Dual Chloride Confinement in Noble Metal‐Doped NiV LDH Catalysts Enables Stable Industrial-Level Seawater Electrolysis
Corresponding Author: Dong Liu
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 210
Abstract
Seawater electrolysis is an appealing route toward sustainable hydrogen production, yet its practical deployment is hindered by severe chloride-induced corrosion and parasitic chlorine oxidation. Here, we report noble metal-doped NiV layered double hydroxides (LDHs) that integrate electronic modulation with a dual chloride confinement mechanism. Ir incorporation simultaneously establishes strong Ir-Cl coordination and dynamically regenerated VO43− layers, producing an adaptive electrostatic shield that effectively suppresses chloride penetration. As a result, Ir-NiV LDH delivers nearly 100% oxygen evolution reaction selectivity and outstanding stability over 2750 h at 500 mA cm−2. Meanwhile, Ru doping optimizes the hydrogen evolution pathway, enabling a low overpotential of 195 mV and >2350 h durability. When paired in a twso-electrode electrolyzer, the Ru-NiVLDH||Ir-NiVLDH system exhibits industrial-level performance and unprecedented robustness in alkaline seawater. This dual chloride confinement concept provides a general framework for catalyst design in corrosive ionic environments, extending beyond seawater splitting toward other electrochemical energy conversion processes.
Highlights:
1 Noble metal doping into NiV-layered double hydroxides optimizes the electronic structure of active sites, significantly enhancing its catalytic performance for the hydrogen evolution reaction and oxygen evolution reaction.
2 A “dual chloride confinement” strategy is proposed to overcome chloride corrosion in seawater electrolysis by synergizing strong adsorption (Ir-Cl) with electrostatic repulsion (VO43−).
3 Offers a practical route toward economically viable and sustainable hydrogen production from seawater.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Xie, Z. Zhao, T. Liu, Y. Wu, C. Lan et al., A membrane-based seawater electrolyser for hydrogen generation. Nature 612(7941), 673–678 (2022). https://doi.org/10.1038/s41586-022-05379-5
- J. Wang, Y. Liu, G. Yang, Y. Jiao, Y. Dong et al., MXene-assisted NiFe sulfides for high-performance anion exchange membrane seawater electrolysis. Nat. Commun. 16(1), 1319 (2025). https://doi.org/10.1038/s41467-025-56639-7
- T. Liu, C. Lan, M. Tang, M. Li, Y. Xu et al., Redox-mediated decoupled seawater direct splitting for H2 production. Nat. Commun. 15(1), 8874 (2024). https://doi.org/10.1038/s41467-024-53335-w
- K. Yue, R. Lu, M. Gao, F. Song, Y. Dai et al., Polyoxometalated metal-organic framework superstructure for stable water oxidation. Science 388(6745), 430–436 (2025). https://doi.org/10.1126/science.ads1466
- Q. Sha, S. Wang, L. Yan, Y. Feng, Z. Zhang et al., 10, 000-h-stable intermittent alkaline seawater electrolysis. Nature 639(8054), 360–367 (2025). https://doi.org/10.1038/s41586-025-08610-1
- Z. Cai, J. Liang, Z. Li, T. Yan, C. Yang et al., Stabilizing NiFe sites by high-dispersity of nanosized and anionic Cr species toward durable seawater oxidation. Nat. Commun. 15(1), 6624 (2024). https://doi.org/10.1038/s41467-024-51130-1
