Flexible Polymer-Based Electronics for Human Health Monitoring: A Safety-Level-Oriented Review of Materials and Applications
Corresponding Author: Bo Pang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 213
Abstract
Health monitoring is becoming increasingly critical for disease prevention, early diagnosis, and high-quality living. Polymeric materials, with their mechanical flexibility, biocompatibility, and tunable biochemical properties, offer unique advantages for creating next-generation personalized devices. In recent years, flexible polymer-based platforms have shown remarkable potential to capture diverse physiological signals in both daily and clinical contexts, including electrophysiological, biochemical, mechanical, and thermal indicators. In this review, we introduce a safety-level-oriented framework to evaluate material and device strategies for health monitoring, spanning the continuum from noninvasive wearables to deeply embedded implants. Physiological signals are systematically classified by use case, and application-specific requirements such as stability, comfort, and long-term compatibility are highlighted as critical factors guiding the selection of polymers, interfacial designs, and device architectures. Special emphasis is placed on mapping material types—including hydrogels, elastomers, and conductive composites—to their most suitable applications. Finally, we propose design principles for developing safe, functional, and adaptive polymer-based systems, aiming at reliable integration with the human body and enabling personalized, preventive healthcare.
Highlights:
1 A safety-level-oriented framework is proposed to systematically classify polymer-based flexible health-monitoring devices from noninvasive to long-term implantable modalities.
2 Material–safety relationships are elucidated by mapping hydrogels, elastomers, and conductive composites to modality-specific requirements in mechanical compliance, biochemical stability, electrical safety, and long-term biointegration.
3 Time-scale-dependent design principles are summarized to guide future development of safe, adaptive, and clinically translatable polymer-based monitoring systems.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Yang, W. Chen, Q. Fan, J. Chen, Y. Chen et al., Electronic skin for health monitoring systems: properties, functions, and applications. Adv. Mater. 36(31), e2402542 (2024). https://doi.org/10.1002/adma.202402542
- R.G. Ferreira, A.P. Silva, J. Nunes-Pereira, Current on-skin flexible sensors, materials, manufacturing approaches, and study trends for health monitoring: a review. ACS Sens. 9(3), 1104–1133 (2024). https://doi.org/10.1021/acssensors.3c02555
- K. Mahato, T. Saha, S. Ding, S.S. Sandhu, A.-Y. Chang et al., Hybrid multimodal wearable sensors for comprehensive health monitoring. Nat. Electron. 7(9), 735–750 (2024). https://doi.org/10.1038/s41928-024-01247-4
- A. Yu, M. Zhu, C. Chen, Y. Li, H. Cui et al., Implantable flexible sensors for health monitoring. Adv. Healthc. Mater. 13(2), 2302460 (2024). https://doi.org/10.1002/adhm.202302460
- C. Chen, S. Ding, J. Wang, Digital health for aging populations. Nat. Med. 29(7), 1623–1630 (2023). https://doi.org/10.1038/s41591-023-02391-8
- K.B. Johnson, W.-Q. Wei, D. Weeraratne, M.E. Frisse, K. Misulis et al., Precision medicine, AI, and the future of personalized health care. Clin. Transl. Sci. 14(1), 86–93 (2021). https://doi.org/10.1111/cts.12884
- Ö. Erdem, I. Eş, G.A. Akceoglu, Y. Saylan, F. Inci, Recent advances in microneedle-based sensors for sampling, diagnosis and monitoring of chronic diseases. Biosensors 11(9), 296 (2021). https://doi.org/10.3390/bios11090296
- Y. Gao, L. Yu, J.C. Yeo, C.T. Lim, Flexible hybrid sensors for health monitoring: materials and mechanisms to render wearability. Adv. Mater. 32(15), 1902133 (2020). https://doi.org/10.1002/adma.201902133
- K.T. Kadhim, A.M. Alsahlany, S.M. Wadi, H.T. Kadhum, An overview of patient’s health status monitoring system based on Internet of Things (IoT). Wirel. Pers. Commun. 114(3), 2235–2262 (2020). https://doi.org/10.1007/s11277-020-07474-0
- S. Abdulmalek, A. Nasir, W.A. Jabbar, M.A.M. Almuhaya, A.K. Bairagi et al., IoT-based healthcare-monitoring system towards improving quality of life: a review. Healthcare 10(10), 1993 (2022). https://doi.org/10.3390/healthcare10101993
- E.S. Hosseini, S. Dervin, P. Ganguly, R. Dahiya, Biodegradable materials for sustainable health monitoring devices. ACS Appl. Bio Mater. 4(1), 163–194 (2021). https://doi.org/10.1021/acsabm.0c01139
- C. Zhang, Y. Li, W. Kang, X. Liu, Q. Wang, Current advances and future perspectives of additive manufacturing for functional polymeric materials and devices. SusMat 1(1), 127–147 (2021). https://doi.org/10.1002/sus2.11
- Y. Ma, Y. Zhang, S. Cai, Z. Han, X. Liu et al., Flexible hybrid electronics for digital healthcare. Adv. Mater. 32(15), 1902062 (2020). https://doi.org/10.1002/adma.201902062
- S. Chen, J. Qi, S. Fan, Z. Qiao, J.C. Yeo et al., Flexible wearable sensors for cardiovascular health monitoring. Adv. Healthc. Mater. 10(17), e2100116 (2021). https://doi.org/10.1002/adhm.202100116
- J. Tang, Y. He, D. Xu, W. Zhang, Y. Hu et al., Tough, rapid self-recovery and responsive organogel-based ionotronic for intelligent continuous passive motion system. NPJ Flex. Electron. 7, 28 (2023). https://doi.org/10.1038/s41528-023-00259-y
- G. Li, D. Wen, Wearable biochemical sensors for human health monitoring: sensing materials and manufacturing technologies. J. Mater. Chem. B 8(16), 3423–3436 (2020). https://doi.org/10.1039/C9TB02474C
- S. Nasiri, M.R. Khosravani, Progress and challenges in fabrication of wearable sensors for health monitoring. Sens. Actuat. A Phys. 312, 112105 (2020). https://doi.org/10.1016/j.sna.2020.112105
- K. Wang, J. Zhang, H. Li, J. Wu, Q. Wan et al., Smart hydrogel sensors for health monitoring and early warning. Adv. Sensor Res. 3(9), 2400003 (2024). https://doi.org/10.1002/adsr.202400003
- A. Shar, P. Glass, S.H. Park, D. Joung, 3D printable one-part carbon nanotube-elastomer ink for health monitoring applications. Adv. Funct. Mater. 33(5), 2211079 (2023). https://doi.org/10.1002/adfm.202211079
- X. Guo, Y. Sun, X. Sun, J. Li, J. Wu et al., Doping engineering of conductive polymers and their application in physical sensors for healthcare monitoring. Macromol. Rapid Commun. 45(1), 2300246 (2024). https://doi.org/10.1002/marc.202300246
- Z. Yin, H. Lu, L. Gan, Y. Zhang, Electronic fibers/textiles for health-monitoring: fabrication and application. Adv. Mater. Technol. 8(3), 2200654 (2023). https://doi.org/10.1002/admt.202200654
- S.U. Zaman, X. Tao, C. Cochrane, V. Koncar, Smart E-textile systems: a review for healthcare applications. Electronics 11(1), 99 (2022). https://doi.org/10.3390/electronics11010099
- Z. Deng, L. Guo, X. Chen, W. Wu, Smart wearable systems for health monitoring. Sensors 23(5), 2479 (2023). https://doi.org/10.3390/s23052479
- K. Frasier, V. Li, M. Sobotka, J. Vinagolu-Baur, G. Herrick, The role of wearable technology in real-time skin health monitoring. JEADV Clin. Pract. 4(1), 21–29 (2025). https://doi.org/10.1002/jvc2.587
- M. Zhu, H. Wang, S. Li, X. Liang, M. Zhang et al., Flexible electrodes for in vivo and in vitro electrophysiological signal recording. Adv. Healthc. Mater. 10(17), 2100646 (2021). https://doi.org/10.1002/adhm.202100646
- J. Wang, L. Wang, J. Feng, C. Tang, X. Sun et al., Long-term in vivo monitoring of chemicals with fiber sensors. Adv. Fiber Mater. 3(1), 47–58 (2021). https://doi.org/10.1007/s42765-020-00061-9
- Y. Wang, H. Haick, S. Guo, C. Wang, S. Lee et al., Skin bioelectronics towards long-term, continuous health monitoring. Chem. Soc. Rev. 51(9), 3759–3793 (2022). https://doi.org/10.1039/d2cs00207h
- N. Ashammakhi, A.L. Hernandez, B.D. Unluturk, S.A. Quintero, N.R. de Barros et al., Biodegradable implantable sensors: materials design, fabrication, and applications. Adv. Funct. Mater. 31(49), 2104149 (2021). https://doi.org/10.1002/adfm.202104149
- M. Yu, Y. Peng, X. Wang, F. Ran, Emerging design strategies toward developing next-generation implantable batteries and supercapacitors. Adv. Funct. Mater. 33(37), 2301877 (2023). https://doi.org/10.1002/adfm.202301877
- H. Ullah, M.A. Wahab, G. Will, M.R. Karim, T. Pan et al., Recent advances in stretchable and wearable capacitive electrophysiological sensors for long-term health monitoring. Biosensors 12(8), 630 (2022). https://doi.org/10.3390/bios12080630
- Y. Zhang, J. Yang, X. Hou, G. Li, L. Wang et al., Highly stable flexible pressure sensors with a quasi-homogeneous composition and interlinked interfaces. Nat. Commun. 13(1), 1317 (2022). https://doi.org/10.1038/s41467-022-29093-y
- T. Wu, S. Gao, W. Wang, J. Huang, Y. Yan, Wearable sensors based on solid-phase molecular self-assembly: moisture-strain dual responsiveness facilitated extremely high and damage-resistant sensitivity. ACS Appl. Mater. Interfaces 13(35), 41997–42004 (2021). https://doi.org/10.1021/acsami.1c10717
- C. Zhao, Y. Wang, G. Tang, J. Ru, Z. Zhu et al., Ionic flexible sensors: mechanisms, materials, structures, and applications. Adv. Funct. Mater. 32(17), 2110417 (2022). https://doi.org/10.1002/adfm.202110417
- Z. Zhao, H. Fu, R. Tang, B. Zhang, Y. Chen et al., Failure mechanisms in flexible electronics. Int. J. Smart Nano Mater. 14(4), 510–565 (2023). https://doi.org/10.1080/19475411.2023.2261775
- Y. Luo, M.R. Abidian, J.-H. Ahn, D. Akinwande, A.M. Andrews et al., Technology roadmap for flexible sensors. ACS Nano 17(6), 5211–5295 (2023). https://doi.org/10.1021/acsnano.2c12606
- T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi et al., A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl. Acad. Sci. U. S. A. 101(27), 9966–9970 (2004). https://doi.org/10.1073/pnas.0401918101
