Mutual Self-Regulation of d-Electrons of Single Atoms and Adjacent Nanoparticles for Bifunctional Oxygen Electrocatalysis and Rechargeable Zinc-Air Batteries
Corresponding Author: Libo Deng
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 48
Abstract
Rechargeable zinc-air batteries (ZABs) are a promising energy conversion device, which rely critically on electrocatalysts to accelerate their rate-determining reactions such as oxygen reduction (ORR) and oxygen evolution reactions (OER). Herein, we fabricate a range of bifunctional M–N–C (metal-nitrogen-carbon) catalysts containing M–Nx coordination sites and M/MxC nanoparticles (M = Co, Fe, and Cu) using a new class of γ-cyclodextrin (CD) based metal–organic framework as the precursor. With the two types of active sites interacting with each other in the catalysts, the obtained Fe@C-FeNC and Co@C-CoNC display superior alkaline ORR activity in terms of low half-wave (E1/2) potential (~ 0.917 and 0.906 V, respectively), which are higher than Cu@C-CuNC (~ 0.829 V) and the commercial Pt/C (~ 0.861 V). As a bifunctional electrocatalyst, the Co@C-CoNC exhibits the best performance, showing a bifunctional ORR/OER overpotential (ΔE) of ~ 0.732 V, which is much lower than that of Fe@C-FeNC (~ 0.831 V) and Cu@C-CuNC (~ 1.411 V), as well as most of the robust bifunctional electrocatalysts reported to date. Synchrotron X-ray absorption spectroscopy and density functional theory simulations reveal that the strong electronic correlation between metallic Co nanoparticles and the atomic Co-N4 sites in the Co@C-CoNC catalyst can increase the d-electron density near the Fermi level and thus effectively optimize the adsorption/desorption of intermediates in ORR/OER, resulting in an enhanced bifunctional electrocatalytic performance. The Co@C-CoNC-based rechargeable ZAB exhibited a maximum power density of 162.80 mW cm−2 at 270.30 mA cm−2, higher than the combination of commercial Pt/C + RuO2 (~ 158.90 mW cm−2 at 265.80 mA cm−2) catalysts. During the galvanostatic discharge at 10 mA cm−2, the ZAB delivered an almost stable discharge voltage of 1.2 V for ~ 140 h, signifying the virtue of excellent bifunctional ORR/OER electrocatalytic activity.
Highlights:
1 A new class of γ-cyclodextrin based metal–organic framework -derived strategy was used to fabricate highly active M–N-C catalysts containing both single-atom sites and nanoparticles.
2 The obtained Co@C-CoNC exhibits remarkable bifunctional oxygen reduction (ORR)/oxygen evolution reactions (OER) performance, which further delivered a high power density and excellent cyclic stability in rechargeable zinc-air batteries.
3 Density functional theory calculation suggests that the mutual self-regulation of d-electron density of both Co NP and Co SAC conjointly reduce the reaction energy barriers and thus boost the ORR/OER kinetics through their fast adsorption/desorption ability of reaction intermediates.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.X. Zhao, J.N. Liu, J. Wang, D. Ren, J. Yu et al., A ΔE = 0.63 V bifunctional oxygen electrocatalyst enables high-rate and long-cycling zinc–air batteries. Adv. Mater. 33(15), 2008606 (2021). https://doi.org/10.1002/adma.202008606
- S. Chandrasekaran, D. Ma, Y. Ge, L. Deng, C. Bowen et al., Electronic structure engineering on two-dimensional (2D) electrocatalytic materials for oxygen reduction, oxygen evolution, and hydrogen evolution reactions. Nano Energy 77, 105080 (2020). https://doi.org/10.1016/j.nanoen.2020.105080
- L. Deng, L. Qiu, R. Hu, L. Yao, Z. Zheng et al., Restricted diffusion preparation of fully-exposed Fe single-atom catalyst on carbon nanospheres for efficient oxygen reduction reaction. Appl. Catal. B Environ. 305, 121058 (2022). https://doi.org/10.1016/j.apcatb.2021.121058
- J. Li, Oxygen evolution reaction in energy conversion and storage: design strategies under and beyond the energy scaling relationship. Nano-Micro Lett. 14, 112 (2022). https://doi.org/10.1007/s40820-022-00857-x