- X.H. Chen, T. Li, X. Li, J. Lei, N.B. Li et al., Oxyanion-coordinated co-based catalysts for optimized hydrogen evolution: the feedback of adsorbed anions to the catalytic activity and mechanism. ACS Catal. 13(10), 6721–6729 (2023). https://doi.org/10.1021/acscatal.3c00598
- X. Gao, Y. Chen, Y. Wang, L. Zhao, X. Zhao et al., Next-generation green hydrogen: progress and perspective from electricity, catalyst to electrolyte in electrocatalytic water splitting. Nano-Micro Lett. 16(1), 237 (2024). https://doi.org/10.1007/s40820-024-01424-2
- P. Li, M. Wang, X. Duan, L. Zheng, X. Cheng et al., Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides. Nat. Commun. 10, 1711 (2019). https://doi.org/10.1038/s41467-019-09666-0
- S. Mondal, S. Dutta, S. Mal, S.K. Pati, S. Bhattacharyya, Lattice mismatch guided nickel-indium heterogeneous alloy electrocatalysts for promoting the alkaline hydrogen evolution. Angew. Chem. Int. Ed. 62(18), e202301269 (2023). https://doi.org/10.1002/anie.202301269
- Z. Lu, W. Xu, W. Zhu, Q. Yang, X. Lei et al., Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. Chem. Commun. 50(49), 6479–6482 (2014). https://doi.org/10.1039/c4cc01625d
- H. Chen, P. Liu, W. Li, W. Xu, Y. Wen et al., Stable seawater electrolysis over 10 000 H via chemical fixation of sulfate on NiFeBa-LDH. Adv. Mater. 36(45), e2411302 (2024). https://doi.org/10.1002/adma.202411302
- H.T. Dao, S. Sidra, V.H. Hoa, Q.H. Nguyen, M. Mai et al., In situ growth and interfacial reconstruction of Mo-doped Ni3S2/VO2 as anti-corrosion electrocatalyst for long-term durable seawater splitting. Appl. Catal. B Environ. Energy 365, 124925 (2025). https://doi.org/10.1016/j.apcatb.2024.124925
- Z. Shen, Z. Zhai, Y. Liu, X. Bao, Y. Zhu et al., Hydrogel electrolytes-based rechargeable zinc-ion batteries under harsh conditions. Nano-Micro Lett. 17(1), 227 (2025). https://doi.org/10.1007/s40820-025-01727-y
- Y. Chen, J. Xu, Y. Chen, L. Wang, S. Jiang et al., Rapid defect engineering in FeCoNi/FeAl2O4 hybrid for enhanced oxygen evolution catalysis: a pathway to high-performance electrocatalysts. Angew. Chem. Int. Ed. 63(28), e202405372 (2024). https://doi.org/10.1002/anie.202405372
- J. Ding, D. Guo, N. Wang, H.-F. Wang, X. Yang et al., Defect engineered metal-organic framework with accelerated structural transformation for efficient oxygen evolution reaction. Angew. Chem. Int. Ed. 62(43), e202311909 (2023). https://doi.org/10.1002/anie.202311909
- Y. Dai, X. Tu, K. Yue, Y. Wan, P. Zhao et al., Anti-dissolving high entropy phosphorus sulfide for efficient and durable seawater electrolysis. Adv. Funct. Mater. 35(12), 2417211 (2025). https://doi.org/10.1002/adfm.202417211
- J. Zheng, X. Peng, Z. Xu, J. Gong, Z. Wang, Cationic defect engineering in spinel NiCo2O4 for enhanced electrocatalytic oxygen evolution. ACS Catal. 12(16), 10245–10254 (2022). https://doi.org/10.1021/acscatal.2c01825
- T.-Q. Gao, Y.-Q. Zhou, X.-J. Zhao, Z.-H. Liu, Y. Chen, Borate anion-intercalated NiV-LDH nanoflakes/NiCoP nanowires heterostructures for enhanced oxygen evolution selectivity in seawater splitting. Adv. Funct. Mater. 34(24), 2315949 (2024). https://doi.org/10.1002/adfm.202315949
- H. Jin, J. Xu, H. Liu, H. Shen, H. Yu et al., Emerging materials and technologies for electrocatalytic seawater splitting. Sci. Adv. 9(42), eadi7755 (2023). https://doi.org/10.1126/sciadv.adi7755
