Superior Pseudocapacitive Storage of a Novel Ni3Si2/NiOOH/Graphene Nanostructure for an All-Solid-State Supercapacitor
Corresponding Author: Dong Wang
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 2
Abstract
Recent developments in the synthesis of graphene-based structures focus on continuous improvement of porous nanostructures, doping of thin films, and mechanisms for the construction of three-dimensional architectures. Herein, we synthesize creeper-like Ni3Si2/NiOOH/graphene nanostructures via low-pressure all-solid melting-reconstruction chemical vapor deposition. In a carbon-rich atmosphere, high-energy atoms bombard the Ni and Si surface, and reduce the free energy in the thermodynamic equilibrium of solid Ni–Si particles, considerably catalyzing the growth of Ni–Si nanocrystals. By controlling the carbon source content, a Ni3Si2 single crystal with high crystallinity and good homogeneity is stably synthesized. Electrochemical measurements indicate that the nanostructures exhibit an ultrahigh specific capacity of 835.3 C g−1 (1193.28 F g−1) at 1 A g−1; when integrated as an all-solid-state supercapacitor, it provides a remarkable energy density as high as 25.9 Wh kg−1 at 750 W kg−1, which can be attributed to the free-standing Ni3Si2/graphene skeleton providing a large specific area and NiOOH inhibits insulation on the electrode surface in an alkaline solution, thereby accelerating the electron exchange rate. The growth of the high-performance composite nanostructure is simple and controllable, enabling the large-scale production and application of microenergy storage devices.
Highlights:
1 Three types of Ni3Si2 were successfully fabricated by low-pressure all-solid melting-reconstruction chemical vapor deposition, and the growth pattern changed with the carbon source content.
2 In a carbon-rich atmosphere, high-energy atoms bombard the Ni and Si surface, and reduce the free energy in the solid Ni–Si particles’ thermodynamic equilibrium, considerably catalyzing the growth of Ni–Si nanocrystals.
3 Ni3Si2/NiOOH/graphene provides a large specific area and NiOOH inhibits insulation on the electrode surface in an alkaline solution and accelerates the electron exchange rate.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Fan, B. Ren, L. Yu, Q. Liu, J. Wang et al., Facile growth of hollow porous NiO microspheres assembled from nanosheet building blocks and their high performance as a supercapacitor electrode. Cryst. Eng. Commun. 16, 10389–10394 (2014). https://doi.org/10.1039/C4CE01242A
- Y. Yang, Z. Hu, Z. Zhang, F. Zhang, Y. Zhang et al., Reduced graphene oxide–nickel oxide composites with high electrochemical capacitive performance. Mater. Chem. Phys. 133, 363–368 (2012). https://doi.org/10.1016/j.matchemphys.2012.01.039
- S. Pilban Jahromi, A. Pandikumar, B.T. Goh, Y.S. Lim, W.J. Basirun, H.N. Lim, N.M. Huang, Influence of particle size on performance of a nickel oxide nanoparticle-based supercapacitor. RSC Adv. 5, 14010–14019 (2015). https://doi.org/10.1039/C4RA16776G
- G. Nagaraju, R. Kakarla, S. Cha, J. Yu, Highly flexible conductive fabrics with hierarchically nanostructured amorphous nickel tungsten tetraoxide for enhanced electrochemical energy storage. Nano Res. 8, 3749–3763 (2015). https://doi.org/10.1007/s12274-015-0874-z