- T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi et al., A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 6(5), 296–301 (2011). https://doi.org/10.1038/nnano.2011.36
- D.-H. Kim, N. Lu, R. Ma, Y.-S. Kim, R.-H. Kim et al., Epidermal electronics. Science 333(6044), 838–843 (2011). https://doi.org/10.1126/science.1206157
- P.R. Miller, S.A. Skoog, T.L. Edwards, D.M. Lopez, D.R. Wheeler et al., Multiplexed microneedle-based biosensor array for characterization of metabolic acidosis. Talanta 88, 739–742 (2012). https://doi.org/10.1016/j.talanta.2011.11.046
- I.R. Minev, P. Musienko, A. Hirsch, Q. Barraud, N. Wenger et al., Electronic dura mater for long-term multimodal neural interfaces. Science 347(6218), 159–163 (2015). https://doi.org/10.1126/science.1260318
- J. Liu, T.-M. Fu, Z. Cheng, G. Hong, T. Zhou et al., Syringe-injectable electronics. Nat. Nanotechnol. 10(7), 629–636 (2015). https://doi.org/10.1038/nnano.2015.115
- S.-K. Kang, R.K.J. Murphy, S.-W. Hwang, S.M. Lee, D.V. Harburg et al., Bioresorbable silicon electronic sensors for the brain. Nature 530(7588), 71–76 (2016). https://doi.org/10.1038/nature16492
- W. Gao, S. Emaminejad, H.Y.Y. Nyein, S. Challa, K. Chen et al., Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529(7587), 509–514 (2016). https://doi.org/10.1038/nature16521
- S. Kim, M. Amjadi, T.-I. Lee, Y. Jeong, D. Kwon et al., Wearable, ultrawide-range, and bending-insensitive pressure sensor based on carbon nanotube network-coated porous elastomer sponges for human interface and healthcare devices. ACS Appl. Mater. Interfaces 11(26), 23639–23648 (2019). https://doi.org/10.1021/acsami.9b07636
- L. Yin, M. Cao, K.N. Kim, M. Lin, J.-M. Moon et al., A stretchable epidermal sweat sensing platform with an integrated printed battery and electrochromic display. Nat. Electron. 5(10), 694–705 (2022). https://doi.org/10.1038/s41928-022-00843-6
- J.-C. Fan, X.-G. Tang, Q.-J. Sun, Y.-P. Jiang, W.-H. Li et al., Low-cost composite film triboelectric nanogenerators for a self-powered touch sensor. Nanoscale 15(13), 6263–6272 (2023). https://doi.org/10.1039/d2nr05962b
- Y. Lee, J.W. Chung, G.H. Lee, H. Kang, J.-Y. Kim et al., Standalone real-time health monitoring patch based on a stretchable organic optoelectronic system. Sci. Adv. 7(23), eabg9180 (2021). https://doi.org/10.1126/sciadv.abg9180
- J. Min, S. Demchyshyn, J.R. Sempionatto, Y. Song, B. Hailegnaw et al., An autonomous wearable biosensor powered by a perovskite solar cell. Nat. Electron. 6(8), 630–641 (2023). https://doi.org/10.1038/s41928-023-00996-y
- T. Terse-Thakoor, M. Punjiya, Z. Matharu, B. Lyu, M. Ahmad et al., Thread-based multiplexed sensor patch for real-time sweat monitoring. NPJ Flex. Electron. 4, 18 (2020). https://doi.org/10.1038/s41528-020-00081-w
- B. Zhang, J. Li, J. Zhou, L. Chow, G. Zhao et al., A three-dimensional liquid diode for soft, integrated permeable electronics. Nature 628(8006), 84–92 (2024). https://doi.org/10.1038/s41586-024-07161-1
- Y. Song, R.Y. Tay, J. Li, C. Xu, J. Min et al., 3D-printed epifluidic electronic skin for machine learning-powered multimodal health surveillance. Sci. Adv. 9(37), eadi6492 (2023). https://doi.org/10.1126/sciadv.adi6492
- G. Matsumura, S. Honda, T. Kikuchi, Y. Mizuno, H. Hara et al., Real-time personal healthcare data analysis using edge computing for multimodal wearable sensors. Device 3(2), 100597 (2025). https://doi.org/10.1016/j.device.2024.100597
- H. Zhao, J. Bai, X. Zhang, D. Li, Q. Chang et al., A fully integrated wearable sweat sensing patch for online analysis of multiple Parkinson’s disease-related biomarkers. Adv. Mater. 37(34), 2504534 (2025). https://doi.org/10.1002/adma.202504534
- X. Zhang, S. Tang, R. Ma, Z. Chen, J. Zhuo et al., High-performance multimodal smart textile for artificial sensation and health monitoring. Nano Energy 103, 107778 (2022). https://doi.org/10.1016/j.nanoen.2022.107778
- C. Zhang, Y.S. Zhao, Flexible photonic materials and devices: synthetic strategies, sensing properties, and wearable applications. Adv. Mater. 37(49), 2415856 (2025). https://doi.org/10.1002/adma.202415856
- P. Li, S. Lang, L. Xie, Y. Zhang, X. Gou et al., Skin-inspired ultra-linear flexible iontronic pressure sensors for wearable musculoskeletal monitoring. Nano-Micro Lett. 18(1), 55 (2025). https://doi.org/10.1007/s40820-025-01887-x
- X. Shi, Y. Zuo, P. Zhai, J. Shen, Y. Yang et al., Large-area display textiles integrated with functional systems. Nature 591(7849), 240–245 (2021). https://doi.org/10.1038/s41586-021-03295-8
- K. Zhang, X. Shi, H. Jiang, K. Zeng, Z. Zhou et al., Design and fabrication of wearable electronic textiles using twisted fiber-based threads. Nat. Protoc. 19(5), 1557–1589 (2024). https://doi.org/10.1038/s41596-024-00956-6
- Z. Chen, F. Zhang, X. Qian, G. Zhao, Z. Yan, Selectively damping materials for next-generation motion-artifact-free skin-interfaced soft bioelectronics. Mater. Horiz. 12(19), 7894–7913 (2025). https://doi.org/10.1039/d5mh00700c
- M.N. Warncke, C.H. Böhmer, C. Sachse, S. Fischer, E. Häntzsche et al., Advancing smart textiles: structural evolution of knitted piezoresistive strain sensors for enabling precise motion capture. Polymers 15(19), 3936 (2023). https://doi.org/10.3390/polym15193936
- C.M. Vidhya, Y. Maithani, J.P. Singh, Recent advances and challenges in textile electrodes for wearable biopotential signal monitoring: a comprehensive review. Biosensors 13(7), 679 (2023). https://doi.org/10.3390/bios13070679
- H. Yeon, H. Lee, Y. Kim, D. Lee, Y. Lee et al., Long-term reliable physical health monitoring by sweat pore-inspired perforated electronic skins. Sci. Adv. 7(27), eabg8459 (2021). https://doi.org/10.1126/sciadv.abg8459
- S. Hong, T. Yu, Z. Wang, C.H. Lee, Biomaterials for reliable wearable health monitoring: applications in skin and eye integration. Biomaterials 314, 122862 (2025). https://doi.org/10.1016/j.biomaterials.2024.122862
- K. Kaewpradub, K. Veenuttranon, H. Jantapaso, P. Mittraparp-Arthorn, I. Jeerapan, A fully-printed wearable bandage-based electrochemical sensor with pH correction for wound infection monitoring. Nano-Micro Lett. 17(1), 71 (2024). https://doi.org/10.1007/s40820-024-01561-8
- S. Mishra, B. Saha, Graphene-polymer nanocomposite-based wearable strain sensors for physiological signal monitoring: recent progress and challenges. Curr. Opin. Solid State Mater. Sci. 31, 101174 (2024). https://doi.org/10.1016/j.cossms.2024.101174
- H. Ding, Y. Gu, Y. Ren, C. Hu, Q. Qiu et al., The latest research progress of conductive hydrogels in the field of electrophysiological signal acquisition. J. Mater. Chem. C 12(9), 3030–3052 (2024). https://doi.org/10.1039/D4TC00089G
- J. Zhang, W. Wang, S. Hao, H. Zhu, C. Wang et al., Robust and biodegradable heterogeneous electronics with customizable cylindrical architecture for interference-free respiratory rate monitoring. Nano-Micro Lett. 18(1), 34 (2025). https://doi.org/10.1007/s40820-025-01879-x
- X. Wang, H. Ji, L. Gao, R. Hao, Y. Shi et al., Wearable hydrogel-based health monitoring systems: a new paradigm for health monitoring? Chem. Eng. J. 495, 153382 (2024). https://doi.org/10.1016/j.cej.2024.153382
- A. Ajeev, T. Warfle, S. Maslaczynska-Salome, S. Alipoori, C. Duprey et al., From the synthesis of wearable polymer sensors to their potential for reuse and ultimate fate. Chem. Sci. 16(21), 9056–9075 (2025). https://doi.org/10.1039/D5SC01634G
- W. Dai, M. Lei, Z. Dai, S. Ding, F. Wang et al., Self-adhesive electronic skin with bio-inspired 3D architecture for mechanical stimuli monitoring and human-machine interactions. Small 20(51), 2406564 (2024). https://doi.org/10.1002/smll.202406564
- X. Wan, Z. Wang, M. Liu, F. Zhang, S. Wang, Bioinspired structural adhesives: a decades-old science but emerging materials. Matter 7(5), 1710–1723 (2024). https://doi.org/10.1016/j.matt.2024.02.015
- P. Schäfer, C. Bewick-Sonntag, M.G. Capri, E. Berardesca, Physiological changes in skin barrier function in relation to occlusion level, exposure time and climatic conditions. Skin Pharmacol. Appl. Skin Physiol. 15(1), 7–19 (2002). https://doi.org/10.1159/000049384
- K.A. Engebretsen, J.D. Johansen, S. Kezic, A. Linneberg, J.P. Thyssen, The effect of environmental humidity and temperature on skin barrier function and dermatitis. J. Eur. Acad. Dermatol. Venereol. 30(2), 223–249 (2016). https://doi.org/10.1111/jdv.13301
- M.C. de Goffau, X. Yang, J.M. van Dijl, H.J.M. Harmsen, Bacterial pleomorphism and competition in a relative humidity gradient. Environ. Microbiol. 11(4), 809–822 (2009). https://doi.org/10.1111/j.1462-2920.2008.01802.x
- S. Stuart, M.D. Kok, B. O’Searcoid, H. Morrisroe, I.B. Serban et al., Critical design considerations for longer-term wear and comfort of on-body medical devices. Bioengineering 11(11), 1058 (2024). https://doi.org/10.3390/bioengineering11111058
- Y. Ao, L. Jin, S. Wang, B. Lan, G. Tian et al., Dual structure reinforces interfacial polarized MXene/PVDF-TrFE piezoelectric nanocomposite for pressure monitoring. Nano-Micro Lett. 17(1), 320 (2025). https://doi.org/10.1007/s40820-025-01839-5
- K. Zheng, C. Zheng, L. Zhu, B. Yang, X. Jin et al., Machine learning enabled reusable adhesion, entangled network-based hydrogel for long-term, high-fidelity EEG recording and attention assessment. Nano-Micro Lett. 17(1), 281 (2025). https://doi.org/10.1007/s40820-025-01780-7
- J. Chang, J. Li, J. Ye, B. Zhang, J. Chen et al., AI-enabled piezoelectric wearable for joint torque monitoring. Nano-Micro Lett. 17(1), 247 (2025). https://doi.org/10.1007/s40820-025-01753-w