- J. Yang, S. Yang, L. An, J. Zhu, J. Xiao et al., Strain-engineered Ru-NiCr LDH nanosheets boosting alkaline hydrogen evolution reaction. ACS Catal. 14(5), 3466–3474 (2024). https://doi.org/10.1021/acscatal.3c05550
- Z. Shen, Z. Tang, C. Li, L. Luo, J. Pu et al., Precise proton redistribution for two-electron redox in aqueous zinc/manganese dioxide batteries. Adv. Energy Mater. 11(41), 2102055 (2021). https://doi.org/10.1002/aenm.202102055
- D. Liu, Y. Cai, X. Wang, Y. Zhuo, X. Sui et al., Innovations in electrocatalysts, hybrid anodic oxidation, and electrolyzers for enhanced direct seawater electrolysis. Energy Environ. Sci. 17(19), 6897–6942 (2024). https://doi.org/10.1039/d4ee01693a
- X. Kang, F. Yang, Z. Zhang, H. Liu, S. Ge et al., A corrosion-resistant RuMoNi catalyst for efficient and long-lasting seawater oxidation and anion exchange membrane electrolyzer. Nat. Commun. 14(1), 3607 (2023). https://doi.org/10.1038/s41467-023-39386-5
- Y. Yu, W. Zhou, X. Zhou, J. Yuan, X. Zhang et al., The corrosive Cl–-induced rapid surface reconstruction of amorphous NiFeCoP enables efficient seawater splitting. ACS Catal. 14(24), 18322–18332 (2024). https://doi.org/10.1021/acscatal.4c05704
- X. Duan, Q. Sha, P. Li, T. Li, G. Yang et al., Dynamic chloride ion adsorption on single iridium atom boosts seawater oxidation catalysis. Nat. Commun. 15(1), 1973 (2024). https://doi.org/10.1038/s41467-024-46140-y
- X. Sun, W. Shen, H. Liu, P. Xi, M. Jaroniec et al., Corrosion-resistant NiFe anode towards kilowatt-scale alkaline seawater electrolysis. Nat. Commun. 15(1), 10351 (2024). https://doi.org/10.1038/s41467-024-54754-5
- C. Zhao, Z. Ding, K. Zhang, Z. Du, H. Fang et al., Comprehensive chlorine suppression: advances in materials and system technologies for direct seawater electrolysis. Nano-Micro Lett. 17(1), 113 (2025). https://doi.org/10.1007/s40820-025-01653-z
- M. Liu, X. Zhong, X. Chen, D. Wu, C. Yang et al., Unraveling compressive strain and oxygen vacancy effect of iridium oxide for proton-exchange membrane water electrolyzers. Adv. Mater. 37(16), 2501179 (2025). https://doi.org/10.1002/adma.202501179
- S. Liu, Z. Zhang, K. Dastafkan, Y. Shen, C. Zhao et al., Yttrium-doped NiMo-MoO2 heterostructure electrocatalysts for hydrogen production from alkaline seawater. Nat. Commun. 16(1), 773 (2025). https://doi.org/10.1038/s41467-025-55856-4
- K. Zeng, M. Chao, M. Tian, J. Yan, M.H. Rummeli et al., Atomically dispersed cerium sites immobilized on vanadium vacancies of monolayer nickel-vanadium layered double hydroxide: accelerating water splitting kinetics. Adv. Funct. Mater. 34(6), 2308533 (2024). https://doi.org/10.1002/adfm.202308533
- H. Sun, W. Zhang, J.-G. Li, Z. Li, X. Ao et al., Rh-engineered ultrathin NiFe-LDH nanosheets enable highly-efficient overall water splitting and urea electrolysis. Appl. Catal. B Environ. 284, 119740 (2021). https://doi.org/10.1016/j.apcatb.2020.119740
- Y. Hu, T. Shen, Z. Song, Z. Wu, S. Bai et al., Atomic modulation of single dispersed Ir species on self-supported NiFe layered double hydroxides for efficient electrocatalytic overall water splitting. ACS Catal. 13(16), 11195–11203 (2023). https://doi.org/10.1021/acscatal.3c02628
