Interfacial Engineering Strategy for High-Performance Zn Metal Anodes
Corresponding Author: Jiang Zhou
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 6
Abstract
Due to their high safety and low cost, rechargeable aqueous Zn-ion batteries (RAZIBs) have been receiving increased attention and are expected to be the next generation of energy storage systems. However, metal Zn anodes exhibit a limited-service life and inferior reversibility owing to the issues of Zn dendrites and side reactions, which severely hinder the further development of RAZIBs. Researchers have attempted to design high-performance Zn anodes by interfacial engineering, including surface modification and the addition of electrolyte additives, to stabilize Zn anodes. The purpose is to achieve uniform Zn nucleation and flat Zn deposition by regulating the deposition behavior of Zn ions, which effectively improves the cycling stability of the Zn anode. This review comprehensively summarizes the reaction mechanisms of interfacial modification for inhibiting the growth of Zn dendrites and the occurrence of side reactions. In addition, the research progress of interfacial engineering strategies for RAZIBs is summarized and classified. Finally, prospects and suggestions are provided for the design of highly reversible Zn anodes.
Highlights:
1 The interfacial engineering strategies of surface and electrolyte modifications for high-performance Zn metal anodes are reviewed.
2 The reaction mechanisms for inhibiting dendrite growth and side reactions in interface engineering are systematically summarized.
3 An outlook on future reference directions for new interface strategies to advance this field is provided.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T. Jin, H.X. Li, K.J. Zhu, P.F. Wang, P. Liu et al., Polyanion-type cathode materials for sodium-ion batteries. Chem. Soc. Rev. 49(8), 2342–2377 (2020). https://doi.org/10.1039/c9cs00846b
- J.W. Li, Z. Kong, X.X. Liu, B.C. Zheng, Q.H. Fan et al., Strategies to anode protection in lithium metal battery: a review. InfoMat (2021). https://doi.org/10.1002/inf2.12189
- X. Shi, Y. Zhang, G. Xu, S. Guo, A. Pan et al., Enlarged interlayer spacing and enhanced capacitive behavior of a carbon anode for superior potassium storage. Sci. Bull. 65(23), 2014–2021 (2020). https://doi.org/10.1016/j.scib.2020.07.001
- X. Shi, Z. Xu, C. Han, R. Shi, X. Wu et al., Highly dispersed cobalt nanoparticles embedded in nitrogen-doped graphitized carbon for fast and durable potassium storage. Nano-Micro Lett. 13, 21 (2021). https://doi.org/10.1007/s40820-020-00534-x
- G.A. Elia, K. Marquardt, K. Hoeppner, S. Fantini, R.Y. Lin et al., An overview and future perspectives of aluminum batteries. Adv. Mater. 28(35), 7564–7579 (2016). https://doi.org/10.1002/adma.201601357
- J.T. Huang, J. Zhou, S.Q. Liang, Guest pre-intercalation strategy to boost the electrochemical performance of aqueous zinc-ion battery cathodes. Acta Phys. Chim. Sin. 37(3), 2005020 (2021). https://doi.org/10.3866/pku.whxb202005020
- H.F. Li, L.T. Ma, C.P. Han, Z.F. Wang, Z.X. Liu et al., Advanced rechargeable zinc-based batteries: recent progress and future perspectives. Nano Energy 62, 550–587 (2019). https://doi.org/10.1016/j.nanoen.2019.05.059
