State of the Art in Alcohol Sensing with 2D Materials
Corresponding Author: Richard Paul
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 33
Abstract
Since the discovery of graphene, the star among new materials, there has been a surge of attention focused on the monatomic and monomolecular sheets which can be obtained by exfoliation of layered compounds. Such materials are known as two-dimensional (2D) materials and offer enormous versatility and potential. The ultimate single atom, or molecule, thickness of the 2D materials sheets provides the highest surface to weight ratio of all the nanomaterials, which opens the door to the design of more sensitive and reliable chemical sensors. The variety of properties and the possibility of tuning the chemical and surface properties of the 2D materials increase their potential as selective sensors, targeting chemical species that were previously difficult to detect. The planar structure and the mechanical flexibility of the sheets allow new sensor designs and put 2D materials at the forefront of all the candidates for wearable applications. When developing sensors for alcohol, the response time is an essential factor for many industrial and forensic applications, particularly when it comes to hand-held devices. Here, we review recent developments in the applications of 2D materials in sensing alcohols along with a study on parameters that affect the sensing capabilities. The review also discusses the strategies used to develop the sensor along with their mechanisms of sensing and provides a critique of the current limitations of 2D materials-based alcohol sensors and an outlook for the future research required to overcome the challenges.
Highlights:
1 A current review on the applications of graphene and other two-dimensional (2D) materials in alcohol detection.
2 A thorough discussion on the fundamental principles and the advantages of using 2D materials in sensing alcohol.
3 Critical discussion of the current limitations of alcohol sensors and the role of 2D materials in addressing the challenges.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.A. Hamburg, Advancing regulatory science. Science 331(6020), 987 (2011). https://doi.org/10.1126/science.1204432
- J. Sultana, M.S. Islam, K. Ahmed, A. Dinovitser, B.W.H. Ng, D. Abbott, Terahertz detection of alcohol using a photonic crystal fiber sensor. Appl. Opt. 57(10), 2426–2433 (2018). https://doi.org/10.1364/AO.57.002426
- U.A. Kirgöz, D. Odaci, S. Timur, A. Merkoçi, S. Alegret, N. Beşün, A. Telefoncu, A biosensor based on graphite epoxy composite electrode for aspartame and ethanol detection. Anal. Chim. Acta 570(2), 165–169 (2006). https://doi.org/10.1016/j.aca.2006.04.010
- A.M. Azevedo, D.M.F. Prazeres, J.M.S. Cabral, L.P. Fonseca, Ethanol biosensors based on alcohol oxidase. Biosens. Bioelectron. 21(2), 235–247 (2005). https://doi.org/10.1016/j.bios.2004.09.030
- R. Paul, L. Tsanaclis, C. Murray, R. Boroujerdi, L. Facer, A.J.A. Corbin, Ethyl glucuronide as a long-term alcohol biomarker in fingernail and hair. Matrix comparison and evaluation of gender bias. Alcohol Alcohol. 54(4), 402–407 (2019). https://doi.org/10.1093/alcalc/agz015
- R.P. Pohanish, Sittig’s Handbook of Toxic and Hazardous Chemicals and Carcinogens (William Andrew, Norwich, 2008)
- K. Triyana, A. Sembiring, A. Rianjanu, S.N. Hidayat, R. Riowirawan et al., Chitosan-based quartz crystal microbalance for alcohol sensing. Electronics 7(9), 181 (2018). https://doi.org/10.3390/electronics7090181
- W.R. de Araujo, T.M.G. Cardoso, R.G. da Rocha, M.H.P. Santana, R.A.A. Muñoz et al., Portable analytical platforms for forensic chemistry: a review. Anal. Chim. Acta 1034, 1–21 (2018). https://doi.org/10.1016/j.aca.2018.06.014
- V. García-Cañas, C. Simó, M. Herrero, E. Ibáñez, A. Cifuentes, Present and future challenges in food analysis: foodomics. Anal. Chem. 84(23), 10150–10159 (2012). https://doi.org/10.1021/ac301680q
- B.B. Dzantiev, N.A. Byzova, A.E. Urusov, A.V. Zherdev, Immunochromatographic methods in food analysis. Trends Anal. Chem. 55, 81–93 (2014). https://doi.org/10.1016/j.trac.2013.11.007
- A.W. Martinez, S.T. Phillips, G.M. Whitesides, E. Carrilho, Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal. Chem. 82(1), 3–10 (2010). https://doi.org/10.1021/ac9013989
- A. Escarpa, Lights and shadows on food microfluidics. Lab Chip 14(17), 3213–3224 (2014). https://doi.org/10.1039/c4lc00172a
- E.M.A. Ali, H.G.M. Edwards, The detection of flunitrazepam in beverages using portable raman spectroscopy. Drug Test. Anal. 9(2), 256–259 (2017). https://doi.org/10.1002/dta.1969
- W.W. Yu, I.M. White, Inkjet-printed paper-based SERS dipsticks and swabs for trace chemical detection. Analyst 138(4), 1020–1025 (2013). https://doi.org/10.1039/c2an36116g
- T. Mostowtt, B. McCord, Surface enhanced raman spectroscopy (SERS) as a method for the toxicological analysis of synthetic cannabinoids. Talanta 164, 396–402 (2017). https://doi.org/10.1016/j.talanta.2016.11.002
- M.M. Ayad, N. Salahuddin, I.M. Minisy, Detection of some volatile organic compounds with chitosan-coated quartz crystal microbalance. Des. Monomers Polym. 17(8), 795–802 (2014). https://doi.org/10.1080/15685551.2014.918019
- R.-J. Hwang, J. Beltran, C. Rogers, J. Barlow, G. Razatos, Measurement of uncertainty for blood alcohol concentration by headspace gas chromatography. Can. Soc. Forensic Sci. J. 50(3), 114–124 (2017). https://doi.org/10.1080/00085030.2017.1312069
- A. Pérez-Ponce, S. Garrigues, M. de la Guardia, Vapour generation–fourier transform infrared direct determination of ethanol in alcoholic beverages. Analyst 121(7), 923–928 (1996). https://doi.org/10.1039/AN9962100923
- Y. Jung, J. Kim, O. Awofeso, H. Kim, F. Regnier, E. Bae, Smartphone-based colorimetric analysis for detection of saliva alcohol concentration. Appl. Opt. 54(31), 9183–9189 (2015). https://doi.org/10.1364/AO.54.009183
- J.T.S. Allan, H.L. Geoffrey, E.B. Easton, The effect of the gas diffusion layer on the performance of fuel cell catalyst layers in ethanol sensors. Sens. Actuators B 254, 120–132 (2018). https://doi.org/10.1016/j.snb.2017.07.056
- G.A. Tığ, Highly sensitive amperometric biosensor for determination of NADH and ethanol based on Au–Ag nanoparticles/poly(l-cysteine)/reduced graphene oxide nanocomposite. Talanta 175, 382–389 (2017). https://doi.org/10.1016/j.talanta.2017.07.073
- S. Cinti, M. Basso, D. Moscone, F. Arduini, A paper-based nanomodified electrochemical biosensor for ethanol detection in beers. Anal. Chim. Acta 960, 123–130 (2017). https://doi.org/10.1016/j.aca.2017.01.010
- B. Kuswandi, T. Irmawati, M. Hidayat, M.J.S. Ahmad, A simple visual ethanol biosensor based on alcohol oxidase immobilized onto polyaniline film for halal verification of fermented beverage samples. Sensors 14(2), 2135–2149 (2014). https://doi.org/10.3390/s140202135
- Z. Zhu, C.-T. Kao, R.-J. Wu, A highly sensitive ethanol sensor based on Ag@TiO2 nanoparticles at room temperature. Appl. Surf. Sci. 320, 348–355 (2014). https://doi.org/10.1016/j.apsusc.2014.09.108
- X.J. Li, S.J. Chen, C.Y. Feng, Characterization of silicon nanoporous pillar array as room-temperature capacitive ethanol gas sensor. Sens. Actuators B 123(1), 461–465 (2007). https://doi.org/10.1016/j.snb.2006.09.021
- W. Muangrat, W. Wongwiriyapan, S. Morimoto, Y. Hashimoto, Graphene nanosheet-grafted double-walled carbon nanotube hybrid nanostructures by two-step chemical vapor deposition and their application for ethanol detection. Sci. Rep. 9(1), 7871 (2019). https://doi.org/10.1038/s41598-019-44315-y
- R. Bajpai, A. Motayed, A.V. Davydov, V.P. Oleshko, G.S. Aluri et al., UV-assisted alcohol sensing using SnO2 functionalized gan nanowire devices. Sens. Actuators B 171–172, 499–507 (2012). https://doi.org/10.1016/j.snb.2012.05.018
- J. Wei, X. Li, Y. Han, J. Xu, H. Jin et al., Highly improved ethanol gas-sensing performance of mesoporous nickel oxides nanowires with the stannum donor doping. Nanotechnology 29(24), 245501 (2018). https://doi.org/10.1088/1361-6528/aab9d8
- V. Pentyala, P. Davydovskaya, M. Ade, R. Pohle, G.J.S. Urban, A.B. Chemical, Metal–organic frameworks for alcohol gas sensor. Sens. Actuators B 222, 904–909 (2016). https://doi.org/10.1016/j.snb.2015.09.014
- W. Vandezande, K.P. Janssen, F. Delport, R. Ameloot, D.E. De Vos, J. Lammertyn, M. Roeffaers, Parts per million detection of alcohol vapors via metal organic framework functionalized surface plasmon resonance sensors. Anal. Chem. 89(8), 4480–4487 (2017). https://doi.org/10.1021/acs.analchem.6b04510
- A.G. Cavinato, D.M. Mayes, Z. Ge, J.B. Callis, Noninvasive method for monitoring ethanol in fermentation processes using fiber-optic near-infrared spectroscopy. Anal. Chem. 62(18), 1977–1982 (1990). https://doi.org/10.1021/ac00217a015
- M. Parthibavarman, S. Sangeetha, B. Renganathan, R. BoopathiRaja, High-performance fiber optic gas sensor-based Co3O4/mwcnt composite by a novel microwave technique. J. Iran. Chem. Soc. 16(11), 2463–2472 (2019). https://doi.org/10.1007/s13738-019-01717-z
- M. Mitsushio, T. Masunaga, T. Yoshidome, M. Higo, Alcohol selectivity and measurement of ethanol concentrations in liquors using teflon®af2400-coated gold-deposited surface plasmon resonance-based glass rod sensor. Prog. Org. Coat. 91, 33–38 (2016). https://doi.org/10.1016/j.porgcoat.2015.11.014
- M. Akamatsu, T. Mori, K. Okamoto, H. Komatsu, K. Kumagai et al., Detection of ethanol in alcoholic beverages or vapor phase using fluorescent molecules embedded in a nanofibrous polymer. ACS Appl. Mater. Interfaces 7(11), 6189–6194 (2015). https://doi.org/10.1021/acsami.5b00289
- Z.H. Zhang, R. Lockwood, J.G.C. Veinot, A. Meldrum, Detection of ethanol and water vapor with silicon quantum dots coupled to an optical fiber. Sens. Actuators B 181, 523–528 (2013). https://doi.org/10.1016/j.snb.2013.01.070
- A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007). https://doi.org/10.1038/nmat1849
- H. Zhang, Ultrathin two-dimensional nanomaterials. ACS Nano 9(10), 9451–9469 (2015). https://doi.org/10.1021/acsnano.5b05040
- X. Huang, C. Tan, Z. Yin, H. Zhang, 25th anniversary article: hybrid nanostructures based on two-dimensional nanomaterials. Adv. Mater. 26(14), 2185–2203 (2014). https://doi.org/10.1002/adma.201304964
- J. Park, J. Kim, K. Kim, S.-Y. Kim, W.H. Cheong et al., Wearable, wireless gas sensors using highly stretchable and transparent structures of nanowires and graphene. Nanoscale 8(20), 10591–10597 (2016). https://doi.org/10.1039/C6NR01468B
- S. Kabiri Ameri, R. Ho, H. Jang, L. Tao, Y. Wang et al., Graphene electronic tattoo sensors. ACS Nano 11(8), 7634–7641 (2017). https://doi.org/10.1021/acsnano.7b02182
- G. Ko, H.Y. Kim, J. Ahn, Y.M. Park, K.Y. Lee, J. Kim, Graphene-based nitrogen dioxide gas sensors. Curr. Appl. Phys. 10(4), 1002–1004 (2010). https://doi.org/10.1016/j.cap.2009.12.024
- G. Neri, Thin 2D: the new dimensionality in gas sensing. Chemosensors 5(3), 21 (2017). https://doi.org/10.3390/chemosensors5030021
- H. Morgan, C.S. Rout, D.J. Late, in Chapter 14—Future Prospects of 2D Materials for Sensing Applications. ed. by M. Hywel, C.S. Rout, D.J. Late (Woodhead Publishing, 2019), pp. 481–482. https://doi.org/10.1016/B978-0-08-102577-2.00014-2
- A. Nisha, P. Maheswari, P.M. Anbarasan, K.B. Rajesh, Z. Jaroszewicz, Sensitivity enhancement of surface plasmon resonance sensor with 2D material covered noble and magnetic material (Ni). Opt. Quantum Electron. 51(1), 19 (2019). https://doi.org/10.1007/s11082-018-1726-3
- F. Xia, H. Wang, D. Xiao, M. Dubey, A. Ramasubramaniam, Two-dimensional material nanophotonics. Nat. Photon. 8(12), 899–907 (2014). https://doi.org/10.1038/nphoton.2014.271
- A.D. Franklin, Nanomaterials in transistors: from high-performance to thin-film applications. Science 349(6249), aab2750 (2015). https://doi.org/10.1126/science.aab2750
- P. Miró, M. Audiffred, T. Heine, An atlas of two-dimensional materials. Chem. Soc. Rev. 43(18), 6537–6554 (2014). https://doi.org/10.1039/c4cs00102h
- C. Tan, X. Cao, X.J. Wu, Q. He, J. Yang et al., Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117(9), 6225–6331 (2017). https://doi.org/10.1021/acs.chemrev.6b00558
- H. Zeng, X. Cui, An optical spectroscopic study on two-dimensional group-vi transition metal dichalcogenides. Chem. Soc. Rev. 44(9), 2629–2642 (2015). https://doi.org/10.1039/c4cs00265b
- X. Kong, Q. Liu, C. Zhang, Z. Peng, Q. Chen, Elemental two-dimensional nanosheets beyond graphene. Chem. Soc. Rev. 46(8), 2127–2157 (2017). https://doi.org/10.1039/c6cs00937a
- Y. Guo, K. Xu, C. Wu, J. Zhao, Y. Xie, Surface chemical-modification for engineering the intrinsic physical properties of inorganic two-dimensional nanomaterials. Chem. Soc. Rev. 44(3), 637–646 (2015). https://doi.org/10.1039/c4cs00302k
- H. Liu, Y. Du, Y. Deng, P.D. Ye, Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev. 44(9), 2732–2743 (2015). https://doi.org/10.1039/c4cs00257a
- M. Chhowalla, D. Jena, H. Zhang, Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1(11), 16052 (2016). https://doi.org/10.1038/natrevmats.2016.52
- B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2(2), 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
- W. Lei, G. Liu, J. Zhang, M. Liu, Black phosphorus nanostructures: recent advances in hybridization, doping and functionalization. Chem. Soc. Rev. 46(12), 3492–3509 (2017). https://doi.org/10.1039/c7cs00021a
- M.G. Kochameshki, M. Mahmoudian, A. Marjani, K. Farhadi, M. Enayati, H.S. Mollayousefi, Graphene oxide grafted poly(acrylic acid) synthesized via surface initiated raft as a pH-responsive additive for mixed matrix membrane. J. Appl. Polym. Sci. 136(12), 47213 (2019). https://doi.org/10.1002/app.47213
- D. Akinwande, N. Petrone, J. Hone, Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014). https://doi.org/10.1038/ncomms6678
- A. Naseri, R. Barati, F. Rasoulzadeh, M. Bahram, Studies on adsorption of some organic dyes from aqueous solution onto graphene nanosheets. Iran. J. Chem. Chem. Eng. (IJCCE) 34(2), 51–60 (2015)
- P. Kumar, J. Liu, P. Ranjan, Y. Hu, S.S. Yamijala, S.K. Pati, J. Irudayaraj, G.J. Cheng, Alpha lead oxide (α-PbO): a new 2D material with visible light sensitivity. Small 14(12), 1703346 (2018). https://doi.org/10.1002/smll.201703346
- S.J. Choi, I.D. Kim, Recent developments in 2D nanomaterials for chemiresistive-type gas sensors. Electron. Mater. Lett. 14(3), 221–260 (2018). https://doi.org/10.1007/s13391-018-0044-z
- M. Akhtar, G. Anderson, R. Zhao, A. Alruqi, J.E. Mroczkowska, G. Sumanasekera, J.B. Jasinski, Recent advances in synthesis, properties, and applications of phosphorene. NPJ 2D Mater. Appl. 1, 5 (2017). https://doi.org/10.1038/s41699-017-0007-5
- L. Meng, Y. Wang, L. Zhang, S. Du, R. Wu et al., Buckled silicene formation on Ir(111). Nano Lett. 13(2), 685–690 (2013). https://doi.org/10.1021/nl304347w
- M. Fortin-Deschênes, O. Waller, T.O. Menteş, A. Locatelli, S. Mukherjee et al., Synthesis of antimonene on germanium. Nano Lett. 17(8), 4970–4975 (2017). https://doi.org/10.1021/acs.nanolett.7b02111
- M. Servalli, A.D. Schlüter, Synthetic two-dimensional polymers. Ann. Rev. Mater. Res. 47, 361–389 (2017). https://doi.org/10.1146/annurev-matsci-070616-124040
- S. Majdi, A. Jabbari, H. Heli, H. Yadegari, A.A. Moosavi-Movahedi, S. Haghgoo, Electrochemical oxidation and determination of ceftriaxone on a glassy carbon and carbon-nanotube-modified glassy carbon electrodes. J. Solid State Electrochem. 13(3), 407–416 (2009). https://doi.org/10.1007/s10008-008-0567-6
- N. Sattarahmady, H. Heli, S.E. Moradi, Cobalt hexacyanoferrate/graphene nanocomposite-application for the electrocatalytic oxidation and amperometric determination of captopril. Sens. Actuators B 177, 1098–1106 (2013). https://doi.org/10.1016/j.snb.2012.12.035
