of four-electron conversion for advanced Zn–I2 full batteries. Energy Environ. Sci. 16(10), 4502–4510 (2023). https://doi.org/10.1039/d3ee01567j
X. Yang, Y. Lu, Z. Liu, H. Ji, Z. Chen et al., Facet-governed Zn homoepitaxy via lattice potential regulation. Energy Environ. Sci. 17(15), 5563–5575 (2024). https://doi.org/10.1039/d4ee00881b
Z. Dong, C. Zhong, H. Chai, G. Weng, J. Chen et al., Emerging in situ thermal treatment strategies for tailoring uniform Zn deposition toward stable Zn anodes. Adv. Funct. Mater. 35(39), 2503502 (2025). https://doi.org/10.1002/adfm.202503502
T. Wang, Q. Xi, K. Yao, Y. Liu, H. Fu et al., Surface patterning of metal zinc electrode with an in-region zincophilic interface for high-rate and long-cycle-life zinc metal anode. Nano-Micro Lett. 16(1), 112 (2024). https://doi.org/10.1007/s40820-024-01327-2
C. Dai, L. Hu, X. Jin, Y. Wang, R. Wang et al., Fast constructing polarity-switchable zinc-bromine microbatteries with high areal energy density. Sci. Adv. 8(28), eabo6688 (2022). https://doi.org/10.1126/sciadv.abo6688
P. Blöchl, O. Jepsen, O. Andersen, Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 49(23), 16223–16233 (1994). https://doi.org/10.1103/physrevb.49.16223
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865
T. Nishiyama, T. Sumihara, E. Sato, H. Horibe, Effect of solvents on the crystal formation of poly(vinylidene fluoride) film prepared by a spin-coating process. Polym. J. 49(3), 319–325 (2017). https://doi.org/10.1038/pj.2016.116
E. Kabir, M. Khatun, L. Nasrin, M.J. Raihan, M. Rahman, Pureβ-phase formation in polyvinylidene fluoride (PVDF)-carbon nanotube composites. J. Phys. D Appl. Phys. 50(16), 163002 (2017). https://doi.org/10.1088/1361-6463/aa5f85
D. Yuan, Z. Li, W. Thitsartarn, X. Fan, J. Sun et al., β phase PVDF-hfp induced by mesoporous SiO2 nanorods: synthesis and formation mechanism. J. Mater. Chem. C 3(15), 3708–3713 (2015). https://doi.org/10.1039/C5TC00005J
X. Meng, Y. Liu, M. Guan, J. Qiu, Z. Wang, A high-energy and safe lithium battery enabled by solid-state redox chemistry in a fireproof gel electrolyte. Adv. Mater. 34(28), 2201981 (2022). https://doi.org/10.1002/adma.202201981
Q. Liu, G. Yang, X. Li, S. Zhang, R. Chen et al., Polymer electrolytes based on interactions between [solvent-Li+] complex and solvent-modified polymer. Energy Storage Mater. 51, 443–452 (2022). https://doi.org/10.1016/j.ensm.2022.06.040
W. Yang, X. Du, J. Zhao, Z. Chen, J. Li et al., Hydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries. Joule 4(7), 1557–1574 (2020). https://doi.org/10.1016/j.joule.2020.05.018
R. Chen, C. Zhang, J. Li, Z. Du, F. Guo et al., A hydrated deep eutectic electrolyte with finely-tuned solvation chemistry for high-performance zinc-ion batteries. Energy Environ. Sci. 16(6), 2540–2549 (2023). https://doi.org/10.1039/D3EE00462G
X. Hu, Z. Zhao, Y. Yang, H. Zhang, G. Lai et al., Bifunctional self-segregated electrolyte realizing high-performance zinc-iodine batteries. InfoMat 6(12), e12620 (2024). https://doi.org/10.1002/inf2.12620
Y. Yang, S. Liang, B. Lu, J. Zhou, Eutectic electrolyte based on N-methylacetamide for highly reversible zinc–iodine battery. Energy Environ. Sci. 15(3), 1192–1200 (2022). https://doi.org/10.1039/d1ee03268b
L. Zhu, J. Chen, Y. Wang, W. Feng, Y. Zhu et al., Tunneling interpenetrative lithium ion conduction channels in polymer-in-ceramic composite solid electrolytes. J. Am. Chem. Soc. 146(10), 6591–6603 (2024). https://doi.org/10.1021/jacs.3c11988