- H. Chen, Y. Lin, Y. Chen, C. Chen, Facile fabrication of three-dimensional hierarchical nanoarchitectures of VO2/graphene@NiS2 hybrid aerogel for high-performance all-solid-state asymmetric supercapacitors with ultrahigh energy density. ACS Appl. Energy Mater. 2, 459–467 (2019). https://doi.org/10.1021/acsaem.8b01486
- P. Wu, D. Wang, J. Ning, J. Zhang, X. Feng, J. Dong, Y. Hao, Novel 3D porous graphene/Ni3S2 nanostructures for high-performance supercapacitor electrodes. J. Alloys Compd. 731, 1063–1068 (2017). https://doi.org/10.1016/j.jallcom.2017.10.060
- Y. Jiang, Z. Li, B. Li, J. Zhang, C. Niu, Ni3Si2 nanowires grown in situ on Ni foam for high-performance supercapacitors. J. Power Sources 320, 13–19 (2016). https://doi.org/10.1016/j.jpowsour.2016.04.077
- J. Ning, D. Wang, J. Zhang, X. Feng, R. Zhong et al., One-step synthesis of novel snowflake-like Si–O/Si–C nanostructures on 3D graphene/Cu foam by chemical vapor deposition. Nano Res. 11, 1861–1872 (2018). https://doi.org/10.1007/s12274-017-1804-z
- G. Yilmaz, X. Lu, G. Ho, Cross-linker mediated formation of sulfur-functionalized V2O5/graphene aerogels and their enhanced pseudocapacitive performance. Nanoscale 9, 802–811 (2017). https://doi.org/10.1039/C6NR08233E
- J. Hu, T.W. Odom, C.M. Lieber, Chemistry and physics in one-dimension: synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 32, 435–445 (1999). https://doi.org/10.1021/ar9700365
- Z. Wang, Characterizing the structure and properties of individual wire-like nanoentities. Adv. Mater. 12, 1295–1298 (2000). https://doi.org/10.1002/1521-4095(200009)12:17%3c1295:AID-ADMA1295%3e3.0.CO;2-B
- X. Yan, X. Tong, L. Ma, Y. Tian, Y. Cai et al., Synthesis of porous NiS nanoflake arrays by ion exchange reaction from NiO and their high performance supercapacitor properties. Mater. Lett. 124, 133–136 (2014). https://doi.org/10.1016/j.matlet.2014.03.067
- Y. Chang, Y. Sui, J. Qi, L. Jiang, Y. He et al., Facile synthesis of Ni3S2 and Co9S8 double-size nanoparticles decorated on rGO for high-performance supercapacitor electrode materials. Electrochim. Acta 226, 69–78 (2017). https://doi.org/10.1016/j.electacta.2016.12.184
- C. Dai, P. Chien, J. Lin, S. Chou, W. Wu et al., Hierarchically structured Ni3S2/carbon nanotube composites as high performance cathode materials for asymmetric supercapacitors. ACS Appl. Mater. Interfaces 5, 12168–12174 (2013). https://doi.org/10.1021/am404196s
- J. Wang, D. Chao, J. Liu, L. Li, L. Lai, J. Lin, Z. Shen, Ni3S2@MoS2 core/shell nanorod arrays on Ni foam for high-performance electrochemical energy storage. Nano Energy 7, 151–160 (2014). https://doi.org/10.1016/j.nanoen.2014.04.019
- H. Pang, C. Wei, X. Li, G. Li, Y. Ma et al., Microwave-assisted synthesis of NiS2 nanostructures for supercapacitors and cocatalytic enhancing photocatalytic H2 production. Sci. Rep. 4, 3577 (2014). https://doi.org/10.1038/srep03577
- K. Krishnamoorthy, G. Veerasubramani, S. Radhakrishnan, S. Kim, One pot hydrothermal growth of hierarchical nanostructured Ni3S2 on Ni foam for supercapacitor application. Chem. Eng. J. 251, 116–122 (2014). https://doi.org/10.1016/j.cej.2014.04.006