- H.Q. Li, R.L. Liu, D.Y. Zhao, Y.Y. Xia, Electrochemical properties of an ordered mesoporous carbon prepared by direct tri-constituent co-assembly. Carbon 45(13), 2628–2635 (2007). https://doi.org/10.1016/j.carbon.2007.08.005
- A. Rahi, K. Karimian, H. Heli, Nanostructured materials in electroanalysis of pharmaceuticals. Anal. Biochem. 497, 39–47 (2016). https://doi.org/10.1016/j.ab.2015.12.018
- J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S.J.N. Roth, The structure of suspended graphene sheets. Nature 446(7131), 60–63 (2007). https://doi.org/10.1038/nature05545
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang et al., Electric field in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
- J. Hass, W.A. De Heer, E.H. Conrad, The growth and morphology of epitaxial multilayer graphene. J. Phys.: Condens. Matter 20, 323202 (2008). https://doi.org/10.1038/nature05545
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless dirac fermions in graphene. Nature 438(7065), 197–200 (2005). https://doi.org/10.1038/nature04233
- Y. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum hall effect and berry’s phase in graphene. Nature 438(7065), 201–204 (2005). https://doi.org/10.1038/nature04235
- R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth et al., Fine structure constant defines visual transparency of graphene. Science 320(5881), 1308 (2008). https://doi.org/10.1126/science.1156965
- A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008). https://doi.org/10.1021/nl0731872
- C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008). https://doi.org/10.1126/science.1157996
- X. Huang, Z. Yin, S. Wu, X. Qi, Q. He et al., Graphene-based materials: synthesis, characterization, properties, and applications. Small 7(14), 1876–1902 (2011). https://doi.org/10.1002/smll.201002009
- X. Wang, X. Li, Y. Zhao, Y. Chen, J. Yu, J. Wang, The influence of oxygen functional groups on gas-sensing properties of reduced graphene oxide (rGO) at room temperature. RSC Adv. 6(57), 52339–52346 (2016). https://doi.org/10.1039/c6ra05659h
- J. Chang, G. Zhou, E.R. Christensen, R. Heideman, J. Chen, Graphene-based sensors for detection of heavy metals in water: a review chemosensors and chemoreception. Anal. Bioanal. Chem. 406(16), 3957–3975 (2014). https://doi.org/10.1007/s00216-014-7804-x
- B.C. Brodie, On the atomic weight of graphite. Philos. Trans. R. Soc. Lond. 149, 249–259 (1859). https://doi.org/10.1098/rstl.1859.0013
- L. Staudenmaier, Verfahren zur darstellung der graphitsäure. Ber. Dtsch. Chem. Ges. 31(2), 1481–1487 (1898). https://doi.org/10.1002/cber.18980310237
- D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev. 39(1), 228–240 (2010). https://doi.org/10.1039/B917103G
- W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339 (1958). https://doi.org/10.1021/ja01539a017
- A.M. Abdelkader, I.A. Kinloch, R.A.W. Dryfe, High-yield electro-oxidative preparation of graphene oxide. Chem. Commun. 50(61), 8402–8404 (2014). https://doi.org/10.1039/C4CC03260H
- S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes et al., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007). https://doi.org/10.1016/j.carbon.2007.02.034
- S. Pei, J. Zhao, J. Du, W. Ren, H.M. Cheng, Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 48(15), 4466–4474 (2010). https://doi.org/10.1016/j.carbon.2010.08.006
- J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, S. Guo, Reduction of graphene oxide via l-ascorbic acid. Chem. Commun. 46(7), 1112–1114 (2010). https://doi.org/10.1039/B917705A
- E.C. Salas, Z. Sun, A. Lüttge, J.M. Tour, Reduction of graphene oxide via bacterial respiration. ACS Nano 4(8), 4852–4856 (2010). https://doi.org/10.1021/nn101081t
- D. Chen, L. Li, L. Guo, An environment-friendly preparation of reduced graphene oxide nanosheets via amino acid. Nanotechnology 22(32), 325601 (2011). https://doi.org/10.1088/0957-4484/22/32/325601
- Z.J. Fan, W. Kai, J. Yan, T. Wei, L.J. Zhi et al., Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide. ACS Nano 5(1), 191–198 (2011). https://doi.org/10.1021/nn102339t
- R.S. Dey, S. Hajra, R.K. Sahu, C.R. Raj, M.K. Panigrahi, A rapid room temperature chemical route for the synthesis of graphene: metal-mediated reduction of graphene oxide. Chem. Commun. 48(12), 1787–1789 (2012). https://doi.org/10.1039/c2cc16031e
- Z. Fan, K. Wang, T. Wei, J. Yan, L. Song, B. Shao, An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder. Carbon 48(5), 1686–1689 (2010). https://doi.org/10.1016/j.carbon.2009.12.063
- H.A. Becerril, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, Y. Chen, Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2(3), 463–470 (2008). https://doi.org/10.1021/nn700375n
- S. Nandini, S. Nalini, R. Manjunatha, S. Shanmugam, J.S. Melo, G.S. Suresh, Electrochemical biosensor for the selective determination of hydrogen peroxide based on the Co-deposition of palladium, horseradish peroxidase on functionalized-graphene modified graphite electrode as composite. J. Electroanal. Chem. 689, 233–242 (2013). https://doi.org/10.1016/j.jelechem.2012.11.004
- D. Wu, Y. Li, Y. Zhang, P. Wang, Q. Wei, B. Du, Sensitive electrochemical sensor for simultaneous determination of dopamine, ascorbic acid, and uric acid enhanced by amino-group functionalized mesoporous Fe3O4@graphene sheets. Electrochim. Acta 116, 244–249 (2014). https://doi.org/10.1016/j.electacta.2013.11.033
- M. Cittadini, M. Bersani, F. Perrozzi, L. Ottaviano, W. Wlodarski, A. Martucci, Graphene oxide coupled with gold nanoparticles for localized surface plasmon resonance based gas sensor. Carbon 69, 452–459 (2014). https://doi.org/10.1016/j.carbon.2013.12.048
- X. Li, Z. Zheng, X. Liu, S. Zhao, S. Liu, Nanostructured photoelectrochemical biosensor for highly sensitive detection of organophosphorous pesticides. Biosens. Bioelectron. 64, 1–5 (2015). https://doi.org/10.1016/j.bios.2014.08.006
- P. Ramesh, B. Jebasingh, A facile synthesis of bis-(pththalimidoethyl)-amine functionalized graphene oxide and its dual performance as a supercapacitor electrode and fluorescence sensor. Mater. Chem. Phys. 222, 45–54 (2019). https://doi.org/10.1016/j.matchemphys.2018.09.075
- Q. Zhang, J. Zhao, W. Liu, Y. Yue, K. Yu, D. Xu, X. Ding, Graphene oxide-based fluorescence sensor for betaxolol hydrochloride detection in plasma. J. Chem. Soc. Pak. 40(3), 519–528 (2018)
- R. Mitra, A. Saha, Reduced graphene oxide based “turn-on” fluorescence sensor for highly reproducible and sensitive detection of small organic pollutants. ACS Sustain. Chem. Eng. 5(1), 604–615 (2017). https://doi.org/10.1021/acssuschemeng.6b01971
- S.K. Basiruddin, S.K. Swain, Phenylboronic acid functionalized reduced graphene oxide based fluorescence nano sensor for glucose sensing. Mater. Sci. Eng. C 58, 103–109 (2016). https://doi.org/10.1016/j.msec.2015.07.068
- A.K. Sharma, A. Dominic, Fluoride fiber-optic SPR sensor with graphene and NaF layers: analysis of accuracy, sensitivity, and specificity in near infrared. IEEE Sens. J. 18(10), 4053–4058 (2018). https://doi.org/10.1109/JSEN.2018.2818197
- R. Majidi, A.R. Karami, Caffeine and nicotine adsorption on perfect, defective and porous graphene sheets. Diam. Relat. Mater. 66, 47–51 (2016). https://doi.org/10.1016/j.diamond.2016.03.014
- M. Divagar, A. Gowri, S. John, V.V.R. Sai, Graphene oxide coated U-bent plastic optical fiber based chemical sensor for organic solvents. Sens. Actuators B 262, 1006–1012 (2018). https://doi.org/10.1016/j.snb.2018.02.059
- H. Teymourian, A. Salimi, S.J.B. Khezrian, Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform. Biosens. Bioelectron. 49, 1–8 (2013). https://doi.org/10.1016/j.bios.2013.04.034
- Z.-H. Sheng, X.-Q. Zheng, J.-Y. Xu, W.-J. Bao, F.-B. Wang, X.-H.J.B. Xia, Bioelectronics. Electrochemical sensor based on nitrogen doped graphene: simultaneous determination of ascorbic acid, dopamine and uric acid. Sens. Actuators B 34(1), 125–131 (2012). https://doi.org/10.1016/j.bios.2012.01.030
- R. Antiochia, L.J.S. Gorton, A.B. Chemical, A new osmium-polymer modified screen-printed graphene electrode for fructose detection. Sens. Actuators B 195, 287–293 (2014). https://doi.org/10.1016/j.snb.2014.01.050
- N. Ruecha, R. Rangkupan, N. Rodthongkum, O.J.B. Chailapakul, Novel paper-based cholesterol biosensor using graphene/polyvinylpyrrolidone/polyaniline nanocomposite. Biosens. Bioelectron. 52, 13–19 (2014). https://doi.org/10.1016/j.bios.2013.08.018
- Y. Song, Y. Luo, C. Zhu, H. Li, D. Du, Y. Lin, Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials. Biosens. Bioelectron. 76, 195–212 (2016). https://doi.org/10.1016/j.bios.2015.07.002
- H. Hashemzadeh, H. Raissi, Covalent organic framework as smart and high efficient carrier for anticancer drug delivery: a DFT calculations and molecular dynamics simulation study. J. Phys. D-Appl. Phys. 51(34), 345401 (2018). https://doi.org/10.1088/1361-6463/aad3e8
- Z.B. Liu, Y.F. Xu, X.Y. Zhang, X.L. Zhang, Y.S. Chen, J.G. Tian, Porphyrin and fullerene covalently functionalized graphene hybrid materials with large nonlinear optical properties. J. Phys. Chem. B 113(29), 9681–9686 (2009). https://doi.org/10.1021/jp9004357
- L. Feng, L. Wu, J. Wang, J. Ren, D. Miyoshi, N. Sugimoto, X. Qu, Detection of a prognostic indicator in early-stage cancer using functionalized graphene-based peptide sensors. Adv. Mater. 24(1), 125–131 (2012). https://doi.org/10.1002/adma.201103205
- J. Labuta, J.P. Hill, S. Ishihara, L. Hanyková, K. Ariga, Chiral sensing by nonchiral tetrapyrroles. Acc. Chem. Res. 48(3), 521–529 (2015). https://doi.org/10.1021/acs.accounts.5b00005
- H. Li, G. Lu, Y. Wang, Z. Yin, C. Cong et al., Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2. Small 9(11), 1974–1981 (2013). https://doi.org/10.1002/smll.201202919
- Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey, H. Zhang, Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew. Chem. Int. Ed. 50(47), 11093–11097 (2011). https://doi.org/10.1002/anie.201106004
- J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King et al., Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331(6017), 568–571 (2011). https://doi.org/10.1126/science.1194975
- K.K. Liu, W. Zhang, Y.H. Lee, Y.C. Lin, M.T. Chang et al., Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12(3), 1538–1544 (2012). https://doi.org/10.1021/nl2043612
- W.T. Koo, J.H. Cha, J.W. Jung, S.J. Choi, J.S. Jang, D.H. Kim, I.D. Kim, Few-layered WS2 nanoplates confined in Co, N-doped hollow carbon nanocages: abundant WS2 edges for highly sensitive gas sensors. Adv. Funct. Mater. 28(36), 1802575 (2018). https://doi.org/10.1002/adfm.201802575
- S.R. Shakil, S.A. Khan, Sensing properties of gas sensor based on adsorption of NO2 with defect, pristine, Fe and Si–MoS2 layer. J. Nano Electron. Phys. 6(4), 04004-1 (2014)
- J.H. Cha, S.J. Choi, S. Yu, I.D. Kim, 2D WS2-edge functionalized multi-channel carbon nanofibers: effect of WS2 edge-abundant structure on room temperature NO2 sensing. J. Mater. Chem. A 5(18), 8725–8732 (2017). https://doi.org/10.1039/c6ta11019c
- Z. Qin, K. Xu, H. Yue, H. Wang, J. Zhang, C. Ouyang, C. Xie, D. Zeng, Enhanced room-temperature NH3 gas sensing by 2D SnS2 with sulfur vacancies synthesized by chemical exfoliation. Sens. Actuators B 262, 771–779 (2018). https://doi.org/10.1016/j.snb.2018.02.060
- Y. Wang, Z. Sofer, J. Luxa, M. Pumera, Lithium exfoliated vanadium dichalcogenides (VS2, VSe2, VTe2) exhibit dramatically different properties from their bulk counterparts. Adv. Mater. Interfaces 3(23), 1600433 (2016). https://doi.org/10.1002/admi.201600433
- J. Wu, Y. Lu, Z. Wu, S. Li, Q. Zhang et al., Two-dimensional molybdenum disulfide (MoS2) with gold nanoparticles for biosensing of explosives by optical spectroscopy. Sens. Actuators B 261, 279–287 (2018). https://doi.org/10.1016/j.snb.2018.01.166
- T.D. Thanh, N.D. Chuong, H.V. Hien, T. Kshetri, L.H. Tuan, N.H. Kim, J.H. Lee, Recent advances in two-dimensional transition metal dichalcogenides-graphene heterostructured materials for electrochemical applications. Prog. Mater. Sci. 96, 51–85 (2018). https://doi.org/10.1016/j.pmatsci.2018.03.007
- X. Cao, Ultra-sensitive electrochemical DNA biosensor based on signal amplification using gold nanoparticles modified with molybdenum disulfide, graphene and horseradish peroxidase. Microchim. Acta 181(9–10), 1133–1141 (2014). https://doi.org/10.1007/s00604-014-1301-y
- Y. Chu, B. Cai, Y. Ma, M. Zhao, Z. Ye, J. Huang, Highly sensitive electrochemical detection of circulating tumor DNA based on thin-layer MoS2/graphene composites. RSC Adv. 6(27), 22673–22678 (2016). https://doi.org/10.1039/c5ra27625j
- K.J. Huang, Y.J. Liu, H.B. Wang, T. Gan, Y.M. Liu, L.L. Wang, Signal amplification for electrochemical DNA biosensor based on two-dimensional graphene analogue tungsten sulfide–graphene composites and gold nanoparticles. Sens. Actuators B 191, 828–836 (2014). https://doi.org/10.1016/j.snb.2013.10.072
- J. Zhu, E. Ha, G. Zhao, Y. Zhou, D. Huang et al., Recent advance in MXenes: a promising 2D material for catalysis, sensor and chemical adsorption. Coord. Chem. Rev. 352, 306–327 (2017). https://doi.org/10.1016/j.ccr.2017.09.012
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- M. Naguib, V.N. Mochalin, M.W. Barsoum, Y.J.A.M. Gogotsi, 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater. 26(7), 992–1005 (2014). https://doi.org/10.1002/adma.201304138
- M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516(7529), 78–81 (2014). https://doi.org/10.1038/nature13970
- M.A. Hope, A.C. Forse, K.J. Griffith, M.R. Lukatskaya, M. Ghidiu, Y. Gogotsi, C. Grey, NMR reveals the surface functionalisation of Ti3C2 MXene. Phys. Chem. Chem. Phys. 18(7), 5099–5102 (2016). https://doi.org/10.1039/C6CP00330C
- P. Urbankowski, B. Anasori, T. Makaryan, D. Er, S. Kota et al., Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale 8(22), 11385–11391 (2016). https://doi.org/10.1039/C6NR02253G
- B. Xu, M. Zhu, W. Zhang, X. Zhen, Z. Pei, Q. Xue, C. Zhi, P. Shi, Ultrathin MXene-micropattern-based field-effect transistor for probing neural activity. Adv. Mater. 28(17), 3333–3339 (2016). https://doi.org/10.1002/adma.201504657
- Y. Ma, N. Liu, L. Li, X. Hu, Z. Zou et al., A highly flexible and sensitive piezoresistive sensor based on mxene with greatly changed interlayer distances. Nat. Commun. 8(1), 1207 (2017). https://doi.org/10.1038/s41467-017-01136-9
- F. Wang, C. Yang, M. Duan, Y. Tang, J.J.B. Zhu, TiO2 nanoparticle modified organ-like Ti3C2 mxene nanocomposite encapsulating hemoglobin for a mediator-free biosensor with excellent performances. Biosens. Bioelectron. 74, 1022–1028 (2015). https://doi.org/10.1016/j.bios.2015.08.004
- G.S. Papaefstathiou, T. Friščić, L.R. MacGillivray, Design and construction of a 2D metal organic framework with multiple cavities: a nonregular net with a paracyclophane that codes for multiply fused nodes. J. Am. Chem. Soc. 127(41), 14160–14161 (2005). https://doi.org/10.1021/ja054841n
- T.N. Tu, M.V. Nguyen, H.L. Nguyen, B. Yuliarto, K.E. Cordova, S. Demir, Designing bipyridine-functionalized zirconium metal–organic frameworks as a platform for clean energy and other emerging applications. Coord. Chem. Rev. 364, 33–50 (2018). https://doi.org/10.1016/j.ccr.2018.03.014
- W. Zhao, J. Peng, W. Wang, S. Liu, Q. Zhao, W. Huang, Ultrathin two-dimensional metal–organic framework nanosheets for functional electronic devices. Coord. Chem. Rev. 377, 44–63 (2018). https://doi.org/10.1016/j.ccr.2018.08.023
- H. Wang, Q.-L. Zhu, R. Zou, Q. Xu, Metal–organic frameworks for energy applications. Chem 2(1), 52–80 (2017). https://doi.org/10.1016/j.chempr.2016.12.002