- S. Chandrasekaran, M. Khandelwal, F. Dayong, L. Sui, J.S. Chung et al., Developments and perspectives on robust nano- and microstructured binder-free electrodes for bifunctional water electrolysis and beyond. Adv. Energy Mater. 12(23), 2200409 (2022). https://doi.org/10.1002/aenm.202200409
- J. Yang, J. Xian, Q. Liu, Y. Sun, G. Li, Bi nanops in situ encapsulated by carbon film as high-performance anode materials for Li-ion batteries. J. Energy Chem. 69, 524–530 (2022). https://doi.org/10.1016/j.jechem.2022.01.026
- W. Wu, M. Liu, Y. Pei, W. Li, W. Lin et al., Unprecedented superhigh-rate and ultrastable anode for high-power battery via cationic disordering. Adv. Energy Mater. 12(30), 2201130 (2022). https://doi.org/10.1002/aenm.202201130
- S.N. Zhao, J.K. Li, R. Wang, J. Cai, S.Q. Zang, Electronically and geometrically modified single-atom Fe sites by adjacent Fe nanops for enhanced oxygen reduction. Adv. Mater. 34(5), 2107291 (2022). https://doi.org/10.1002/adma.202107291
- F. Dong, M. Wu, Z. Chen, X. Liu, G. Zhang et al., Atomically dispersed transition metal-nitrogen-carbon bifunctional oxygen electrocatalysts for zinc-air batteries: recent advances and future perspectives. Nano-Micro Lett. 14, 36 (2021). https://doi.org/10.1007/s40820-021-00768-3
- J. Ban, X. Wen, H. Xu, Z. Wang, X. Liu et al., Dual evolution in defect and morphology of single-atom dispersed carbon based oxygen electrocatalyst. Adv. Funct. Mater. 31(19), 2010472 (2021). https://doi.org/10.1002/adfm.202010472
- Y. Sun, Z. Xue, Q. Liu, Y. Jia, Y. Li et al., Modulating electronic structure of metal-organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution. Nat. Commun. 12, 1369 (2021). https://doi.org/10.1038/s41467-021-21595-5
- S.S. Shinde, C.H. Lee, J.Y. Jung, N.K. Wagh, S.H. Kim et al., Unveiling dual-linkage 3D hexaiminobenzene metal–organic frameworks towards long-lasting advanced reversible Zn–air batteries. Energy Environ. Sci. 12(2), 727–738 (2019). https://doi.org/10.1039/c8ee02679c
- C.C. Hou, L. Zou, L. Sun, K. Zhang, Z. Liu et al., Single-atom iron catalysts on overhang-eave carbon cages for high-performance oxygen reduction reaction. Angew. Chem. Int. Ed. 132(19), 7454–7459 (2020). https://doi.org/10.1002/ange.202002665
- D. Liu, J.C. Li, S. Ding, Z. Lyu, S. Feng et al., 2D single-atom catalyst with optimized iron sites produced by thermal melting of metal–organic frameworks for oxygen reduction reaction. Small Methods 4(6), 1900827 (2020). https://doi.org/10.1002/smtd.201900827
- Q. Cheng, S. Han, K. Mao, C. Chen, L. Yang et al., Co nanop embedded in atomically-dispersed Co-N-C nanofibers for oxygen reduction with high activity and remarkable durability. Nano Energy 52, 485–493 (2018). https://doi.org/10.1016/j.nanoen.2018.08.005
- Y. Jia, Z. Xue, J. Yang, Q. Liu, J. Xian et al., Tailoring the electronic structure of an atomically dispersed zinc electrocatalyst: coordination environment regulation for high selectivity oxygen reduction. Angew. Chem. Int. Ed. 61(2), e202110838 (2022). https://doi.org/10.1002/anie.202110838
- Z. Jiang, W. Sun, H. Shang, W. Chen, T. Sun et al., Atomic interface effect of a single atom copper catalyst for enhanced oxygen reduction reactions. Energy Environ. Sci. 12(12), 3508–3514 (2019). https://doi.org/10.1039/c9ee02974e
- S. Kang, Y.K. Jeong, S. Mhin, J.H. Ryu, G. Ali et al., Pulsed laser confinement of single atomic catalysts on carbon nanotube matrix for enhanced oxygen evolution reaction. ACS Nano 15(3), 4416–4428 (2021). https://doi.org/10.1021/acsnano.0c08135
- Y.S. Wei, L. Sun, M. Wang, J. Hong, L. Zou et al., Fabricating dual-atom iron catalysts for efficient oxygen evolution reaction: a heteroatom modulator approach. Angew. Chem. Int. Ed. 59(37), 16013–16022 (2020). https://doi.org/10.1002/anie.202007221
- P. Chen, T. Zhou, L. Xing, K. Xu, Y. Tong et al., Atomically dispersed iron–nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew. Chem. Int. Ed. 56(2), 610–614 (2017). https://doi.org/10.1002/anie.201610119