- E. Kamali-Heidari, Z. Xu, M. Sohi, A. Ataie, J. Kim, Core–shell structured Ni3S2 nanorods grown on interconnected Ni-graphene foam for symmetric supercapacitors. Electrochim. Acta 271, 507–518 (2018). https://doi.org/10.1016/j.electacta.2018.03.183
- J. He, C. Guo, S. Zhou, Y. Zhao, Q. Wang et al., Dual carbon-modified nickel sulfide composites toward high-performance electrodes for supercapacitors. Inorg. Chem. Front. 6, 226–232 (2019). https://doi.org/10.1039/C8QI01024B
- L. Wang, J. Wang, F. Guo, L. Ma, Y. Ren et al., Understanding the initial irreversibility of metal sulfides for sodium-ion batteries, via operando, techniques. Nano Energy 43, 184–191 (2018). https://doi.org/10.1016/j.nanoen.2017.11.029
- Y. Wu, J. Xiang, C. Yang, W. Lu, C. Lieber, Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature 430, 61–65 (2004). https://doi.org/10.1038/nature02674
- X. Fan, H. Zhang, N. Du, D. Yang, Phase-controlled synthesis of nickel silicide nanostructures. Mater. Res. Bull. 47, 3797–3803 (2012). https://doi.org/10.1016/j.materresbull.2012.06.017
- R. Salunkhe, Y. Kaneti, Y. Yamauchi, Metal–organic framework-derived nanoporous metal oxides toward supercapacitor applications: progress and prospects. ACS Nano 11(6), 5293–5308 (2017). https://doi.org/10.1021/acsnano.7b02796
- S. Liu, S. Lee, U. Patil, I. Shackery, S. Kang, K. Zhang, S. Jun, Hierarchical MnCo-layered double hydroxides@Ni(OH)2 core–shell heterostructures as advanced electrodes for supercapacitors. J. Mater. Chem. A 5(3), 1043–1049 (2017). https://doi.org/10.1039/c6ta07842g
- J. Ning, D. Wang, J. Zhang, L. Guo, Y. Hao, Investigation of dielectric substrates on electrical and optical performance of wafer-scale graphene using non-contact methods. Semicond. Sci. Techn. 32, 105001 (2017). https://doi.org/10.1088/1361-6641/aa832f
- F. Li, H. Yue, P. Wang, Z. Yang, D. Wang et al., Synthesis of core–shell architectures of silicon coated on controllable grown Ni-silicide nanostructures and their lithium-ion battery application. Cryst. Eng. Commun. 15, 7298–7306 (2013). https://doi.org/10.1039/c3ce40651b
- X. Feng, J. Ning, D. Wang, J. Zhang, J. Dong et al., All-solid-state planner micro-supercapacitor based on graphene/NiOOH/Ni(OH)2 via mask-free patterning strategy. J. Power Sources 418, 130–137 (2019). https://doi.org/10.1016/j.jpowsour.2019.01.093
- P. Nikolaychuk, J. Siberian, Thermodynamic evaluation of electrochemical stability of Me–Si systems (Me = 4th row transition metal). Fed. Univ. Chem. 2, 160–180 (2015). https://doi.org/10.17516/1998-2836-2015-8-2-160-180
- L. Long, Y. Yao, M. Yan, H. Wang, G. Zhang et al., Ni3S2@polypyrrole composite supported on nickel foam with improved rate capability and cycling durability for asymmetric supercapacitor device applications. J. Mater. Sci. 52, 3642–3656 (2017). https://doi.org/10.1007/s10853-016-0529-9
- Z. Li, X. Yu, A. Gu, H. Tang, L. Wang, Z. Lou, Anion exchange strategy to synthesis of porous NiS hexagonal nanoplates for supercapacitors. Nanotechnology 28, 065406 (2017). https://doi.org/10.1088/1361-6528/28/6/065406