- Z. Yang, S. Wang, C. Wei, L. Chen, Z. Xue et al., Proton transfer mediator for boosting the current density of biomass electrooxidation to the ampere level. Energy Environ. Sci. 17(4), 1603–1611 (2024). https://doi.org/10.1039/d3ee04543a
- Z. Liang, D. Shen, Y. Wei, F. Sun, Y. Xie et al., Modulating the electronic structure of cobalt-vanadium bimetal catalysts for high-stable anion exchange membrane water electrolyzer. Adv. Mater. 36(41), e2408634 (2024). https://doi.org/10.1002/adma.202408634
- M. Liu, X. Chen, S. Li, C. Ni, Y. Chen et al., Dynamic-cycling zinc sites promote ruthenium oxide for sub-ampere electrochemical water oxidation. Nano Lett. 24(50), 16055–16063 (2024). https://doi.org/10.1021/acs.nanolett.4c04485
- H. You, D. Wu, D. Si, M. Cao, F. Sun et al., Monolayer NiIr-layered double hydroxide as a long-lived efficient oxygen evolution catalyst for seawater splitting. J. Am. Chem. Soc. 144(21), 9254–9263 (2022). https://doi.org/10.1021/jacs.2c00242
- D. Liu, X. Wei, J. Lu, X. Wang, K. Liu et al., Efficient and ultrastable seawater electrolysis at industrial current density with strong metal-support interaction and dual Cl–-repelling layers. Adv. Mater. 36(49), 2408982 (2024). https://doi.org/10.1002/adma.202408982
- Z. Shen, Y. Liu, Z. Li, Z. Tang, J. Pu et al., Highly-entangled hydrogel electrolyte for fast charging/discharging properties in aqueous zinc ion batteries. Adv. Funct. Mater. 35(21), 2406620 (2025). https://doi.org/10.1002/adfm.202406620
- X. Chen, H. Hu, M. Liu, X. Zhong, D. Wu et al., Unveiling the spatially dependent cooperative effect in iridium sites for enhanced acidic water oxidation. Nano Lett. 25(42), 15384–15392 (2025). https://doi.org/10.1021/acs.nanolett.5c04193
- X. Luo, H. Zhao, X. Tan, S. Lin, K. Yu et al., Fe-S dually modulated adsorbate evolution and lattice oxygen compatible mechanism for water oxidation. Nat. Commun. 15(1), 8293 (2024). https://doi.org/10.1038/s41467-024-52682-y
- X.-Y. Zhu, S.-Z. Zhao, X.-F. Zhang, X. Huang, C.-J. Gao et al., Multi-band centre co-tailoring of iridium diphosphide nanoclusters motivating industrial current density hydrogen production. ACS Catal. 14(20), 15015–15024 (2024). https://doi.org/10.1021/acscatal.4c04561
- R.L. Frost, K.L. Erickson, M.L. Weier, O. Carmody, Raman and infrared spectroscopy of selected vanadates. Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(5), 829–834 (2005). https://doi.org/10.1016/j.saa.2004.06.006
- M. Xue, J. Ge, H. Zhang, J. Shen, Surface acidic and redox properties of V-Ag-Ni-O catalysts for the selective oxidation of toluene to benzaldehyde. Appl. Catal. A Gen. 330, 117–126 (2007). https://doi.org/10.1016/j.apcata.2007.07.014
References
H. Xie, Z. Zhao, T. Liu, Y. Wu, C. Lan et al., A membrane-based seawater electrolyser for hydrogen generation. Nature 612(7941), 673–678 (2022). https://doi.org/10.1038/s41586-022-05379-5
J. Wang, Y. Liu, G. Yang, Y. Jiao, Y. Dong et al., MXene-assisted NiFe sulfides for high-performance anion exchange membrane seawater electrolysis. Nat. Commun. 16(1), 1319 (2025). https://doi.org/10.1038/s41467-025-56639-7
T. Liu, C. Lan, M. Tang, M. Li, Y. Xu et al., Redox-mediated decoupled seawater direct splitting for H2 production. Nat. Commun. 15(1), 8874 (2024). https://doi.org/10.1038/s41467-024-53335-w