- K. Cui, Q. Wang, Z. Bian, G. Wang, Y. Xu, Supramolecular modulation of molecular conformation of metal porphyrins toward remarkably enhanced multipurpose electrocatalysis and ultrahigh-performance zinc–air batteries. Adv. Energy Mater. 11(46), 2102062 (2021). https://doi.org/10.1002/aenm.202102062
- A. Radwan, H. Jin, D. He, S. Mu, Design engineering, synthesis protocols, and energy applications of MOF-derived electrocatalysts. Nano-Micro Lett. 13, 132 (2021). https://doi.org/10.1007/s40820-021-00656-w
- Y. Zhu, K. Yue, C. Xia, S. Zaman, H. Yang et al., Recent advances on MOF derivatives for non-noble metal oxygen electrocatalysts in zinc-air batteries. Nano-Micro Lett. 13, 137 (2021). https://doi.org/10.1007/s40820-021-00669-5
- Z. Xue, K. Liu, Q. Liu, Y. Li, M. Li et al., Missing-linker metal-organic frameworks for oxygen evolution reaction. Nat. Commun. 10, 5048 (2019). https://doi.org/10.1038/s41467-019-13051-2
- M. Zhao, H. Liu, H. Zhang, W. Chen, H. Sun et al., A pH-universal ORR catalyst with single-atom iron sites derived from a double-layer MOF for superior flexible quasi-solid-state rechargeable Zn–air batteries. Energy Environ. Sci. 14(12), 6455–6463 (2021). https://doi.org/10.1039/d1ee01602d
- P. Yin, T. Yao, Y. Wu, L. Zheng, Y. Lin et al., Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem. Int. Ed. 55(36), 10800–10805 (2016). https://doi.org/10.1002/anie.201604802
- J. Han, X. Meng, L. Lu, J. Bian, Z. Li et al., Single-atom Fe-Nx-C as an efficient electrocatalyst for zinc–air batteries. Adv. Funct. Mater. 29(41), 1808872 (2019). https://doi.org/10.1002/adfm.201808872
- J. Chen, H. Li, C. Fan, Q. Meng, Y. Tang et al., Dual single-atomic Ni-N4 and Fe-N4 sites constructing janus hollow graphene for selective oxygen electrocatalysis. Adv. Mater. 32(30), 2003134 (2020). https://doi.org/10.1002/adma.202003134
- J.C. Li, Y. Meng, L. Zhang, G. Li, Z. Shi et al., Dual-phasic carbon with Co single atoms and nanops as a bifunctional oxygen electrocatalyst for rechargeable Zn–air batteries. Adv. Funct. Mater. 31(42), 2103360 (2021). https://doi.org/10.1002/adfm.202103360
- Y. Gao, Z. Pan, J. Sun, Z. Liu, J. Wang, High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nano-Micro Lett. 14, 94 (2022). https://doi.org/10.1007/s40820-022-00844-2
- Z. Wang, C. Zhu, H. Tan, J. Liu, L. Xu et al., Understanding the synergistic effects of cobalt single atoms and small nanops: enhancing oxygen reduction reaction catalytic activity and stability for Zinc-air batteries. Adv. Funct. Mater. 31(45), 2104735 (2021). https://doi.org/10.1002/adfm.202104735
- T. Rajkumar, D. Kukkar, K.H. Kim, J.R. Sohn, A. Deep, Cyclodextrin-metal–organic framework (CD-MOF): from synthesis to applications. J. Ind. Eng. Chem. 72, 50–66 (2019). https://doi.org/10.1016/j.jiec.2018.12.048
- L. Yao, J. Lin, Y. Chen, X. Li, D. Wang et al., Supramolecular-mediated ball-in-ball porous carbon nanospheres for ultrafast energy storage. InfoMat 4(4), e12278 (2022). https://doi.org/10.1002/inf2.12278
- S. He, L. Wu, X. Li, H. Sun, T. Xiong et al., Metal-organic frameworks for advanced drug delivery. Acta Pharm. Sin. B 11(8), 2362–2395 (2021). https://doi.org/10.1016/j.apsb.2021.03.019
- C.S. Nascimento, C.P. Anconi, H.F.D. Santos, W.B. Almeida, Theoretical study of the α-cyclodextrin dimer. J. Phys. Chem. A 109(14), 3209–3219 (2005). https://doi.org/10.1021/jp044490j
- Y. Marui, T. Kida, M. Akashi, Facile morphological control of cyclodextrin nano-and microstructures and their unique organogelation ability. Chem. Mater. 22(2), 282–284 (2010). https://doi.org/10.1021/cm903407e
- K.I. Takeo, T. Kuge, Complexes of starchy materials with organic compounds: Part V X-ray diffraction of α-cyclodextrin complexes. Agric. Biol. Chem. 34(12), 1787–1794 (1970). https://doi.org/10.1080/00021369.1970.10859846