- W. Yu, W. Lin, X. Shao, Z. Hu, R. Li, D. Yuan, High performance supercapacitor based on Ni3S2/carbon nanofibers and carbon nanofibers electrodes derived from bacterial cellulose. J. Power Sources 272, 137–143 (2014). https://doi.org/10.1016/j.jpowsour.2014.08.064
- J. Wen, S. Li, K. Zhou, Z. Song, B. Li et al., Flexible coaxial-type fiber solid-state asymmetrical supercapacitor based on Ni3S2 nanorod array and pen ink electrodes. J. Power Sources 324, 325–333 (2016). https://doi.org/10.1016/j.jpowsour.2016.05.087
- N. Wang, G. Han, Y. Chang, W. Hou, Y. Xiao, H. Li, Preparing Ni3S2 composite with neural network-like structure for high-performance flexible asymmetric supercapacitors. Electrochim. Acta 317, 322–332 (2019). https://doi.org/10.1016/j.electacta.2019.06.012
- D. Zhang, X. Kong, M. Jiang, D. Lei, X. Lei, NiOOH-decorated α-FeOOH nanosheet array on stainless steel for applications in oxygen evolution reactions and supercapacitors. ACS Sustain. Chem. Eng. 7, 4420–4428 (2019). https://doi.org/10.1016/j.cej.2019.121938
- D. Pan, M. Zhang, Y. Wang, Z. Yan, J. Jing, J. Xie, In situ fabrication of nickel based oxide on nitrogen-doped graphene for high electrochemical performance supercapacitors. Chem. Phys. Lett. 685, 457 (2017). https://doi.org/10.1016/j.cplett.2017.08.021
- M. Gopiraman, S. Saravanamoorthy, D. Deng, A. Ilangovan, I. Kim, I. Chung, Facile mechanochemical synthesis of nickel/graphene oxide nanocomposites with unique and tunable morphology: applications in heterogeneous catalysis and supercapacitors. Catalysts 9, 486 (2019). https://doi.org/10.3390/catal9050486
- R. Wang, C. Xu, J. Lee, High performance asymmetric supercapacitors: new NiOOH nanosheet/graphene hydrogels and pure graphene hydrogels. Nano Energy 19, 210–221 (2016). https://doi.org/10.1016/j.nanoen.2015.10.030
- Y. Zhang, C. Wang, H. Jiang, Q. Wang, J. Zheng, C. Meng, Cobalt–nickel silicate hydroxide on amorphous carbon derived from bamboo leaves for hybrid supercapacitors. Chem. Eng. J. 375, 121938 (2019). https://doi.org/10.1016/j.cej.2019.121938
- Q. Wang, Y. Zhang, J. Xiao, H. Jiang, X. Li, C. Meng, Novel ordered hollow spherical nickel silicate–nickel hydroxide united composite with two types of morphologies for enhanced electrochemical storage performance. Mater. Chem. Front. 3, 2090–2101 (2019). https://doi.org/10.1039/c9qm00392d
- Q. Wang, Y. Zhang, H. Jiang, X. Li, Y. Cheng, C. Meng, Designed mesoporous hollow sphere architecture metal (Mn Co, Ni) silicate: a potential electrode material for flexible all solid-state asymmetric supercapacitor. Chem. Eng. J. 362, 818–829 (2019). https://doi.org/10.1016/j.cej.2019.01.102
- M.M. Ramly, F.S. Omar, A. Rohaizad, Z. Aspanut, S.A. Rahman, B.T. Goh, Solid-phase diffusion controlled growth of nickel silicide nanowires for supercapacitor electrode. Appl. Surf. Sci. 456, 515–525 (2018). https://doi.org/10.1016/j.apsusc.2018.06.140
References
M. Fan, B. Ren, L. Yu, Q. Liu, J. Wang et al., Facile growth of hollow porous NiO microspheres assembled from nanosheet building blocks and their high performance as a supercapacitor electrode. Cryst. Eng. Commun. 16, 10389–10394 (2014). https://doi.org/10.1039/C4CE01242A
Y. Yang, Z. Hu, Z. Zhang, F. Zhang, Y. Zhang et al., Reduced graphene oxide–nickel oxide composites with high electrochemical capacitive performance. Mater. Chem. Phys. 133, 363–368 (2012). https://doi.org/10.1016/j.matchemphys.2012.01.039