K. Yue, R. Lu, M. Gao, F. Song, Y. Dai et al., Polyoxometalated metal-organic framework superstructure for stable water oxidation. Science 388(6745), 430–436 (2025). https://doi.org/10.1126/science.ads1466
Q. Sha, S. Wang, L. Yan, Y. Feng, Z. Zhang et al., 10, 000-h-stable intermittent alkaline seawater electrolysis. Nature 639(8054), 360–367 (2025). https://doi.org/10.1038/s41586-025-08610-1
Z. Cai, J. Liang, Z. Li, T. Yan, C. Yang et al., Stabilizing NiFe sites by high-dispersity of nanosized and anionic Cr species toward durable seawater oxidation. Nat. Commun. 15(1), 6624 (2024). https://doi.org/10.1038/s41467-024-51130-1
X.H. Chen, T. Li, X. Li, J. Lei, N.B. Li et al., Oxyanion-coordinated co-based catalysts for optimized hydrogen evolution: the feedback of adsorbed anions to the catalytic activity and mechanism. ACS Catal. 13(10), 6721–6729 (2023). https://doi.org/10.1021/acscatal.3c00598
X. Gao, Y. Chen, Y. Wang, L. Zhao, X. Zhao et al., Next-generation green hydrogen: progress and perspective from electricity, catalyst to electrolyte in electrocatalytic water splitting. Nano-Micro Lett. 16(1), 237 (2024). https://doi.org/10.1007/s40820-024-01424-2
P. Li, M. Wang, X. Duan, L. Zheng, X. Cheng et al., Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides. Nat. Commun. 10, 1711 (2019). https://doi.org/10.1038/s41467-019-09666-0
S. Mondal, S. Dutta, S. Mal, S.K. Pati, S. Bhattacharyya, Lattice mismatch guided nickel-indium heterogeneous alloy electrocatalysts for promoting the alkaline hydrogen evolution. Angew. Chem. Int. Ed. 62(18), e202301269 (2023). https://doi.org/10.1002/anie.202301269
Z. Lu, W. Xu, W. Zhu, Q. Yang, X. Lei et al., Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. Chem. Commun. 50(49), 6479–6482 (2014). https://doi.org/10.1039/c4cc01625d
H. Chen, P. Liu, W. Li, W. Xu, Y. Wen et al., Stable seawater electrolysis over 10 000 H via chemical fixation of sulfate on NiFeBa-LDH. Adv. Mater. 36(45), e2411302 (2024). https://doi.org/10.1002/adma.202411302
H.T. Dao, S. Sidra, V.H. Hoa, Q.H. Nguyen, M. Mai et al., In situ growth and interfacial reconstruction of Mo-doped Ni3S2/VO2 as anti-corrosion electrocatalyst for long-term durable seawater splitting. Appl. Catal. B Environ. Energy 365, 124925 (2025). https://doi.org/10.1016/j.apcatb.2024.124925
Z. Shen, Z. Zhai, Y. Liu, X. Bao, Y. Zhu et al., Hydrogel electrolytes-based rechargeable zinc-ion batteries under harsh conditions. Nano-Micro Lett. 17(1), 227 (2025). https://doi.org/10.1007/s40820-025-01727-y
Y. Chen, J. Xu, Y. Chen, L. Wang, S. Jiang et al., Rapid defect engineering in FeCoNi/FeAl2O4 hybrid for enhanced oxygen evolution catalysis: a pathway to high-performance electrocatalysts. Angew. Chem. Int. Ed. 63(28), e202405372 (2024). https://doi.org/10.1002/anie.202405372
J. Ding, D. Guo, N. Wang, H.-F. Wang, X. Yang et al., Defect engineered metal-organic framework with accelerated structural transformation for efficient oxygen evolution reaction. Angew. Chem. Int. Ed. 62(43), e202311909 (2023). https://doi.org/10.1002/anie.202311909
Y. Dai, X. Tu, K. Yue, Y. Wan, P. Zhao et al., Anti-dissolving high entropy phosphorus sulfide for efficient and durable seawater electrolysis. Adv. Funct. Mater. 35(12), 2417211 (2025). https://doi.org/10.1002/adfm.202417211