H. Qiu, X. Du, J. Zhao, Y. Wang, J. Ju et al., Zinc anode-compatible in situ solid electrolyte interphase via cation solvation modulation. Nat. Commun. 10(1), 5374 (2019). https://doi.org/10.1038/s41467-019-13436-3
G.M. Pharr, W.C. Oliver, Measurement of thin film mechanical properties using nanoindentation. MRS Bull. 17(7), 28–33 (1992). https://doi.org/10.1557/S0883769400041634
T. Zhang, J. Li, X. Li, R. Wang, C. Wang et al., A silica-reinforced composite electrolyte with greatly enhanced interfacial lithium-ion transfer kinetics for high-performance lithium metal batteries. Adv. Mater. 34(41), 2205575 (2022). https://doi.org/10.1002/adma.202205575
H. Chen, P. Ruan, H. Zhang, Z.M. El-Bahy, M.M. Ibrahim et al., Achieving highly reversible Mn2+/MnO2 conversion reaction in electrolytic Zn-MnO2 batteries via electrochemical-chemical process regulation. Angew. Chem. Int. Ed. 64(18), e202423999 (2025). https://doi.org/10.1002/anie.202423999
R. Deng, J. Chen, F. Chu, M. Qian, Z. He et al., Soggy-sand” chemistry for high-voltage aqueous zinc-ion batteries. Adv. Mater. 36(11), e2311153 (2024). https://doi.org/10.1002/adma.202311153
P. Shi, J. Ma, M. Liu, S. Guo, Y. Huang et al., A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries. Nat. Nanotechnol. 18(6), 602–610 (2023). https://doi.org/10.1038/s41565-023-01341-2
H. Ge, X. Xie, X. Xie, B. Zhang, S. Li et al., Critical challenges and solutions: quasi-solid-state electrolytes for zinc-based batteries. Energy Environ. Sci. 17(10), 3270–3306 (2024). https://doi.org/10.1039/d4ee00357h
Y. Han, Y. Liu, Y. Zhang, X. He, X. Fu et al., Functionalized quasi-solid-state electrolytes in aqueous Zn-ion batteries for flexible devices: challenges and strategies. Adv. Mater. 37(1), 2412447 (2025). https://doi.org/10.1002/adma.202412447
Y. Guo, L. Shan, Y. Yang, J. Zhou, Z. Zheng, Current-dependent coupling behaviors inspired wide-current cyclable Zn metal anode. EcoMat 7(5), e70013 (2025). https://doi.org/10.1002/eom2.70013
G. Liang, B. Liang, A. Chen, J. Zhu, Q. Li et al., Development of rechargeable high-energy hybrid zinc-iodine aqueous batteries exploiting reversible chlorine-based redox reaction. Nat. Commun. 14(1), 1856 (2023). https://doi.org/10.1038/s41467-023-37565-y
C.L. Bentley, A.M. Bond, A.F. Hollenkamp, P.J. Mahon, J. Zhang, Electrochemistry of iodide, iodine, and iodine monochloride in chloride containing nonhaloaluminate ionic liquids. Anal. Chem. 88(3), 1915–1921 (2016). https://doi.org/10.1021/acs.analchem.5b04332
H. Wu, J. Hao, S. Zhang, Y. Jiang, Y. Zhu et al., Aqueous zinc–iodine pouch cells with long cycling life and low self-discharge. J. Am. Chem. Soc. 146(24), 16601–16608 (2024). https://doi.org/10.1021/jacs.4c03518
T.H. Wan, M. Saccoccio, C. Chen, F. Ciucci, Influence of the discretization methods on the distribution of relaxation times deconvolution: implementing radial basis functions with DRTtools. Electrochim. Acta 184, 483–499 (2015). https://doi.org/10.1016/j.electacta.2015.09.097
Y. Lu, C.-Z. Zhao, J.-Q. Huang, Q. Zhang, The timescale identification decoupling complicated kinetic processes in lithium batteries. Joule 6(6), 1172–1198 (2022). https://doi.org/10.1016/j.joule.2022.05.005
D.-Q. Cai, H. Xu, T. Xue, J.-L. Yang, H.J. Fan, A synchronous strategy to Zn-iodine battery by polycationic long-chain molecules. Nano-Micro Lett. 18(1), 3 (2025). https://doi.org/10.1007/s40820-025-01854-6
X. Li, Y. Wang, J. Lu, S. Li, P. Li et al., Three-electron transfer-based high-capacity organic lithium-iodine (chlorine) batteries. Angew. Chem. Int. Ed. 62(42), e202310168 (2023). https://doi.org/10.1002/anie.202310168