- C. Sengottaiyan, R. Jayavel, R.G. Shrestha, T. Subramani, S. Maji et al., Indium oxide/carbon nanotube/reduced graphene oxide ternary nanocomposite with enhanced electrochemical supercapacitance. Bull. Chem. Soc. Jpn. 92(3), 521–528 (2018). https://doi.org/10.1246/bcsj.20180338
- X. Wang, C. Chi, K. Zhang, Y. Qian, K.M. Gupta, Z. Kang, J. Jiang, D. Zhao, Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal–organic nanosheets for gas separation. Nat. Commun. 8, 14460 (2017). https://doi.org/10.1038/ncomms14460
- C. Hermosa, B.R. Horrocks, J.I. Martínez, F. Liscio, J. Gómez-Herrero, F. Zamora, Mechanical and optical properties of ultralarge flakes of a metal–organic framework with molecular thickness. Chem. Sci. 6(4), 2553–2558 (2015). https://doi.org/10.1039/C4SC03115F
- P. Amo-Ochoa, L. Welte, R. González-Prieto, P.J. Sanz Miguel, C.J. Gómez-García et al., Single layers of a multifunctional laminar Cu(i, ii) coordination polymer. Chem. Commun. 46(19), 3262–3264 (2010). https://doi.org/10.1039/B919647A
- Y. Ding, Y.-P. Chen, X. Zhang, L. Chen, Z. Dong et al., Controlled intercalation and chemical exfoliation of layered metal–organic frameworks using a chemically labile intercalating agent. J. Am. Chem. Soc. 139(27), 9136–9139 (2017). https://doi.org/10.1021/jacs.7b04829
- J. Huang, Y. Li, R.-K. Huang, C.-T. He, L. Gong et al., Electrochemical exfoliation of pillared-layer metal–organic framework to boost the oxygen evolution reaction. Angew. Chem. Int. Ed. 130(17), 4722–4726 (2018). https://doi.org/10.1002/ange.201801029
- L. Cao, Z. Lin, F. Peng, W. Wang, R. Huang et al., Self-supporting metal–organic layers as single-site solid catalysts. Angew. Chem. Int. Ed. 55(16), 4962–4966 (2016). https://doi.org/10.1002/anie.201512054
- R. Dong, Z. Zheng, D.C. Tranca, J. Zhang, N. Chandrasekhar et al., Immobilizing molecular metal dithiolene–diamine complexes on 2D metal–organic frameworks for electrocatalytic H2 production. Chemistry 23(10), 2255–2260 (2017). https://doi.org/10.1002/chem.201605337
- A. Pustovarenko, M.G. Goesten, S. Sachdeva, M. Shan, Z. Amghouz et al., Nanosheets of nonlayered aluminum metal–organic frameworks through a surfactant-assisted method. Adv. Mater. 30(26), 1707234 (2018). https://doi.org/10.1002/adma.201707234
- M. Zhao, Y. Wang, Q. Ma, Y. Huang, X. Zhang et al., Ultrathin 2D metal–organic framework nanosheets. Adv. Mater. 27(45), 7372–7378 (2015). https://doi.org/10.1002/adma.201503648
- J. Duan, S. Chen, C. Zhao, Ultrathin metal–organic framework array for efficient electrocatalytic water splitting. Nat. Commun. 8, 15341 (2017). https://doi.org/10.1038/ncomms15341
- S. He, Y. Chen, Z. Zhang, B. Ni, W. He, X. Wang, Competitive coordination strategy for the synthesis of hierarchical-pore metal–organic framework nanostructures. Chem. Sci. 7(12), 7101–7105 (2016). https://doi.org/10.1039/C6SC02272C
- I. Stassen, N. Burtch, A. Talin, P. Falcaro, M. Allendorf, R. Ameloot, An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors. Chem. Soc. Rev. 46(11), 3185–3241 (2017). https://doi.org/10.1039/C7CS00122C
- L. Liu, Y. Zhou, S. Liu, M. Xu, The applications of metal − organic frameworks in electrochemical sensors. ChemElectroChem 5(1), 6–19 (2018). https://doi.org/10.1002/celc.201700931
- M.G. Campbell, D. Sheberla, S.F. Liu, T.M. Swager, M. Dincă, Cu3(hexaiminotriphenylene)2: an electrically conductive 2D metal–organic framework for chemiresistive sensing. Angew. Chem. Int. Ed. 54(14), 4349–4352 (2015). https://doi.org/10.1002/anie.201411854
- R. Boroujerdi, Ce(iii)—porphyrin sandwich complex Ce2(tpp)3: a rod-like nanoparticle as a fluorescence turn-off probe for detection of Hg(ii) and Cu(ii). J. Fluoresc. 26(3), 781–790 (2016). https://doi.org/10.1007/s10895-015-1761-4
- W.P. Lustig, S. Mukherjee, N.D. Rudd, A.V. Desai, J. Li, S.K. Ghosh, Metal–organic frameworks: functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev. 46(11), 3242–3285 (2017). https://doi.org/10.1039/C6CS00930A
- X.-J. Liu, Y.-H. Zhang, Z. Chang, A.-L. Li, D. Tian et al., A water-stable metal–organic framework with a double-helical structure for fluorescent sensing. Inorg. Chem. 55(15), 7326–7328 (2016). https://doi.org/10.1021/acs.inorgchem.6b00935
- M. Zhang, G. Feng, Z. Song, Y.-P. Zhou, H.-Y. Chao et al., Two-dimensional metal–organic framework with wide channels and responsive turn-on fluorescence for the chemical sensing of volatile organic compounds. J. Am. Chem. Soc. 136(20), 7241–7244 (2014). https://doi.org/10.1021/ja502643p
- Z.-Q. Li, L.-G. Qiu, W. Wang, T. Xu, Y. Wu, X. Jiang, Fabrication of nanosheets of a fluorescent metal–organic framework [Zn(bdc)(H2O)]n (bdc = 1,4-benzenedicarboxylate): ultrasonic synthesis and sensing of ethylamine. Inorg. Chem. Commun. 11(11), 1375–1377 (2008). https://doi.org/10.1016/j.inoche.2008.09.010
- P.R. Solanki, A. Kaushik, V.V. Agrawal, B.D. Malhotra, Nanostructured metal oxide-based biosensors. NPG Asia Mater. 3, 17 (2011). https://doi.org/10.1038/asiamat.2010.137
- K. Shavanova, Y. Bakakina, I. Burkova, I. Shtepliuk, R. Viter et al., Application of 2D non-graphene materials and 2D oxide nanostructures for biosensing technology. Sensors 16(2), 223 (2016). https://doi.org/10.3390/s16020223
- Y. Shu, J. Xu, J. Chen, Q. Xu, X. Xiao, D. Jin, H. Pang, X. Hu, Ultrasensitive electrochemical detection of H2O2 in living cells based on ultrathin MnO2 nanosheets. Sens. Actuators B 252, 72–78 (2017). https://doi.org/10.1016/j.snb.2017.05.124
- M.R. Alenezi, A.S. Alshammari, T.H. Alzanki, P. Jarowski, S.J. Henley, S.R.P. Silva, ZnO nanodisk based uv detectors with printed electrodes. Langmuir 30(13), 3913–3921 (2014). https://doi.org/10.1021/la500143w
- A.P. Dral, J.E. Elshof, 2D metal oxide nanoflakes for sensing applications: review and perspective. Sens. Actuators B 272, 369–392 (2018). https://doi.org/10.1016/j.snb.2018.05.157
- D. Chen, X. Hou, H. Wen, Y. Wang, H. Wang et al., The enhanced alcohol-sensing response of ultrathin WO3 nanoplates. Nanotechnology 21(3), 035501 (2010). https://doi.org/10.1088/0957-4484/21/3/035501
- Z. Jing, J. Zhan, Fabrication and gas-sensing properties of porous ZnO nanoplates. Adv. Mater. 20(23), 4547–4551 (2008). https://doi.org/10.1002/adma.200800243
- Y.J. Chen, L. Nie, X.Y. Xue, Y.G. Wang, T.H. Wang, Linear ethanol sensing of SnO2 nanorods with extremely high sensitivity. Appl. Phys. Lett. 88(8), 083105 (2006). https://doi.org/10.1063/1.2166695
- X.Y. Xue, Y.J. Chen, Y.G. Liu, S.L. Shi, Y.G. Wang, T.H. Wang, Synthesis and ethanol sensing properties of indium-doped tin oxide nanowires. Appl. Phys. Lett. 88(20), 201907 (2006). https://doi.org/10.1063/1.2203941
- Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, C.L. Lin, Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 84(18), 3654–3656 (2004). https://doi.org/10.1063/1.1738932
- X.Y. Xue, Y.J. Chen, Y.G. Wang, T.H. Wang, Synthesis and ethanol sensing properties of ZnSnO3 nanowires. Appl. Phys. Lett. 86(23), 1–3 (2005). https://doi.org/10.1063/1.1944204
- X.Y. Xue, Y.J. Chen, Q.H. Li, C. Wang, Y.G. Wang, T.H. Wang, Electronic transport characteristics through individual ZnSnO3 nanowires. Appl. Phys. Lett. 88(18), 182102 (2006). https://doi.org/10.1063/1.2199612
- H. Zeng, C. Zhi, Z. Zhang, X. Wei, X. Wang et al., “White graphenes”: boron nitride nanoribbons via boron nitride nanotube unwrapping. Nano Lett. 10(12), 5049–5055 (2010). https://doi.org/10.1021/nl103251m
- K. Zhang, Y. Feng, F. Wang, Z. Yang, J. Wang, Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications. J. Mater. Chem. C 5(46), 11992–12022 (2017). https://doi.org/10.1039/c7tc04300g
- D. Pacile, J. Meyer, Ç. Girit, A. Zettl, The two-dimensional phase of boron nitride: few-atomic-layer sheets and suspended membranes. Appl. Phys. Lett. 92(13), 133107 (2008). https://doi.org/10.1063/1.2903702
- Y. Lin, J.W.J.N. Connell, Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene. Nanoscale 4(22), 6908–6939 (2012). https://doi.org/10.1039/c2nr32201c
- A. Pakdel, C. Zhi, Y. Bando, D. Golberg, Low-dimensional boron nitride nanomaterials. Mater. Today 15(6), 256–265 (2012). https://doi.org/10.1016/S1369-7021(12)70116-5
- A. Pakdel, Y. Bando, D. Golberg, Nano boron nitride flatland. Chem. Soc. Rev. 43(3), 934–959 (2014). https://doi.org/10.1039/c3cs60260e
- A. Pakdel, X. Wang, C. Zhi, Y. Bando, K. Watanabe et al., Facile synthesis of vertically aligned hexagonal boron nitride nanosheets hybridized with graphitic domains. J. Mater. Chem. 22(11), 4818–4824 (2012). https://doi.org/10.1039/c2jm15109j
- T. Ouyang, Y. Chen, Y. Xie, K. Yang, Z. Bao, J.J.N. Zhong, Thermal transport in hexagonal boron nitride nanoribbons. Nanotechnology 21(24), 245701 (2010). https://doi.org/10.1088/0957-4484/21/24/245701
- J. Wang, F. Ma, M. Sun, Graphene, hexagonal boron nitride, and their heterostructures: properties and applications. RSC Adv. 7(27), 16801–16822 (2017). https://doi.org/10.1039/c7ra00260b
- R. Gao, L. Yin, C. Wang, Y. Qi, N. Lun et al., High-yield synthesis of boron nitride nanosheets with strong ultraviolet cathodoluminescence emission. J. Phys. Chem. C 113(34), 15160–15165 (2009). https://doi.org/10.1021/jp904246j
- K. Watanabe, T. Taniguchi, H. Kanda, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3(6), 404 (2004). https://doi.org/10.1038/nmat1134
- V. Barone, J. Peralta, Magnetic boron nitride nanoribbons with tunable electronic properties. Nano Lett. 8(8), 2210–2214 (2008). https://doi.org/10.1021/nl080745j
- K. Novoselov, D. Jiang, F. Schedin, T. Booth, V. Khotkevich, S. Morozov, A. Geim, Two-dimensional atomic crystals. PNAS 102(30), 10451–10453 (2005). https://doi.org/10.1073/pnas.0502848102
- L. Jiao, L. Zhang, X. Wang, G. Diankov, H. Dai, Narrow graphene nanoribbons from carbon nanotubes. Nature 458(7240), 877 (2009). https://doi.org/10.1038/nature07919
- S. Zhang, G. Lian, H. Si, J. Wang, X. Zhang et al., Ultrathin BN nanosheets with zigzag edge: one-step chemical synthesis, applications in wastewater treatment and preparation of highly thermal-conductive BN—polymer composites. J. Mater. Chem. A 1(16), 5105–5112 (2013). https://doi.org/10.1039/c3ta01597a
- W.-Q. Han, H.-G. Yu, Z. Liu, Convert graphene sheets to boron nitride and boron nitride–carbon sheets via a carbon-substitution reaction. Appl. Phys. Lett. 98(20), 203112 (2011). https://doi.org/10.1063/1.3593492
- F. Müller, K. Stöwe, H. Sachdev, Symmetry versus commensurability: epitaxial growth of hexagonal boron nitride on Pt(111) from b-trichloroborazine (CLBNH)3. Chem. Mater. 17(13), 3464–3467 (2005). https://doi.org/10.1021/cm048629e
- C. Zhi, Y. Bando, C. Tang, H. Kuwahara, D. Golberg, Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv. Mater. 21(28), 2889–2893 (2009). https://doi.org/10.1002/adma.200900323
- M.L. Yola, N. Atar, A novel detection approach for serotonin by graphene quantum dots/two-dimensional (2D) hexagonal boron nitride nanosheets with molecularly imprinted polymer. Appl. Surf. Sci. 458, 648–655 (2018). https://doi.org/10.1016/j.apsusc.2018.07.142
- M. Sajjad, P. Feng, Study the gas sensing properties of boron nitride nanosheets. Mater. Res. Bull. 49, 35–38 (2014). https://doi.org/10.1016/j.materresbull.2013.08.019
- R.-M. Kong, X.-B. Zhang, L.-L. Zhang, X.-Y. Jin, S.-Y. Huan, G.-L. Shen, R.-Q. Yu, An ultrasensitive electrochemical “turn-on” label-free biosensor for Hg2+ with aunp-functionalized reporter DNA as a signal amplifier. Chem. Commun. 37, 5633–5635 (2009). https://doi.org/10.1039/B911163H
- Y.-H. Sun, R.-M. Kong, D.-Q. Lu, X.-B. Zhang, H.-M. Meng, W. Tan, G.-L. Shen, R.-Q. Yu, A nanoscale DNA–Au dendrimer as a signal amplifier for the universal design of functional DNA-based sers biosensors. Chem. Commun. 47(13), 3840–3842 (2011). https://doi.org/10.1039/C0CC05133K
- A.R. Fakhari, A. Sahragard, H. Ahmar, Development of an electrochemical sensor based on reduced graphene oxide modified screen-printed carbon electrode for the determination of buprenorphine. Electroanalysis 26(11), 2474–2483 (2014). https://doi.org/10.1002/elan.201400196
- A. Navaee, A. Salimi, H. Teymourian, Graphene nanosheets modified glassy carbon electrode for simultaneous detection of heroine, morphine and noscapine. Biosens. Bioelectron. 31(1), 205–211 (2012). https://doi.org/10.1016/j.bios.2011.10.018
- X. Xu, J. Zhou, Y. Xin, G. Lubineau, Q. Ma, L. Jiang, Alcohol recognition by flexible, transparent and highly sensitive graphene-based thin-film sensors. Sci. Rep. 7(1), 4317 (2017). https://doi.org/10.1038/s41598-017-04636-2
- G.J. Thangamani, K. Deshmukh, K. Chidambaram, M.B. Ahamed, K.K. Sadasivuni et al., Influence of CuO nanoparticles and graphene nanoplatelets on the sensing behaviour of poly(vinyl alcohol) nanocomposites for the detection of ethanol and propanol vapors. J. Mater. Sci.: Mater. Electron. 29(6), 5186–5205 (2018). https://doi.org/10.1007/s10854-017-8484-z
- A. Lipatov, A. Varezhnikov, P. Wilson, V. Sysoev, A. Kolmakov, A. Sinitskii, Highly selective gas sensor arrays based on thermally reduced graphene oxide. Nanoscale 5(12), 5426–5434 (2013). https://doi.org/10.1039/c3nr00747b
- C.A. Zito, T.M. Perfecto, C.S. Fonseca, D.P. Volanti, Effective reduced graphene oxide sheets/hierarchical flower-like NiO composites for methanol sensing under high humidity. New J. Chem. 42(11), 8638–8645 (2018). https://doi.org/10.1039/c8nj01061g
- J. Tan, M. Dun, L. Li, J. Zhao, W. Tan, Z. Lin, X.J.S. Huang, Synthesis of hollow and hollowed-out Co3O4 microspheres assembled by porous ultrathin nanosheets for ethanol gas sensors: responding and recovering in one second. Sens. Actuators B 249, 44–52 (2017). https://doi.org/10.1016/j.snb.2017.04.063
- E. Lee, D. Lee, J. Yoon, Y. Yin, Y. Lee, S. Uprety, Y. Yoon, D.-J.J.S. Kim, Enhanced gas-sensing performance of GO/TiO2 composite by photocatalysis. Sensors 18(10), 3334 (2018). https://doi.org/10.3390/s18103334
- Z. Yin, Z. Sun, J. Wu, R. Liu, S. Zhang, Y. Qian, Y. Min, Facile synthesis of hexagonal single-crystalline ZnCo2O4 nanosheet arrays assembled by mesoporous nanosheets as electrodes for high-performance electrochemical capacitors and gas sensors. Appl. Surf. Sci. 457, 1103–1109 (2018). https://doi.org/10.1016/j.apsusc.2018.06.297
- Y. Liu, Y. Jiao, Z. Zhang, F. Qu, A. Umar, X. Wu, Hierarchical SnO2 nanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor, and supercapacitor applications. ACS Appl. Mater. Interfaces 6(3), 2174–2184 (2014). https://doi.org/10.1021/am405301v
- L. Liu, P. Song, Q. Wei, X. Zhong, Z. Yang, Q. Wang, Synthesis of porous SnO2 hexagon nanosheets loaded with au nanoparticles for high performance gas sensors. Mater. Lett. 201, 211–215 (2017). https://doi.org/10.1016/j.matlet.2017.05.024
- C. Zhang, Z.L. Hou, B.X. Zhang, H.M. Fang, S. Bi, High sensitivity self-recovery ethanol sensor based on polyporous graphene oxide/melamine composites. Carbon 137, 467–474 (2018). https://doi.org/10.1016/j.carbon.2018.05.055
- P.X. Zhao, Y. Tang, J. Mao, Y.X. Chen, H. Song et al., One-dimensional MoS2-decorated TiO2 nanotube gas sensors for efficient alcohol sensing. J. Alloys Compd. 674, 252–258 (2016). https://doi.org/10.1016/j.jallcom.2016.03.029
- H. Yan, P. Song, S. Zhang, Z. Yang, Q.J.R.A. Wang, Dispersed SnO2 nanoparticles on MoS2 nanosheets for superior gas-sensing performances to ethanol. RSC Adv. 5(97), 79593–79599 (2015). https://doi.org/10.1039/C5RA15019A
- H. Yan, P. Song, S. Zhang, Z. Yang, Q. Wang, Facile synthesis, characterization and gas sensing performance of Zno nanoparticles-coated MoS2 nanosheets. J. Alloys Compd. 662, 118–125 (2016). https://doi.org/10.1016/j.jallcom.2015.12.066
- G. Jiang, M. Goledzinowski, F.J.E. Comeau, H. Zarrin et al., Free-standing functionalized graphene oxide solid electrolytes in electrochemical gas sensors. Adv. Funct. Mater. 26(11), 1729–1736 (2016). https://doi.org/10.1002/adfm.201504604