J. Zheng, X. Peng, Z. Xu, J. Gong, Z. Wang, Cationic defect engineering in spinel NiCo2O4 for enhanced electrocatalytic oxygen evolution. ACS Catal. 12(16), 10245–10254 (2022). https://doi.org/10.1021/acscatal.2c01825
T.-Q. Gao, Y.-Q. Zhou, X.-J. Zhao, Z.-H. Liu, Y. Chen, Borate anion-intercalated NiV-LDH nanoflakes/NiCoP nanowires heterostructures for enhanced oxygen evolution selectivity in seawater splitting. Adv. Funct. Mater. 34(24), 2315949 (2024). https://doi.org/10.1002/adfm.202315949
H. Jin, J. Xu, H. Liu, H. Shen, H. Yu et al., Emerging materials and technologies for electrocatalytic seawater splitting. Sci. Adv. 9(42), eadi7755 (2023). https://doi.org/10.1126/sciadv.adi7755
J. Yang, S. Yang, L. An, J. Zhu, J. Xiao et al., Strain-engineered Ru-NiCr LDH nanosheets boosting alkaline hydrogen evolution reaction. ACS Catal. 14(5), 3466–3474 (2024). https://doi.org/10.1021/acscatal.3c05550
Z. Shen, Z. Tang, C. Li, L. Luo, J. Pu et al., Precise proton redistribution for two-electron redox in aqueous zinc/manganese dioxide batteries. Adv. Energy Mater. 11(41), 2102055 (2021). https://doi.org/10.1002/aenm.202102055
D. Liu, Y. Cai, X. Wang, Y. Zhuo, X. Sui et al., Innovations in electrocatalysts, hybrid anodic oxidation, and electrolyzers for enhanced direct seawater electrolysis. Energy Environ. Sci. 17(19), 6897–6942 (2024). https://doi.org/10.1039/d4ee01693a
X. Kang, F. Yang, Z. Zhang, H. Liu, S. Ge et al., A corrosion-resistant RuMoNi catalyst for efficient and long-lasting seawater oxidation and anion exchange membrane electrolyzer. Nat. Commun. 14(1), 3607 (2023). https://doi.org/10.1038/s41467-023-39386-5
Y. Yu, W. Zhou, X. Zhou, J. Yuan, X. Zhang et al., The corrosive Cl–-induced rapid surface reconstruction of amorphous NiFeCoP enables efficient seawater splitting. ACS Catal. 14(24), 18322–18332 (2024). https://doi.org/10.1021/acscatal.4c05704
X. Duan, Q. Sha, P. Li, T. Li, G. Yang et al., Dynamic chloride ion adsorption on single iridium atom boosts seawater oxidation catalysis. Nat. Commun. 15(1), 1973 (2024). https://doi.org/10.1038/s41467-024-46140-y
X. Sun, W. Shen, H. Liu, P. Xi, M. Jaroniec et al., Corrosion-resistant NiFe anode towards kilowatt-scale alkaline seawater electrolysis. Nat. Commun. 15(1), 10351 (2024). https://doi.org/10.1038/s41467-024-54754-5
C. Zhao, Z. Ding, K. Zhang, Z. Du, H. Fang et al., Comprehensive chlorine suppression: advances in materials and system technologies for direct seawater electrolysis. Nano-Micro Lett. 17(1), 113 (2025). https://doi.org/10.1007/s40820-025-01653-z
M. Liu, X. Zhong, X. Chen, D. Wu, C. Yang et al., Unraveling compressive strain and oxygen vacancy effect of iridium oxide for proton-exchange membrane water electrolyzers. Adv. Mater. 37(16), 2501179 (2025). https://doi.org/10.1002/adma.202501179
S. Liu, Z. Zhang, K. Dastafkan, Y. Shen, C. Zhao et al., Yttrium-doped NiMo-MoO2 heterostructure electrocatalysts for hydrogen production from alkaline seawater. Nat. Commun. 16(1), 773 (2025). https://doi.org/10.1038/s41467-025-55856-4
K. Zeng, M. Chao, M. Tian, J. Yan, M.H. Rummeli et al., Atomically dispersed cerium sites immobilized on vanadium vacancies of monolayer nickel-vanadium layered double hydroxide: accelerating water splitting kinetics. Adv. Funct. Mater. 34(6), 2308533 (2024). https://doi.org/10.1002/adfm.202308533