- X. Han, N. Li, P. Xiong, M.G. Jung, Y. Kang et al., Electronically coupled layered double hydroxide/MXene quantum dot metallic hybrids for high-performance flexible zinc–air batteries. InfoMat 3(10), 1134–1144 (2021). https://doi.org/10.1002/inf2.12226
- P. Gu, M.B. Zheng, Q.X. Zhao, X. Xiao, H.G. Xue et al., Rechargeable zinc-air batteries: a promising way to green energy. J. Mater. Chem. A 5(17), 7651–7666 (2017). https://doi.org/10.1039/c7ta01693j
- X.M. Xu, F.Y. Xiong, J.S. Meng, X.P. Wang, C.J. Niu et al., Vanadium-based nanomaterials: a promising family for emerging metal-ion batteries. Adv. Funct. Mater. 30(10), 1904398 (2020). https://doi.org/10.1002/adfm.201904398
- Z.D. Zhao, M.Q. Sun, T.Q. Wu, J.J. Zhang, P. Wang et al., A bifunctional-modulated conformal Li/Mn-rich layered cathode for fast-charging, high volumetric density and durable Li-ion full cells. Nano-Micro Lett. 13, 118 (2021). https://doi.org/10.1007/s40820-021-00643-1
- C. Ma, W.F. Cui, X.Z. Liu, Y. Ding, Y.G. Wang, In situ preparation of gel polymer electrolyte for lithium batteries: progress and perspectives. InfoMat (2021). https://doi.org/10.1002/inf2.12232
- D.L. Chao, W.H. Zhou, F.X. Xie, C. Ye, H. Li et al., Roadmap for advanced aqueous batteries: from design of materials to applications. Sci. Adv. 6(21), 4098 (2020). https://doi.org/10.1126/sciadv.aba4098
- S.S. Zhang, Identifying rate limitation and a guide to design of fast-charging Li-ion battery. InfoMat 2(5), 942–949 (2019). https://doi.org/10.1002/inf2.12058
- X. Guo, J. Zhou, C. Bai, X. Li, G. Fang et al., Zn/MnO2 battery chemistry with dissolution-deposition mechanism. Mater. Today Energy 16, 100396 (2020). https://doi.org/10.1016/j.mtener.2020.100396
- D. Chao, C.R. Zhu, M. Song, P. Liang, X. Zhang et al., A high-rate and stable quasi-solid-state zinc-ion battery with novel 2D layered zinc orthovanadate array. Adv. Mater. 30(32), e1803181 (2018). https://doi.org/10.1002/adma.201803181
- L. Gou, K.L. Mou, X.Y. Fan, M.J. Zhao, Y. Wang et al., Mn2O3/Al2O3 cathode material derived from a metal-organic framework with enhanced cycling performance for aqueous zinc-ion batteries. Dalton Trans. 49(3), 711–718 (2020). https://doi.org/10.1039/c9dt03995c
- W. Zhou, M. Chen, A. Wang, A. Huang, J. Chen et al., Optimizing the electrolyte salt of aqueous zinc-ion batteries based on a high-performance calcium vanadate hydrate cathode material. J. Energy Chem. 52, 377–384 (2021). https://doi.org/10.1016/j.jechem.2020.05.005
- P. Zhao, B.J. Yang, J.T. Chen, J.W. Lang, T.Y. Zhang et al., A safe, high-performance, and long-cycle life zinc-ion hybrid capacitor based on three-dimensional porous activated carbon. Acta Phys. Chim. Sin. 36(2), 1904050 (2020). https://doi.org/10.3866/pku.whxb201904050
- Q. Zong, W. Du, C.F. Liu, H. Yang, Q.L. Zhang et al., Enhanced reversible zinc ion intercalation in deficient ammonium vanadate for high-performance aqueous zinc-ion battery. Nano-Micro Lett. 13, 116 (2021). https://doi.org/10.1007/s40820-021-00641-3
- J.W. Gao, X.S. Xie, S.Q. Liang, B.A. Lu, J. Zhou, Inorganic colloidal electrolyte for highly robust zinc-ion batteries. Nano-Micro Lett. 13, 69 (2021). https://doi.org/10.1007/s40820-021-00595-6
- X. Xu, Y. Chen, D. Zheng, P. Ruan, Y. Cai et al., Ultra-fast and scalable saline immersion strategy enabling uniform Zn nucleation and deposition for high-performance Zn-ion batteries. Small 17(33), 2101901 (2021). https://doi.org/10.1002/smll.202101901