- W.J. Jiang, L. Gu, L. Li, Y. Zhang, X. Zhang et al., Understanding the high activity of Fe-N-C electrocatalysts in oxygen reduction: Fe/Fe3C nanops boost the activity of Fe-Nx. J. Am. Chem. Soc. 138(10), 3570–3578 (2016). https://doi.org/10.1021/jacs.6b00757
- L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene. Phys. Rep. 473(5), 51–87 (2009). https://doi.org/10.1016/j.physrep.2009.02.003
- S. Chandrasekaran, C. Zhang, Y. Shu, H. Wang, S. Chen et al., Advanced opportunities and insights on the influence of nitrogen incorporation on the physico-/electro-chemical properties of robust electrocatalysts for electrocatalytic energy conversion. Coord. Chem. Rev. 449, 214209 (2021). https://doi.org/10.1016/j.ccr.2021.214209
- J. Zhang, Y. Zhao, C. Chen, Y.C. Huang, C.L. Dong et al., Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions. J. Am. Chem. Soc. 141(51), 20118–20126 (2019). https://doi.org/10.1021/jacs.9b09352
- G.S. Kang, J.H. Jang, S.Y. Son, C.H. Lee, Y.K. Lee et al., Fe-based non-noble metal catalysts with dual active sites of nanosized metal carbide and single-atomic species for oxygen reduction reaction. J. Mater. Chem. A 8(42), 22379–22388 (2020). https://doi.org/10.1039/D0TA07748H
- Y. Jia, Z. Xue, Y. Li, G. Li, Recent progress of metal organic frameworks-based electrocatalysts for hydrogen evolution, oxygen evolution, and oxygen reduction reaction. Energy Environ. Mater. 5(4), 1084–1102 (2022). https://doi.org/10.1002/eem2.12290
- H. Li, Y. Wen, M. Jiang, Y. Yao, H. Zhou et al., Understanding of neighboring Fe-N4-C and Co-N4-C dual active centers for oxygen reduction reaction. Adv. Funct. Mater. 31(22), 2011289 (2021). https://doi.org/10.1002/adfm.202011289
- M. Wang, W. Yang, X. Li, Y. Xu, L. Zheng et al., Atomically dispersed Fe–heteroatom (N, S) bridge sites anchored on carbon nanosheets for promoting oxygen reduction reaction. ACS Energy Lett. 6(2), 379–386 (2021). https://doi.org/10.1021/acsenergylett.0c02484
- N.K. Wagh, D.H. Kim, S.H. Kim, S.S. Shinde, J.H. Lee, Heuristic iron–cobalt-mediated robust pH-universal oxygen bifunctional lusters for reversible aqueous and flexible solid-state Zn–air cells. ACS Nano 15(9), 14683–14696 (2021). https://doi.org/10.1021/acsnano.1c04471
- Y. Xue, Y. Guo, Q. Zhang, Z. Xie, J. Wei et al., MOF-derived Co and Fe species loaded on N-doped carbon networks as efficient oxygen electrocatalysts for Zn-air batteries. Nano-Micro Lett. 14, 162 (2022). https://doi.org/10.1007/s40820-022-00890-w
- Y. Niu, X. Teng, S. Gong, M. Xu, S. Sun et al., Engineering two-phase bifunctional oxygen electrocatalysts with tunable and synergetic components for flexible Zn–air batteries. Nano-Micro Lett. 13, 126 (2021). https://doi.org/10.1007/s40820-021-00650-2
- C.C. Yang, S.F. Zai, Y.T. Zhou, L. Du, Q. Jiang, Fe3C-Co nanops encapsulated in a hierarchical structure of N-doped carbon as a multifunctional electrocatalyst for ORR. OER and HER. Adv. Funct. Mater. 29(27), 1901949 (2019). https://doi.org/10.1002/adfm.201901949
- S. Liu, M. Wang, X. Sun, N. Xu, J. Liu et al., Facilitated oxygen chemisorption in heteroatom-doped carbon for improved oxygen reaction activity in all-solid-state zinc–air batteries. Adv. Mater. 30(4), 1704898 (2018). https://doi.org/10.1002/adma.201704898
- Y. Guo, P. Yuan, J. Zhang, H. Xia, F. Cheng et al., Co2P–CoN double active centers confined in N-doped carbon nanotube: heterostructural engineering for trifunctional catalysis toward HER, ORR, OER, and Zn–air batteries driven water splitting. Adv. Funct. Mater. 28(51), 1805641 (2018). https://doi.org/10.1002/adfm.201805641
- Y. Tian, L. Xu, M. Li, D. Yuan, X. Liu et al., Interface engineering of CoS/CoO@N-doped graphene nanocomposite for high-performance rechargeable Zn–air batteries. Nano-Micro Lett. 13, 3 (2020). https://doi.org/10.1007/s40820-020-00526-x
- K. Chen, S. Kim, M. Je, H. Choi, Z. Shi et al., Ultrasonic plasma engineering toward facile synthesis of single-atom M-N4/N-doped carbon (M = Fe, Co) as superior oxygen electrocatalyst in rechargeable zinc–air batteries. Nano-Micro Lett. 13, 60 (2021). https://doi.org/10.1007/s40820-020-00581-4