H. Sun, W. Zhang, J.-G. Li, Z. Li, X. Ao et al., Rh-engineered ultrathin NiFe-LDH nanosheets enable highly-efficient overall water splitting and urea electrolysis. Appl. Catal. B Environ. 284, 119740 (2021). https://doi.org/10.1016/j.apcatb.2020.119740
Y. Hu, T. Shen, Z. Song, Z. Wu, S. Bai et al., Atomic modulation of single dispersed Ir species on self-supported NiFe layered double hydroxides for efficient electrocatalytic overall water splitting. ACS Catal. 13(16), 11195–11203 (2023). https://doi.org/10.1021/acscatal.3c02628
Z. Yang, S. Wang, C. Wei, L. Chen, Z. Xue et al., Proton transfer mediator for boosting the current density of biomass electrooxidation to the ampere level. Energy Environ. Sci. 17(4), 1603–1611 (2024). https://doi.org/10.1039/d3ee04543a
Z. Liang, D. Shen, Y. Wei, F. Sun, Y. Xie et al., Modulating the electronic structure of cobalt-vanadium bimetal catalysts for high-stable anion exchange membrane water electrolyzer. Adv. Mater. 36(41), e2408634 (2024). https://doi.org/10.1002/adma.202408634
M. Liu, X. Chen, S. Li, C. Ni, Y. Chen et al., Dynamic-cycling zinc sites promote ruthenium oxide for sub-ampere electrochemical water oxidation. Nano Lett. 24(50), 16055–16063 (2024). https://doi.org/10.1021/acs.nanolett.4c04485
H. You, D. Wu, D. Si, M. Cao, F. Sun et al., Monolayer NiIr-layered double hydroxide as a long-lived efficient oxygen evolution catalyst for seawater splitting. J. Am. Chem. Soc. 144(21), 9254–9263 (2022). https://doi.org/10.1021/jacs.2c00242
D. Liu, X. Wei, J. Lu, X. Wang, K. Liu et al., Efficient and ultrastable seawater electrolysis at industrial current density with strong metal-support interaction and dual Cl–-repelling layers. Adv. Mater. 36(49), 2408982 (2024). https://doi.org/10.1002/adma.202408982
Z. Shen, Y. Liu, Z. Li, Z. Tang, J. Pu et al., Highly-entangled hydrogel electrolyte for fast charging/discharging properties in aqueous zinc ion batteries. Adv. Funct. Mater. 35(21), 2406620 (2025). https://doi.org/10.1002/adfm.202406620
X. Chen, H. Hu, M. Liu, X. Zhong, D. Wu et al., Unveiling the spatially dependent cooperative effect in iridium sites for enhanced acidic water oxidation. Nano Lett. 25(42), 15384–15392 (2025). https://doi.org/10.1021/acs.nanolett.5c04193
X. Luo, H. Zhao, X. Tan, S. Lin, K. Yu et al., Fe-S dually modulated adsorbate evolution and lattice oxygen compatible mechanism for water oxidation. Nat. Commun. 15(1), 8293 (2024). https://doi.org/10.1038/s41467-024-52682-y
X.-Y. Zhu, S.-Z. Zhao, X.-F. Zhang, X. Huang, C.-J. Gao et al., Multi-band centre co-tailoring of iridium diphosphide nanoclusters motivating industrial current density hydrogen production. ACS Catal. 14(20), 15015–15024 (2024). https://doi.org/10.1021/acscatal.4c04561
R.L. Frost, K.L. Erickson, M.L. Weier, O. Carmody, Raman and infrared spectroscopy of selected vanadates. Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(5), 829–834 (2005). https://doi.org/10.1016/j.saa.2004.06.006
M. Xue, J. Ge, H. Zhang, J. Shen, Surface acidic and redox properties of V-Ag-Ni-O catalysts for the selective oxidation of toluene to benzaldehyde. Appl. Catal. A Gen. 330, 117–126 (2007). https://doi.org/10.1016/j.apcata.2007.07.014