- S. Liang, J. Zhu, J. Ding, H. Bi, P. Yao, Q. Han, X. Wang, Deposition of cocoon-like ZnO on graphene sheets for improving gas-sensing properties to ethanol. Appl. Surf. Sci. 357, 1593–1600 (2015). https://doi.org/10.1016/j.apsusc.2015.10.033
- C. Zhao, H. Gong, W. Lan, R. Ramachandran, H. Xu, S. Liu, F.J.S. Wang, A.B. Chemical, Facile synthesis of SnO2 hierarchical porous nanosheets from graphene oxide sacrificial scaffolds for high-performance gas sensors. Sens. Actuators B 258, 492–500 (2018). https://doi.org/10.1016/j.snb.2017.11.167
- D. Zhang, X. Fan, A. Yang, X. Zong, Hierarchical assembly of urchin-like alpha-iron oxide hollow microspheres and molybdenum disulphide nanosheets for ethanol gas sensing. J. Colloid Interface Sci. 523, 217–225 (2018). https://doi.org/10.1016/j.jcis.2018.03.109
- L. Li, C. Zhang, R. Zhang, X. Gao, S. He et al., 2D ultrathin Co3O4 nanosheet array deposited on 3D carbon foam for enhanced ethanol gas sensing application. Sens. Actuators B 244, 664–672 (2017). https://doi.org/10.1016/j.snb.2017.01.056
- S.J. Kim, H.-J. Koh, C.E. Ren, O. Kwon, K. Maleski et al., Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12(2), 986–993 (2018). https://doi.org/10.1021/acsnano.7b07460
- C. Yuejiao, Y. Ling, L. Qing, W. Yan, L. Qiuhong, W. Taihong, An evolution from 3D face-centered-cubic ZnSnO3 nanocubes to 2D orthorhombic ZnSnO3 nanosheets with excellent gas sensing performance. Nanotechnology 23(41), 415501 (2012). https://doi.org/10.1088/0957-4484/23/41/415501
- E. Lee, A. VahidMohammadi, B.C. Prorok, Y.S. Yoon, M. Beidaghi, D.-J. Kim, Room temperature gas sensing of two-dimensional titanium carbide (MXene). ACS Appl. Mater. Interfaces 9(42), 37184–37190 (2017). https://doi.org/10.1021/acsami.7b11055
- L. Lin, T. Liu, Y. Zhang, R. Sun, W. Zeng, Z. Wang, Synthesis of boron nitride nanosheets with a few atomic layers and their gas-sensing performance. Ceram. Int. 42(1, Part A), 971–975 (2016). https://doi.org/10.1016/j.ceramint.2015.08.109
- B.P. Mathew, H.J. Yang, J. Kim, J.B. Lee, Y.T. Kim et al., An annulative synthetic strategy for building triphenylene frameworks by multiple C–H bond activations. Angew. Chem. Int. Ed. 56(18), 5007–5011 (2017). https://doi.org/10.1002/anie.201700405
- R.K. Jha, M. Wan, C. Jacob, P.K. Guha, Enhanced gas sensing properties of liquid-processed semiconducting tungsten chalcogenide (WXi, x = O and S) based hybrid nanomaterials. IEEE Sens. J. 18(9), 3494–3501 (2018). https://doi.org/10.1109/JSEN.2018.2810811
- L. Yu, H. Song, Y. Tang, L. Zhang, Y. Lv, Controllable deposition of ZnO-doped SnO2 nanowires on Au/graphene and their application in cataluminescence sensing for alcohols and ketones. Sens. Actuators B 203, 726–735 (2014). https://doi.org/10.1016/j.snb.2014.06.015
- Z. Li, A.A. Haidry, Y. Liu, L. Sun, L. Xie et al., Strongly coupled Ag/TiO2 heterojunction: from one-step facile synthesis to effective and stable ethanol sensing performances. J. Mater. Sci.: Mater. Electron. 29(22), 19219–19227 (2018). https://doi.org/10.1007/s10854-018-0048-3
- A.K. Sharma, B. Kaur, Chalcogenide fiber-optic SPR chemical sensor with MoS2 monolayer, polymer clad, and polythiophene layer in NIR using selective ray launching. Opt. Fiber Technol. 43, 163–168 (2018). https://doi.org/10.1016/j.yofte.2018.05.003
- H.-K. Jeong, Y.P. Lee, M.H. Jin, E.S. Kim, J.J. Bae, Y. Lee, Thermal stability of graphite oxide. Chem. Phys. Lett. 470(4–6), 255–258 (2009). https://doi.org/10.1016/j.cplett.2009.01.050
- B. Xu, S. Yue, Z. Sui, X. Zhang, S. Hou, G. Cao, Y.J.E. Yang, E. Science, What is the choice for supercapacitors: Graphene or graphene oxide? Energy Environ. Sci. 4(8), 2826–2830 (2011). https://doi.org/10.1039/c1ee01198g
- M.S. Peresin, Y. Habibi, J.O. Zoppe, J.J. Pawlak, O.J.J.B. Rojas, Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromolecules 11(3), 674–681 (2010). https://doi.org/10.1021/bm901254n
- S. Tanpichai, F. Quero, M. Nogi, H. Yano, R.J. Young, T. Lindström, W.W. Sampson, S.J.J.B. Eichhorn, Effective young’s modulus of bacterial and microfibrillated cellulose fibrils in fibrous networks. Biomacromolecules 13(5), 1340–1349 (2012). https://doi.org/10.1021/bm300042t
- U. Lad, G.M. Kale, R. Bryaskova, Glucose oxidase encapsulated polyvinyl alcohol–silica hybrid films for an electrochemical glucose sensing electrode. Anal. Chem. 85(13), 6349–6355 (2013). https://doi.org/10.1021/ac400719h
- R. Rahmanian, S.A. Mozaffari, Electrochemical fabrication of ZnO–polyvinyl alcohol nanostructured hybrid film for application to urea biosensor. Sens. Actuators B 207, 772–781 (2015). https://doi.org/10.1016/j.snb.2014.10.129
- N. Sanaeifar, M. Rabiee, M. Abdolrahim, M. Tahriri, D. Vashaee, L. Tayebi, A novel electrochemical biosensor based on Fe3O4 nanoparticles-polyvinyl alcohol composite for sensitive detection of glucose. Anal. Biochem. 519, 19–26 (2017). https://doi.org/10.1016/j.ab.2016.12.006
- S.H. Baek, J. Roh, C.Y. Park, M.W. Kim, R. Shi, S.K. Kailasa, T.J. Park, Cu-nanoflower decorated gold nanoparticles–graphene oxide nanofiber as electrochemical biosensor for glucose detection. Mater. Sci. Eng. C 107, 110273 (2020). https://doi.org/10.1016/j.msec.2019.110273
- S. Ampuero, J.O. Bosset, The electronic nose applied to dairy products: a review. Sens. Actuators B 94(1), 1–12 (2003). https://doi.org/10.1016/S0925-4005(03)00321-6
- C.D. Natale, A. Macagnano, A. D’Amico, F. Davide, Electronic-nose modelling and data analysis using a self-organizing map. Meas. Sci. Technol. 8(11), 1236–1243 (1997). https://doi.org/10.1088/0957-0233/8/11/004
- T. Kavinkumar, D. Sastikumar, S. Manivannan, Effect of functional groups on dielectric, optical gas sensing properties of graphene oxide and reduced graphene oxide at room temperature. RSC Adv. 5(14), 10816–10825 (2015). https://doi.org/10.1039/c4ra12766h
- J.-S. Kim, H.-W. Yoo, H.O. Choi, H.-T. Jung, Tunable volatile organic compounds sensor by using thiolated ligand conjugation on MoS2. Nano Lett. 14(10), 5941–5947 (2014). https://doi.org/10.1021/nl502906a
- R. Zou, G. He, K. Xu, Q. Liu, Z. Zhang, J. Hu, ZnO nanorods on reduced graphene sheets with excellent field emission, gas sensor and photocatalytic properties. J. Mater. Chem. A 1(29), 8445–8452 (2013). https://doi.org/10.1039/C3TA11490B
- X. Yu, G. Zhang, H. Cao, X. An, Y. Wang, Z. Shu, X. An, F. Hua, ZnO@ZnS hollow dumbbells–graphene composites as high-performance photocatalysts and alcohol sensors. New J. Chem. 36(12), 2593–2598 (2012). https://doi.org/10.1039/C2NJ40770A
- N.D. Khoang, D.D. Trung, N. Van Duy, N.D. Hoa, N. Van Hieu, Design of SnO2/ZnO hierarchical nanostructures for enhanced ethanol gas-sensing performance. Sens. Actuators B 174, 594–601 (2012). https://doi.org/10.1016/j.snb.2012.07.118
- S. Wei, S. Wang, Y. Zhang, M. Zhou, Different morphologies of ZnO and their ethanol sensing property. Sens. Actuators B 192, 480–487 (2014). https://doi.org/10.1016/j.snb.2013.11.034
- A. Rothschild, H.L. Tuller, Gas sensors: new materials and processing approaches. J. Electroceram. 17(2), 1005–1012 (2006). https://doi.org/10.1007/s10832-006-6737-y
- Y. Tian, J. Li, H. Xiong, J. Dai, Controlled synthesis of ZnO hollow microspheres via precursor-template method and its gas sensing property. Appl. Surf. Sci. 258(22), 8431–8438 (2012). https://doi.org/10.1016/j.apsusc.2011.12.090
- D.R. Miller, S.A. Akbar, P.A. Morris, Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sens. Actuators B 204, 250–272 (2014). https://doi.org/10.1016/j.snb.2014.07.074
- H. Men, P. Gao, B. Zhou, Y. Chen, C. Zhu et al., Fast synthesis of ultra-thin ZnSnO3 nanorods with high ethanol sensing properties. Chem. Commun. 46(40), 7581–7583 (2010). https://doi.org/10.1039/c0cc02222e
- P. Song, Q. Wang, Z. Yang, Biomorphic synthesis of ZnSnO3 hollow fibers for gas sensing application. Sens. Actuators B 156(2), 983–989 (2011). https://doi.org/10.1016/j.snb.2011.03.017
- Y. Cao, D. Jia, J. Zhou, Y. Sun, Simple solid-state chemical synthesis of ZnSnO3 nanocubes and their application as gas sensors. Eur. J. Inorg. Chem. 2009(27), 4105–4109 (2009). https://doi.org/10.1002/ejic.200900146
- Y. Zeng, T. Zhang, H. Fan, G. Lu, M. Kang, Synthesis and gas-sensing properties of ZnSnO3 cubic nanocages and nanoskeletons. Sens. Actuators B 143(1), 449–453 (2009). https://doi.org/10.1016/j.snb.2009.07.021
- J. Cao, Y. Xu, L. Sui, X. Zhang, S. Gao et al., Highly selective low-temperature triethylamine sensor based on Ag/Cr2O3 mesoporous microspheres. Sens. Actuators B 220, 910–918 (2015). https://doi.org/10.1016/j.snb.2015.06.023
- F. Bao, Z. Zhang, X. Liu, X. Zhao, One-step synthesis of hierarchical ZnCo2O4@ZnCo2O4 core–shell nanosheet arrays on nickel foam for electrochemical capacitors. RSC Adv. 4(72), 38073–38077 (2014). https://doi.org/10.1039/C4RA06289B
- H. Chen, G. Jiang, W. Yu, D. Liu, Y. Liu, L. Li, Q. Huang, Z. Tong, Electrospun carbon nanofibers coated with urchin-like ZnCo2O4 nanosheets as a flexible electrode material. J. Mater. Chem. A 4(16), 5958–5964 (2016). https://doi.org/10.1039/C6TA01880G
- Z. Sun, X. Lu, A solid-state reaction route to anchoring Ni(OH)2 nanoparticles on reduced graphene oxide sheets for supercapacitors. Ind. Eng. Chem. Res. 51(30), 9973–9979 (2012). https://doi.org/10.1021/ie202706h
- P. Zhang, J. Wang, X. Lv, H. Zhang, X. Sun, Facile synthesis of Cr-decorated hexagonal Co3O4 nanosheets for ultrasensitive ethanol detection. Nanotechnology 26(27), 275501 (2015). https://doi.org/10.1088/0957-4484/26/27/275501
- J.-W. Yoon, J.-K. Choi, J.-H. Lee, Design of a highly sensitive and selective C2H5OH sensor using p-type Co3O4 nanofibers. Sens. Actuators B 161(1), 570–577 (2012). https://doi.org/10.1016/j.snb.2011.11.002
- X. Liu, J. Zhang, L. Wang, T. Yang, X. Guo, S. Wu, S. Wang, 3D hierarchically porous ZnO structures and their functionalization by Au nanoparticles for gas sensors. J. Mater. Chem. 21(2), 349–356 (2011). https://doi.org/10.1039/C0JM01800G
- B. Chocarro-Ruiz, A. Fernández-Gavela, S. Herranz, L.M. Lechuga, Nanophotonic label-free biosensors for environmental monitoring. Curr. Opin. Biotechnol. 45, 175–183 (2017). https://doi.org/10.1016/j.copbio.2017.03.016
- I. Arghir, F. Delport, D. Spasic, J. Lammertyn, Smart design of fiber optic surfaces for improved plasmonic biosensing. New Biotechnol. 32(5), 473–484 (2015). https://doi.org/10.1016/j.nbt.2015.03.012
- Y.-N. Zhang, H. Peng, X. Qian, Y. Zhang, G. An, Y. Zhao, Recent advancements in optical fiber hydrogen sensors. Sens. Actuators B 244, 393–416 (2017). https://doi.org/10.1016/j.snb.2017.01.004
- H. Yang, H. Hu, Y. Wang, T. Yu, Rapid and non-destructive identification of graphene oxide thickness using white light contrast spectroscopy. Carbon 52, 528–534 (2013). https://doi.org/10.1016/j.carbon.2012.10.005
- B.C. Yao, Y. Wu, A.Q. Zhang, Y.J. Rao, Z.G. Wang et al., Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing. Opt. Express 22(23), 28154–28162 (2014). https://doi.org/10.1364/OE.22.028154
- N.M.Y. Zhang, K. Li, P.P. Shum, X. Yu, S. Zeng et al., Hybrid graphene/gold plasmonic fiber-optic biosensor. Adv. Mater. Technol. 2(2), 1600185 (2017). https://doi.org/10.1002/admt.201600185
- Y. Luo, C. Chen, K. Xia, S. Peng, H. Guan et al., Tungsten disulfide (WS2) based all-fiber-optic humidity sensor. Opt. Express 24(8), 8956–8966 (2016). https://doi.org/10.1364/OE.24.008956
- C.C. Mayorga-Martinez, Z. Sofer, M. Pumera, Layered black phosphorus as a selective vapor sensor. Angew. Chem. Int. Ed. 54(48), 14317–14320 (2015). https://doi.org/10.1002/anie.201505015
- G. Liu, S.L. Rumyantsev, C. Jiang, M.S. Shur, A.A. Balandin, Selective gas sensing with h-BN capped MoS2 heterostructure thin-film transistors. IEEE Electron Device Lett. 36(11), 1202–1204 (2015). https://doi.org/10.1109/LED.2015.2481388
- J.G. Thangamani, K. Deshmukh, K.K. Sadasivuni, D. Ponnamma, S. Goutham et al., White graphene reinforced polypyrrole and poly(vinyl alcohol) blend nanocomposites as chemiresistive sensors for room temperature detection of liquid petroleum gases. Microchim. Acta 184(10), 3977–3987 (2017). https://doi.org/10.1007/s00604-017-2402-1
- S. Liu, B. Lu, Q. Zhao, J. Li, T. Gao et al., Boron nitride nanopores: highly sensitive DNA single-molecule detectors. Adv. Mater. 25(33), 4549–4554 (2013). https://doi.org/10.1002/adma.201301336
- O. Beck, N.K. Modén, S. Seferaj, G. Lenk, A. Helander, Study of measurement of the alcohol biomarker phosphatidylethanol (PEth) in dried blood spot (DBS) samples and application of a volumetric DBS device. Clin. Chim. Acta 479, 38–42 (2018). https://doi.org/10.1016/j.cca.2018.01.008
- R. Nanau, M.J.B. Neuman, Biomolecules and biomarkers used in diagnosis of alcohol drinking and in monitoring therapeutic interventions. Biomaterials 5(3), 1339–1385 (2015). https://doi.org/10.3390/biom5031339
- O. Niemelä, Biomarker-based approaches for assessing alcohol use disorders. Int. J. Environ. Res. Public Health 13(2), 166 (2016). https://doi.org/10.3390/ijerph13020166
- C. Dumitrascu, R. Paul, R. Kingston, R. Williams, Influence of alcohol containing and alcohol free cosmetics on faee concentrations in hair. A performance evaluation of ethyl palmitate as sole marker, versus the sum of four faees. Forensic Sci. Int. 283, 29–34 (2018). https://doi.org/10.1016/j.forsciint.2017.12.002
- L. Morini, E. Marchei, L. Tarani, M. Trivelli, G. Rapisardi et al., Testing ethylglucuronide in maternal hair and nails for the assessment of fetal exposure to alcohol: comparison with meconium testing. Ther. Drug Monitor. 35(3), 402–407 (2013). https://doi.org/10.1097/FTD.0b013e318283f719
- R.G. Lande, B. Marin, A comparison of two alcohol biomarkers in clinical practice: ethyl glucuronide versus ethyl sulfate. J. Addict. Dis. 32(3), 288–292 (2013). https://doi.org/10.1080/10550887.2013.824332
- S.H. Stewart, D.G. Koch, D.M. Burgess, I.R. Willner, A. Reuben, Sensitivity and specificity of urinary ethyl glucuronide and ethyl sulfate in liver disease patients. Alcohol. Clin. Exp. Res. 37(1), 150–155 (2013). https://doi.org/10.1111/j.1530-0277.2012.01855.x
- M. Hastedt, S. Herre, F. Pragst, M. Rothe, S.J.A. Hartwig, Workplace alcohol testing program by combined use of ethyl glucuronide and fatty acid ethyl esters in hair. Alcohol Alcohol. 47(2), 127–132 (2011). https://doi.org/10.1093/alcalc/agr148
- F. Alam, A.H. Jalal, R. Sinha, Y. Umasankar, S. Bhansali, N. Pala, ZnO nanoflakes-based mediator free flexible biosensors for the selective detection of ethylglucuronide (EtG) and lactate. In: Proceedings of SPIE—The International Society for Optical Engineering. 10639 (2018)
- F. Alam, A.H. Jalal, N. Pala, Selective detection of alcohol through ethyl-glucuronide (EtG) immunosensor based on 2D zinc oxide nanostructures. IEEE Sens. J. 19(11), 3984–3992 (2019). https://doi.org/10.1109/JSEN.2019.2898869
- A.P. Selvam, S. Muthukumar, V. Kamakoti, S. Prasad, A wearable biochemical sensor for monitoring alcohol consumption lifestyle through ethyl glucuronide (EtG) detection in human sweat. Sci. Rep. 6, 23111 (2016). https://doi.org/10.1038/srep23111
- X. Zhang, W. Lan, J. Xu, Y. Luo, J. Pan et al., ZIF-8 derived hierarchical hollow ZnO nanocages with quantum dots for sensitive ethanol gas detection. Sens. Actuators B 289, 144–152 (2019). https://doi.org/10.1016/j.snb.2019.03.090
- D.-W. Yang, H.-H. Liu, Poly(brilliant cresyl blue)-carbonnanotube modified electrodes for determination of nadh and fabrication of ethanol dehydrogenase-based biosensor. Biosens. Bioelectron. 25(4), 733–738 (2009). https://doi.org/10.1016/j.bios.2009.08.016
- D. Zhang, G. Dong, Y. Cao, Y. Zhang, Ethanol gas sensing properties of lead sulfide quantum dots-decorated zinc oxide nanorods prepared by hydrothermal process combining with successive ionic-layer adsorption and reaction method. J. Colloid Interface Sci. 528, 184–191 (2018). https://doi.org/10.1016/j.jcis.2018.05.085