- L. Ma, S. Chen, Z. Pei, Y. Huang, G. Liang et al., Single-site active iron-based bifunctional oxygen catalyst for a compressible and rechargeable zinc–air battery. ACS Nano 12(2), 1949–1958 (2018). https://doi.org/10.1021/acsnano.7b09064
- K. Ding, J. Hu, J. Luo, L. Zhao, W. Jin et al., Robust electronic correlation of Co-CoN4 hybrid active sites for durable rechargeable Zn-air batteries. Adv. Funct. Mater. 32(52), 2207331 (2022). https://doi.org/10.1002/adfm.202207331
- C.Y. Su, H. Cheng, W. Li, Z.Q. Liu, N. Li et al., Atomic modulation of FeCo–nitrogen–carbon bifunctional oxygen electrodes for rechargeable and flexible all-solid-state zinc–air battery. Adv. Energy Mater. 7(13), 1602420 (2017). https://doi.org/10.1002/aenm.201602420
- P. Yu, L. Wang, F. Sun, Y. Xie, X. Liu et al., Co nanoislands rooted on Co-N-C nanosheets as efficient oxygen electrocatalyst for Zn–air batteries. Adv. Mater. 31(30), 1901666 (2019). https://doi.org/10.1002/adma.201901666
- D. Adekoya, S. Qian, X. Gu, W. Wen, D. Li et al., DFT-guided design and fabrication of carbon-nitride-based materials for energy storage devices: a review. Nano-Micro Lett. 13, 13 (2020). https://doi.org/10.1007/s40820-020-00522-1
- J. Yu, J. Li, C.Y. Xu, Q. Li, Q. Liu et al., Modulating the d-band centers by coordination environment regulation of single-atom Ni on porous carbon fibers for overall water splitting. Nano Energy 98, 107266 (2022). https://doi.org/10.1016/j.nanoen.2022.107266
References
C.X. Zhao, J.N. Liu, J. Wang, D. Ren, J. Yu et al., A ΔE = 0.63 V bifunctional oxygen electrocatalyst enables high-rate and long-cycling zinc–air batteries. Adv. Mater. 33(15), 2008606 (2021). https://doi.org/10.1002/adma.202008606
S. Chandrasekaran, D. Ma, Y. Ge, L. Deng, C. Bowen et al., Electronic structure engineering on two-dimensional (2D) electrocatalytic materials for oxygen reduction, oxygen evolution, and hydrogen evolution reactions. Nano Energy 77, 105080 (2020). https://doi.org/10.1016/j.nanoen.2020.105080
L. Deng, L. Qiu, R. Hu, L. Yao, Z. Zheng et al., Restricted diffusion preparation of fully-exposed Fe single-atom catalyst on carbon nanospheres for efficient oxygen reduction reaction. Appl. Catal. B Environ. 305, 121058 (2022). https://doi.org/10.1016/j.apcatb.2021.121058
J. Li, Oxygen evolution reaction in energy conversion and storage: design strategies under and beyond the energy scaling relationship. Nano-Micro Lett. 14, 112 (2022). https://doi.org/10.1007/s40820-022-00857-x
S. Chandrasekaran, M. Khandelwal, F. Dayong, L. Sui, J.S. Chung et al., Developments and perspectives on robust nano- and microstructured binder-free electrodes for bifunctional water electrolysis and beyond. Adv. Energy Mater. 12(23), 2200409 (2022). https://doi.org/10.1002/aenm.202200409
J. Yang, J. Xian, Q. Liu, Y. Sun, G. Li, Bi nanops in situ encapsulated by carbon film as high-performance anode materials for Li-ion batteries. J. Energy Chem. 69, 524–530 (2022). https://doi.org/10.1016/j.jechem.2022.01.026
W. Wu, M. Liu, Y. Pei, W. Li, W. Lin et al., Unprecedented superhigh-rate and ultrastable anode for high-power battery via cationic disordering. Adv. Energy Mater. 12(30), 2201130 (2022). https://doi.org/10.1002/aenm.202201130
S.N. Zhao, J.K. Li, R. Wang, J. Cai, S.Q. Zang, Electronically and geometrically modified single-atom Fe sites by adjacent Fe nanops for enhanced oxygen reduction. Adv. Mater. 34(5), 2107291 (2022). https://doi.org/10.1002/adma.202107291
F. Dong, M. Wu, Z. Chen, X. Liu, G. Zhang et al., Atomically dispersed transition metal-nitrogen-carbon bifunctional oxygen electrocatalysts for zinc-air batteries: recent advances and future perspectives. Nano-Micro Lett. 14, 36 (2021). https://doi.org/10.1007/s40820-021-00768-3
J. Ban, X. Wen, H. Xu, Z. Wang, X. Liu et al., Dual evolution in defect and morphology of single-atom dispersed carbon based oxygen electrocatalyst. Adv. Funct. Mater. 31(19), 2010472 (2021). https://doi.org/10.1002/adfm.202010472