- D.-P. Yang, R.-H. Li, X.-G. Tang, D.-L. Li, Q.-J. Sun, Photoelectric dual mode sensing system based on one-step fabricated heterojunction artificial synapses device. Mater. Sci. Eng. R. Rep. 165, 101021 (2025). https://doi.org/10.1016/j.mser.2025.101021
- W.-T. Guo, Y. Lei, X.-H. Zhao, R. Li, Q.-T. Lai et al., Printed-scalable microstructure BaTiO3/ecoflex nanocomposite for high-performance triboelectric nanogenerators and self-powered human-machine interaction. Nano Energy 131, 110324 (2024). https://doi.org/10.1016/j.nanoen.2024.110324
- D.M. Kaplan, M. Greenleaf, W.A. Lam, Wear with care: a call for empirical investigations of adverse outcomes of consumer health wearables. Mayo Clin. Proc. Digit. Health 1(3), 413–418 (2023). https://doi.org/10.1016/j.mcpdig.2023.06.014
- X. Chen, J. Xu, J. Zhang, S. Li, H. Luo et al., Conformal in situ strain monitoring enabled with transfer-printed ultrathin customized-crack sensing network. Device 3(7), 100728 (2025). https://doi.org/10.1016/j.device.2025.100728
- X. Chen, Y. Luo, Y. Chen, S. Li, S. Deng et al., Biomimetic contact behavior inspired tactile sensing array with programmable microdomes pattern by scalable and consistent fabrication. Adv. Sci. 11(43), 2408082 (2024). https://doi.org/10.1002/advs.202408082
- J. Xu, X. Chen, S. Li, Y. Luo, S. Deng et al., On-skin epidermal electronics for next-generation health management. Nano-Micro Lett. 18(1), 25 (2025). https://doi.org/10.1007/s40820-025-01871-5
- Y. Liu, P. Fan, Y. Pan, J. Ping, Flexible microinterventional sensors for advanced biosignal monitoring. Chem. Rev. 125(17), 8246–8318 (2025). https://doi.org/10.1021/acs.chemrev.5c00115
- H. Guo, W. Bai, W. Ouyang, Y. Liu, C. Wu et al., Wireless implantable optical probe for continuous monitoring of oxygen saturation in flaps and organ grafts. Nat. Commun. 13(1), 3009 (2022). https://doi.org/10.1038/s41467-022-30594-z
- L. Becerra-Fajardo, M.O. Krob, J. Minguillon, C. Rodrigues, C. Welsch et al., Floating EMG sensors and stimulators wirelessly powered and operated by volume conduction for networked neuroprosthetics. J. Neuroeng. Rehabil. 19(1), 57 (2022). https://doi.org/10.1186/s12984-022-01033-3
- K.-N. Wang, Z.-Z. Li, Z.-M. Cai, L.-M. Cao, N.-N. Zhong et al., The applications of flexible electronics in dental, oral, and craniofacial medicine. NPJ Flex. Electron. 8, 33 (2024). https://doi.org/10.1038/s41528-024-00318-y
- K. Nan, V.R. Feig, B. Ying, J.G. Howarth, Z. Kang et al., Mucosa-interfacing electronics. Nat. Rev. Mater. 7(11), 908–925 (2022). https://doi.org/10.1038/s41578-022-00477-2
- J. Park, J. Kim, S.-Y. Kim, W.H. Cheong, J. Jang et al., Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Sci. Adv. 4(1), eaap9841 (2018). https://doi.org/10.1126/sciadv.aap9841
- K. Ichikawa, K. Iitani, G. Kawase, K. Toma, T. Arakawa et al., Mouthguard-type wearable sensor for monitoring salivary turbidity to assess oral hygiene. Sensors 24(5), 1436 (2024). https://doi.org/10.3390/s24051436
- J. Kim, S. Imani, W.R. de Araujo, J. Warchall, G. Valdés-Ramírez et al., Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosens. Bioelectron. 74, 1061–1068 (2015). https://doi.org/10.1016/j.bios.2015.07.039
- W. Park, H. Seo, J. Kim, Y.-M. Hong, H. Song et al., In-depth correlation analysis between tear glucose and blood glucose using a wireless smart contact lens. Nat. Commun. 15(1), 2828 (2024). https://doi.org/10.1038/s41467-024-47123-9
- J. Xia, S. Sonkusale, Flexible thread-based electrochemical sensors for oxygen monitoring. Analyst 146(9), 2983–2990 (2021). https://doi.org/10.1039/d0an02400g
- U. Amjad, S. Mahajan, J. Choi, R. Shrivastav, R. Murray et al., Microinvasive probes for monitoring electrical and chemical neural activity in nonhuman Primates. ACS Chem. Neurosci. 16(12), 2237–2247 (2025). https://doi.org/10.1021/acschemneuro.5c00071
- H. Li, G. Wu, Z. Weng, H. Sun, R. Nistala et al., Microneedle-based potentiometric sensing system for continuous monitoring of multiple electrolytes in skin interstitial fluids. ACS Sens. 6(6), 2181–2190 (2021). https://doi.org/10.1021/acssensors.0c02330
- M. Dervisevic, E. Dervisevic, L. Esser, C.D. Easton, V.J. Cadarso et al., Wearable microneedle array-based sensor for transdermal monitoring of pH levels in interstitial fluid. Biosens. Bioelectron. 222, 114955 (2023). https://doi.org/10.1016/j.bios.2022.114955
- Z. Liu, X. Xu, S. Huang, X. Huang, Z. Liu et al., Multichannel microneedle dry electrode patches for minimally invasive transdermal recording of electrophysiological signals. Microsyst. Nanoeng. 10, 72 (2024). https://doi.org/10.1038/s41378-024-00702-8
- Y. Dai, J. Nolan, E. Madsen, M. Fratus, J. Lee et al., Wearable sensor patch with hydrogel microneedles for in situ analysis of interstitial fluid. ACS Appl. Mater. Interfaces 15(49), 56760–56773 (2023). https://doi.org/10.1021/acsami.3c12740
- H. Kim, J. Lee, U. Heo, D.K. Jayashankar, K.-C. Agno et al., Skin preparation-free, stretchable microneedle adhesive patches for reliable electrophysiological sensing and exoskeleton robot control. Sci. Adv. 10(3), eadk5260 (2024). https://doi.org/10.1126/sciadv.adk5260
- H. Ji, M. Wang, Y. Wang, Z. Wang, Y. Ma et al., Skin-integrated, biocompatible, and stretchable silicon microneedle electrode for long-term EMG monitoring in motion scenario. NPJ Flex. Electron. 7, 46 (2023). https://doi.org/10.1038/s41528-023-00279-8
- X. Huang, S. Zheng, B. Liang, M. He, F. Wu et al., 3D-assembled microneedle ion sensor-based wearable system for the transdermal monitoring of physiological ion fluctuations. Microsyst. Nanoeng. 9, 25 (2023). https://doi.org/10.1038/s41378-023-00497-0
- W. Yue, Y. Guo, J.-K. Wu, E. Ganbold, N.K. Kaushik et al., A wireless, battery-free microneedle patch with light-cured swellable hydrogel for minimally-invasive glucose detection. Nano Energy 131, 110194 (2024). https://doi.org/10.1016/j.nanoen.2024.110194
- J. Li, Y. Ma, D. Huang, Z. Wang, Z. Zhang et al., High-performance flexible microneedle array as a low-impedance surface biopotential dry electrode for wearable electrophysiological recording and polysomnography. Nano-Micro Lett. 14(1), 132 (2022). https://doi.org/10.1007/s40820-022-00870-0
- Y. Liu, Q. Yu, X. Luo, L. Yang, Y. Cui, Continuous monitoring of diabetes with an integrated microneedle biosensing device through 3D printing. Microsyst. Nanoeng. 7, 75 (2021). https://doi.org/10.1038/s41378-021-00302-w
- M. Poudineh, Microneedle assays for continuous health monitoring: challenges and solutions. ACS Sens. 9(2), 535–542 (2024). https://doi.org/10.1021/acssensors.3c02279
- R.L. Pereira, K.B. Vinayakumar, S. Sillankorva, Polymeric microneedles for health care monitoring: an emerging trend. ACS Sens. 9(5), 2294–2309 (2024). https://doi.org/10.1021/acssensors.4c00612
- G. Zhong, Q. Liu, Q. Wang, H. Qiu, H. Li et al., Fully integrated microneedle biosensor array for wearable multiplexed fitness biomarkers monitoring. Biosens. Bioelectron. 265, 116697 (2024). https://doi.org/10.1016/j.bios.2024.116697
- Y. Hu, E. Chatzilakou, Z. Pan, G. Traverso, A.K. Yetisen, Microneedle sensors for point-of-care diagnostics. Adv. Sci. 11(12), 2306560 (2024). https://doi.org/10.1002/advs.202306560
- T.D. Nguyen, T.-H. Nguyen, V.T. Vo, T.-Q. Nguyen, Panoramic review on polymeric microneedle arrays for clinical applications. Biomed. Microdevices 26(4), 41 (2024). https://doi.org/10.1007/s10544-024-00724-z
- Y. Liu, J. Li, S. Xiao, Y. Liu, M. Bai et al., Revolutionizing precision medicine: exploring wearable sensors for therapeutic drug monitoring and personalized therapy. Biosensors 13(7), 726 (2023). https://doi.org/10.3390/bios13070726
- J. Kim, M.I. Bury, K. Kwon, J.-Y. Yoo, N.V. Halstead et al., A wireless, implantable bioelectronic system for monitoring urinary bladder function following surgical recovery. Proc. Natl. Acad. Sci. U. S. A. 121(14), e2400868121 (2024). https://doi.org/10.1073/pnas.2400868121
- S. Bian, B. Zhu, G. Rong, M. Sawan, Towards wearable and implantable continuous drug monitoring: a review. J. Pharm. Anal. 11(1), 1–14 (2021). https://doi.org/10.1016/j.jpha.2020.08.001
- L. Wang, T. Zhang, J. Lei, S. Wang, Y. Guan et al., A biodegradable and restorative peripheral neural interface for the interrogation of neuropathic injuries. Nat. Commun. 16(1), 1716 (2025). https://doi.org/10.1038/s41467-025-56089-1
- J. Liu, N. Liu, Y. Xu, M. Wu, H. Zhang et al., Bioresorbable shape-adaptive structures for ultrasonic monitoring of deep-tissue homeostasis. Science 383(6687), 1096–1103 (2024). https://doi.org/10.1126/science.adk9880
- R. Omar, W. Saliba, M. Khatib, Y. Zheng, C. Pieters et al., Biodegradable, biocompatible, and implantable multifunctional sensing platform for cardiac monitoring. ACS Sens. 9(1), 126–138 (2024). https://doi.org/10.1021/acssensors.3c01755
- Y. Shan, E. Wang, X. Cui, Y. Xi, J. Ji et al., A biodegradable piezoelectric sensor for real-time evaluation of the motor function recovery after nerve injury. Adv. Funct. Mater. 34(33), 2400295 (2024). https://doi.org/10.1002/adfm.202400295
- R. Li, H. Qi, Y. Ma, Y. Deng, S. Liu et al., A flexible and physically transient electrochemical sensor for real-time wireless nitric oxide monitoring. Nat. Commun. 11(1), 3207 (2020). https://doi.org/10.1038/s41467-020-17008-8
- H. Tang, Y. Yang, Z. Liu, W. Li, Y. Zhang et al., Injectable ultrasonic sensor for wireless monitoring of intracranial signals. Nature 630(8015), 84–90 (2024). https://doi.org/10.1038/s41586-024-07334-y
- M. Corsi, E. Maurina, S. Surdo, E. Vandini, E. Daini et al., In vivo and in situ monitoring of doxorubicin pharmacokinetics with an implantable bioresorbable optical sensor. Sci. Adv. 11(16), eads0265 (2025). https://doi.org/10.1126/sciadv.ads0265