- D. Zhang, Y.E. Sun, Y. Zhang, Fabrication and characterization of layer-by-layer nano self-assembled ZnO nanorods/carbon nanotube film sensor for ethanol gas sensing application at room temperature. J. Mater. Sci.: Mater. Electron. 26(10), 7445–7451 (2015). https://doi.org/10.1007/s10854-015-3378-4
- W. Zheng, Z. Li, H. Zhang, W. Wang, Y. Wang, C. Wang, Electrospinning route for α-Fe2O3 ceramic nanofibers and their gas sensing properties. Mater. Res. Bull. 44(6), 1432–1436 (2009). https://doi.org/10.1016/j.materresbull.2008.12.013
- P. Hu, G. Du, W. Zhou, J. Cui, J. Lin et al., Enhancement of ethanol vapor sensing of TiO2 nanobelts by surface engineering. ACS Appl. Mater. Interfaces 2(11), 3263–3269 (2010). https://doi.org/10.1021/am100707h
- M.M. Rahman, A. Jamal, S.B. Khan, M. Faisal, Highly sensitive ethanol chemical sensor based on Ni-doped SnO2 nanostructure materials. Biosens. Bioelectron. 28(1), 127–134 (2011). https://doi.org/10.1016/j.bios.2011.07.024
- K.-I. Choi, H.-R. Kim, K.-M. Kim, D. Liu, G. Cao, J.-H. Lee, C2H5OH sensing characteristics of various Co3O4 nanostructures prepared by solvothermal reaction. Sens. Actuators B 146(1), 183–189 (2010). https://doi.org/10.1016/j.snb.2010.02.050
References
M.A. Hamburg, Advancing regulatory science. Science 331(6020), 987 (2011). https://doi.org/10.1126/science.1204432
J. Sultana, M.S. Islam, K. Ahmed, A. Dinovitser, B.W.H. Ng, D. Abbott, Terahertz detection of alcohol using a photonic crystal fiber sensor. Appl. Opt. 57(10), 2426–2433 (2018). https://doi.org/10.1364/AO.57.002426
U.A. Kirgöz, D. Odaci, S. Timur, A. Merkoçi, S. Alegret, N. Beşün, A. Telefoncu, A biosensor based on graphite epoxy composite electrode for aspartame and ethanol detection. Anal. Chim. Acta 570(2), 165–169 (2006). https://doi.org/10.1016/j.aca.2006.04.010
A.M. Azevedo, D.M.F. Prazeres, J.M.S. Cabral, L.P. Fonseca, Ethanol biosensors based on alcohol oxidase. Biosens. Bioelectron. 21(2), 235–247 (2005). https://doi.org/10.1016/j.bios.2004.09.030
R. Paul, L. Tsanaclis, C. Murray, R. Boroujerdi, L. Facer, A.J.A. Corbin, Ethyl glucuronide as a long-term alcohol biomarker in fingernail and hair. Matrix comparison and evaluation of gender bias. Alcohol Alcohol. 54(4), 402–407 (2019). https://doi.org/10.1093/alcalc/agz015
R.P. Pohanish, Sittig’s Handbook of Toxic and Hazardous Chemicals and Carcinogens (William Andrew, Norwich, 2008)
K. Triyana, A. Sembiring, A. Rianjanu, S.N. Hidayat, R. Riowirawan et al., Chitosan-based quartz crystal microbalance for alcohol sensing. Electronics 7(9), 181 (2018). https://doi.org/10.3390/electronics7090181
W.R. de Araujo, T.M.G. Cardoso, R.G. da Rocha, M.H.P. Santana, R.A.A. Muñoz et al., Portable analytical platforms for forensic chemistry: a review. Anal. Chim. Acta 1034, 1–21 (2018). https://doi.org/10.1016/j.aca.2018.06.014
V. García-Cañas, C. Simó, M. Herrero, E. Ibáñez, A. Cifuentes, Present and future challenges in food analysis: foodomics. Anal. Chem. 84(23), 10150–10159 (2012). https://doi.org/10.1021/ac301680q
B.B. Dzantiev, N.A. Byzova, A.E. Urusov, A.V. Zherdev, Immunochromatographic methods in food analysis. Trends Anal. Chem. 55, 81–93 (2014). https://doi.org/10.1016/j.trac.2013.11.007
A.W. Martinez, S.T. Phillips, G.M. Whitesides, E. Carrilho, Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal. Chem. 82(1), 3–10 (2010). https://doi.org/10.1021/ac9013989
A. Escarpa, Lights and shadows on food microfluidics. Lab Chip 14(17), 3213–3224 (2014). https://doi.org/10.1039/c4lc00172a
E.M.A. Ali, H.G.M. Edwards, The detection of flunitrazepam in beverages using portable raman spectroscopy. Drug Test. Anal. 9(2), 256–259 (2017). https://doi.org/10.1002/dta.1969
W.W. Yu, I.M. White, Inkjet-printed paper-based SERS dipsticks and swabs for trace chemical detection. Analyst 138(4), 1020–1025 (2013). https://doi.org/10.1039/c2an36116g
T. Mostowtt, B. McCord, Surface enhanced raman spectroscopy (SERS) as a method for the toxicological analysis of synthetic cannabinoids. Talanta 164, 396–402 (2017). https://doi.org/10.1016/j.talanta.2016.11.002
M.M. Ayad, N. Salahuddin, I.M. Minisy, Detection of some volatile organic compounds with chitosan-coated quartz crystal microbalance. Des. Monomers Polym. 17(8), 795–802 (2014). https://doi.org/10.1080/15685551.2014.918019
R.-J. Hwang, J. Beltran, C. Rogers, J. Barlow, G. Razatos, Measurement of uncertainty for blood alcohol concentration by headspace gas chromatography. Can. Soc. Forensic Sci. J. 50(3), 114–124 (2017). https://doi.org/10.1080/00085030.2017.1312069
A. Pérez-Ponce, S. Garrigues, M. de la Guardia, Vapour generation–fourier transform infrared direct determination of ethanol in alcoholic beverages. Analyst 121(7), 923–928 (1996). https://doi.org/10.1039/AN9962100923
Y. Jung, J. Kim, O. Awofeso, H. Kim, F. Regnier, E. Bae, Smartphone-based colorimetric analysis for detection of saliva alcohol concentration. Appl. Opt. 54(31), 9183–9189 (2015). https://doi.org/10.1364/AO.54.009183
J.T.S. Allan, H.L. Geoffrey, E.B. Easton, The effect of the gas diffusion layer on the performance of fuel cell catalyst layers in ethanol sensors. Sens. Actuators B 254, 120–132 (2018). https://doi.org/10.1016/j.snb.2017.07.056
G.A. Tığ, Highly sensitive amperometric biosensor for determination of NADH and ethanol based on Au–Ag nanoparticles/poly(l-cysteine)/reduced graphene oxide nanocomposite. Talanta 175, 382–389 (2017). https://doi.org/10.1016/j.talanta.2017.07.073
S. Cinti, M. Basso, D. Moscone, F. Arduini, A paper-based nanomodified electrochemical biosensor for ethanol detection in beers. Anal. Chim. Acta 960, 123–130 (2017). https://doi.org/10.1016/j.aca.2017.01.010
B. Kuswandi, T. Irmawati, M. Hidayat, M.J.S. Ahmad, A simple visual ethanol biosensor based on alcohol oxidase immobilized onto polyaniline film for halal verification of fermented beverage samples. Sensors 14(2), 2135–2149 (2014). https://doi.org/10.3390/s140202135
Z. Zhu, C.-T. Kao, R.-J. Wu, A highly sensitive ethanol sensor based on Ag@TiO2 nanoparticles at room temperature. Appl. Surf. Sci. 320, 348–355 (2014). https://doi.org/10.1016/j.apsusc.2014.09.108
X.J. Li, S.J. Chen, C.Y. Feng, Characterization of silicon nanoporous pillar array as room-temperature capacitive ethanol gas sensor. Sens. Actuators B 123(1), 461–465 (2007). https://doi.org/10.1016/j.snb.2006.09.021
W. Muangrat, W. Wongwiriyapan, S. Morimoto, Y. Hashimoto, Graphene nanosheet-grafted double-walled carbon nanotube hybrid nanostructures by two-step chemical vapor deposition and their application for ethanol detection. Sci. Rep. 9(1), 7871 (2019). https://doi.org/10.1038/s41598-019-44315-y
R. Bajpai, A. Motayed, A.V. Davydov, V.P. Oleshko, G.S. Aluri et al., UV-assisted alcohol sensing using SnO2 functionalized gan nanowire devices. Sens. Actuators B 171–172, 499–507 (2012). https://doi.org/10.1016/j.snb.2012.05.018
J. Wei, X. Li, Y. Han, J. Xu, H. Jin et al., Highly improved ethanol gas-sensing performance of mesoporous nickel oxides nanowires with the stannum donor doping. Nanotechnology 29(24), 245501 (2018). https://doi.org/10.1088/1361-6528/aab9d8
V. Pentyala, P. Davydovskaya, M. Ade, R. Pohle, G.J.S. Urban, A.B. Chemical, Metal–organic frameworks for alcohol gas sensor. Sens. Actuators B 222, 904–909 (2016). https://doi.org/10.1016/j.snb.2015.09.014
W. Vandezande, K.P. Janssen, F. Delport, R. Ameloot, D.E. De Vos, J. Lammertyn, M. Roeffaers, Parts per million detection of alcohol vapors via metal organic framework functionalized surface plasmon resonance sensors. Anal. Chem. 89(8), 4480–4487 (2017). https://doi.org/10.1021/acs.analchem.6b04510
A.G. Cavinato, D.M. Mayes, Z. Ge, J.B. Callis, Noninvasive method for monitoring ethanol in fermentation processes using fiber-optic near-infrared spectroscopy. Anal. Chem. 62(18), 1977–1982 (1990). https://doi.org/10.1021/ac00217a015
M. Parthibavarman, S. Sangeetha, B. Renganathan, R. BoopathiRaja, High-performance fiber optic gas sensor-based Co3O4/mwcnt composite by a novel microwave technique. J. Iran. Chem. Soc. 16(11), 2463–2472 (2019). https://doi.org/10.1007/s13738-019-01717-z
M. Mitsushio, T. Masunaga, T. Yoshidome, M. Higo, Alcohol selectivity and measurement of ethanol concentrations in liquors using teflon®af2400-coated gold-deposited surface plasmon resonance-based glass rod sensor. Prog. Org. Coat. 91, 33–38 (2016). https://doi.org/10.1016/j.porgcoat.2015.11.014
M. Akamatsu, T. Mori, K. Okamoto, H. Komatsu, K. Kumagai et al., Detection of ethanol in alcoholic beverages or vapor phase using fluorescent molecules embedded in a nanofibrous polymer. ACS Appl. Mater. Interfaces 7(11), 6189–6194 (2015). https://doi.org/10.1021/acsami.5b00289
Z.H. Zhang, R. Lockwood, J.G.C. Veinot, A. Meldrum, Detection of ethanol and water vapor with silicon quantum dots coupled to an optical fiber. Sens. Actuators B 181, 523–528 (2013). https://doi.org/10.1016/j.snb.2013.01.070
A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007). https://doi.org/10.1038/nmat1849
H. Zhang, Ultrathin two-dimensional nanomaterials. ACS Nano 9(10), 9451–9469 (2015). https://doi.org/10.1021/acsnano.5b05040
X. Huang, C. Tan, Z. Yin, H. Zhang, 25th anniversary article: hybrid nanostructures based on two-dimensional nanomaterials. Adv. Mater. 26(14), 2185–2203 (2014). https://doi.org/10.1002/adma.201304964
J. Park, J. Kim, K. Kim, S.-Y. Kim, W.H. Cheong et al., Wearable, wireless gas sensors using highly stretchable and transparent structures of nanowires and graphene. Nanoscale 8(20), 10591–10597 (2016). https://doi.org/10.1039/C6NR01468B
S. Kabiri Ameri, R. Ho, H. Jang, L. Tao, Y. Wang et al., Graphene electronic tattoo sensors. ACS Nano 11(8), 7634–7641 (2017). https://doi.org/10.1021/acsnano.7b02182
G. Ko, H.Y. Kim, J. Ahn, Y.M. Park, K.Y. Lee, J. Kim, Graphene-based nitrogen dioxide gas sensors. Curr. Appl. Phys. 10(4), 1002–1004 (2010). https://doi.org/10.1016/j.cap.2009.12.024
G. Neri, Thin 2D: the new dimensionality in gas sensing. Chemosensors 5(3), 21 (2017). https://doi.org/10.3390/chemosensors5030021
H. Morgan, C.S. Rout, D.J. Late, in Chapter 14—Future Prospects of 2D Materials for Sensing Applications. ed. by M. Hywel, C.S. Rout, D.J. Late (Woodhead Publishing, 2019), pp. 481–482. https://doi.org/10.1016/B978-0-08-102577-2.00014-2
A. Nisha, P. Maheswari, P.M. Anbarasan, K.B. Rajesh, Z. Jaroszewicz, Sensitivity enhancement of surface plasmon resonance sensor with 2D material covered noble and magnetic material (Ni). Opt. Quantum Electron. 51(1), 19 (2019). https://doi.org/10.1007/s11082-018-1726-3
F. Xia, H. Wang, D. Xiao, M. Dubey, A. Ramasubramaniam, Two-dimensional material nanophotonics. Nat. Photon. 8(12), 899–907 (2014). https://doi.org/10.1038/nphoton.2014.271
A.D. Franklin, Nanomaterials in transistors: from high-performance to thin-film applications. Science 349(6249), aab2750 (2015). https://doi.org/10.1126/science.aab2750
P. Miró, M. Audiffred, T. Heine, An atlas of two-dimensional materials. Chem. Soc. Rev. 43(18), 6537–6554 (2014). https://doi.org/10.1039/c4cs00102h
C. Tan, X. Cao, X.J. Wu, Q. He, J. Yang et al., Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117(9), 6225–6331 (2017). https://doi.org/10.1021/acs.chemrev.6b00558
H. Zeng, X. Cui, An optical spectroscopic study on two-dimensional group-vi transition metal dichalcogenides. Chem. Soc. Rev. 44(9), 2629–2642 (2015). https://doi.org/10.1039/c4cs00265b
X. Kong, Q. Liu, C. Zhang, Z. Peng, Q. Chen, Elemental two-dimensional nanosheets beyond graphene. Chem. Soc. Rev. 46(8), 2127–2157 (2017). https://doi.org/10.1039/c6cs00937a
Y. Guo, K. Xu, C. Wu, J. Zhao, Y. Xie, Surface chemical-modification for engineering the intrinsic physical properties of inorganic two-dimensional nanomaterials. Chem. Soc. Rev. 44(3), 637–646 (2015). https://doi.org/10.1039/c4cs00302k
H. Liu, Y. Du, Y. Deng, P.D. Ye, Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev. 44(9), 2732–2743 (2015). https://doi.org/10.1039/c4cs00257a
M. Chhowalla, D. Jena, H. Zhang, Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1(11), 16052 (2016). https://doi.org/10.1038/natrevmats.2016.52
B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2(2), 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
W. Lei, G. Liu, J. Zhang, M. Liu, Black phosphorus nanostructures: recent advances in hybridization, doping and functionalization. Chem. Soc. Rev. 46(12), 3492–3509 (2017). https://doi.org/10.1039/c7cs00021a
M.G. Kochameshki, M. Mahmoudian, A. Marjani, K. Farhadi, M. Enayati, H.S. Mollayousefi, Graphene oxide grafted poly(acrylic acid) synthesized via surface initiated raft as a pH-responsive additive for mixed matrix membrane. J. Appl. Polym. Sci. 136(12), 47213 (2019). https://doi.org/10.1002/app.47213
D. Akinwande, N. Petrone, J. Hone, Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014). https://doi.org/10.1038/ncomms6678
A. Naseri, R. Barati, F. Rasoulzadeh, M. Bahram, Studies on adsorption of some organic dyes from aqueous solution onto graphene nanosheets. Iran. J. Chem. Chem. Eng. (IJCCE) 34(2), 51–60 (2015)
P. Kumar, J. Liu, P. Ranjan, Y. Hu, S.S. Yamijala, S.K. Pati, J. Irudayaraj, G.J. Cheng, Alpha lead oxide (α-PbO): a new 2D material with visible light sensitivity. Small 14(12), 1703346 (2018). https://doi.org/10.1002/smll.201703346
S.J. Choi, I.D. Kim, Recent developments in 2D nanomaterials for chemiresistive-type gas sensors. Electron. Mater. Lett. 14(3), 221–260 (2018). https://doi.org/10.1007/s13391-018-0044-z
M. Akhtar, G. Anderson, R. Zhao, A. Alruqi, J.E. Mroczkowska, G. Sumanasekera, J.B. Jasinski, Recent advances in synthesis, properties, and applications of phosphorene. NPJ 2D Mater. Appl. 1, 5 (2017). https://doi.org/10.1038/s41699-017-0007-5
L. Meng, Y. Wang, L. Zhang, S. Du, R. Wu et al., Buckled silicene formation on Ir(111). Nano Lett. 13(2), 685–690 (2013). https://doi.org/10.1021/nl304347w
M. Fortin-Deschênes, O. Waller, T.O. Menteş, A. Locatelli, S. Mukherjee et al., Synthesis of antimonene on germanium. Nano Lett. 17(8), 4970–4975 (2017). https://doi.org/10.1021/acs.nanolett.7b02111
M. Servalli, A.D. Schlüter, Synthetic two-dimensional polymers. Ann. Rev. Mater. Res. 47, 361–389 (2017). https://doi.org/10.1146/annurev-matsci-070616-124040
S. Majdi, A. Jabbari, H. Heli, H. Yadegari, A.A. Moosavi-Movahedi, S. Haghgoo, Electrochemical oxidation and determination of ceftriaxone on a glassy carbon and carbon-nanotube-modified glassy carbon electrodes. J. Solid State Electrochem. 13(3), 407–416 (2009). https://doi.org/10.1007/s10008-008-0567-6
N. Sattarahmady, H. Heli, S.E. Moradi, Cobalt hexacyanoferrate/graphene nanocomposite-application for the electrocatalytic oxidation and amperometric determination of captopril. Sens. Actuators B 177, 1098–1106 (2013). https://doi.org/10.1016/j.snb.2012.12.035
H.Q. Li, R.L. Liu, D.Y. Zhao, Y.Y. Xia, Electrochemical properties of an ordered mesoporous carbon prepared by direct tri-constituent co-assembly. Carbon 45(13), 2628–2635 (2007). https://doi.org/10.1016/j.carbon.2007.08.005
A. Rahi, K. Karimian, H. Heli, Nanostructured materials in electroanalysis of pharmaceuticals. Anal. Biochem. 497, 39–47 (2016). https://doi.org/10.1016/j.ab.2015.12.018
J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S.J.N. Roth, The structure of suspended graphene sheets. Nature 446(7131), 60–63 (2007). https://doi.org/10.1038/nature05545
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang et al., Electric field in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
J. Hass, W.A. De Heer, E.H. Conrad, The growth and morphology of epitaxial multilayer graphene. J. Phys.: Condens. Matter 20, 323202 (2008). https://doi.org/10.1038/nature05545