- C. Li, X. Xie, H. Liu, P. Wang, C. Deng et al., Integrated “all-in-one” strategy to stabilize zinc anodes for high-performance zinc-ion batteries. Natl. Sci. Rev. (2021). https://doi.org/10.1093/nsr/nwab177
- F. Wang, O. Borodin, T. Gao, X.L. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17(6), 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z
- T. Shoji, M. Hishinuma, T. Yamamoto, Zinc-manganese dioxide galvanic cell using zinc sulphate as electrolyte-rechargeability of the cell. J. Appl. Electrochem. 18(4), 521–526 (1988). https://doi.org/10.1007/bf01022245
- Y. Cui, Q. Zhao, X. Wu, X. Chen, J. Yang et al., An interface-bridged organic-inorganic layer that suppresses dendrite formation and side reactions for ultra-long-life aqueous zinc metal anodes. Angew. Chem. Int. Ed. 59(38), 16594–16601 (2020). https://doi.org/10.1002/anie.202005472
- B.T. Liu, S.J. Wang, Z.L. Wang, H. Lei, Z.T. Chen et al., Novel 3D nanoporous Zn-Cu alloy as long-life anode toward high-voltage double electrolyte aqueous zinc-ion batteries. Small 16(22), 2001323 (2020). https://doi.org/10.1002/smll.202001323
- X.C. Pu, B.Z. Jiang, X.L. Wang, W.B. Liu, L.B. Dong et al., High-performance aqueous zinc-ion batteries realized by MOF materials. Nano-Micro Lett. 12, 152 (2020). https://doi.org/10.1007/s40820-020-00487-1
- S.B. Wang, Q. Ran, R.Q. Yao, H. Shi, Z. Wen et al., Lamella-nanostructured eutectic zinc-aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries. Nat. Commun. 11(1), 1634 (2020). https://doi.org/10.1038/s41467-020-15478-4
- N. Liu, B. Li, Z. He, L. Dai, H. Wang et al., Recent advances and perspectives on vanadium- and manganese-based cathode materials for aqueous zinc ion batteries. J. Energy Chem. 59, 134–159 (2021). https://doi.org/10.1016/j.jechem.2020.10.044
- X.Y. Liu, J. Yi, K. Wu, Y. Jiang, Y.Y. Liu et al., Rechargeable Zn-MnO2 batteries: advances, challenges and perspectives. Nanotechnology 31(12), 122001 (2020). https://doi.org/10.1088/1361-6528/ab5b38
- W.J. Zhou, J.Z. Chen, M.F. Chen, X.W. Xu, Q.H. Tian et al., Rod-like anhydrous V2O5 assembled by tiny nanosheets as a high-performance cathode material for aqueous zinc-ion batteries. RSC Adv. 9(52), 30556–30564 (2019). https://doi.org/10.1039/c9ra06143f
- Y.Q. Yang, Y. Tang, S.Q. Liang, Z.X. Wu, G.Z. Fang et al., Transition metal ion-preintercalated V2O5 as high-performance aqueous zinc-ion battery cathode with broad temperature adaptability. Nano Energy 61, 617–625 (2019). https://doi.org/10.1016/j.nanoen.2019.05.005
- F. Wu, Y. Wang, P. Ruan, X. Niu, D. Zheng et al., Fe-doping enabled a stable vanadium oxide cathode with rapid Zn diffusion channel for aqueous zinc-ion batteries. Mater. Today Energy 21, 100842 (2021). https://doi.org/10.1016/j.mtener.2021.100842
- Y. Zhao, Y. Zhu, X. Zhang, Challenges and perspectives for manganese-based oxides for advanced aqueous zinc-ion batteries. InfoMat 2(2), 237–260 (2019). https://doi.org/10.1002/inf2.12042
- W. Li, K.L. Wang, S.J. Cheng, K. Jiang, An ultrastable presodiated titanium disulfide anode for aqueous “rocking-chair” zinc ion battery. Adv. Energy Mater. 9(27), 1900993 (2019). https://doi.org/10.1002/aenm.201900993