- Y. Tian, Y. Yang, H. Tang, J. Wang, N. Li et al., An implantable hydrogel-based phononic crystal for continuous and wireless monitoring of internal tissue strains. Nat. Biomed. Eng. 9(8), 1335–1348 (2025). https://doi.org/10.1038/s41551-025-01374-z
- J.R. Dias, A. Sousa, A. Augusto, P.J. Bártolo, P.L. Granja, Electrospun polycaprolactone (PCL) degradation: an in vitro and in vivo study. Polymers 14(16), 3397 (2022). https://doi.org/10.3390/polym14163397
- J. Walker, J. Albert, D. Liang, J. Sun, R. Schutzman et al., In vitro degradation and erosion behavior of commercial PLGAs used for controlled drug delivery. Drug Deliv. Transl. Res. 13(1), 237–251 (2023). https://doi.org/10.1007/s13346-022-01177-8
- L. Wan, L. Lu, X. Liang, Z. Liu, X. Huang et al., Citrate-based polyester elastomer with artificially regulatable degradation rate on demand. Biomacromolecules 24(9), 4123–4137 (2023). https://doi.org/10.1021/acs.biomac.3c00479
- H.K. Makadia, S.J. Siegel, Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3(3), 1377–1397 (2011). https://doi.org/10.3390/polym3031377
- L. Wan, L. Lu, T. Zhu, Z. Liu, R. Du et al., Bulk erosion degradation mechanism for poly(1, 8-octanediol-co-citrate) elastomer: an in vivo and in vitro investigation. Biomacromolecules 23(10), 4268–4281 (2022). https://doi.org/10.1021/acs.biomac.2c00737
- A. Geraili, K. Mequanint, Systematic studies on surface erosion of photocrosslinked polyanhydride tablets and data correlation with release kinetic models. Polymers 12(5), 1105 (2020). https://doi.org/10.3390/polym12051105
- Y. Wang, Y.M. Kim, R. Langer, In vivo degradation characteristics of poly(glycerol sebacate). J. Biomed. Mater. Res. A 66(1), 192–197 (2003). https://doi.org/10.1002/jbm.a.10534
- F. Ghorbanizamani, H. Moulahoum, E.G. Celik, S. Timur, Material design in implantable biosensors toward future personalized diagnostics and treatments. Appl. Sci. 13(7), 4630 (2023). https://doi.org/10.3390/app13074630
- D. Lu, Y. Yan, R. Avila, I. Kandela, I. Stepien et al., Bioresorbable, wireless, passive sensors as temporary implants for monitoring regional body temperature. Adv. Healthc. Mater. 9(16), e2000942 (2020). https://doi.org/10.1002/adhm.202000942
- D. Lu, Y. Yan, Y. Deng, Q. Yang, J. Zhao et al., Bioresorbable wireless sensors as temporary implants for in vivo measurements of pressure. Adv. Funct. Mater. 30(40), 2003754 (2020). https://doi.org/10.1002/adfm.202003754
- S.R. Madhvapathy, M.I. Bury, L.W. Wang, J.L. Ciatti, R. Avila et al., Miniaturized implantable temperature sensors for the long-term monitoring of chronic intestinal inflammation. Nat. Biomed. Eng. 8(8), 1040–1052 (2024). https://doi.org/10.1038/s41551-024-01183-w
- Y. Lu, G. Yang, S. Wang, Y. Zhang, Y. Jian et al., Stretchable graphene–hydrogel interfaces for wearable and implantable bioelectronics. Nat. Electron. 7(1), 51–65 (2024). https://doi.org/10.1038/s41928-023-01091-y
- S. Lee, K. Min, J. Jung, J. Yi, G. Tae et al., Implantable conductive polymer bioelectrode with enzymatic antioxidant activity for enhanced tissue responses and in vivo performance. Chem. Eng. J. 494, 152861 (2024). https://doi.org/10.1016/j.cej.2024.152861
- J. Liu, X. Fang, Z. Zhang, Z. Liu, J. Liu et al., Long-term in vivo glucose monitoring by polymer-dot transducer in an injectable hydrogel implant. Anal. Chem. 94(4), 2195–2203 (2022). https://doi.org/10.1021/acs.analchem.1c04730
- R. Herbert, H.-R. Lim, B. Rigo, W.-H. Yeo, Fully implantable wireless batteryless vascular electronics with printed soft sensors for multiplex sensing of hemodynamics. Sci. Adv. 8(19), eabm1175 (2022). https://doi.org/10.1126/sciadv.abm1175
- G. Yang, R. Lin, H. Li, Y. Chen, M. Liu et al., Implantable wireless suture sensor for in situ tendon and ligament strain monitoring. Sci. Adv. 11(9), eadt3811 (2025). https://doi.org/10.1126/sciadv.adt3811
- L. Zhang, Z. Cao, T. Bai, L. Carr, J.-R. Ella-Menye et al., Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat. Biotechnol. 31(6), 553–556 (2013). https://doi.org/10.1038/nbt.2580
- L. Jansen, L.D. Amer, E.Y.T. Chen, T.V. Nguyen, L.S. Saleh et al., Zwitterionic PEG-PC hydrogels modulate the foreign body response in a modulus-dependent manner. Biomacromolecules 19(7), 2880–2888 (2018). https://doi.org/10.1021/acs.biomac.8b00444
- T.U. Luu, S.C. Gott, B.W.K. Woo, M.P. Rao, W.F. Liu, Micro- and nanopatterned topographical cues for regulating macrophage cell shape and phenotype. ACS Appl. Mater. Interfaces 7(51), 28665–28672 (2015). https://doi.org/10.1021/acsami.5b10589
- Y. Zhu, H. Liang, X. Liu, J. Wu, C. Yang et al., Regulation of macrophage polarization through surface topography design to facilitate implant-to-bone osteointegration. Sci. Adv. 7(14), eabf6654 (2021). https://doi.org/10.1126/sciadv.abf6654
- Y. He, Y. Gao, Q. Ma, X. Zhang, Y. Zhang et al., Nanotopographical cues for regulation of macrophages and osteoclasts: emerging opportunities for osseointegration. J. Nanobiotechnology 20(1), 510 (2022). https://doi.org/10.1186/s12951-022-01721-1
- Q. Liu, A. Chiu, L. Wang, D. An, W. Li et al., Developing mechanically robust, triazole-zwitterionic hydrogels to mitigate foreign body response (FBR) for islet encapsulation. Biomaterials 230, 119640 (2020). https://doi.org/10.1016/j.biomaterials.2019.119640
- K.A. Kasper, G.F. Romero, D.L. Perez, A.M. Miller, D.A. Gonzales et al., Continuous operation of battery-free implants enables advanced fracture recovery monitoring. Sci. Adv. 11(19), eadt7488 (2025). https://doi.org/10.1126/sciadv.adt7488
- M. Wang, L. Jia, X. Jia, H. Li, X. Feng, Flexible circuit-free system via passive modulated ultrasound for wireless thoracic pressure monitoring. Sci. Adv. 11(8), eads5634 (2025). https://doi.org/10.1126/sciadv.ads5634
- N. Zhou, J. Ji, R. Qu, X. Feng, X. Song et al., Permeable and durable liquid-metal fiber mat as implantable physiological electrodes with long-term biocompatibility. Adv. Mater. 37(8), e2413728 (2025). https://doi.org/10.1002/adma.202413728
- Q. Hu, Y. Du, Y. Bai, D. Xing, C. Wu et al., Smart zwitterionic coatings with precise pH-responsive antibacterial functions for bone implants to combat bacterial infections. Biomater. Sci. 12(17), 4471–4482 (2024). https://doi.org/10.1039/D4BM00932K
- X. Zhou, W. Cao, Y. Chen, Z. Zhu, Y. Lai et al., An elastomer with in situ generated pure zwitterionic surfaces for fibrosis-resistant implants. Acta Biomater. 185, 226–239 (2024). https://doi.org/10.1016/j.actbio.2024.06.047
- T. Yan, K. Suzuki, S. Kameda, M. Maeda, T. Mihara et al., Chronic subdural electrocorticography in nonhuman Primates by an implantable wireless device for brain-machine interfaces. Front. Neurosci. 17, 1260675 (2023). https://doi.org/10.3389/fnins.2023.1260675
- S. Wang, Q. Jiang, H. Liu, C. Yu, P. Li et al., Mechanically adaptive and deployable intracortical probes enable long-term neural electrophysiological recordings. Proc. Natl. Acad. Sci. U. S. A. 121(40), e2403380121 (2024). https://doi.org/10.1073/pnas.2403380121
- X. Wang, M. Xu, H. Yang, W. Jiang, J. Jiang et al., Ultraflexible neural electrodes enabled synchronized long-term dopamine detection and wideband chronic recording deep in brain. ACS Nano 18(50), 34272–34287 (2024). https://doi.org/10.1021/acsnano.4c12429
- Y. Liu, S. Li, X. Wang, X. Liu, J. Wang et al., Support-free implantable photoelectrochemical hydrogel fiber enables long-term monitoring in free-behaving organisms. Anal. Chem. 97(17), 9501–9511 (2025). https://doi.org/10.1021/acs.analchem.5c01013
- W. He, D. Zhou, H. Gu, R. Qu, C. Cui et al., A biocompatible 4D printing shape memory polymer as emerging strategy for fabrication of deployable medical devices. Macromol. Rapid Commun. 44(2), 2200553 (2023). https://doi.org/10.1002/marc.202200553
- N.P. Skillin, B.E. Kirkpatrick, N.E. Friend, A.R. Perry, J.M. McCracken et al., In vivo photothermal reconfiguration of liquid crystalline elastomer nanocomposites. Cell Biomater. 1(2), 100022 (2025). https://doi.org/10.1016/j.celbio.2025.100022
- J. Qiu, Y. Lu, X. Qian, J. Yao, C. Han et al., Highly conductive polymer with vertical phase separation for enhanced bioelectronic interfaces. NPJ Flex. Electron. 9, 69 (2025). https://doi.org/10.1038/s41528-025-00441-4
- Y. Wu, L. Wang, M. Yan, X. Wang, X. Liao et al., Poly(3, 4-ethylenedioxythiophene)/functional gold nanop films for improving the electrode-neural interface. Adv. Healthc. Mater. 13(23), e2400836 (2024). https://doi.org/10.1002/adhm.202400836
- N.-E. Oyunbaatar, J. Wei, L. Wang, S.-H. Kim, H. Lee et al., 3D-printed CNT-reinforced bioresorbable vascular scaffold with enhanced mechanical stability and integrated wireless pressure sensor for continuous hemodynamic monitoring. ACS Sens. 10(8), 5724–5735 (2025). https://doi.org/10.1021/acssensors.5c00857
- L. Zhang, S. Xing, H. Yin, H. Weisbecker, H.T. Tran et al., Skin-inspired, sensory robots for electronic implants. Nat. Commun. 15, 4777 (2024). https://doi.org/10.1038/s41467-024-48903-z
- M. Singh, D.L. Teodorescu, M. Rowlett, S.X. Wang, M. Balcells et al., A tunable soft silicone bioadhesive for secure anchoring of diverse medical devices to wet biological tissue. Adv. Mater. 36(3), e2307288 (2024). https://doi.org/10.1002/adma.202307288
- R. Nie, Q. Jia, Y. Li, C. Yan, X. Liu et al., Implantable biophotonic device for wirelessly cancer real-time monitoring and modulable treatment. Adv. Sci. 12(26), 2503778 (2025). https://doi.org/10.1002/advs.202503778
- B. Luo, S. Wang, X. Song, S. Chen, Q. Qi et al., An encapsulation-free and hierarchical porous triboelectric scaffold with dynamic hydrophilicity for efficient cartilage regeneration. Adv. Mater. 36(27), 2401009 (2024). https://doi.org/10.1002/adma.202401009