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless dirac fermions in graphene. Nature 438(7065), 197–200 (2005). https://doi.org/10.1038/nature04233
Y. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum hall effect and berry’s phase in graphene. Nature 438(7065), 201–204 (2005). https://doi.org/10.1038/nature04235
R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth et al., Fine structure constant defines visual transparency of graphene. Science 320(5881), 1308 (2008). https://doi.org/10.1126/science.1156965
A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008). https://doi.org/10.1021/nl0731872
C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008). https://doi.org/10.1126/science.1157996
X. Huang, Z. Yin, S. Wu, X. Qi, Q. He et al., Graphene-based materials: synthesis, characterization, properties, and applications. Small 7(14), 1876–1902 (2011). https://doi.org/10.1002/smll.201002009
X. Wang, X. Li, Y. Zhao, Y. Chen, J. Yu, J. Wang, The influence of oxygen functional groups on gas-sensing properties of reduced graphene oxide (rGO) at room temperature. RSC Adv. 6(57), 52339–52346 (2016). https://doi.org/10.1039/c6ra05659h
J. Chang, G. Zhou, E.R. Christensen, R. Heideman, J. Chen, Graphene-based sensors for detection of heavy metals in water: a review chemosensors and chemoreception. Anal. Bioanal. Chem. 406(16), 3957–3975 (2014). https://doi.org/10.1007/s00216-014-7804-x
B.C. Brodie, On the atomic weight of graphite. Philos. Trans. R. Soc. Lond. 149, 249–259 (1859). https://doi.org/10.1098/rstl.1859.0013
L. Staudenmaier, Verfahren zur darstellung der graphitsäure. Ber. Dtsch. Chem. Ges. 31(2), 1481–1487 (1898). https://doi.org/10.1002/cber.18980310237
D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev. 39(1), 228–240 (2010). https://doi.org/10.1039/B917103G
W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339 (1958). https://doi.org/10.1021/ja01539a017
A.M. Abdelkader, I.A. Kinloch, R.A.W. Dryfe, High-yield electro-oxidative preparation of graphene oxide. Chem. Commun. 50(61), 8402–8404 (2014). https://doi.org/10.1039/C4CC03260H
S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes et al., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007). https://doi.org/10.1016/j.carbon.2007.02.034
S. Pei, J. Zhao, J. Du, W. Ren, H.M. Cheng, Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 48(15), 4466–4474 (2010). https://doi.org/10.1016/j.carbon.2010.08.006
J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, S. Guo, Reduction of graphene oxide via l-ascorbic acid. Chem. Commun. 46(7), 1112–1114 (2010). https://doi.org/10.1039/B917705A
E.C. Salas, Z. Sun, A. Lüttge, J.M. Tour, Reduction of graphene oxide via bacterial respiration. ACS Nano 4(8), 4852–4856 (2010). https://doi.org/10.1021/nn101081t
D. Chen, L. Li, L. Guo, An environment-friendly preparation of reduced graphene oxide nanosheets via amino acid. Nanotechnology 22(32), 325601 (2011). https://doi.org/10.1088/0957-4484/22/32/325601
Z.J. Fan, W. Kai, J. Yan, T. Wei, L.J. Zhi et al., Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide. ACS Nano 5(1), 191–198 (2011). https://doi.org/10.1021/nn102339t
R.S. Dey, S. Hajra, R.K. Sahu, C.R. Raj, M.K. Panigrahi, A rapid room temperature chemical route for the synthesis of graphene: metal-mediated reduction of graphene oxide. Chem. Commun. 48(12), 1787–1789 (2012). https://doi.org/10.1039/c2cc16031e
Z. Fan, K. Wang, T. Wei, J. Yan, L. Song, B. Shao, An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder. Carbon 48(5), 1686–1689 (2010). https://doi.org/10.1016/j.carbon.2009.12.063
H.A. Becerril, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, Y. Chen, Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2(3), 463–470 (2008). https://doi.org/10.1021/nn700375n
S. Nandini, S. Nalini, R. Manjunatha, S. Shanmugam, J.S. Melo, G.S. Suresh, Electrochemical biosensor for the selective determination of hydrogen peroxide based on the Co-deposition of palladium, horseradish peroxidase on functionalized-graphene modified graphite electrode as composite. J. Electroanal. Chem. 689, 233–242 (2013). https://doi.org/10.1016/j.jelechem.2012.11.004
D. Wu, Y. Li, Y. Zhang, P. Wang, Q. Wei, B. Du, Sensitive electrochemical sensor for simultaneous determination of dopamine, ascorbic acid, and uric acid enhanced by amino-group functionalized mesoporous Fe3O4@graphene sheets. Electrochim. Acta 116, 244–249 (2014). https://doi.org/10.1016/j.electacta.2013.11.033
M. Cittadini, M. Bersani, F. Perrozzi, L. Ottaviano, W. Wlodarski, A. Martucci, Graphene oxide coupled with gold nanoparticles for localized surface plasmon resonance based gas sensor. Carbon 69, 452–459 (2014). https://doi.org/10.1016/j.carbon.2013.12.048
X. Li, Z. Zheng, X. Liu, S. Zhao, S. Liu, Nanostructured photoelectrochemical biosensor for highly sensitive detection of organophosphorous pesticides. Biosens. Bioelectron. 64, 1–5 (2015). https://doi.org/10.1016/j.bios.2014.08.006
P. Ramesh, B. Jebasingh, A facile synthesis of bis-(pththalimidoethyl)-amine functionalized graphene oxide and its dual performance as a supercapacitor electrode and fluorescence sensor. Mater. Chem. Phys. 222, 45–54 (2019). https://doi.org/10.1016/j.matchemphys.2018.09.075
Q. Zhang, J. Zhao, W. Liu, Y. Yue, K. Yu, D. Xu, X. Ding, Graphene oxide-based fluorescence sensor for betaxolol hydrochloride detection in plasma. J. Chem. Soc. Pak. 40(3), 519–528 (2018)
R. Mitra, A. Saha, Reduced graphene oxide based “turn-on” fluorescence sensor for highly reproducible and sensitive detection of small organic pollutants. ACS Sustain. Chem. Eng. 5(1), 604–615 (2017). https://doi.org/10.1021/acssuschemeng.6b01971
S.K. Basiruddin, S.K. Swain, Phenylboronic acid functionalized reduced graphene oxide based fluorescence nano sensor for glucose sensing. Mater. Sci. Eng. C 58, 103–109 (2016). https://doi.org/10.1016/j.msec.2015.07.068
A.K. Sharma, A. Dominic, Fluoride fiber-optic SPR sensor with graphene and NaF layers: analysis of accuracy, sensitivity, and specificity in near infrared. IEEE Sens. J. 18(10), 4053–4058 (2018). https://doi.org/10.1109/JSEN.2018.2818197
R. Majidi, A.R. Karami, Caffeine and nicotine adsorption on perfect, defective and porous graphene sheets. Diam. Relat. Mater. 66, 47–51 (2016). https://doi.org/10.1016/j.diamond.2016.03.014
M. Divagar, A. Gowri, S. John, V.V.R. Sai, Graphene oxide coated U-bent plastic optical fiber based chemical sensor for organic solvents. Sens. Actuators B 262, 1006–1012 (2018). https://doi.org/10.1016/j.snb.2018.02.059
H. Teymourian, A. Salimi, S.J.B. Khezrian, Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform. Biosens. Bioelectron. 49, 1–8 (2013). https://doi.org/10.1016/j.bios.2013.04.034
Z.-H. Sheng, X.-Q. Zheng, J.-Y. Xu, W.-J. Bao, F.-B. Wang, X.-H.J.B. Xia, Bioelectronics. Electrochemical sensor based on nitrogen doped graphene: simultaneous determination of ascorbic acid, dopamine and uric acid. Sens. Actuators B 34(1), 125–131 (2012). https://doi.org/10.1016/j.bios.2012.01.030
R. Antiochia, L.J.S. Gorton, A.B. Chemical, A new osmium-polymer modified screen-printed graphene electrode for fructose detection. Sens. Actuators B 195, 287–293 (2014). https://doi.org/10.1016/j.snb.2014.01.050
N. Ruecha, R. Rangkupan, N. Rodthongkum, O.J.B. Chailapakul, Novel paper-based cholesterol biosensor using graphene/polyvinylpyrrolidone/polyaniline nanocomposite. Biosens. Bioelectron. 52, 13–19 (2014). https://doi.org/10.1016/j.bios.2013.08.018
Y. Song, Y. Luo, C. Zhu, H. Li, D. Du, Y. Lin, Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials. Biosens. Bioelectron. 76, 195–212 (2016). https://doi.org/10.1016/j.bios.2015.07.002
H. Hashemzadeh, H. Raissi, Covalent organic framework as smart and high efficient carrier for anticancer drug delivery: a DFT calculations and molecular dynamics simulation study. J. Phys. D-Appl. Phys. 51(34), 345401 (2018). https://doi.org/10.1088/1361-6463/aad3e8
Z.B. Liu, Y.F. Xu, X.Y. Zhang, X.L. Zhang, Y.S. Chen, J.G. Tian, Porphyrin and fullerene covalently functionalized graphene hybrid materials with large nonlinear optical properties. J. Phys. Chem. B 113(29), 9681–9686 (2009). https://doi.org/10.1021/jp9004357
L. Feng, L. Wu, J. Wang, J. Ren, D. Miyoshi, N. Sugimoto, X. Qu, Detection of a prognostic indicator in early-stage cancer using functionalized graphene-based peptide sensors. Adv. Mater. 24(1), 125–131 (2012). https://doi.org/10.1002/adma.201103205
J. Labuta, J.P. Hill, S. Ishihara, L. Hanyková, K. Ariga, Chiral sensing by nonchiral tetrapyrroles. Acc. Chem. Res. 48(3), 521–529 (2015). https://doi.org/10.1021/acs.accounts.5b00005
H. Li, G. Lu, Y. Wang, Z. Yin, C. Cong et al., Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2. Small 9(11), 1974–1981 (2013). https://doi.org/10.1002/smll.201202919
Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey, H. Zhang, Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew. Chem. Int. Ed. 50(47), 11093–11097 (2011). https://doi.org/10.1002/anie.201106004
J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King et al., Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331(6017), 568–571 (2011). https://doi.org/10.1126/science.1194975
K.K. Liu, W. Zhang, Y.H. Lee, Y.C. Lin, M.T. Chang et al., Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12(3), 1538–1544 (2012). https://doi.org/10.1021/nl2043612
W.T. Koo, J.H. Cha, J.W. Jung, S.J. Choi, J.S. Jang, D.H. Kim, I.D. Kim, Few-layered WS2 nanoplates confined in Co, N-doped hollow carbon nanocages: abundant WS2 edges for highly sensitive gas sensors. Adv. Funct. Mater. 28(36), 1802575 (2018). https://doi.org/10.1002/adfm.201802575
S.R. Shakil, S.A. Khan, Sensing properties of gas sensor based on adsorption of NO2 with defect, pristine, Fe and Si–MoS2 layer. J. Nano Electron. Phys. 6(4), 04004-1 (2014)
J.H. Cha, S.J. Choi, S. Yu, I.D. Kim, 2D WS2-edge functionalized multi-channel carbon nanofibers: effect of WS2 edge-abundant structure on room temperature NO2 sensing. J. Mater. Chem. A 5(18), 8725–8732 (2017). https://doi.org/10.1039/c6ta11019c
Z. Qin, K. Xu, H. Yue, H. Wang, J. Zhang, C. Ouyang, C. Xie, D. Zeng, Enhanced room-temperature NH3 gas sensing by 2D SnS2 with sulfur vacancies synthesized by chemical exfoliation. Sens. Actuators B 262, 771–779 (2018). https://doi.org/10.1016/j.snb.2018.02.060
Y. Wang, Z. Sofer, J. Luxa, M. Pumera, Lithium exfoliated vanadium dichalcogenides (VS2, VSe2, VTe2) exhibit dramatically different properties from their bulk counterparts. Adv. Mater. Interfaces 3(23), 1600433 (2016). https://doi.org/10.1002/admi.201600433
J. Wu, Y. Lu, Z. Wu, S. Li, Q. Zhang et al., Two-dimensional molybdenum disulfide (MoS2) with gold nanoparticles for biosensing of explosives by optical spectroscopy. Sens. Actuators B 261, 279–287 (2018). https://doi.org/10.1016/j.snb.2018.01.166
T.D. Thanh, N.D. Chuong, H.V. Hien, T. Kshetri, L.H. Tuan, N.H. Kim, J.H. Lee, Recent advances in two-dimensional transition metal dichalcogenides-graphene heterostructured materials for electrochemical applications. Prog. Mater. Sci. 96, 51–85 (2018). https://doi.org/10.1016/j.pmatsci.2018.03.007
X. Cao, Ultra-sensitive electrochemical DNA biosensor based on signal amplification using gold nanoparticles modified with molybdenum disulfide, graphene and horseradish peroxidase. Microchim. Acta 181(9–10), 1133–1141 (2014). https://doi.org/10.1007/s00604-014-1301-y
Y. Chu, B. Cai, Y. Ma, M. Zhao, Z. Ye, J. Huang, Highly sensitive electrochemical detection of circulating tumor DNA based on thin-layer MoS2/graphene composites. RSC Adv. 6(27), 22673–22678 (2016). https://doi.org/10.1039/c5ra27625j
K.J. Huang, Y.J. Liu, H.B. Wang, T. Gan, Y.M. Liu, L.L. Wang, Signal amplification for electrochemical DNA biosensor based on two-dimensional graphene analogue tungsten sulfide–graphene composites and gold nanoparticles. Sens. Actuators B 191, 828–836 (2014). https://doi.org/10.1016/j.snb.2013.10.072
J. Zhu, E. Ha, G. Zhao, Y. Zhou, D. Huang et al., Recent advance in MXenes: a promising 2D material for catalysis, sensor and chemical adsorption. Coord. Chem. Rev. 352, 306–327 (2017). https://doi.org/10.1016/j.ccr.2017.09.012
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
M. Naguib, V.N. Mochalin, M.W. Barsoum, Y.J.A.M. Gogotsi, 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater. 26(7), 992–1005 (2014). https://doi.org/10.1002/adma.201304138
M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516(7529), 78–81 (2014). https://doi.org/10.1038/nature13970
M.A. Hope, A.C. Forse, K.J. Griffith, M.R. Lukatskaya, M. Ghidiu, Y. Gogotsi, C. Grey, NMR reveals the surface functionalisation of Ti3C2 MXene. Phys. Chem. Chem. Phys. 18(7), 5099–5102 (2016). https://doi.org/10.1039/C6CP00330C
P. Urbankowski, B. Anasori, T. Makaryan, D. Er, S. Kota et al., Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale 8(22), 11385–11391 (2016). https://doi.org/10.1039/C6NR02253G
B. Xu, M. Zhu, W. Zhang, X. Zhen, Z. Pei, Q. Xue, C. Zhi, P. Shi, Ultrathin MXene-micropattern-based field-effect transistor for probing neural activity. Adv. Mater. 28(17), 3333–3339 (2016). https://doi.org/10.1002/adma.201504657
Y. Ma, N. Liu, L. Li, X. Hu, Z. Zou et al., A highly flexible and sensitive piezoresistive sensor based on mxene with greatly changed interlayer distances. Nat. Commun. 8(1), 1207 (2017). https://doi.org/10.1038/s41467-017-01136-9
F. Wang, C. Yang, M. Duan, Y. Tang, J.J.B. Zhu, TiO2 nanoparticle modified organ-like Ti3C2 mxene nanocomposite encapsulating hemoglobin for a mediator-free biosensor with excellent performances. Biosens. Bioelectron. 74, 1022–1028 (2015). https://doi.org/10.1016/j.bios.2015.08.004
G.S. Papaefstathiou, T. Friščić, L.R. MacGillivray, Design and construction of a 2D metal organic framework with multiple cavities: a nonregular net with a paracyclophane that codes for multiply fused nodes. J. Am. Chem. Soc. 127(41), 14160–14161 (2005). https://doi.org/10.1021/ja054841n
T.N. Tu, M.V. Nguyen, H.L. Nguyen, B. Yuliarto, K.E. Cordova, S. Demir, Designing bipyridine-functionalized zirconium metal–organic frameworks as a platform for clean energy and other emerging applications. Coord. Chem. Rev. 364, 33–50 (2018). https://doi.org/10.1016/j.ccr.2018.03.014
W. Zhao, J. Peng, W. Wang, S. Liu, Q. Zhao, W. Huang, Ultrathin two-dimensional metal–organic framework nanosheets for functional electronic devices. Coord. Chem. Rev. 377, 44–63 (2018). https://doi.org/10.1016/j.ccr.2018.08.023
H. Wang, Q.-L. Zhu, R. Zou, Q. Xu, Metal–organic frameworks for energy applications. Chem 2(1), 52–80 (2017). https://doi.org/10.1016/j.chempr.2016.12.002
C. Sengottaiyan, R. Jayavel, R.G. Shrestha, T. Subramani, S. Maji et al., Indium oxide/carbon nanotube/reduced graphene oxide ternary nanocomposite with enhanced electrochemical supercapacitance. Bull. Chem. Soc. Jpn. 92(3), 521–528 (2018). https://doi.org/10.1246/bcsj.20180338
X. Wang, C. Chi, K. Zhang, Y. Qian, K.M. Gupta, Z. Kang, J. Jiang, D. Zhao, Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal–organic nanosheets for gas separation. Nat. Commun. 8, 14460 (2017). https://doi.org/10.1038/ncomms14460
C. Hermosa, B.R. Horrocks, J.I. Martínez, F. Liscio, J. Gómez-Herrero, F. Zamora, Mechanical and optical properties of ultralarge flakes of a metal–organic framework with molecular thickness. Chem. Sci. 6(4), 2553–2558 (2015). https://doi.org/10.1039/C4SC03115F
P. Amo-Ochoa, L. Welte, R. González-Prieto, P.J. Sanz Miguel, C.J. Gómez-García et al., Single layers of a multifunctional laminar Cu(i, ii) coordination polymer. Chem. Commun. 46(19), 3262–3264 (2010). https://doi.org/10.1039/B919647A