- Y.W. Cheng, L.L. Luo, L. Zhong, J.Z. Chen, B. Li et al., Highly reversible zinc-ion intercalation into chevrel phase Mo6S8 nanocubes and applications for advanced zinc-ion batteries. ACS Appl. Mater. Interfaces 8(22), 13673–13677 (2016). https://doi.org/10.1021/acsami.6b03197
- M.S. Chae, J.W. Heo, S.C. Lim, S.T. Hong, Electrochemical zinc-ion intercalation properties and crystal structures of ZnMo6S8 and Zn2Mo6S8 chevrel phases in aqueous electrolytes. Inorg. Chem. 55(7), 3294–3301 (2016). https://doi.org/10.1021/acs.inorgchem.5b02362
- T. Wang, C. Li, X. Xie, B. Lu, Z. He et al., Anode materials for aqueous zinc ion batteries: mechanisms, properties, and perspectives. ACS Nano 14(12), 16321–16347 (2020). https://doi.org/10.1021/acsnano.0c07041
- N.Y. Ma, P.J. Wu, Y.X. Wu, D.H. Jiang, G.T. Lei, Progress and perspective of aqueous zinc-ion battery. Funct. Mater. Lett. 12(5), 1930003 (2019). https://doi.org/10.1142/s1793604719300032
- X. Zeng, J. Hao, Z. Wang, J. Mao, Z. Guo, Recent progress and perspectives on aqueous Zn-based rechargeable batteries with mild aqueous electrolytes. Energy Storage Mater. 20, 410–437 (2019). https://doi.org/10.1016/j.ensm.2019.04.022
- L.N. Chen, Q.Y. An, L.Q. Mai, Recent advances and prospects of cathode materials for rechargeable aqueous zinc-ion batteries. Adv. Mater. Interfaces 6(17), 1900387 (2019). https://doi.org/10.1002/admi.201900387
- Y. Zhang, A. Chen, J. Sun, Promise and challenge of vanadium-based cathodes for aqueous zinc-ion batteries. J. Energy Chem. 54, 655–667 (2021). https://doi.org/10.1016/j.jechem.2020.06.013
- X.Z. Zhai, J. Qu, S.M. Hao, Y.Q. Jing, W. Chang et al., Layered birnessite cathode with a displacement/intercalation mechanism for high-performance aqueous zinc-ion batteries. Nano-Micro Lett. 12, 56 (2020). https://doi.org/10.1007/s40820-020-0397-3
- Q. Zhang, J.Y. Luan, Y.G. Tang, X.B. Ji, H.Y. Wang, Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 59(32), 13180–13191 (2020). https://doi.org/10.1002/anie.202000162
- Z.W. Tie, Z.Q. Niu, Design strategies for high-performance aqueous Zn/organic batteries. Angew. Chem. Int. Ed. 59(48), 21293–21303 (2020). https://doi.org/10.1002/anie.202008960
- K.N. Zhao, C.X. Wang, Y.H. Yu, M.Y. Yan, Q.L. Wei et al., Ultrathin surface coating enables stabilized zinc metal anode. Adv. Mater. Interfaces 5(16), 1800848 (2018). https://doi.org/10.1002/admi.201800848
- L.T. Ma, S.M. Chen, N. Li, Z.X. Liu, Z.J. Tang et al., Hydrogen-free and dendrite-free all-solid-state Zn-ion batteries. Adv. Mater. 32(14), 1908121 (2020). https://doi.org/10.1002/adma.201908121
- G.Z. Fang, J. Zhou, A.Q. Pan, S.Q. Liang, Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 3, 2480–2501 (2018). https://doi.org/10.1021/acsenergylett.8b01426
- B. Sun, P. Xiong, U. Maitra, D. Langsdorf, K. Yan et al., Design strategies to enable the efficient use of sodium metal anodes in high-energy batteries. Adv. Mater. 32(18), 1903891 (2020). https://doi.org/10.1002/adma.201903891
- Y. Tian, Y.L. An, C.L. Wei, B.J. Xi, S.L.L. Xiong et al., Flexible and free-standing Ti3C2Tx MXene@Zn paper for dendrite-free aqueous zinc metal batteries and nonaqueous lithium metal batteries. ACS Nano 13(10), 11676–11685 (2019). https://doi.org/10.1021/acsnano.9b05599
- J. Hao, X. Li, X. Zeng, D. Li, J. Mao et al., Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries. Energy Environ. Sci. 13(11), 3917–3949 (2020). https://doi.org/10.1039/d0ee02162h