- S. Safavi, Y. Yu, D.L. Robinson, H.A. Gray, D.C. Ackland et al., Additively manufactured controlled porous orthopedic joint replacement designs to reduce bone stress shielding: a systematic review. J. Orthop. Surg. Res. 18(1), 42 (2023). https://doi.org/10.1186/s13018-022-03492-9
- J.-L. Yang, X.-G. Tang, X. Gu, Q.-J. Sun, Z.-H. Tang et al., High-entropy oxide memristors for neuromorphic computing: from material engineering to functional integration. Nano-Micro Lett. 18(1), 41 (2025). https://doi.org/10.1007/s40820-025-01891-1
- S. Chen, Q. Ouyang, X. Miao, F. Zhang, Z. Chen et al., Wearable ultrasound devices for therapeutic applications. Nano-Micro Lett. 18(1), 45 (2025). https://doi.org/10.1007/s40820-025-01890-2
- Y. Wang, Z. Wang, Y. Zhang, J. Yang, Z. Zhang et al., A 2.7-μm-thick robust, permeable, and antifreezing hydrogel electrode for long-term ambulatory health monitoring. Sci. Adv. 11(38), eadt2286 (2025). https://doi.org/10.1126/sciadv.adt2286
- M. Khatib, E.T. Zhao, S. Wei, J. Park, A. Abramson et al., High-density soft bioelectronic fibres for multimodal sensing and stimulation. Nature 645(8081), 656–664 (2025). https://doi.org/10.1038/s41586-025-09481-2
- D. Liu, J. Bai, X. Tian, Y. Wang, B. Cui et al., Increasing the dimensionality of transistors with hydrogels. Science 390(6775), 824–830 (2025). https://doi.org/10.1126/science.adx4514
References
X. Yang, W. Chen, Q. Fan, J. Chen, Y. Chen et al., Electronic skin for health monitoring systems: properties, functions, and applications. Adv. Mater. 36(31), e2402542 (2024). https://doi.org/10.1002/adma.202402542
R.G. Ferreira, A.P. Silva, J. Nunes-Pereira, Current on-skin flexible sensors, materials, manufacturing approaches, and study trends for health monitoring: a review. ACS Sens. 9(3), 1104–1133 (2024). https://doi.org/10.1021/acssensors.3c02555
K. Mahato, T. Saha, S. Ding, S.S. Sandhu, A.-Y. Chang et al., Hybrid multimodal wearable sensors for comprehensive health monitoring. Nat. Electron. 7(9), 735–750 (2024). https://doi.org/10.1038/s41928-024-01247-4
A. Yu, M. Zhu, C. Chen, Y. Li, H. Cui et al., Implantable flexible sensors for health monitoring. Adv. Healthc. Mater. 13(2), 2302460 (2024). https://doi.org/10.1002/adhm.202302460
C. Chen, S. Ding, J. Wang, Digital health for aging populations. Nat. Med. 29(7), 1623–1630 (2023). https://doi.org/10.1038/s41591-023-02391-8
K.B. Johnson, W.-Q. Wei, D. Weeraratne, M.E. Frisse, K. Misulis et al., Precision medicine, AI, and the future of personalized health care. Clin. Transl. Sci. 14(1), 86–93 (2021). https://doi.org/10.1111/cts.12884
Ö. Erdem, I. Eş, G.A. Akceoglu, Y. Saylan, F. Inci, Recent advances in microneedle-based sensors for sampling, diagnosis and monitoring of chronic diseases. Biosensors 11(9), 296 (2021). https://doi.org/10.3390/bios11090296
Y. Gao, L. Yu, J.C. Yeo, C.T. Lim, Flexible hybrid sensors for health monitoring: materials and mechanisms to render wearability. Adv. Mater. 32(15), 1902133 (2020). https://doi.org/10.1002/adma.201902133
K.T. Kadhim, A.M. Alsahlany, S.M. Wadi, H.T. Kadhum, An overview of patient’s health status monitoring system based on Internet of Things (IoT). Wirel. Pers. Commun. 114(3), 2235–2262 (2020). https://doi.org/10.1007/s11277-020-07474-0
S. Abdulmalek, A. Nasir, W.A. Jabbar, M.A.M. Almuhaya, A.K. Bairagi et al., IoT-based healthcare-monitoring system towards improving quality of life: a review. Healthcare 10(10), 1993 (2022). https://doi.org/10.3390/healthcare10101993
E.S. Hosseini, S. Dervin, P. Ganguly, R. Dahiya, Biodegradable materials for sustainable health monitoring devices. ACS Appl. Bio Mater. 4(1), 163–194 (2021). https://doi.org/10.1021/acsabm.0c01139
C. Zhang, Y. Li, W. Kang, X. Liu, Q. Wang, Current advances and future perspectives of additive manufacturing for functional polymeric materials and devices. SusMat 1(1), 127–147 (2021). https://doi.org/10.1002/sus2.11
Y. Ma, Y. Zhang, S. Cai, Z. Han, X. Liu et al., Flexible hybrid electronics for digital healthcare. Adv. Mater. 32(15), 1902062 (2020). https://doi.org/10.1002/adma.201902062
S. Chen, J. Qi, S. Fan, Z. Qiao, J.C. Yeo et al., Flexible wearable sensors for cardiovascular health monitoring. Adv. Healthc. Mater. 10(17), e2100116 (2021). https://doi.org/10.1002/adhm.202100116
J. Tang, Y. He, D. Xu, W. Zhang, Y. Hu et al., Tough, rapid self-recovery and responsive organogel-based ionotronic for intelligent continuous passive motion system. NPJ Flex. Electron. 7, 28 (2023). https://doi.org/10.1038/s41528-023-00259-y
G. Li, D. Wen, Wearable biochemical sensors for human health monitoring: sensing materials and manufacturing technologies. J. Mater. Chem. B 8(16), 3423–3436 (2020). https://doi.org/10.1039/C9TB02474C
S. Nasiri, M.R. Khosravani, Progress and challenges in fabrication of wearable sensors for health monitoring. Sens. Actuat. A Phys. 312, 112105 (2020). https://doi.org/10.1016/j.sna.2020.112105
K. Wang, J. Zhang, H. Li, J. Wu, Q. Wan et al., Smart hydrogel sensors for health monitoring and early warning. Adv. Sensor Res. 3(9), 2400003 (2024). https://doi.org/10.1002/adsr.202400003
A. Shar, P. Glass, S.H. Park, D. Joung, 3D printable one-part carbon nanotube-elastomer ink for health monitoring applications. Adv. Funct. Mater. 33(5), 2211079 (2023). https://doi.org/10.1002/adfm.202211079
X. Guo, Y. Sun, X. Sun, J. Li, J. Wu et al., Doping engineering of conductive polymers and their application in physical sensors for healthcare monitoring. Macromol. Rapid Commun. 45(1), 2300246 (2024). https://doi.org/10.1002/marc.202300246
Z. Yin, H. Lu, L. Gan, Y. Zhang, Electronic fibers/textiles for health-monitoring: fabrication and application. Adv. Mater. Technol. 8(3), 2200654 (2023). https://doi.org/10.1002/admt.202200654
S.U. Zaman, X. Tao, C. Cochrane, V. Koncar, Smart E-textile systems: a review for healthcare applications. Electronics 11(1), 99 (2022). https://doi.org/10.3390/electronics11010099
Z. Deng, L. Guo, X. Chen, W. Wu, Smart wearable systems for health monitoring. Sensors 23(5), 2479 (2023). https://doi.org/10.3390/s23052479
K. Frasier, V. Li, M. Sobotka, J. Vinagolu-Baur, G. Herrick, The role of wearable technology in real-time skin health monitoring. JEADV Clin. Pract. 4(1), 21–29 (2025). https://doi.org/10.1002/jvc2.587
M. Zhu, H. Wang, S. Li, X. Liang, M. Zhang et al., Flexible electrodes for in vivo and in vitro electrophysiological signal recording. Adv. Healthc. Mater. 10(17), 2100646 (2021). https://doi.org/10.1002/adhm.202100646
J. Wang, L. Wang, J. Feng, C. Tang, X. Sun et al., Long-term in vivo monitoring of chemicals with fiber sensors. Adv. Fiber Mater. 3(1), 47–58 (2021). https://doi.org/10.1007/s42765-020-00061-9
Y. Wang, H. Haick, S. Guo, C. Wang, S. Lee et al., Skin bioelectronics towards long-term, continuous health monitoring. Chem. Soc. Rev. 51(9), 3759–3793 (2022). https://doi.org/10.1039/d2cs00207h
N. Ashammakhi, A.L. Hernandez, B.D. Unluturk, S.A. Quintero, N.R. de Barros et al., Biodegradable implantable sensors: materials design, fabrication, and applications. Adv. Funct. Mater. 31(49), 2104149 (2021). https://doi.org/10.1002/adfm.202104149
M. Yu, Y. Peng, X. Wang, F. Ran, Emerging design strategies toward developing next-generation implantable batteries and supercapacitors. Adv. Funct. Mater. 33(37), 2301877 (2023). https://doi.org/10.1002/adfm.202301877
H. Ullah, M.A. Wahab, G. Will, M.R. Karim, T. Pan et al., Recent advances in stretchable and wearable capacitive electrophysiological sensors for long-term health monitoring. Biosensors 12(8), 630 (2022). https://doi.org/10.3390/bios12080630
Y. Zhang, J. Yang, X. Hou, G. Li, L. Wang et al., Highly stable flexible pressure sensors with a quasi-homogeneous composition and interlinked interfaces. Nat. Commun. 13(1), 1317 (2022). https://doi.org/10.1038/s41467-022-29093-y
T. Wu, S. Gao, W. Wang, J. Huang, Y. Yan, Wearable sensors based on solid-phase molecular self-assembly: moisture-strain dual responsiveness facilitated extremely high and damage-resistant sensitivity. ACS Appl. Mater. Interfaces 13(35), 41997–42004 (2021). https://doi.org/10.1021/acsami.1c10717
C. Zhao, Y. Wang, G. Tang, J. Ru, Z. Zhu et al., Ionic flexible sensors: mechanisms, materials, structures, and applications. Adv. Funct. Mater. 32(17), 2110417 (2022). https://doi.org/10.1002/adfm.202110417
Z. Zhao, H. Fu, R. Tang, B. Zhang, Y. Chen et al., Failure mechanisms in flexible electronics. Int. J. Smart Nano Mater. 14(4), 510–565 (2023). https://doi.org/10.1080/19475411.2023.2261775
Y. Luo, M.R. Abidian, J.-H. Ahn, D. Akinwande, A.M. Andrews et al., Technology roadmap for flexible sensors. ACS Nano 17(6), 5211–5295 (2023). https://doi.org/10.1021/acsnano.2c12606
T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi et al., A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl. Acad. Sci. U. S. A. 101(27), 9966–9970 (2004). https://doi.org/10.1073/pnas.0401918101
T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi et al., A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 6(5), 296–301 (2011). https://doi.org/10.1038/nnano.2011.36
D.-H. Kim, N. Lu, R. Ma, Y.-S. Kim, R.-H. Kim et al., Epidermal electronics. Science 333(6044), 838–843 (2011). https://doi.org/10.1126/science.1206157
P.R. Miller, S.A. Skoog, T.L. Edwards, D.M. Lopez, D.R. Wheeler et al., Multiplexed microneedle-based biosensor array for characterization of metabolic acidosis. Talanta 88, 739–742 (2012). https://doi.org/10.1016/j.talanta.2011.11.046
I.R. Minev, P. Musienko, A. Hirsch, Q. Barraud, N. Wenger et al., Electronic dura mater for long-term multimodal neural interfaces. Science 347(6218), 159–163 (2015). https://doi.org/10.1126/science.1260318
J. Liu, T.-M. Fu, Z. Cheng, G. Hong, T. Zhou et al., Syringe-injectable electronics. Nat. Nanotechnol. 10(7), 629–636 (2015). https://doi.org/10.1038/nnano.2015.115