Y. Ding, Y.-P. Chen, X. Zhang, L. Chen, Z. Dong et al., Controlled intercalation and chemical exfoliation of layered metal–organic frameworks using a chemically labile intercalating agent. J. Am. Chem. Soc. 139(27), 9136–9139 (2017). https://doi.org/10.1021/jacs.7b04829
J. Huang, Y. Li, R.-K. Huang, C.-T. He, L. Gong et al., Electrochemical exfoliation of pillared-layer metal–organic framework to boost the oxygen evolution reaction. Angew. Chem. Int. Ed. 130(17), 4722–4726 (2018). https://doi.org/10.1002/ange.201801029
L. Cao, Z. Lin, F. Peng, W. Wang, R. Huang et al., Self-supporting metal–organic layers as single-site solid catalysts. Angew. Chem. Int. Ed. 55(16), 4962–4966 (2016). https://doi.org/10.1002/anie.201512054
R. Dong, Z. Zheng, D.C. Tranca, J. Zhang, N. Chandrasekhar et al., Immobilizing molecular metal dithiolene–diamine complexes on 2D metal–organic frameworks for electrocatalytic H2 production. Chemistry 23(10), 2255–2260 (2017). https://doi.org/10.1002/chem.201605337
A. Pustovarenko, M.G. Goesten, S. Sachdeva, M. Shan, Z. Amghouz et al., Nanosheets of nonlayered aluminum metal–organic frameworks through a surfactant-assisted method. Adv. Mater. 30(26), 1707234 (2018). https://doi.org/10.1002/adma.201707234
M. Zhao, Y. Wang, Q. Ma, Y. Huang, X. Zhang et al., Ultrathin 2D metal–organic framework nanosheets. Adv. Mater. 27(45), 7372–7378 (2015). https://doi.org/10.1002/adma.201503648
J. Duan, S. Chen, C. Zhao, Ultrathin metal–organic framework array for efficient electrocatalytic water splitting. Nat. Commun. 8, 15341 (2017). https://doi.org/10.1038/ncomms15341
S. He, Y. Chen, Z. Zhang, B. Ni, W. He, X. Wang, Competitive coordination strategy for the synthesis of hierarchical-pore metal–organic framework nanostructures. Chem. Sci. 7(12), 7101–7105 (2016). https://doi.org/10.1039/C6SC02272C
I. Stassen, N. Burtch, A. Talin, P. Falcaro, M. Allendorf, R. Ameloot, An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors. Chem. Soc. Rev. 46(11), 3185–3241 (2017). https://doi.org/10.1039/C7CS00122C
L. Liu, Y. Zhou, S. Liu, M. Xu, The applications of metal − organic frameworks in electrochemical sensors. ChemElectroChem 5(1), 6–19 (2018). https://doi.org/10.1002/celc.201700931
M.G. Campbell, D. Sheberla, S.F. Liu, T.M. Swager, M. Dincă, Cu3(hexaiminotriphenylene)2: an electrically conductive 2D metal–organic framework for chemiresistive sensing. Angew. Chem. Int. Ed. 54(14), 4349–4352 (2015). https://doi.org/10.1002/anie.201411854
R. Boroujerdi, Ce(iii)—porphyrin sandwich complex Ce2(tpp)3: a rod-like nanoparticle as a fluorescence turn-off probe for detection of Hg(ii) and Cu(ii). J. Fluoresc. 26(3), 781–790 (2016). https://doi.org/10.1007/s10895-015-1761-4
W.P. Lustig, S. Mukherjee, N.D. Rudd, A.V. Desai, J. Li, S.K. Ghosh, Metal–organic frameworks: functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev. 46(11), 3242–3285 (2017). https://doi.org/10.1039/C6CS00930A
X.-J. Liu, Y.-H. Zhang, Z. Chang, A.-L. Li, D. Tian et al., A water-stable metal–organic framework with a double-helical structure for fluorescent sensing. Inorg. Chem. 55(15), 7326–7328 (2016). https://doi.org/10.1021/acs.inorgchem.6b00935
M. Zhang, G. Feng, Z. Song, Y.-P. Zhou, H.-Y. Chao et al., Two-dimensional metal–organic framework with wide channels and responsive turn-on fluorescence for the chemical sensing of volatile organic compounds. J. Am. Chem. Soc. 136(20), 7241–7244 (2014). https://doi.org/10.1021/ja502643p
Z.-Q. Li, L.-G. Qiu, W. Wang, T. Xu, Y. Wu, X. Jiang, Fabrication of nanosheets of a fluorescent metal–organic framework [Zn(bdc)(H2O)]n (bdc = 1,4-benzenedicarboxylate): ultrasonic synthesis and sensing of ethylamine. Inorg. Chem. Commun. 11(11), 1375–1377 (2008). https://doi.org/10.1016/j.inoche.2008.09.010
P.R. Solanki, A. Kaushik, V.V. Agrawal, B.D. Malhotra, Nanostructured metal oxide-based biosensors. NPG Asia Mater. 3, 17 (2011). https://doi.org/10.1038/asiamat.2010.137
K. Shavanova, Y. Bakakina, I. Burkova, I. Shtepliuk, R. Viter et al., Application of 2D non-graphene materials and 2D oxide nanostructures for biosensing technology. Sensors 16(2), 223 (2016). https://doi.org/10.3390/s16020223
Y. Shu, J. Xu, J. Chen, Q. Xu, X. Xiao, D. Jin, H. Pang, X. Hu, Ultrasensitive electrochemical detection of H2O2 in living cells based on ultrathin MnO2 nanosheets. Sens. Actuators B 252, 72–78 (2017). https://doi.org/10.1016/j.snb.2017.05.124
M.R. Alenezi, A.S. Alshammari, T.H. Alzanki, P. Jarowski, S.J. Henley, S.R.P. Silva, ZnO nanodisk based uv detectors with printed electrodes. Langmuir 30(13), 3913–3921 (2014). https://doi.org/10.1021/la500143w
A.P. Dral, J.E. Elshof, 2D metal oxide nanoflakes for sensing applications: review and perspective. Sens. Actuators B 272, 369–392 (2018). https://doi.org/10.1016/j.snb.2018.05.157
D. Chen, X. Hou, H. Wen, Y. Wang, H. Wang et al., The enhanced alcohol-sensing response of ultrathin WO3 nanoplates. Nanotechnology 21(3), 035501 (2010). https://doi.org/10.1088/0957-4484/21/3/035501
Z. Jing, J. Zhan, Fabrication and gas-sensing properties of porous ZnO nanoplates. Adv. Mater. 20(23), 4547–4551 (2008). https://doi.org/10.1002/adma.200800243
Y.J. Chen, L. Nie, X.Y. Xue, Y.G. Wang, T.H. Wang, Linear ethanol sensing of SnO2 nanorods with extremely high sensitivity. Appl. Phys. Lett. 88(8), 083105 (2006). https://doi.org/10.1063/1.2166695
X.Y. Xue, Y.J. Chen, Y.G. Liu, S.L. Shi, Y.G. Wang, T.H. Wang, Synthesis and ethanol sensing properties of indium-doped tin oxide nanowires. Appl. Phys. Lett. 88(20), 201907 (2006). https://doi.org/10.1063/1.2203941
Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, C.L. Lin, Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 84(18), 3654–3656 (2004). https://doi.org/10.1063/1.1738932
X.Y. Xue, Y.J. Chen, Y.G. Wang, T.H. Wang, Synthesis and ethanol sensing properties of ZnSnO3 nanowires. Appl. Phys. Lett. 86(23), 1–3 (2005). https://doi.org/10.1063/1.1944204
X.Y. Xue, Y.J. Chen, Q.H. Li, C. Wang, Y.G. Wang, T.H. Wang, Electronic transport characteristics through individual ZnSnO3 nanowires. Appl. Phys. Lett. 88(18), 182102 (2006). https://doi.org/10.1063/1.2199612
H. Zeng, C. Zhi, Z. Zhang, X. Wei, X. Wang et al., “White graphenes”: boron nitride nanoribbons via boron nitride nanotube unwrapping. Nano Lett. 10(12), 5049–5055 (2010). https://doi.org/10.1021/nl103251m
K. Zhang, Y. Feng, F. Wang, Z. Yang, J. Wang, Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications. J. Mater. Chem. C 5(46), 11992–12022 (2017). https://doi.org/10.1039/c7tc04300g
D. Pacile, J. Meyer, Ç. Girit, A. Zettl, The two-dimensional phase of boron nitride: few-atomic-layer sheets and suspended membranes. Appl. Phys. Lett. 92(13), 133107 (2008). https://doi.org/10.1063/1.2903702
Y. Lin, J.W.J.N. Connell, Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene. Nanoscale 4(22), 6908–6939 (2012). https://doi.org/10.1039/c2nr32201c
A. Pakdel, C. Zhi, Y. Bando, D. Golberg, Low-dimensional boron nitride nanomaterials. Mater. Today 15(6), 256–265 (2012). https://doi.org/10.1016/S1369-7021(12)70116-5
A. Pakdel, Y. Bando, D. Golberg, Nano boron nitride flatland. Chem. Soc. Rev. 43(3), 934–959 (2014). https://doi.org/10.1039/c3cs60260e
A. Pakdel, X. Wang, C. Zhi, Y. Bando, K. Watanabe et al., Facile synthesis of vertically aligned hexagonal boron nitride nanosheets hybridized with graphitic domains. J. Mater. Chem. 22(11), 4818–4824 (2012). https://doi.org/10.1039/c2jm15109j
T. Ouyang, Y. Chen, Y. Xie, K. Yang, Z. Bao, J.J.N. Zhong, Thermal transport in hexagonal boron nitride nanoribbons. Nanotechnology 21(24), 245701 (2010). https://doi.org/10.1088/0957-4484/21/24/245701
J. Wang, F. Ma, M. Sun, Graphene, hexagonal boron nitride, and their heterostructures: properties and applications. RSC Adv. 7(27), 16801–16822 (2017). https://doi.org/10.1039/c7ra00260b
R. Gao, L. Yin, C. Wang, Y. Qi, N. Lun et al., High-yield synthesis of boron nitride nanosheets with strong ultraviolet cathodoluminescence emission. J. Phys. Chem. C 113(34), 15160–15165 (2009). https://doi.org/10.1021/jp904246j
K. Watanabe, T. Taniguchi, H. Kanda, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3(6), 404 (2004). https://doi.org/10.1038/nmat1134
V. Barone, J. Peralta, Magnetic boron nitride nanoribbons with tunable electronic properties. Nano Lett. 8(8), 2210–2214 (2008). https://doi.org/10.1021/nl080745j
K. Novoselov, D. Jiang, F. Schedin, T. Booth, V. Khotkevich, S. Morozov, A. Geim, Two-dimensional atomic crystals. PNAS 102(30), 10451–10453 (2005). https://doi.org/10.1073/pnas.0502848102
L. Jiao, L. Zhang, X. Wang, G. Diankov, H. Dai, Narrow graphene nanoribbons from carbon nanotubes. Nature 458(7240), 877 (2009). https://doi.org/10.1038/nature07919
S. Zhang, G. Lian, H. Si, J. Wang, X. Zhang et al., Ultrathin BN nanosheets with zigzag edge: one-step chemical synthesis, applications in wastewater treatment and preparation of highly thermal-conductive BN—polymer composites. J. Mater. Chem. A 1(16), 5105–5112 (2013). https://doi.org/10.1039/c3ta01597a
W.-Q. Han, H.-G. Yu, Z. Liu, Convert graphene sheets to boron nitride and boron nitride–carbon sheets via a carbon-substitution reaction. Appl. Phys. Lett. 98(20), 203112 (2011). https://doi.org/10.1063/1.3593492
F. Müller, K. Stöwe, H. Sachdev, Symmetry versus commensurability: epitaxial growth of hexagonal boron nitride on Pt(111) from b-trichloroborazine (CLBNH)3. Chem. Mater. 17(13), 3464–3467 (2005). https://doi.org/10.1021/cm048629e
C. Zhi, Y. Bando, C. Tang, H. Kuwahara, D. Golberg, Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv. Mater. 21(28), 2889–2893 (2009). https://doi.org/10.1002/adma.200900323
M.L. Yola, N. Atar, A novel detection approach for serotonin by graphene quantum dots/two-dimensional (2D) hexagonal boron nitride nanosheets with molecularly imprinted polymer. Appl. Surf. Sci. 458, 648–655 (2018). https://doi.org/10.1016/j.apsusc.2018.07.142
M. Sajjad, P. Feng, Study the gas sensing properties of boron nitride nanosheets. Mater. Res. Bull. 49, 35–38 (2014). https://doi.org/10.1016/j.materresbull.2013.08.019
R.-M. Kong, X.-B. Zhang, L.-L. Zhang, X.-Y. Jin, S.-Y. Huan, G.-L. Shen, R.-Q. Yu, An ultrasensitive electrochemical “turn-on” label-free biosensor for Hg2+ with aunp-functionalized reporter DNA as a signal amplifier. Chem. Commun. 37, 5633–5635 (2009). https://doi.org/10.1039/B911163H
Y.-H. Sun, R.-M. Kong, D.-Q. Lu, X.-B. Zhang, H.-M. Meng, W. Tan, G.-L. Shen, R.-Q. Yu, A nanoscale DNA–Au dendrimer as a signal amplifier for the universal design of functional DNA-based sers biosensors. Chem. Commun. 47(13), 3840–3842 (2011). https://doi.org/10.1039/C0CC05133K
A.R. Fakhari, A. Sahragard, H. Ahmar, Development of an electrochemical sensor based on reduced graphene oxide modified screen-printed carbon electrode for the determination of buprenorphine. Electroanalysis 26(11), 2474–2483 (2014). https://doi.org/10.1002/elan.201400196
A. Navaee, A. Salimi, H. Teymourian, Graphene nanosheets modified glassy carbon electrode for simultaneous detection of heroine, morphine and noscapine. Biosens. Bioelectron. 31(1), 205–211 (2012). https://doi.org/10.1016/j.bios.2011.10.018
X. Xu, J. Zhou, Y. Xin, G. Lubineau, Q. Ma, L. Jiang, Alcohol recognition by flexible, transparent and highly sensitive graphene-based thin-film sensors. Sci. Rep. 7(1), 4317 (2017). https://doi.org/10.1038/s41598-017-04636-2
G.J. Thangamani, K. Deshmukh, K. Chidambaram, M.B. Ahamed, K.K. Sadasivuni et al., Influence of CuO nanoparticles and graphene nanoplatelets on the sensing behaviour of poly(vinyl alcohol) nanocomposites for the detection of ethanol and propanol vapors. J. Mater. Sci.: Mater. Electron. 29(6), 5186–5205 (2018). https://doi.org/10.1007/s10854-017-8484-z
A. Lipatov, A. Varezhnikov, P. Wilson, V. Sysoev, A. Kolmakov, A. Sinitskii, Highly selective gas sensor arrays based on thermally reduced graphene oxide. Nanoscale 5(12), 5426–5434 (2013). https://doi.org/10.1039/c3nr00747b
C.A. Zito, T.M. Perfecto, C.S. Fonseca, D.P. Volanti, Effective reduced graphene oxide sheets/hierarchical flower-like NiO composites for methanol sensing under high humidity. New J. Chem. 42(11), 8638–8645 (2018). https://doi.org/10.1039/c8nj01061g
J. Tan, M. Dun, L. Li, J. Zhao, W. Tan, Z. Lin, X.J.S. Huang, Synthesis of hollow and hollowed-out Co3O4 microspheres assembled by porous ultrathin nanosheets for ethanol gas sensors: responding and recovering in one second. Sens. Actuators B 249, 44–52 (2017). https://doi.org/10.1016/j.snb.2017.04.063
E. Lee, D. Lee, J. Yoon, Y. Yin, Y. Lee, S. Uprety, Y. Yoon, D.-J.J.S. Kim, Enhanced gas-sensing performance of GO/TiO2 composite by photocatalysis. Sensors 18(10), 3334 (2018). https://doi.org/10.3390/s18103334
Z. Yin, Z. Sun, J. Wu, R. Liu, S. Zhang, Y. Qian, Y. Min, Facile synthesis of hexagonal single-crystalline ZnCo2O4 nanosheet arrays assembled by mesoporous nanosheets as electrodes for high-performance electrochemical capacitors and gas sensors. Appl. Surf. Sci. 457, 1103–1109 (2018). https://doi.org/10.1016/j.apsusc.2018.06.297
Y. Liu, Y. Jiao, Z. Zhang, F. Qu, A. Umar, X. Wu, Hierarchical SnO2 nanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor, and supercapacitor applications. ACS Appl. Mater. Interfaces 6(3), 2174–2184 (2014). https://doi.org/10.1021/am405301v
L. Liu, P. Song, Q. Wei, X. Zhong, Z. Yang, Q. Wang, Synthesis of porous SnO2 hexagon nanosheets loaded with au nanoparticles for high performance gas sensors. Mater. Lett. 201, 211–215 (2017). https://doi.org/10.1016/j.matlet.2017.05.024
C. Zhang, Z.L. Hou, B.X. Zhang, H.M. Fang, S. Bi, High sensitivity self-recovery ethanol sensor based on polyporous graphene oxide/melamine composites. Carbon 137, 467–474 (2018). https://doi.org/10.1016/j.carbon.2018.05.055
P.X. Zhao, Y. Tang, J. Mao, Y.X. Chen, H. Song et al., One-dimensional MoS2-decorated TiO2 nanotube gas sensors for efficient alcohol sensing. J. Alloys Compd. 674, 252–258 (2016). https://doi.org/10.1016/j.jallcom.2016.03.029
H. Yan, P. Song, S. Zhang, Z. Yang, Q.J.R.A. Wang, Dispersed SnO2 nanoparticles on MoS2 nanosheets for superior gas-sensing performances to ethanol. RSC Adv. 5(97), 79593–79599 (2015). https://doi.org/10.1039/C5RA15019A
H. Yan, P. Song, S. Zhang, Z. Yang, Q. Wang, Facile synthesis, characterization and gas sensing performance of Zno nanoparticles-coated MoS2 nanosheets. J. Alloys Compd. 662, 118–125 (2016). https://doi.org/10.1016/j.jallcom.2015.12.066
G. Jiang, M. Goledzinowski, F.J.E. Comeau, H. Zarrin et al., Free-standing functionalized graphene oxide solid electrolytes in electrochemical gas sensors. Adv. Funct. Mater. 26(11), 1729–1736 (2016). https://doi.org/10.1002/adfm.201504604
S. Liang, J. Zhu, J. Ding, H. Bi, P. Yao, Q. Han, X. Wang, Deposition of cocoon-like ZnO on graphene sheets for improving gas-sensing properties to ethanol. Appl. Surf. Sci. 357, 1593–1600 (2015). https://doi.org/10.1016/j.apsusc.2015.10.033
C. Zhao, H. Gong, W. Lan, R. Ramachandran, H. Xu, S. Liu, F.J.S. Wang, A.B. Chemical, Facile synthesis of SnO2 hierarchical porous nanosheets from graphene oxide sacrificial scaffolds for high-performance gas sensors. Sens. Actuators B 258, 492–500 (2018). https://doi.org/10.1016/j.snb.2017.11.167
D. Zhang, X. Fan, A. Yang, X. Zong, Hierarchical assembly of urchin-like alpha-iron oxide hollow microspheres and molybdenum disulphide nanosheets for ethanol gas sensing. J. Colloid Interface Sci. 523, 217–225 (2018). https://doi.org/10.1016/j.jcis.2018.03.109
L. Li, C. Zhang, R. Zhang, X. Gao, S. He et al., 2D ultrathin Co3O4 nanosheet array deposited on 3D carbon foam for enhanced ethanol gas sensing application. Sens. Actuators B 244, 664–672 (2017). https://doi.org/10.1016/j.snb.2017.01.056
S.J. Kim, H.-J. Koh, C.E. Ren, O. Kwon, K. Maleski et al., Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12(2), 986–993 (2018). https://doi.org/10.1021/acsnano.7b07460