S. Pilban Jahromi, A. Pandikumar, B.T. Goh, Y.S. Lim, W.J. Basirun, H.N. Lim, N.M. Huang, Influence of particle size on performance of a nickel oxide nanoparticle-based supercapacitor. RSC Adv. 5, 14010–14019 (2015). https://doi.org/10.1039/C4RA16776G
G. Nagaraju, R. Kakarla, S. Cha, J. Yu, Highly flexible conductive fabrics with hierarchically nanostructured amorphous nickel tungsten tetraoxide for enhanced electrochemical energy storage. Nano Res. 8, 3749–3763 (2015). https://doi.org/10.1007/s12274-015-0874-z
H. Chen, Y. Lin, Y. Chen, C. Chen, Facile fabrication of three-dimensional hierarchical nanoarchitectures of VO2/graphene@NiS2 hybrid aerogel for high-performance all-solid-state asymmetric supercapacitors with ultrahigh energy density. ACS Appl. Energy Mater. 2, 459–467 (2019). https://doi.org/10.1021/acsaem.8b01486
P. Wu, D. Wang, J. Ning, J. Zhang, X. Feng, J. Dong, Y. Hao, Novel 3D porous graphene/Ni3S2 nanostructures for high-performance supercapacitor electrodes. J. Alloys Compd. 731, 1063–1068 (2017). https://doi.org/10.1016/j.jallcom.2017.10.060
Y. Jiang, Z. Li, B. Li, J. Zhang, C. Niu, Ni3Si2 nanowires grown in situ on Ni foam for high-performance supercapacitors. J. Power Sources 320, 13–19 (2016). https://doi.org/10.1016/j.jpowsour.2016.04.077
J. Ning, D. Wang, J. Zhang, X. Feng, R. Zhong et al., One-step synthesis of novel snowflake-like Si–O/Si–C nanostructures on 3D graphene/Cu foam by chemical vapor deposition. Nano Res. 11, 1861–1872 (2018). https://doi.org/10.1007/s12274-017-1804-z
G. Yilmaz, X. Lu, G. Ho, Cross-linker mediated formation of sulfur-functionalized V2O5/graphene aerogels and their enhanced pseudocapacitive performance. Nanoscale 9, 802–811 (2017). https://doi.org/10.1039/C6NR08233E
J. Hu, T.W. Odom, C.M. Lieber, Chemistry and physics in one-dimension: synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 32, 435–445 (1999). https://doi.org/10.1021/ar9700365
Z. Wang, Characterizing the structure and properties of individual wire-like nanoentities. Adv. Mater. 12, 1295–1298 (2000). https://doi.org/10.1002/1521-4095(200009)12:17%3c1295:AID-ADMA1295%3e3.0.CO;2-B
X. Yan, X. Tong, L. Ma, Y. Tian, Y. Cai et al., Synthesis of porous NiS nanoflake arrays by ion exchange reaction from NiO and their high performance supercapacitor properties. Mater. Lett. 124, 133–136 (2014). https://doi.org/10.1016/j.matlet.2014.03.067
Y. Chang, Y. Sui, J. Qi, L. Jiang, Y. He et al., Facile synthesis of Ni3S2 and Co9S8 double-size nanoparticles decorated on rGO for high-performance supercapacitor electrode materials. Electrochim. Acta 226, 69–78 (2017). https://doi.org/10.1016/j.electacta.2016.12.184
C. Dai, P. Chien, J. Lin, S. Chou, W. Wu et al., Hierarchically structured Ni3S2/carbon nanotube composites as high performance cathode materials for asymmetric supercapacitors. ACS Appl. Mater. Interfaces 5, 12168–12174 (2013). https://doi.org/10.1021/am404196s
J. Wang, D. Chao, J. Liu, L. Li, L. Lai, J. Lin, Z. Shen, Ni3S2@MoS2 core/shell nanorod arrays on Ni foam for high-performance electrochemical energy storage. Nano Energy 7, 151–160 (2014). https://doi.org/10.1016/j.nanoen.2014.04.019