S.-K. Kang, R.K.J. Murphy, S.-W. Hwang, S.M. Lee, D.V. Harburg et al., Bioresorbable silicon electronic sensors for the brain. Nature 530(7588), 71–76 (2016). https://doi.org/10.1038/nature16492
W. Gao, S. Emaminejad, H.Y.Y. Nyein, S. Challa, K. Chen et al., Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529(7587), 509–514 (2016). https://doi.org/10.1038/nature16521
S. Kim, M. Amjadi, T.-I. Lee, Y. Jeong, D. Kwon et al., Wearable, ultrawide-range, and bending-insensitive pressure sensor based on carbon nanotube network-coated porous elastomer sponges for human interface and healthcare devices. ACS Appl. Mater. Interfaces 11(26), 23639–23648 (2019). https://doi.org/10.1021/acsami.9b07636
L. Yin, M. Cao, K.N. Kim, M. Lin, J.-M. Moon et al., A stretchable epidermal sweat sensing platform with an integrated printed battery and electrochromic display. Nat. Electron. 5(10), 694–705 (2022). https://doi.org/10.1038/s41928-022-00843-6
J.-C. Fan, X.-G. Tang, Q.-J. Sun, Y.-P. Jiang, W.-H. Li et al., Low-cost composite film triboelectric nanogenerators for a self-powered touch sensor. Nanoscale 15(13), 6263–6272 (2023). https://doi.org/10.1039/d2nr05962b
Y. Lee, J.W. Chung, G.H. Lee, H. Kang, J.-Y. Kim et al., Standalone real-time health monitoring patch based on a stretchable organic optoelectronic system. Sci. Adv. 7(23), eabg9180 (2021). https://doi.org/10.1126/sciadv.abg9180
J. Min, S. Demchyshyn, J.R. Sempionatto, Y. Song, B. Hailegnaw et al., An autonomous wearable biosensor powered by a perovskite solar cell. Nat. Electron. 6(8), 630–641 (2023). https://doi.org/10.1038/s41928-023-00996-y
T. Terse-Thakoor, M. Punjiya, Z. Matharu, B. Lyu, M. Ahmad et al., Thread-based multiplexed sensor patch for real-time sweat monitoring. NPJ Flex. Electron. 4, 18 (2020). https://doi.org/10.1038/s41528-020-00081-w
B. Zhang, J. Li, J. Zhou, L. Chow, G. Zhao et al., A three-dimensional liquid diode for soft, integrated permeable electronics. Nature 628(8006), 84–92 (2024). https://doi.org/10.1038/s41586-024-07161-1
Y. Song, R.Y. Tay, J. Li, C. Xu, J. Min et al., 3D-printed epifluidic electronic skin for machine learning-powered multimodal health surveillance. Sci. Adv. 9(37), eadi6492 (2023). https://doi.org/10.1126/sciadv.adi6492
G. Matsumura, S. Honda, T. Kikuchi, Y. Mizuno, H. Hara et al., Real-time personal healthcare data analysis using edge computing for multimodal wearable sensors. Device 3(2), 100597 (2025). https://doi.org/10.1016/j.device.2024.100597
H. Zhao, J. Bai, X. Zhang, D. Li, Q. Chang et al., A fully integrated wearable sweat sensing patch for online analysis of multiple Parkinson’s disease-related biomarkers. Adv. Mater. 37(34), 2504534 (2025). https://doi.org/10.1002/adma.202504534
X. Zhang, S. Tang, R. Ma, Z. Chen, J. Zhuo et al., High-performance multimodal smart textile for artificial sensation and health monitoring. Nano Energy 103, 107778 (2022). https://doi.org/10.1016/j.nanoen.2022.107778
C. Zhang, Y.S. Zhao, Flexible photonic materials and devices: synthetic strategies, sensing properties, and wearable applications. Adv. Mater. 37(49), 2415856 (2025). https://doi.org/10.1002/adma.202415856
P. Li, S. Lang, L. Xie, Y. Zhang, X. Gou et al., Skin-inspired ultra-linear flexible iontronic pressure sensors for wearable musculoskeletal monitoring. Nano-Micro Lett. 18(1), 55 (2025). https://doi.org/10.1007/s40820-025-01887-x
X. Shi, Y. Zuo, P. Zhai, J. Shen, Y. Yang et al., Large-area display textiles integrated with functional systems. Nature 591(7849), 240–245 (2021). https://doi.org/10.1038/s41586-021-03295-8
K. Zhang, X. Shi, H. Jiang, K. Zeng, Z. Zhou et al., Design and fabrication of wearable electronic textiles using twisted fiber-based threads. Nat. Protoc. 19(5), 1557–1589 (2024). https://doi.org/10.1038/s41596-024-00956-6
Z. Chen, F. Zhang, X. Qian, G. Zhao, Z. Yan, Selectively damping materials for next-generation motion-artifact-free skin-interfaced soft bioelectronics. Mater. Horiz. 12(19), 7894–7913 (2025). https://doi.org/10.1039/d5mh00700c
M.N. Warncke, C.H. Böhmer, C. Sachse, S. Fischer, E. Häntzsche et al., Advancing smart textiles: structural evolution of knitted piezoresistive strain sensors for enabling precise motion capture. Polymers 15(19), 3936 (2023). https://doi.org/10.3390/polym15193936
C.M. Vidhya, Y. Maithani, J.P. Singh, Recent advances and challenges in textile electrodes for wearable biopotential signal monitoring: a comprehensive review. Biosensors 13(7), 679 (2023). https://doi.org/10.3390/bios13070679
H. Yeon, H. Lee, Y. Kim, D. Lee, Y. Lee et al., Long-term reliable physical health monitoring by sweat pore-inspired perforated electronic skins. Sci. Adv. 7(27), eabg8459 (2021). https://doi.org/10.1126/sciadv.abg8459
S. Hong, T. Yu, Z. Wang, C.H. Lee, Biomaterials for reliable wearable health monitoring: applications in skin and eye integration. Biomaterials 314, 122862 (2025). https://doi.org/10.1016/j.biomaterials.2024.122862
K. Kaewpradub, K. Veenuttranon, H. Jantapaso, P. Mittraparp-Arthorn, I. Jeerapan, A fully-printed wearable bandage-based electrochemical sensor with pH correction for wound infection monitoring. Nano-Micro Lett. 17(1), 71 (2024). https://doi.org/10.1007/s40820-024-01561-8
S. Mishra, B. Saha, Graphene-polymer nanocomposite-based wearable strain sensors for physiological signal monitoring: recent progress and challenges. Curr. Opin. Solid State Mater. Sci. 31, 101174 (2024). https://doi.org/10.1016/j.cossms.2024.101174
H. Ding, Y. Gu, Y. Ren, C. Hu, Q. Qiu et al., The latest research progress of conductive hydrogels in the field of electrophysiological signal acquisition. J. Mater. Chem. C 12(9), 3030–3052 (2024). https://doi.org/10.1039/D4TC00089G
J. Zhang, W. Wang, S. Hao, H. Zhu, C. Wang et al., Robust and biodegradable heterogeneous electronics with customizable cylindrical architecture for interference-free respiratory rate monitoring. Nano-Micro Lett. 18(1), 34 (2025). https://doi.org/10.1007/s40820-025-01879-x
X. Wang, H. Ji, L. Gao, R. Hao, Y. Shi et al., Wearable hydrogel-based health monitoring systems: a new paradigm for health monitoring? Chem. Eng. J. 495, 153382 (2024). https://doi.org/10.1016/j.cej.2024.153382
A. Ajeev, T. Warfle, S. Maslaczynska-Salome, S. Alipoori, C. Duprey et al., From the synthesis of wearable polymer sensors to their potential for reuse and ultimate fate. Chem. Sci. 16(21), 9056–9075 (2025). https://doi.org/10.1039/D5SC01634G
W. Dai, M. Lei, Z. Dai, S. Ding, F. Wang et al., Self-adhesive electronic skin with bio-inspired 3D architecture for mechanical stimuli monitoring and human-machine interactions. Small 20(51), 2406564 (2024). https://doi.org/10.1002/smll.202406564
X. Wan, Z. Wang, M. Liu, F. Zhang, S. Wang, Bioinspired structural adhesives: a decades-old science but emerging materials. Matter 7(5), 1710–1723 (2024). https://doi.org/10.1016/j.matt.2024.02.015
P. Schäfer, C. Bewick-Sonntag, M.G. Capri, E. Berardesca, Physiological changes in skin barrier function in relation to occlusion level, exposure time and climatic conditions. Skin Pharmacol. Appl. Skin Physiol. 15(1), 7–19 (2002). https://doi.org/10.1159/000049384
K.A. Engebretsen, J.D. Johansen, S. Kezic, A. Linneberg, J.P. Thyssen, The effect of environmental humidity and temperature on skin barrier function and dermatitis. J. Eur. Acad. Dermatol. Venereol. 30(2), 223–249 (2016). https://doi.org/10.1111/jdv.13301
M.C. de Goffau, X. Yang, J.M. van Dijl, H.J.M. Harmsen, Bacterial pleomorphism and competition in a relative humidity gradient. Environ. Microbiol. 11(4), 809–822 (2009). https://doi.org/10.1111/j.1462-2920.2008.01802.x
S. Stuart, M.D. Kok, B. O’Searcoid, H. Morrisroe, I.B. Serban et al., Critical design considerations for longer-term wear and comfort of on-body medical devices. Bioengineering 11(11), 1058 (2024). https://doi.org/10.3390/bioengineering11111058
Y. Ao, L. Jin, S. Wang, B. Lan, G. Tian et al., Dual structure reinforces interfacial polarized MXene/PVDF-TrFE piezoelectric nanocomposite for pressure monitoring. Nano-Micro Lett. 17(1), 320 (2025). https://doi.org/10.1007/s40820-025-01839-5
K. Zheng, C. Zheng, L. Zhu, B. Yang, X. Jin et al., Machine learning enabled reusable adhesion, entangled network-based hydrogel for long-term, high-fidelity EEG recording and attention assessment. Nano-Micro Lett. 17(1), 281 (2025). https://doi.org/10.1007/s40820-025-01780-7
J. Chang, J. Li, J. Ye, B. Zhang, J. Chen et al., AI-enabled piezoelectric wearable for joint torque monitoring. Nano-Micro Lett. 17(1), 247 (2025). https://doi.org/10.1007/s40820-025-01753-w
D.-P. Yang, R.-H. Li, X.-G. Tang, D.-L. Li, Q.-J. Sun, Photoelectric dual mode sensing system based on one-step fabricated heterojunction artificial synapses device. Mater. Sci. Eng. R. Rep. 165, 101021 (2025). https://doi.org/10.1016/j.mser.2025.101021
W.-T. Guo, Y. Lei, X.-H. Zhao, R. Li, Q.-T. Lai et al., Printed-scalable microstructure BaTiO3/ecoflex nanocomposite for high-performance triboelectric nanogenerators and self-powered human-machine interaction. Nano Energy 131, 110324 (2024). https://doi.org/10.1016/j.nanoen.2024.110324
D.M. Kaplan, M. Greenleaf, W.A. Lam, Wear with care: a call for empirical investigations of adverse outcomes of consumer health wearables. Mayo Clin. Proc. Digit. Health 1(3), 413–418 (2023). https://doi.org/10.1016/j.mcpdig.2023.06.014
X. Chen, J. Xu, J. Zhang, S. Li, H. Luo et al., Conformal in situ strain monitoring enabled with transfer-printed ultrathin customized-crack sensing network. Device 3(7), 100728 (2025). https://doi.org/10.1016/j.device.2025.100728
X. Chen, Y. Luo, Y. Chen, S. Li, S. Deng et al., Biomimetic contact behavior inspired tactile sensing array with programmable microdomes pattern by scalable and consistent fabrication. Adv. Sci. 11(43), 2408082 (2024). https://doi.org/10.1002/advs.202408082