C. Yuejiao, Y. Ling, L. Qing, W. Yan, L. Qiuhong, W. Taihong, An evolution from 3D face-centered-cubic ZnSnO3 nanocubes to 2D orthorhombic ZnSnO3 nanosheets with excellent gas sensing performance. Nanotechnology 23(41), 415501 (2012). https://doi.org/10.1088/0957-4484/23/41/415501
E. Lee, A. VahidMohammadi, B.C. Prorok, Y.S. Yoon, M. Beidaghi, D.-J. Kim, Room temperature gas sensing of two-dimensional titanium carbide (MXene). ACS Appl. Mater. Interfaces 9(42), 37184–37190 (2017). https://doi.org/10.1021/acsami.7b11055
L. Lin, T. Liu, Y. Zhang, R. Sun, W. Zeng, Z. Wang, Synthesis of boron nitride nanosheets with a few atomic layers and their gas-sensing performance. Ceram. Int. 42(1, Part A), 971–975 (2016). https://doi.org/10.1016/j.ceramint.2015.08.109
B.P. Mathew, H.J. Yang, J. Kim, J.B. Lee, Y.T. Kim et al., An annulative synthetic strategy for building triphenylene frameworks by multiple C–H bond activations. Angew. Chem. Int. Ed. 56(18), 5007–5011 (2017). https://doi.org/10.1002/anie.201700405
R.K. Jha, M. Wan, C. Jacob, P.K. Guha, Enhanced gas sensing properties of liquid-processed semiconducting tungsten chalcogenide (WXi, x = O and S) based hybrid nanomaterials. IEEE Sens. J. 18(9), 3494–3501 (2018). https://doi.org/10.1109/JSEN.2018.2810811
L. Yu, H. Song, Y. Tang, L. Zhang, Y. Lv, Controllable deposition of ZnO-doped SnO2 nanowires on Au/graphene and their application in cataluminescence sensing for alcohols and ketones. Sens. Actuators B 203, 726–735 (2014). https://doi.org/10.1016/j.snb.2014.06.015
Z. Li, A.A. Haidry, Y. Liu, L. Sun, L. Xie et al., Strongly coupled Ag/TiO2 heterojunction: from one-step facile synthesis to effective and stable ethanol sensing performances. J. Mater. Sci.: Mater. Electron. 29(22), 19219–19227 (2018). https://doi.org/10.1007/s10854-018-0048-3
A.K. Sharma, B. Kaur, Chalcogenide fiber-optic SPR chemical sensor with MoS2 monolayer, polymer clad, and polythiophene layer in NIR using selective ray launching. Opt. Fiber Technol. 43, 163–168 (2018). https://doi.org/10.1016/j.yofte.2018.05.003
H.-K. Jeong, Y.P. Lee, M.H. Jin, E.S. Kim, J.J. Bae, Y. Lee, Thermal stability of graphite oxide. Chem. Phys. Lett. 470(4–6), 255–258 (2009). https://doi.org/10.1016/j.cplett.2009.01.050
B. Xu, S. Yue, Z. Sui, X. Zhang, S. Hou, G. Cao, Y.J.E. Yang, E. Science, What is the choice for supercapacitors: Graphene or graphene oxide? Energy Environ. Sci. 4(8), 2826–2830 (2011). https://doi.org/10.1039/c1ee01198g
M.S. Peresin, Y. Habibi, J.O. Zoppe, J.J. Pawlak, O.J.J.B. Rojas, Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromolecules 11(3), 674–681 (2010). https://doi.org/10.1021/bm901254n
S. Tanpichai, F. Quero, M. Nogi, H. Yano, R.J. Young, T. Lindström, W.W. Sampson, S.J.J.B. Eichhorn, Effective young’s modulus of bacterial and microfibrillated cellulose fibrils in fibrous networks. Biomacromolecules 13(5), 1340–1349 (2012). https://doi.org/10.1021/bm300042t
U. Lad, G.M. Kale, R. Bryaskova, Glucose oxidase encapsulated polyvinyl alcohol–silica hybrid films for an electrochemical glucose sensing electrode. Anal. Chem. 85(13), 6349–6355 (2013). https://doi.org/10.1021/ac400719h
R. Rahmanian, S.A. Mozaffari, Electrochemical fabrication of ZnO–polyvinyl alcohol nanostructured hybrid film for application to urea biosensor. Sens. Actuators B 207, 772–781 (2015). https://doi.org/10.1016/j.snb.2014.10.129
N. Sanaeifar, M. Rabiee, M. Abdolrahim, M. Tahriri, D. Vashaee, L. Tayebi, A novel electrochemical biosensor based on Fe3O4 nanoparticles-polyvinyl alcohol composite for sensitive detection of glucose. Anal. Biochem. 519, 19–26 (2017). https://doi.org/10.1016/j.ab.2016.12.006
S.H. Baek, J. Roh, C.Y. Park, M.W. Kim, R. Shi, S.K. Kailasa, T.J. Park, Cu-nanoflower decorated gold nanoparticles–graphene oxide nanofiber as electrochemical biosensor for glucose detection. Mater. Sci. Eng. C 107, 110273 (2020). https://doi.org/10.1016/j.msec.2019.110273
S. Ampuero, J.O. Bosset, The electronic nose applied to dairy products: a review. Sens. Actuators B 94(1), 1–12 (2003). https://doi.org/10.1016/S0925-4005(03)00321-6
C.D. Natale, A. Macagnano, A. D’Amico, F. Davide, Electronic-nose modelling and data analysis using a self-organizing map. Meas. Sci. Technol. 8(11), 1236–1243 (1997). https://doi.org/10.1088/0957-0233/8/11/004
T. Kavinkumar, D. Sastikumar, S. Manivannan, Effect of functional groups on dielectric, optical gas sensing properties of graphene oxide and reduced graphene oxide at room temperature. RSC Adv. 5(14), 10816–10825 (2015). https://doi.org/10.1039/c4ra12766h
J.-S. Kim, H.-W. Yoo, H.O. Choi, H.-T. Jung, Tunable volatile organic compounds sensor by using thiolated ligand conjugation on MoS2. Nano Lett. 14(10), 5941–5947 (2014). https://doi.org/10.1021/nl502906a
R. Zou, G. He, K. Xu, Q. Liu, Z. Zhang, J. Hu, ZnO nanorods on reduced graphene sheets with excellent field emission, gas sensor and photocatalytic properties. J. Mater. Chem. A 1(29), 8445–8452 (2013). https://doi.org/10.1039/C3TA11490B
X. Yu, G. Zhang, H. Cao, X. An, Y. Wang, Z. Shu, X. An, F. Hua, ZnO@ZnS hollow dumbbells–graphene composites as high-performance photocatalysts and alcohol sensors. New J. Chem. 36(12), 2593–2598 (2012). https://doi.org/10.1039/C2NJ40770A
N.D. Khoang, D.D. Trung, N. Van Duy, N.D. Hoa, N. Van Hieu, Design of SnO2/ZnO hierarchical nanostructures for enhanced ethanol gas-sensing performance. Sens. Actuators B 174, 594–601 (2012). https://doi.org/10.1016/j.snb.2012.07.118
S. Wei, S. Wang, Y. Zhang, M. Zhou, Different morphologies of ZnO and their ethanol sensing property. Sens. Actuators B 192, 480–487 (2014). https://doi.org/10.1016/j.snb.2013.11.034
A. Rothschild, H.L. Tuller, Gas sensors: new materials and processing approaches. J. Electroceram. 17(2), 1005–1012 (2006). https://doi.org/10.1007/s10832-006-6737-y
Y. Tian, J. Li, H. Xiong, J. Dai, Controlled synthesis of ZnO hollow microspheres via precursor-template method and its gas sensing property. Appl. Surf. Sci. 258(22), 8431–8438 (2012). https://doi.org/10.1016/j.apsusc.2011.12.090
D.R. Miller, S.A. Akbar, P.A. Morris, Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sens. Actuators B 204, 250–272 (2014). https://doi.org/10.1016/j.snb.2014.07.074
H. Men, P. Gao, B. Zhou, Y. Chen, C. Zhu et al., Fast synthesis of ultra-thin ZnSnO3 nanorods with high ethanol sensing properties. Chem. Commun. 46(40), 7581–7583 (2010). https://doi.org/10.1039/c0cc02222e
P. Song, Q. Wang, Z. Yang, Biomorphic synthesis of ZnSnO3 hollow fibers for gas sensing application. Sens. Actuators B 156(2), 983–989 (2011). https://doi.org/10.1016/j.snb.2011.03.017
Y. Cao, D. Jia, J. Zhou, Y. Sun, Simple solid-state chemical synthesis of ZnSnO3 nanocubes and their application as gas sensors. Eur. J. Inorg. Chem. 2009(27), 4105–4109 (2009). https://doi.org/10.1002/ejic.200900146
Y. Zeng, T. Zhang, H. Fan, G. Lu, M. Kang, Synthesis and gas-sensing properties of ZnSnO3 cubic nanocages and nanoskeletons. Sens. Actuators B 143(1), 449–453 (2009). https://doi.org/10.1016/j.snb.2009.07.021
J. Cao, Y. Xu, L. Sui, X. Zhang, S. Gao et al., Highly selective low-temperature triethylamine sensor based on Ag/Cr2O3 mesoporous microspheres. Sens. Actuators B 220, 910–918 (2015). https://doi.org/10.1016/j.snb.2015.06.023
F. Bao, Z. Zhang, X. Liu, X. Zhao, One-step synthesis of hierarchical ZnCo2O4@ZnCo2O4 core–shell nanosheet arrays on nickel foam for electrochemical capacitors. RSC Adv. 4(72), 38073–38077 (2014). https://doi.org/10.1039/C4RA06289B
H. Chen, G. Jiang, W. Yu, D. Liu, Y. Liu, L. Li, Q. Huang, Z. Tong, Electrospun carbon nanofibers coated with urchin-like ZnCo2O4 nanosheets as a flexible electrode material. J. Mater. Chem. A 4(16), 5958–5964 (2016). https://doi.org/10.1039/C6TA01880G
Z. Sun, X. Lu, A solid-state reaction route to anchoring Ni(OH)2 nanoparticles on reduced graphene oxide sheets for supercapacitors. Ind. Eng. Chem. Res. 51(30), 9973–9979 (2012). https://doi.org/10.1021/ie202706h
P. Zhang, J. Wang, X. Lv, H. Zhang, X. Sun, Facile synthesis of Cr-decorated hexagonal Co3O4 nanosheets for ultrasensitive ethanol detection. Nanotechnology 26(27), 275501 (2015). https://doi.org/10.1088/0957-4484/26/27/275501
J.-W. Yoon, J.-K. Choi, J.-H. Lee, Design of a highly sensitive and selective C2H5OH sensor using p-type Co3O4 nanofibers. Sens. Actuators B 161(1), 570–577 (2012). https://doi.org/10.1016/j.snb.2011.11.002
X. Liu, J. Zhang, L. Wang, T. Yang, X. Guo, S. Wu, S. Wang, 3D hierarchically porous ZnO structures and their functionalization by Au nanoparticles for gas sensors. J. Mater. Chem. 21(2), 349–356 (2011). https://doi.org/10.1039/C0JM01800G
B. Chocarro-Ruiz, A. Fernández-Gavela, S. Herranz, L.M. Lechuga, Nanophotonic label-free biosensors for environmental monitoring. Curr. Opin. Biotechnol. 45, 175–183 (2017). https://doi.org/10.1016/j.copbio.2017.03.016
I. Arghir, F. Delport, D. Spasic, J. Lammertyn, Smart design of fiber optic surfaces for improved plasmonic biosensing. New Biotechnol. 32(5), 473–484 (2015). https://doi.org/10.1016/j.nbt.2015.03.012
Y.-N. Zhang, H. Peng, X. Qian, Y. Zhang, G. An, Y. Zhao, Recent advancements in optical fiber hydrogen sensors. Sens. Actuators B 244, 393–416 (2017). https://doi.org/10.1016/j.snb.2017.01.004
H. Yang, H. Hu, Y. Wang, T. Yu, Rapid and non-destructive identification of graphene oxide thickness using white light contrast spectroscopy. Carbon 52, 528–534 (2013). https://doi.org/10.1016/j.carbon.2012.10.005
B.C. Yao, Y. Wu, A.Q. Zhang, Y.J. Rao, Z.G. Wang et al., Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing. Opt. Express 22(23), 28154–28162 (2014). https://doi.org/10.1364/OE.22.028154
N.M.Y. Zhang, K. Li, P.P. Shum, X. Yu, S. Zeng et al., Hybrid graphene/gold plasmonic fiber-optic biosensor. Adv. Mater. Technol. 2(2), 1600185 (2017). https://doi.org/10.1002/admt.201600185
Y. Luo, C. Chen, K. Xia, S. Peng, H. Guan et al., Tungsten disulfide (WS2) based all-fiber-optic humidity sensor. Opt. Express 24(8), 8956–8966 (2016). https://doi.org/10.1364/OE.24.008956
C.C. Mayorga-Martinez, Z. Sofer, M. Pumera, Layered black phosphorus as a selective vapor sensor. Angew. Chem. Int. Ed. 54(48), 14317–14320 (2015). https://doi.org/10.1002/anie.201505015
G. Liu, S.L. Rumyantsev, C. Jiang, M.S. Shur, A.A. Balandin, Selective gas sensing with h-BN capped MoS2 heterostructure thin-film transistors. IEEE Electron Device Lett. 36(11), 1202–1204 (2015). https://doi.org/10.1109/LED.2015.2481388
J.G. Thangamani, K. Deshmukh, K.K. Sadasivuni, D. Ponnamma, S. Goutham et al., White graphene reinforced polypyrrole and poly(vinyl alcohol) blend nanocomposites as chemiresistive sensors for room temperature detection of liquid petroleum gases. Microchim. Acta 184(10), 3977–3987 (2017). https://doi.org/10.1007/s00604-017-2402-1
S. Liu, B. Lu, Q. Zhao, J. Li, T. Gao et al., Boron nitride nanopores: highly sensitive DNA single-molecule detectors. Adv. Mater. 25(33), 4549–4554 (2013). https://doi.org/10.1002/adma.201301336
O. Beck, N.K. Modén, S. Seferaj, G. Lenk, A. Helander, Study of measurement of the alcohol biomarker phosphatidylethanol (PEth) in dried blood spot (DBS) samples and application of a volumetric DBS device. Clin. Chim. Acta 479, 38–42 (2018). https://doi.org/10.1016/j.cca.2018.01.008
R. Nanau, M.J.B. Neuman, Biomolecules and biomarkers used in diagnosis of alcohol drinking and in monitoring therapeutic interventions. Biomaterials 5(3), 1339–1385 (2015). https://doi.org/10.3390/biom5031339
O. Niemelä, Biomarker-based approaches for assessing alcohol use disorders. Int. J. Environ. Res. Public Health 13(2), 166 (2016). https://doi.org/10.3390/ijerph13020166
C. Dumitrascu, R. Paul, R. Kingston, R. Williams, Influence of alcohol containing and alcohol free cosmetics on faee concentrations in hair. A performance evaluation of ethyl palmitate as sole marker, versus the sum of four faees. Forensic Sci. Int. 283, 29–34 (2018). https://doi.org/10.1016/j.forsciint.2017.12.002
L. Morini, E. Marchei, L. Tarani, M. Trivelli, G. Rapisardi et al., Testing ethylglucuronide in maternal hair and nails for the assessment of fetal exposure to alcohol: comparison with meconium testing. Ther. Drug Monitor. 35(3), 402–407 (2013). https://doi.org/10.1097/FTD.0b013e318283f719
R.G. Lande, B. Marin, A comparison of two alcohol biomarkers in clinical practice: ethyl glucuronide versus ethyl sulfate. J. Addict. Dis. 32(3), 288–292 (2013). https://doi.org/10.1080/10550887.2013.824332
S.H. Stewart, D.G. Koch, D.M. Burgess, I.R. Willner, A. Reuben, Sensitivity and specificity of urinary ethyl glucuronide and ethyl sulfate in liver disease patients. Alcohol. Clin. Exp. Res. 37(1), 150–155 (2013). https://doi.org/10.1111/j.1530-0277.2012.01855.x
M. Hastedt, S. Herre, F. Pragst, M. Rothe, S.J.A. Hartwig, Workplace alcohol testing program by combined use of ethyl glucuronide and fatty acid ethyl esters in hair. Alcohol Alcohol. 47(2), 127–132 (2011). https://doi.org/10.1093/alcalc/agr148
F. Alam, A.H. Jalal, R. Sinha, Y. Umasankar, S. Bhansali, N. Pala, ZnO nanoflakes-based mediator free flexible biosensors for the selective detection of ethylglucuronide (EtG) and lactate. In: Proceedings of SPIE—The International Society for Optical Engineering. 10639 (2018)
F. Alam, A.H. Jalal, N. Pala, Selective detection of alcohol through ethyl-glucuronide (EtG) immunosensor based on 2D zinc oxide nanostructures. IEEE Sens. J. 19(11), 3984–3992 (2019). https://doi.org/10.1109/JSEN.2019.2898869
A.P. Selvam, S. Muthukumar, V. Kamakoti, S. Prasad, A wearable biochemical sensor for monitoring alcohol consumption lifestyle through ethyl glucuronide (EtG) detection in human sweat. Sci. Rep. 6, 23111 (2016). https://doi.org/10.1038/srep23111
X. Zhang, W. Lan, J. Xu, Y. Luo, J. Pan et al., ZIF-8 derived hierarchical hollow ZnO nanocages with quantum dots for sensitive ethanol gas detection. Sens. Actuators B 289, 144–152 (2019). https://doi.org/10.1016/j.snb.2019.03.090
D.-W. Yang, H.-H. Liu, Poly(brilliant cresyl blue)-carbonnanotube modified electrodes for determination of nadh and fabrication of ethanol dehydrogenase-based biosensor. Biosens. Bioelectron. 25(4), 733–738 (2009). https://doi.org/10.1016/j.bios.2009.08.016
D. Zhang, G. Dong, Y. Cao, Y. Zhang, Ethanol gas sensing properties of lead sulfide quantum dots-decorated zinc oxide nanorods prepared by hydrothermal process combining with successive ionic-layer adsorption and reaction method. J. Colloid Interface Sci. 528, 184–191 (2018). https://doi.org/10.1016/j.jcis.2018.05.085
D. Zhang, Y.E. Sun, Y. Zhang, Fabrication and characterization of layer-by-layer nano self-assembled ZnO nanorods/carbon nanotube film sensor for ethanol gas sensing application at room temperature. J. Mater. Sci.: Mater. Electron. 26(10), 7445–7451 (2015). https://doi.org/10.1007/s10854-015-3378-4
W. Zheng, Z. Li, H. Zhang, W. Wang, Y. Wang, C. Wang, Electrospinning route for α-Fe2O3 ceramic nanofibers and their gas sensing properties. Mater. Res. Bull. 44(6), 1432–1436 (2009). https://doi.org/10.1016/j.materresbull.2008.12.013
P. Hu, G. Du, W. Zhou, J. Cui, J. Lin et al., Enhancement of ethanol vapor sensing of TiO2 nanobelts by surface engineering. ACS Appl. Mater. Interfaces 2(11), 3263–3269 (2010). https://doi.org/10.1021/am100707h
M.M. Rahman, A. Jamal, S.B. Khan, M. Faisal, Highly sensitive ethanol chemical sensor based on Ni-doped SnO2 nanostructure materials. Biosens. Bioelectron. 28(1), 127–134 (2011). https://doi.org/10.1016/j.bios.2011.07.024
K.-I. Choi, H.-R. Kim, K.-M. Kim, D. Liu, G. Cao, J.-H. Lee, C2H5OH sensing characteristics of various Co3O4 nanostructures prepared by solvothermal reaction. Sens. Actuators B 146(1), 183–189 (2010). https://doi.org/10.1016/j.snb.2010.02.050