Y. Sun, Z. Xue, Q. Liu, Y. Jia, Y. Li et al., Modulating electronic structure of metal-organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution. Nat. Commun. 12, 1369 (2021). https://doi.org/10.1038/s41467-021-21595-5
S.S. Shinde, C.H. Lee, J.Y. Jung, N.K. Wagh, S.H. Kim et al., Unveiling dual-linkage 3D hexaiminobenzene metal–organic frameworks towards long-lasting advanced reversible Zn–air batteries. Energy Environ. Sci. 12(2), 727–738 (2019). https://doi.org/10.1039/c8ee02679c
C.C. Hou, L. Zou, L. Sun, K. Zhang, Z. Liu et al., Single-atom iron catalysts on overhang-eave carbon cages for high-performance oxygen reduction reaction. Angew. Chem. Int. Ed. 132(19), 7454–7459 (2020). https://doi.org/10.1002/ange.202002665
D. Liu, J.C. Li, S. Ding, Z. Lyu, S. Feng et al., 2D single-atom catalyst with optimized iron sites produced by thermal melting of metal–organic frameworks for oxygen reduction reaction. Small Methods 4(6), 1900827 (2020). https://doi.org/10.1002/smtd.201900827
Q. Cheng, S. Han, K. Mao, C. Chen, L. Yang et al., Co nanop embedded in atomically-dispersed Co-N-C nanofibers for oxygen reduction with high activity and remarkable durability. Nano Energy 52, 485–493 (2018). https://doi.org/10.1016/j.nanoen.2018.08.005
Y. Jia, Z. Xue, J. Yang, Q. Liu, J. Xian et al., Tailoring the electronic structure of an atomically dispersed zinc electrocatalyst: coordination environment regulation for high selectivity oxygen reduction. Angew. Chem. Int. Ed. 61(2), e202110838 (2022). https://doi.org/10.1002/anie.202110838
Z. Jiang, W. Sun, H. Shang, W. Chen, T. Sun et al., Atomic interface effect of a single atom copper catalyst for enhanced oxygen reduction reactions. Energy Environ. Sci. 12(12), 3508–3514 (2019). https://doi.org/10.1039/c9ee02974e
S. Kang, Y.K. Jeong, S. Mhin, J.H. Ryu, G. Ali et al., Pulsed laser confinement of single atomic catalysts on carbon nanotube matrix for enhanced oxygen evolution reaction. ACS Nano 15(3), 4416–4428 (2021). https://doi.org/10.1021/acsnano.0c08135
Y.S. Wei, L. Sun, M. Wang, J. Hong, L. Zou et al., Fabricating dual-atom iron catalysts for efficient oxygen evolution reaction: a heteroatom modulator approach. Angew. Chem. Int. Ed. 59(37), 16013–16022 (2020). https://doi.org/10.1002/anie.202007221
P. Chen, T. Zhou, L. Xing, K. Xu, Y. Tong et al., Atomically dispersed iron–nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew. Chem. Int. Ed. 56(2), 610–614 (2017). https://doi.org/10.1002/anie.201610119
K. Cui, Q. Wang, Z. Bian, G. Wang, Y. Xu, Supramolecular modulation of molecular conformation of metal porphyrins toward remarkably enhanced multipurpose electrocatalysis and ultrahigh-performance zinc–air batteries. Adv. Energy Mater. 11(46), 2102062 (2021). https://doi.org/10.1002/aenm.202102062
A. Radwan, H. Jin, D. He, S. Mu, Design engineering, synthesis protocols, and energy applications of MOF-derived electrocatalysts. Nano-Micro Lett. 13, 132 (2021). https://doi.org/10.1007/s40820-021-00656-w
Y. Zhu, K. Yue, C. Xia, S. Zaman, H. Yang et al., Recent advances on MOF derivatives for non-noble metal oxygen electrocatalysts in zinc-air batteries. Nano-Micro Lett. 13, 137 (2021). https://doi.org/10.1007/s40820-021-00669-5
Z. Xue, K. Liu, Q. Liu, Y. Li, M. Li et al., Missing-linker metal-organic frameworks for oxygen evolution reaction. Nat. Commun. 10, 5048 (2019). https://doi.org/10.1038/s41467-019-13051-2
M. Zhao, H. Liu, H. Zhang, W. Chen, H. Sun et al., A pH-universal ORR catalyst with single-atom iron sites derived from a double-layer MOF for superior flexible quasi-solid-state rechargeable Zn–air batteries. Energy Environ. Sci. 14(12), 6455–6463 (2021). https://doi.org/10.1039/d1ee01602d
P. Yin, T. Yao, Y. Wu, L. Zheng, Y. Lin et al., Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem. Int. Ed. 55(36), 10800–10805 (2016). https://doi.org/10.1002/anie.201604802