J. Xu, X. Chen, S. Li, Y. Luo, S. Deng et al., On-skin epidermal electronics for next-generation health management. Nano-Micro Lett. 18(1), 25 (2025). https://doi.org/10.1007/s40820-025-01871-5
Y. Liu, P. Fan, Y. Pan, J. Ping, Flexible microinterventional sensors for advanced biosignal monitoring. Chem. Rev. 125(17), 8246–8318 (2025). https://doi.org/10.1021/acs.chemrev.5c00115
H. Guo, W. Bai, W. Ouyang, Y. Liu, C. Wu et al., Wireless implantable optical probe for continuous monitoring of oxygen saturation in flaps and organ grafts. Nat. Commun. 13(1), 3009 (2022). https://doi.org/10.1038/s41467-022-30594-z
L. Becerra-Fajardo, M.O. Krob, J. Minguillon, C. Rodrigues, C. Welsch et al., Floating EMG sensors and stimulators wirelessly powered and operated by volume conduction for networked neuroprosthetics. J. Neuroeng. Rehabil. 19(1), 57 (2022). https://doi.org/10.1186/s12984-022-01033-3
K.-N. Wang, Z.-Z. Li, Z.-M. Cai, L.-M. Cao, N.-N. Zhong et al., The applications of flexible electronics in dental, oral, and craniofacial medicine. NPJ Flex. Electron. 8, 33 (2024). https://doi.org/10.1038/s41528-024-00318-y
K. Nan, V.R. Feig, B. Ying, J.G. Howarth, Z. Kang et al., Mucosa-interfacing electronics. Nat. Rev. Mater. 7(11), 908–925 (2022). https://doi.org/10.1038/s41578-022-00477-2
J. Park, J. Kim, S.-Y. Kim, W.H. Cheong, J. Jang et al., Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Sci. Adv. 4(1), eaap9841 (2018). https://doi.org/10.1126/sciadv.aap9841
K. Ichikawa, K. Iitani, G. Kawase, K. Toma, T. Arakawa et al., Mouthguard-type wearable sensor for monitoring salivary turbidity to assess oral hygiene. Sensors 24(5), 1436 (2024). https://doi.org/10.3390/s24051436
J. Kim, S. Imani, W.R. de Araujo, J. Warchall, G. Valdés-Ramírez et al., Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosens. Bioelectron. 74, 1061–1068 (2015). https://doi.org/10.1016/j.bios.2015.07.039
W. Park, H. Seo, J. Kim, Y.-M. Hong, H. Song et al., In-depth correlation analysis between tear glucose and blood glucose using a wireless smart contact lens. Nat. Commun. 15(1), 2828 (2024). https://doi.org/10.1038/s41467-024-47123-9
J. Xia, S. Sonkusale, Flexible thread-based electrochemical sensors for oxygen monitoring. Analyst 146(9), 2983–2990 (2021). https://doi.org/10.1039/d0an02400g
U. Amjad, S. Mahajan, J. Choi, R. Shrivastav, R. Murray et al., Microinvasive probes for monitoring electrical and chemical neural activity in nonhuman Primates. ACS Chem. Neurosci. 16(12), 2237–2247 (2025). https://doi.org/10.1021/acschemneuro.5c00071
H. Li, G. Wu, Z. Weng, H. Sun, R. Nistala et al., Microneedle-based potentiometric sensing system for continuous monitoring of multiple electrolytes in skin interstitial fluids. ACS Sens. 6(6), 2181–2190 (2021). https://doi.org/10.1021/acssensors.0c02330
M. Dervisevic, E. Dervisevic, L. Esser, C.D. Easton, V.J. Cadarso et al., Wearable microneedle array-based sensor for transdermal monitoring of pH levels in interstitial fluid. Biosens. Bioelectron. 222, 114955 (2023). https://doi.org/10.1016/j.bios.2022.114955
Z. Liu, X. Xu, S. Huang, X. Huang, Z. Liu et al., Multichannel microneedle dry electrode patches for minimally invasive transdermal recording of electrophysiological signals. Microsyst. Nanoeng. 10, 72 (2024). https://doi.org/10.1038/s41378-024-00702-8
Y. Dai, J. Nolan, E. Madsen, M. Fratus, J. Lee et al., Wearable sensor patch with hydrogel microneedles for in situ analysis of interstitial fluid. ACS Appl. Mater. Interfaces 15(49), 56760–56773 (2023). https://doi.org/10.1021/acsami.3c12740
H. Kim, J. Lee, U. Heo, D.K. Jayashankar, K.-C. Agno et al., Skin preparation-free, stretchable microneedle adhesive patches for reliable electrophysiological sensing and exoskeleton robot control. Sci. Adv. 10(3), eadk5260 (2024). https://doi.org/10.1126/sciadv.adk5260
H. Ji, M. Wang, Y. Wang, Z. Wang, Y. Ma et al., Skin-integrated, biocompatible, and stretchable silicon microneedle electrode for long-term EMG monitoring in motion scenario. NPJ Flex. Electron. 7, 46 (2023). https://doi.org/10.1038/s41528-023-00279-8
X. Huang, S. Zheng, B. Liang, M. He, F. Wu et al., 3D-assembled microneedle ion sensor-based wearable system for the transdermal monitoring of physiological ion fluctuations. Microsyst. Nanoeng. 9, 25 (2023). https://doi.org/10.1038/s41378-023-00497-0
W. Yue, Y. Guo, J.-K. Wu, E. Ganbold, N.K. Kaushik et al., A wireless, battery-free microneedle patch with light-cured swellable hydrogel for minimally-invasive glucose detection. Nano Energy 131, 110194 (2024). https://doi.org/10.1016/j.nanoen.2024.110194
J. Li, Y. Ma, D. Huang, Z. Wang, Z. Zhang et al., High-performance flexible microneedle array as a low-impedance surface biopotential dry electrode for wearable electrophysiological recording and polysomnography. Nano-Micro Lett. 14(1), 132 (2022). https://doi.org/10.1007/s40820-022-00870-0
Y. Liu, Q. Yu, X. Luo, L. Yang, Y. Cui, Continuous monitoring of diabetes with an integrated microneedle biosensing device through 3D printing. Microsyst. Nanoeng. 7, 75 (2021). https://doi.org/10.1038/s41378-021-00302-w
M. Poudineh, Microneedle assays for continuous health monitoring: challenges and solutions. ACS Sens. 9(2), 535–542 (2024). https://doi.org/10.1021/acssensors.3c02279
R.L. Pereira, K.B. Vinayakumar, S. Sillankorva, Polymeric microneedles for health care monitoring: an emerging trend. ACS Sens. 9(5), 2294–2309 (2024). https://doi.org/10.1021/acssensors.4c00612
G. Zhong, Q. Liu, Q. Wang, H. Qiu, H. Li et al., Fully integrated microneedle biosensor array for wearable multiplexed fitness biomarkers monitoring. Biosens. Bioelectron. 265, 116697 (2024). https://doi.org/10.1016/j.bios.2024.116697
Y. Hu, E. Chatzilakou, Z. Pan, G. Traverso, A.K. Yetisen, Microneedle sensors for point-of-care diagnostics. Adv. Sci. 11(12), 2306560 (2024). https://doi.org/10.1002/advs.202306560
T.D. Nguyen, T.-H. Nguyen, V.T. Vo, T.-Q. Nguyen, Panoramic review on polymeric microneedle arrays for clinical applications. Biomed. Microdevices 26(4), 41 (2024). https://doi.org/10.1007/s10544-024-00724-z
Y. Liu, J. Li, S. Xiao, Y. Liu, M. Bai et al., Revolutionizing precision medicine: exploring wearable sensors for therapeutic drug monitoring and personalized therapy. Biosensors 13(7), 726 (2023). https://doi.org/10.3390/bios13070726
J. Kim, M.I. Bury, K. Kwon, J.-Y. Yoo, N.V. Halstead et al., A wireless, implantable bioelectronic system for monitoring urinary bladder function following surgical recovery. Proc. Natl. Acad. Sci. U. S. A. 121(14), e2400868121 (2024). https://doi.org/10.1073/pnas.2400868121
S. Bian, B. Zhu, G. Rong, M. Sawan, Towards wearable and implantable continuous drug monitoring: a review. J. Pharm. Anal. 11(1), 1–14 (2021). https://doi.org/10.1016/j.jpha.2020.08.001
L. Wang, T. Zhang, J. Lei, S. Wang, Y. Guan et al., A biodegradable and restorative peripheral neural interface for the interrogation of neuropathic injuries. Nat. Commun. 16(1), 1716 (2025). https://doi.org/10.1038/s41467-025-56089-1
J. Liu, N. Liu, Y. Xu, M. Wu, H. Zhang et al., Bioresorbable shape-adaptive structures for ultrasonic monitoring of deep-tissue homeostasis. Science 383(6687), 1096–1103 (2024). https://doi.org/10.1126/science.adk9880
R. Omar, W. Saliba, M. Khatib, Y. Zheng, C. Pieters et al., Biodegradable, biocompatible, and implantable multifunctional sensing platform for cardiac monitoring. ACS Sens. 9(1), 126–138 (2024). https://doi.org/10.1021/acssensors.3c01755
Y. Shan, E. Wang, X. Cui, Y. Xi, J. Ji et al., A biodegradable piezoelectric sensor for real-time evaluation of the motor function recovery after nerve injury. Adv. Funct. Mater. 34(33), 2400295 (2024). https://doi.org/10.1002/adfm.202400295
R. Li, H. Qi, Y. Ma, Y. Deng, S. Liu et al., A flexible and physically transient electrochemical sensor for real-time wireless nitric oxide monitoring. Nat. Commun. 11(1), 3207 (2020). https://doi.org/10.1038/s41467-020-17008-8
H. Tang, Y. Yang, Z. Liu, W. Li, Y. Zhang et al., Injectable ultrasonic sensor for wireless monitoring of intracranial signals. Nature 630(8015), 84–90 (2024). https://doi.org/10.1038/s41586-024-07334-y
M. Corsi, E. Maurina, S. Surdo, E. Vandini, E. Daini et al., In vivo and in situ monitoring of doxorubicin pharmacokinetics with an implantable bioresorbable optical sensor. Sci. Adv. 11(16), eads0265 (2025). https://doi.org/10.1126/sciadv.ads0265
Y. Tian, Y. Yang, H. Tang, J. Wang, N. Li et al., An implantable hydrogel-based phononic crystal for continuous and wireless monitoring of internal tissue strains. Nat. Biomed. Eng. 9(8), 1335–1348 (2025). https://doi.org/10.1038/s41551-025-01374-z
J.R. Dias, A. Sousa, A. Augusto, P.J. Bártolo, P.L. Granja, Electrospun polycaprolactone (PCL) degradation: an in vitro and in vivo study. Polymers 14(16), 3397 (2022). https://doi.org/10.3390/polym14163397
J. Walker, J. Albert, D. Liang, J. Sun, R. Schutzman et al., In vitro degradation and erosion behavior of commercial PLGAs used for controlled drug delivery. Drug Deliv. Transl. Res. 13(1), 237–251 (2023). https://doi.org/10.1007/s13346-022-01177-8
L. Wan, L. Lu, X. Liang, Z. Liu, X. Huang et al., Citrate-based polyester elastomer with artificially regulatable degradation rate on demand. Biomacromolecules 24(9), 4123–4137 (2023). https://doi.org/10.1021/acs.biomac.3c00479
H.K. Makadia, S.J. Siegel, Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3(3), 1377–1397 (2011). https://doi.org/10.3390/polym3031377
L. Wan, L. Lu, T. Zhu, Z. Liu, R. Du et al., Bulk erosion degradation mechanism for poly(1, 8-octanediol-co-citrate) elastomer: an in vivo and in vitro investigation. Biomacromolecules 23(10), 4268–4281 (2022). https://doi.org/10.1021/acs.biomac.2c00737