- H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1(5), 16039 (2016). https://doi.org/10.1038/nenergy.2016.39
- H. Jia, Z.Q. Wang, B. Tawiah, Y.D. Wang, C.Y. Chan et al., Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries. Nano Energy 70, 104523 (2020). https://doi.org/10.1016/j.nanoen.2020.104523
- P.C. Liang, J. Yi, X.Y. Liu, K. Wu, Z. Wang et al., Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn-based batteries. Adv. Funct. Mater. 30(13), 1908528 (2020). https://doi.org/10.1002/adfm.201908528
- Y.X. Zeng, X.Y. Zhang, R.F. Qin, X.Q. Liu, P.P. Fang et al., Dendrite-free Zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Adv. Mater. 31(36), 1903675 (2019). https://doi.org/10.1002/adma.201903675
- C. Sun, C.P. Wu, X.X. Gu, C. Wang, Q.H. Wang, Interface engineering via Ti3C2Tx MXene electrolyte additive toward dendrite-free Zinc deposition. Nano-Micro Lett. 13, 89 (2021). https://doi.org/10.1007/s40820-021-00612-8
- P. Gao, Q. Ru, H. Yan, S. Cheng, Y. Liu et al., A durable Na0.56V2O5 nanobelt cathode material assisted by hybrid cationic electrolyte for high-performance aqueous zinc-ion batteries. ChemElectroChem 7(1), 283–288 (2020). https://doi.org/10.1002/celc.201901851
- W. Li, K.L. Wang, S.J. Cheng, K. Jiang, A long-life aqueous Zn-ion battery based on Na3V2(PO4)2F3 cathode. Energy Storage Mater. 15, 14–21 (2018). https://doi.org/10.1016/j.ensm.2018.03.003
- W.J. Lu, C.X. Xie, H.M. Zhang, X.F. Li, Inhibition of zinc dendrite growth in zinc-based batteries. Chemsuschem 11(23), 3996–4006 (2018). https://doi.org/10.1002/cssc.201801657
- C.A. Laska, M. Auinger, P.U. Biedermann, D. Iqbal, N. Laska et al., Effect of hydrogen carbonate and chloride on zinc corrosion investigated by a scanning flow cell system. Electrochim. Acta 159, 198–209 (2015). https://doi.org/10.1016/j.electacta.2015.01.217
- B.Y. Tang, L.T. Shan, S.Q. Liang, J. Zhou, Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci. 12(11), 3288–3304 (2019). https://doi.org/10.1039/c9ee02526j
- S. Guo, L.P. Qin, T.S. Zhang, M. Zhou, J. Zhou et al., Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries. Energy Storage Mater. 34, 545–562 (2021). https://doi.org/10.1016/j.ensm.2020.10.019
- Z.Y. Cao, P.Y. Zhuang, X. Zhang, M.X. Ye, J.F. Shen et al., Strategies for dendrite-free anode in aqueous rechargeable zinc ion batteries. Adv. Energy Mater. 10(30), 2001599 (2020). https://doi.org/10.1002/aenm.202001599
- G. Jiang, N. Jiang, N. Zheng, X. Chen, J. Mao et al., MOF-derived porous Co3O4-NC nanoflake arrays on carbon fiber cloth as stable hosts for dendrite-free Li metal anodes. Energy Storage Mater. 23, 181–189 (2019). https://doi.org/10.1016/j.ensm.2019.05.014
- A. Pei, G.Y. Zheng, F.F. Shi, Y.Z. Li, Y. Cui, Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett. 17(2), 1132–1139 (2017). https://doi.org/10.1021/acs.nanolett.6b04755
- F. Xie, H. Li, X. Wang, X. Zhi, D. Chao et al., Mechanism for zincophilic sites on zinc-metal anode hosts in aqueous batteries. Adv. Energy Mater. 11(9), 2003419 (2021). https://doi.org/10.1002/aenm.202003419
- X.S. Xie, S.Q. Liang, J.W. Gao, S. Guo, J.B. Guo et al., Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ. Sci. 13(2), 503–510 (2020). https://doi.org/10.1039/c9ee03545a