J. Han, X. Meng, L. Lu, J. Bian, Z. Li et al., Single-atom Fe-Nx-C as an efficient electrocatalyst for zinc–air batteries. Adv. Funct. Mater. 29(41), 1808872 (2019). https://doi.org/10.1002/adfm.201808872
J. Chen, H. Li, C. Fan, Q. Meng, Y. Tang et al., Dual single-atomic Ni-N4 and Fe-N4 sites constructing janus hollow graphene for selective oxygen electrocatalysis. Adv. Mater. 32(30), 2003134 (2020). https://doi.org/10.1002/adma.202003134
J.C. Li, Y. Meng, L. Zhang, G. Li, Z. Shi et al., Dual-phasic carbon with Co single atoms and nanops as a bifunctional oxygen electrocatalyst for rechargeable Zn–air batteries. Adv. Funct. Mater. 31(42), 2103360 (2021). https://doi.org/10.1002/adfm.202103360
Y. Gao, Z. Pan, J. Sun, Z. Liu, J. Wang, High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nano-Micro Lett. 14, 94 (2022). https://doi.org/10.1007/s40820-022-00844-2
Z. Wang, C. Zhu, H. Tan, J. Liu, L. Xu et al., Understanding the synergistic effects of cobalt single atoms and small nanops: enhancing oxygen reduction reaction catalytic activity and stability for Zinc-air batteries. Adv. Funct. Mater. 31(45), 2104735 (2021). https://doi.org/10.1002/adfm.202104735
T. Rajkumar, D. Kukkar, K.H. Kim, J.R. Sohn, A. Deep, Cyclodextrin-metal–organic framework (CD-MOF): from synthesis to applications. J. Ind. Eng. Chem. 72, 50–66 (2019). https://doi.org/10.1016/j.jiec.2018.12.048
L. Yao, J. Lin, Y. Chen, X. Li, D. Wang et al., Supramolecular-mediated ball-in-ball porous carbon nanospheres for ultrafast energy storage. InfoMat 4(4), e12278 (2022). https://doi.org/10.1002/inf2.12278
S. He, L. Wu, X. Li, H. Sun, T. Xiong et al., Metal-organic frameworks for advanced drug delivery. Acta Pharm. Sin. B 11(8), 2362–2395 (2021). https://doi.org/10.1016/j.apsb.2021.03.019
C.S. Nascimento, C.P. Anconi, H.F.D. Santos, W.B. Almeida, Theoretical study of the α-cyclodextrin dimer. J. Phys. Chem. A 109(14), 3209–3219 (2005). https://doi.org/10.1021/jp044490j
Y. Marui, T. Kida, M. Akashi, Facile morphological control of cyclodextrin nano-and microstructures and their unique organogelation ability. Chem. Mater. 22(2), 282–284 (2010). https://doi.org/10.1021/cm903407e
K.I. Takeo, T. Kuge, Complexes of starchy materials with organic compounds: Part V X-ray diffraction of α-cyclodextrin complexes. Agric. Biol. Chem. 34(12), 1787–1794 (1970). https://doi.org/10.1080/00021369.1970.10859846
W.J. Jiang, L. Gu, L. Li, Y. Zhang, X. Zhang et al., Understanding the high activity of Fe-N-C electrocatalysts in oxygen reduction: Fe/Fe3C nanops boost the activity of Fe-Nx. J. Am. Chem. Soc. 138(10), 3570–3578 (2016). https://doi.org/10.1021/jacs.6b00757
L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene. Phys. Rep. 473(5), 51–87 (2009). https://doi.org/10.1016/j.physrep.2009.02.003
S. Chandrasekaran, C. Zhang, Y. Shu, H. Wang, S. Chen et al., Advanced opportunities and insights on the influence of nitrogen incorporation on the physico-/electro-chemical properties of robust electrocatalysts for electrocatalytic energy conversion. Coord. Chem. Rev. 449, 214209 (2021). https://doi.org/10.1016/j.ccr.2021.214209
J. Zhang, Y. Zhao, C. Chen, Y.C. Huang, C.L. Dong et al., Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions. J. Am. Chem. Soc. 141(51), 20118–20126 (2019). https://doi.org/10.1021/jacs.9b09352
G.S. Kang, J.H. Jang, S.Y. Son, C.H. Lee, Y.K. Lee et al., Fe-based non-noble metal catalysts with dual active sites of nanosized metal carbide and single-atomic species for oxygen reduction reaction. J. Mater. Chem. A 8(42), 22379–22388 (2020). https://doi.org/10.1039/D0TA07748H
Y. Jia, Z. Xue, Y. Li, G. Li, Recent progress of metal organic frameworks-based electrocatalysts for hydrogen evolution, oxygen evolution, and oxygen reduction reaction. Energy Environ. Mater. 5(4), 1084–1102 (2022). https://doi.org/10.1002/eem2.12290
H. Li, Y. Wen, M. Jiang, Y. Yao, H. Zhou et al., Understanding of neighboring Fe-N4-C and Co-N4-C dual active centers for oxygen reduction reaction. Adv. Funct. Mater. 31(22), 2011289 (2021). https://doi.org/10.1002/adfm.202011289