H. Pang, C. Wei, X. Li, G. Li, Y. Ma et al., Microwave-assisted synthesis of NiS2 nanostructures for supercapacitors and cocatalytic enhancing photocatalytic H2 production. Sci. Rep. 4, 3577 (2014). https://doi.org/10.1038/srep03577
K. Krishnamoorthy, G. Veerasubramani, S. Radhakrishnan, S. Kim, One pot hydrothermal growth of hierarchical nanostructured Ni3S2 on Ni foam for supercapacitor application. Chem. Eng. J. 251, 116–122 (2014). https://doi.org/10.1016/j.cej.2014.04.006
E. Kamali-Heidari, Z. Xu, M. Sohi, A. Ataie, J. Kim, Core–shell structured Ni3S2 nanorods grown on interconnected Ni-graphene foam for symmetric supercapacitors. Electrochim. Acta 271, 507–518 (2018). https://doi.org/10.1016/j.electacta.2018.03.183
J. He, C. Guo, S. Zhou, Y. Zhao, Q. Wang et al., Dual carbon-modified nickel sulfide composites toward high-performance electrodes for supercapacitors. Inorg. Chem. Front. 6, 226–232 (2019). https://doi.org/10.1039/C8QI01024B
L. Wang, J. Wang, F. Guo, L. Ma, Y. Ren et al., Understanding the initial irreversibility of metal sulfides for sodium-ion batteries, via operando, techniques. Nano Energy 43, 184–191 (2018). https://doi.org/10.1016/j.nanoen.2017.11.029
Y. Wu, J. Xiang, C. Yang, W. Lu, C. Lieber, Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature 430, 61–65 (2004). https://doi.org/10.1038/nature02674
X. Fan, H. Zhang, N. Du, D. Yang, Phase-controlled synthesis of nickel silicide nanostructures. Mater. Res. Bull. 47, 3797–3803 (2012). https://doi.org/10.1016/j.materresbull.2012.06.017
R. Salunkhe, Y. Kaneti, Y. Yamauchi, Metal–organic framework-derived nanoporous metal oxides toward supercapacitor applications: progress and prospects. ACS Nano 11(6), 5293–5308 (2017). https://doi.org/10.1021/acsnano.7b02796
S. Liu, S. Lee, U. Patil, I. Shackery, S. Kang, K. Zhang, S. Jun, Hierarchical MnCo-layered double hydroxides@Ni(OH)2 core–shell heterostructures as advanced electrodes for supercapacitors. J. Mater. Chem. A 5(3), 1043–1049 (2017). https://doi.org/10.1039/c6ta07842g
J. Ning, D. Wang, J. Zhang, L. Guo, Y. Hao, Investigation of dielectric substrates on electrical and optical performance of wafer-scale graphene using non-contact methods. Semicond. Sci. Techn. 32, 105001 (2017). https://doi.org/10.1088/1361-6641/aa832f
F. Li, H. Yue, P. Wang, Z. Yang, D. Wang et al., Synthesis of core–shell architectures of silicon coated on controllable grown Ni-silicide nanostructures and their lithium-ion battery application. Cryst. Eng. Commun. 15, 7298–7306 (2013). https://doi.org/10.1039/c3ce40651b
X. Feng, J. Ning, D. Wang, J. Zhang, J. Dong et al., All-solid-state planner micro-supercapacitor based on graphene/NiOOH/Ni(OH)2 via mask-free patterning strategy. J. Power Sources 418, 130–137 (2019). https://doi.org/10.1016/j.jpowsour.2019.01.093
P. Nikolaychuk, J. Siberian, Thermodynamic evaluation of electrochemical stability of Me–Si systems (Me = 4th row transition metal). Fed. Univ. Chem. 2, 160–180 (2015). https://doi.org/10.17516/1998-2836-2015-8-2-160-180
L. Long, Y. Yao, M. Yan, H. Wang, G. Zhang et al., Ni3S2@polypyrrole composite supported on nickel foam with improved rate capability and cycling durability for asymmetric supercapacitor device applications. J. Mater. Sci. 52, 3642–3656 (2017). https://doi.org/10.1007/s10853-016-0529-9