- A.L. Xia, X.M. Pu, Y.Y. Tao, H.M. Liu, Y.G. Wang, Graphene oxide spontaneous reduction and self-assembly on the zinc metal surface enabling a dendrite-free anode for long-life zinc rechargeable aqueous batteries. Appl. Surf. Sci. 481, 852–859 (2019). https://doi.org/10.1016/j.apsusc.2019.03.197
- F. Wan, L. Zhang, X. Dai, X. Wang, Z. Niu et al., Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 9, 1656 (2018). https://doi.org/10.1038/s41467-018-04060-8
- W. Xu, K. Zhao, W. Huo, Y. Wang, G. Yao et al., Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries. Nano Energy 62, 275–281 (2019). https://doi.org/10.1016/j.nanoen.2019.05.042
- K.E.K. Sun, T.K.A. Hoang, T.N.L. Doan, Y. Yu, P. Chen, Highly sustainable zinc anodes for a rechargeable hybrid aqueous battery. Chem. Eur. J. 24(7), 1667–1673 (2018). https://doi.org/10.1002/chem.201704440
- D. Yuan, J. Zhao, H. Ren, Y.Q. Chen, R. Chua et al., Anion texturing towards dendrite-free Zn anode for aqueous rechargeable batteries. Angew. Chem. Int. Ed. 60(13), 7213–7219 (2021). https://doi.org/10.1002/anie.202015488
- J. Zhou, M. Xie, F. Wu, Y. Mei, Y. Hao et al., Ultrathin surface coating of nitrogen-doped graphene enables stable zinc anodes for aqueous zinc-ion batteries. Adv. Mater. 33(33), 2101649 (2021). https://doi.org/10.1002/adma.202101649
- W.W. Xu, Y. Wang, Recent progress on zinc-ion rechargeable batteries. Nano-Micro Lett. 11, 90 (2019). https://doi.org/10.1007/s40820-019-0322-9
- F. Wan, L.L. Zhang, X.Y. Wang, S.S. Bi, Z.Q. Niu et al., An aqueous rechargeable zinc-organic battery with hybrid mechanism. Adv. Funct. Mater. 28(45), 1804975 (2018). https://doi.org/10.1002/adfm.201804975
- F. Wang, E.Y. Hu, W. Sun, T. Gao, X. Ji et al., A rechargeable aqueous Zn2+-battery with high power density and a long cycle-life. Energy Environ. Sci. 11(11), 3168–3175 (2018). https://doi.org/10.1039/c8ee01883a
- H.J. Yang, Z. Chang, Y. Qiao, H. Deng, X.W. Mu et al., Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 59(24), 9377–9381 (2020). https://doi.org/10.1002/anie.202001844
- D. Kundu, S.H. Vajargah, L.W. Wan, B. Adams, D. Prendergast et al., nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface. Energy Environ. Sci. 11(4), 881–892 (2018). https://doi.org/10.1039/c8ee00378e
- Z.M. Zhao, J.W. Zhao, Z.L. Hu, J.D. Li, J.J. Li et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12(6), 1938–1949 (2019). https://doi.org/10.1039/c9ee00596j
- L.E. Blanc, D. Kundu, L.F. Nazar, Scientific challenges for the implementation of Zn-ion batteries. Joule 4(4), 771–799 (2020). https://doi.org/10.1016/j.joule.2020.03.002
- Y. Jin, L. Zou, L. Liu, M.H. Engelhard, R.L. Patel et al., Joint charge storage for high-rate aqueous zinc–manganese dioxide batteries. Adv. Mater. 31(29), 1900567 (2019). https://doi.org/10.1002/adma.201900567
- L. Cao, D. Li, E. Hu, J. Xu, T. Deng et al., Solvation structure design for aqueous Zn metal batteries. J. Am. Chem. Soc. 142(51), 21404–21409 (2020). https://doi.org/10.1021/jacs.0c09794
- S. Liu, J. Mao, W.K. Pang, J. Vongsvivut, X. Zeng et al., Tuning the electrolyte solvation structure to suppress cathode dissolution, water reactivity, and Zn dendrite growth in zinc-ion batteries. Adv. Funct. Mater. 31(38), 2104281 (2021). https://doi.org/10.1002/adfm.202104281