A. Geraili, K. Mequanint, Systematic studies on surface erosion of photocrosslinked polyanhydride tablets and data correlation with release kinetic models. Polymers 12(5), 1105 (2020). https://doi.org/10.3390/polym12051105
Y. Wang, Y.M. Kim, R. Langer, In vivo degradation characteristics of poly(glycerol sebacate). J. Biomed. Mater. Res. A 66(1), 192–197 (2003). https://doi.org/10.1002/jbm.a.10534
F. Ghorbanizamani, H. Moulahoum, E.G. Celik, S. Timur, Material design in implantable biosensors toward future personalized diagnostics and treatments. Appl. Sci. 13(7), 4630 (2023). https://doi.org/10.3390/app13074630
D. Lu, Y. Yan, R. Avila, I. Kandela, I. Stepien et al., Bioresorbable, wireless, passive sensors as temporary implants for monitoring regional body temperature. Adv. Healthc. Mater. 9(16), e2000942 (2020). https://doi.org/10.1002/adhm.202000942
D. Lu, Y. Yan, Y. Deng, Q. Yang, J. Zhao et al., Bioresorbable wireless sensors as temporary implants for in vivo measurements of pressure. Adv. Funct. Mater. 30(40), 2003754 (2020). https://doi.org/10.1002/adfm.202003754
S.R. Madhvapathy, M.I. Bury, L.W. Wang, J.L. Ciatti, R. Avila et al., Miniaturized implantable temperature sensors for the long-term monitoring of chronic intestinal inflammation. Nat. Biomed. Eng. 8(8), 1040–1052 (2024). https://doi.org/10.1038/s41551-024-01183-w
Y. Lu, G. Yang, S. Wang, Y. Zhang, Y. Jian et al., Stretchable graphene–hydrogel interfaces for wearable and implantable bioelectronics. Nat. Electron. 7(1), 51–65 (2024). https://doi.org/10.1038/s41928-023-01091-y
S. Lee, K. Min, J. Jung, J. Yi, G. Tae et al., Implantable conductive polymer bioelectrode with enzymatic antioxidant activity for enhanced tissue responses and in vivo performance. Chem. Eng. J. 494, 152861 (2024). https://doi.org/10.1016/j.cej.2024.152861
J. Liu, X. Fang, Z. Zhang, Z. Liu, J. Liu et al., Long-term in vivo glucose monitoring by polymer-dot transducer in an injectable hydrogel implant. Anal. Chem. 94(4), 2195–2203 (2022). https://doi.org/10.1021/acs.analchem.1c04730
R. Herbert, H.-R. Lim, B. Rigo, W.-H. Yeo, Fully implantable wireless batteryless vascular electronics with printed soft sensors for multiplex sensing of hemodynamics. Sci. Adv. 8(19), eabm1175 (2022). https://doi.org/10.1126/sciadv.abm1175
G. Yang, R. Lin, H. Li, Y. Chen, M. Liu et al., Implantable wireless suture sensor for in situ tendon and ligament strain monitoring. Sci. Adv. 11(9), eadt3811 (2025). https://doi.org/10.1126/sciadv.adt3811
L. Zhang, Z. Cao, T. Bai, L. Carr, J.-R. Ella-Menye et al., Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat. Biotechnol. 31(6), 553–556 (2013). https://doi.org/10.1038/nbt.2580
L. Jansen, L.D. Amer, E.Y.T. Chen, T.V. Nguyen, L.S. Saleh et al., Zwitterionic PEG-PC hydrogels modulate the foreign body response in a modulus-dependent manner. Biomacromolecules 19(7), 2880–2888 (2018). https://doi.org/10.1021/acs.biomac.8b00444
T.U. Luu, S.C. Gott, B.W.K. Woo, M.P. Rao, W.F. Liu, Micro- and nanopatterned topographical cues for regulating macrophage cell shape and phenotype. ACS Appl. Mater. Interfaces 7(51), 28665–28672 (2015). https://doi.org/10.1021/acsami.5b10589
Y. Zhu, H. Liang, X. Liu, J. Wu, C. Yang et al., Regulation of macrophage polarization through surface topography design to facilitate implant-to-bone osteointegration. Sci. Adv. 7(14), eabf6654 (2021). https://doi.org/10.1126/sciadv.abf6654
Y. He, Y. Gao, Q. Ma, X. Zhang, Y. Zhang et al., Nanotopographical cues for regulation of macrophages and osteoclasts: emerging opportunities for osseointegration. J. Nanobiotechnology 20(1), 510 (2022). https://doi.org/10.1186/s12951-022-01721-1
Q. Liu, A. Chiu, L. Wang, D. An, W. Li et al., Developing mechanically robust, triazole-zwitterionic hydrogels to mitigate foreign body response (FBR) for islet encapsulation. Biomaterials 230, 119640 (2020). https://doi.org/10.1016/j.biomaterials.2019.119640
K.A. Kasper, G.F. Romero, D.L. Perez, A.M. Miller, D.A. Gonzales et al., Continuous operation of battery-free implants enables advanced fracture recovery monitoring. Sci. Adv. 11(19), eadt7488 (2025). https://doi.org/10.1126/sciadv.adt7488
M. Wang, L. Jia, X. Jia, H. Li, X. Feng, Flexible circuit-free system via passive modulated ultrasound for wireless thoracic pressure monitoring. Sci. Adv. 11(8), eads5634 (2025). https://doi.org/10.1126/sciadv.ads5634
N. Zhou, J. Ji, R. Qu, X. Feng, X. Song et al., Permeable and durable liquid-metal fiber mat as implantable physiological electrodes with long-term biocompatibility. Adv. Mater. 37(8), e2413728 (2025). https://doi.org/10.1002/adma.202413728
Q. Hu, Y. Du, Y. Bai, D. Xing, C. Wu et al., Smart zwitterionic coatings with precise pH-responsive antibacterial functions for bone implants to combat bacterial infections. Biomater. Sci. 12(17), 4471–4482 (2024). https://doi.org/10.1039/D4BM00932K
X. Zhou, W. Cao, Y. Chen, Z. Zhu, Y. Lai et al., An elastomer with in situ generated pure zwitterionic surfaces for fibrosis-resistant implants. Acta Biomater. 185, 226–239 (2024). https://doi.org/10.1016/j.actbio.2024.06.047
T. Yan, K. Suzuki, S. Kameda, M. Maeda, T. Mihara et al., Chronic subdural electrocorticography in nonhuman Primates by an implantable wireless device for brain-machine interfaces. Front. Neurosci. 17, 1260675 (2023). https://doi.org/10.3389/fnins.2023.1260675
S. Wang, Q. Jiang, H. Liu, C. Yu, P. Li et al., Mechanically adaptive and deployable intracortical probes enable long-term neural electrophysiological recordings. Proc. Natl. Acad. Sci. U. S. A. 121(40), e2403380121 (2024). https://doi.org/10.1073/pnas.2403380121
X. Wang, M. Xu, H. Yang, W. Jiang, J. Jiang et al., Ultraflexible neural electrodes enabled synchronized long-term dopamine detection and wideband chronic recording deep in brain. ACS Nano 18(50), 34272–34287 (2024). https://doi.org/10.1021/acsnano.4c12429
Y. Liu, S. Li, X. Wang, X. Liu, J. Wang et al., Support-free implantable photoelectrochemical hydrogel fiber enables long-term monitoring in free-behaving organisms. Anal. Chem. 97(17), 9501–9511 (2025). https://doi.org/10.1021/acs.analchem.5c01013
W. He, D. Zhou, H. Gu, R. Qu, C. Cui et al., A biocompatible 4D printing shape memory polymer as emerging strategy for fabrication of deployable medical devices. Macromol. Rapid Commun. 44(2), 2200553 (2023). https://doi.org/10.1002/marc.202200553
N.P. Skillin, B.E. Kirkpatrick, N.E. Friend, A.R. Perry, J.M. McCracken et al., In vivo photothermal reconfiguration of liquid crystalline elastomer nanocomposites. Cell Biomater. 1(2), 100022 (2025). https://doi.org/10.1016/j.celbio.2025.100022
J. Qiu, Y. Lu, X. Qian, J. Yao, C. Han et al., Highly conductive polymer with vertical phase separation for enhanced bioelectronic interfaces. NPJ Flex. Electron. 9, 69 (2025). https://doi.org/10.1038/s41528-025-00441-4
Y. Wu, L. Wang, M. Yan, X. Wang, X. Liao et al., Poly(3, 4-ethylenedioxythiophene)/functional gold nanop films for improving the electrode-neural interface. Adv. Healthc. Mater. 13(23), e2400836 (2024). https://doi.org/10.1002/adhm.202400836
N.-E. Oyunbaatar, J. Wei, L. Wang, S.-H. Kim, H. Lee et al., 3D-printed CNT-reinforced bioresorbable vascular scaffold with enhanced mechanical stability and integrated wireless pressure sensor for continuous hemodynamic monitoring. ACS Sens. 10(8), 5724–5735 (2025). https://doi.org/10.1021/acssensors.5c00857
L. Zhang, S. Xing, H. Yin, H. Weisbecker, H.T. Tran et al., Skin-inspired, sensory robots for electronic implants. Nat. Commun. 15, 4777 (2024). https://doi.org/10.1038/s41467-024-48903-z
M. Singh, D.L. Teodorescu, M. Rowlett, S.X. Wang, M. Balcells et al., A tunable soft silicone bioadhesive for secure anchoring of diverse medical devices to wet biological tissue. Adv. Mater. 36(3), e2307288 (2024). https://doi.org/10.1002/adma.202307288
R. Nie, Q. Jia, Y. Li, C. Yan, X. Liu et al., Implantable biophotonic device for wirelessly cancer real-time monitoring and modulable treatment. Adv. Sci. 12(26), 2503778 (2025). https://doi.org/10.1002/advs.202503778
B. Luo, S. Wang, X. Song, S. Chen, Q. Qi et al., An encapsulation-free and hierarchical porous triboelectric scaffold with dynamic hydrophilicity for efficient cartilage regeneration. Adv. Mater. 36(27), 2401009 (2024). https://doi.org/10.1002/adma.202401009
S. Safavi, Y. Yu, D.L. Robinson, H.A. Gray, D.C. Ackland et al., Additively manufactured controlled porous orthopedic joint replacement designs to reduce bone stress shielding: a systematic review. J. Orthop. Surg. Res. 18(1), 42 (2023). https://doi.org/10.1186/s13018-022-03492-9
J.-L. Yang, X.-G. Tang, X. Gu, Q.-J. Sun, Z.-H. Tang et al., High-entropy oxide memristors for neuromorphic computing: from material engineering to functional integration. Nano-Micro Lett. 18(1), 41 (2025). https://doi.org/10.1007/s40820-025-01891-1
S. Chen, Q. Ouyang, X. Miao, F. Zhang, Z. Chen et al., Wearable ultrasound devices for therapeutic applications. Nano-Micro Lett. 18(1), 45 (2025). https://doi.org/10.1007/s40820-025-01890-2
Y. Wang, Z. Wang, Y. Zhang, J. Yang, Z. Zhang et al., A 2.7-μm-thick robust, permeable, and antifreezing hydrogel electrode for long-term ambulatory health monitoring. Sci. Adv. 11(38), eadt2286 (2025). https://doi.org/10.1126/sciadv.adt2286
M. Khatib, E.T. Zhao, S. Wei, J. Park, A. Abramson et al., High-density soft bioelectronic fibres for multimodal sensing and stimulation. Nature 645(8081), 656–664 (2025). https://doi.org/10.1038/s41586-025-09481-2
D. Liu, J. Bai, X. Tian, Y. Wang, B. Cui et al., Increasing the dimensionality of transistors with hydrogels. Science 390(6775), 824–830 (2025). https://doi.org/10.1126/science.adx4514