Z. Li, X. Yu, A. Gu, H. Tang, L. Wang, Z. Lou, Anion exchange strategy to synthesis of porous NiS hexagonal nanoplates for supercapacitors. Nanotechnology 28, 065406 (2017). https://doi.org/10.1088/1361-6528/28/6/065406
W. Yu, W. Lin, X. Shao, Z. Hu, R. Li, D. Yuan, High performance supercapacitor based on Ni3S2/carbon nanofibers and carbon nanofibers electrodes derived from bacterial cellulose. J. Power Sources 272, 137–143 (2014). https://doi.org/10.1016/j.jpowsour.2014.08.064
J. Wen, S. Li, K. Zhou, Z. Song, B. Li et al., Flexible coaxial-type fiber solid-state asymmetrical supercapacitor based on Ni3S2 nanorod array and pen ink electrodes. J. Power Sources 324, 325–333 (2016). https://doi.org/10.1016/j.jpowsour.2016.05.087
N. Wang, G. Han, Y. Chang, W. Hou, Y. Xiao, H. Li, Preparing Ni3S2 composite with neural network-like structure for high-performance flexible asymmetric supercapacitors. Electrochim. Acta 317, 322–332 (2019). https://doi.org/10.1016/j.electacta.2019.06.012
D. Zhang, X. Kong, M. Jiang, D. Lei, X. Lei, NiOOH-decorated α-FeOOH nanosheet array on stainless steel for applications in oxygen evolution reactions and supercapacitors. ACS Sustain. Chem. Eng. 7, 4420–4428 (2019). https://doi.org/10.1016/j.cej.2019.121938
D. Pan, M. Zhang, Y. Wang, Z. Yan, J. Jing, J. Xie, In situ fabrication of nickel based oxide on nitrogen-doped graphene for high electrochemical performance supercapacitors. Chem. Phys. Lett. 685, 457 (2017). https://doi.org/10.1016/j.cplett.2017.08.021
M. Gopiraman, S. Saravanamoorthy, D. Deng, A. Ilangovan, I. Kim, I. Chung, Facile mechanochemical synthesis of nickel/graphene oxide nanocomposites with unique and tunable morphology: applications in heterogeneous catalysis and supercapacitors. Catalysts 9, 486 (2019). https://doi.org/10.3390/catal9050486
R. Wang, C. Xu, J. Lee, High performance asymmetric supercapacitors: new NiOOH nanosheet/graphene hydrogels and pure graphene hydrogels. Nano Energy 19, 210–221 (2016). https://doi.org/10.1016/j.nanoen.2015.10.030
Y. Zhang, C. Wang, H. Jiang, Q. Wang, J. Zheng, C. Meng, Cobalt–nickel silicate hydroxide on amorphous carbon derived from bamboo leaves for hybrid supercapacitors. Chem. Eng. J. 375, 121938 (2019). https://doi.org/10.1016/j.cej.2019.121938
Q. Wang, Y. Zhang, J. Xiao, H. Jiang, X. Li, C. Meng, Novel ordered hollow spherical nickel silicate–nickel hydroxide united composite with two types of morphologies for enhanced electrochemical storage performance. Mater. Chem. Front. 3, 2090–2101 (2019). https://doi.org/10.1039/c9qm00392d
Q. Wang, Y. Zhang, H. Jiang, X. Li, Y. Cheng, C. Meng, Designed mesoporous hollow sphere architecture metal (Mn Co, Ni) silicate: a potential electrode material for flexible all solid-state asymmetric supercapacitor. Chem. Eng. J. 362, 818–829 (2019). https://doi.org/10.1016/j.cej.2019.01.102
M.M. Ramly, F.S. Omar, A. Rohaizad, Z. Aspanut, S.A. Rahman, B.T. Goh, Solid-phase diffusion controlled growth of nickel silicide nanowires for supercapacitor electrode. Appl. Surf. Sci. 456, 515–525 (2018). https://doi.org/10.1016/j.apsusc.2018.06.140