- A. Bhatnagar, W. Hogland, M. Marques, M. Sillanpää, An overview of the modification methods of activated carbon for its water treatment applications. Chem. Eng. J. 219, 499–511 (2013). https://doi.org/10.1016/j.cej.2012.12.038
- G. Pognon, T. Brousse, L. Demarconnay, D. Bélanger, Performance and stability of electrochemical capacitor based on anthraquinone modified activated carbon. J. Power Sources 196(8), 4117–4122 (2010). https://doi.org/10.1016/j.jpowsour.2010.09.097
- C. Shen, X. Li, N. Li, K.Y. Xie, J.G. Wang et al., Graphene-boosted, high-performance aqueous Zn-ion battery. ACS Appl. Mater. Interfaces 10(30), 25446–25453 (2018). https://doi.org/10.1021/acsami.8b07781
- J.X. Zheng, Q. Zhao, T. Tang, J.F. Yin, C.D. Quilty et al., Reversible epitaxial electrodeposition of metals in battery anodes. Science 366(6465), 645–648 (2019). https://doi.org/10.1126/science.aax6873
- L. Hongfei, X. Chengjun, H. Cuiping, C. Yanyi, W. Chunguang et al., Enhancement on cycle performance of Zn anodes by activated carbon modification for neutral rechargeable zinc ion batteries. J. Electrochem. Soc. 162(8), A1439–A1444 (2015). https://doi.org/10.1149/2.0141508jes
- L. Wei, W. Kangli, Z. Min, Z. Houchao, C. Shijie et al., Advanced low-cost, high-voltage, long-life aqueous hybrid sodium/zinc batteries enabled by a dendrite-free zinc anode and concentrated electrolyte. ACS Appl. Mater. Interfaces 10, 22059–22066 (2018). https://doi.org/10.1021/acsami.8b04085
- L. Dong, W. Yang, W. Yang, H. Tian, Y. Huang et al., Flexible and conductive scaffold-stabilized zinc metal anodes for ultralong-life zinc-ion batteries and zinc-ion hybrid capacitors. Chem. Eng. J. 384, 123355 (2020). https://doi.org/10.1016/j.cej.2019.123355
- W. Anran, Z. Weijun, H. Aixiang, C. Minfeng, C. Jizhang et al., Modifying the Zn anode with carbon black coating and nanofibrillated cellulose binder: a strategy to realize dendrite-free Zn-MnO2 batteries. J. Colloid Interf. Sci. 577, 256–264 (2020). https://doi.org/10.1016/j.jcis.2020.05.102
- D.L. Han, S.C. Wu, S.W. Zhang, Y.Q. Deng, C.J. Cui et al., A corrosion-resistant and dendrite-free zinc metal anode in aqueous systems. Small 16(29), 2001736 (2020). https://doi.org/10.1002/smll.202001736
- M.W. Cui, Y. Xiao, L.T. Kang, W. Du, Y.F. Gao et al., Quasi-isolated Au particles as heterogeneous seeds to guide uniform Zn deposition for aqueous zinc-ion batteries. ACS Appl. Energy Mater. 2(9), 6490–6496 (2019). https://doi.org/10.1021/acsaem.9b01063
- Q. Zhang, J. Luan, X. Huang, Q. Wang, D. Sun et al., Revealing the role of crystal orientation of protective layers for stable zinc anode. Nat. Commun. 11(1), 3961 (2020). https://doi.org/10.1038/s41467-020-17752-x
- H. He, H. Tong, X. Song, X. Song, J. Liu, Highly stable Zn metal anodes enabled by atomic layer deposited Al2O3 coating for aqueous zinc-ion batteries. J. Mater. Chem. A 8(16), 7836–7846 (2020). https://doi.org/10.1039/d0ta00748j
- M. Zhou, S. Guo, G. Fang, H. Sun, X. Cao et al., Suppressing by-product via stratified adsorption effect to assist highly reversible zinc anode in aqueous electrolyte. J. Energy Chem. 55, 549–556 (2021). https://doi.org/10.1016/j.jechem.2020.07.021
- C. Deng, X. Xie, J. Han, Y. Tang, J. Gao et al., A sieve-functional and uniform-porous kaolin layer toward stable zinc metal anode. Adv. Funct. Mater. 30(21), 2000599 (2020). https://doi.org/10.1002/adfm.202000599