M. Wang, W. Yang, X. Li, Y. Xu, L. Zheng et al., Atomically dispersed Fe–heteroatom (N, S) bridge sites anchored on carbon nanosheets for promoting oxygen reduction reaction. ACS Energy Lett. 6(2), 379–386 (2021). https://doi.org/10.1021/acsenergylett.0c02484
N.K. Wagh, D.H. Kim, S.H. Kim, S.S. Shinde, J.H. Lee, Heuristic iron–cobalt-mediated robust pH-universal oxygen bifunctional lusters for reversible aqueous and flexible solid-state Zn–air cells. ACS Nano 15(9), 14683–14696 (2021). https://doi.org/10.1021/acsnano.1c04471
Y. Xue, Y. Guo, Q. Zhang, Z. Xie, J. Wei et al., MOF-derived Co and Fe species loaded on N-doped carbon networks as efficient oxygen electrocatalysts for Zn-air batteries. Nano-Micro Lett. 14, 162 (2022). https://doi.org/10.1007/s40820-022-00890-w
Y. Niu, X. Teng, S. Gong, M. Xu, S. Sun et al., Engineering two-phase bifunctional oxygen electrocatalysts with tunable and synergetic components for flexible Zn–air batteries. Nano-Micro Lett. 13, 126 (2021). https://doi.org/10.1007/s40820-021-00650-2
C.C. Yang, S.F. Zai, Y.T. Zhou, L. Du, Q. Jiang, Fe3C-Co nanops encapsulated in a hierarchical structure of N-doped carbon as a multifunctional electrocatalyst for ORR. OER and HER. Adv. Funct. Mater. 29(27), 1901949 (2019). https://doi.org/10.1002/adfm.201901949
S. Liu, M. Wang, X. Sun, N. Xu, J. Liu et al., Facilitated oxygen chemisorption in heteroatom-doped carbon for improved oxygen reaction activity in all-solid-state zinc–air batteries. Adv. Mater. 30(4), 1704898 (2018). https://doi.org/10.1002/adma.201704898
Y. Guo, P. Yuan, J. Zhang, H. Xia, F. Cheng et al., Co2P–CoN double active centers confined in N-doped carbon nanotube: heterostructural engineering for trifunctional catalysis toward HER, ORR, OER, and Zn–air batteries driven water splitting. Adv. Funct. Mater. 28(51), 1805641 (2018). https://doi.org/10.1002/adfm.201805641
Y. Tian, L. Xu, M. Li, D. Yuan, X. Liu et al., Interface engineering of CoS/CoO@N-doped graphene nanocomposite for high-performance rechargeable Zn–air batteries. Nano-Micro Lett. 13, 3 (2020). https://doi.org/10.1007/s40820-020-00526-x
K. Chen, S. Kim, M. Je, H. Choi, Z. Shi et al., Ultrasonic plasma engineering toward facile synthesis of single-atom M-N4/N-doped carbon (M = Fe, Co) as superior oxygen electrocatalyst in rechargeable zinc–air batteries. Nano-Micro Lett. 13, 60 (2021). https://doi.org/10.1007/s40820-020-00581-4
L. Ma, S. Chen, Z. Pei, Y. Huang, G. Liang et al., Single-site active iron-based bifunctional oxygen catalyst for a compressible and rechargeable zinc–air battery. ACS Nano 12(2), 1949–1958 (2018). https://doi.org/10.1021/acsnano.7b09064
K. Ding, J. Hu, J. Luo, L. Zhao, W. Jin et al., Robust electronic correlation of Co-CoN4 hybrid active sites for durable rechargeable Zn-air batteries. Adv. Funct. Mater. 32(52), 2207331 (2022). https://doi.org/10.1002/adfm.202207331
C.Y. Su, H. Cheng, W. Li, Z.Q. Liu, N. Li et al., Atomic modulation of FeCo–nitrogen–carbon bifunctional oxygen electrodes for rechargeable and flexible all-solid-state zinc–air battery. Adv. Energy Mater. 7(13), 1602420 (2017). https://doi.org/10.1002/aenm.201602420
P. Yu, L. Wang, F. Sun, Y. Xie, X. Liu et al., Co nanoislands rooted on Co-N-C nanosheets as efficient oxygen electrocatalyst for Zn–air batteries. Adv. Mater. 31(30), 1901666 (2019). https://doi.org/10.1002/adma.201901666
D. Adekoya, S. Qian, X. Gu, W. Wen, D. Li et al., DFT-guided design and fabrication of carbon-nitride-based materials for energy storage devices: a review. Nano-Micro Lett. 13, 13 (2020). https://doi.org/10.1007/s40820-020-00522-1
J. Yu, J. Li, C.Y. Xu, Q. Li, Q. Liu et al., Modulating the d-band centers by coordination environment regulation of single-atom Ni on porous carbon fibers for overall water splitting. Nano Energy 98, 107266 (2022). https://doi.org/10.1016/j.nanoen.2022.107266