- L. Kang, M. Cui, F. Jiang, Y. Gao, H. Luo et al., Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv. Energy Mater. 8(25), 1801090 (2018). https://doi.org/10.1002/aenm.201801090
- M. Liu, J. Cai, H. Ao, Z. Hou, Y. Zhu et al., NaTi2(PO4)3 solid-state electrolyte protection layer on Zn metal anode for superior long-life aqueous zinc-ion batteries. Adv. Funct. Mater. 30(50), 2004885 (2020). https://doi.org/10.1002/adfm.202004885
- X. Zeng, J. Mao, J. Hao, J. Liu, S. Liu et al., Electrolyte design for in situ construction of highly Zn2+-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions. Adv. Mater. 33(11), 2007416 (2021). https://doi.org/10.1002/adma.202007416
- Z. Cao, X. Zhu, D. Xu, P. Dong, M.O.L. Chee et al., Eliminating Zn dendrites by commercial cyanoacrylate adhesive for zinc ion battery. Energy Storage Mater. 36, 132–138 (2021). https://doi.org/10.1016/j.ensm.2020.12.022
- J. Hao, X. Li, S. Zhang, F. Yang, X. Zeng et al., Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv. Funct. Mater. 30(30), 2001263 (2020). https://doi.org/10.1002/adfm.202001263
- P. Chen, X. Yuan, Y. Xia, Y. Zhang, L. Fu et al., An artificial polyacrylonitrile coating layer confining zinc dendrite growth for highly reversible aqueous zinc-based batteries. Adv. Sci. 8(11), 2100309 (2021). https://doi.org/10.1002/advs.202100309
- M. Liu, L. Yang, H. Liu, A. Amine, Q. Zhao et al., Artificial solid-electrolyte interface facilitating dendrite-free zinc metal anodes via nanowetting effect. ACS Appl. Mater. Interfaces 11(35), 32046–32051 (2019). https://doi.org/10.1021/acsami.9b11243
- H. He, J. Liu, Suppressing Zn dendrite growth by molecular layer deposition to enable long-life and deeply rechargeable aqueous Zn anodes. J. Mater. Chem. A 8(42), 22100–22110 (2020). https://doi.org/10.1039/d0ta07232j
- A. Bayaguud, X. Luo, Y. Fu, C. Zhu, Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries. ACS Energy Lett. 5(9), 3012–3020 (2020). https://doi.org/10.1021/acsenergylett.0c01792
- Z. Ma, J. Kan, Study of cylindrical Zn/PANI secondary batteries with the electrolyte containing alkylimidazolium ionic liquid. Synthetic Met. 174, 58–62 (2013). https://doi.org/10.1016/j.synthmet.2013.04.005
- Y. Song, J. Hu, J. Tang, W. Gu, L. He et al., Real-time X-ray imaging reveals interfacial growth, suppression, and dissolution of zinc dendrites dependent on anions of ionic liquid additives for rechargeable battery applications. ACS Appl. Mater. Interfaces 8(46), 32031–32040 (2016). https://doi.org/10.1021/acsami.6b11098
- L. Qian, W. Yao, R. Yao, Y. Sui, H. Zhu et al., Cations coordination-regulated reversibility enhancement for aqueous Zn-ion battery. Adv. Funct. Mater. 31(40), 2105736 (2021). https://doi.org/10.1002/adfm.202105736
- Z. Hou, X. Zhang, X. Li, Y. Zhu, J. Liang et al., Surfactant widens the electrochemical window of an aqueous electrolyte for better rechargeable aqueous sodium/zinc battery. J. Mater. Chem. A 5(2), 730–738 (2017). https://doi.org/10.1039/c6ta08736a
- P. Sun, L. Ma, W.H. Zhou, M.J. Qiu, Z.L. Wang et al., Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew. Chem. Int. Ed. 60(33), 18247–18255 (2021). https://doi.org/10.1002/anie.202105756
- J.N. Hao, L.B. Yuan, C. Ye, D.L. Chao, K. Davey et al., Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents. Angew. Chem. Int. Ed. 60(13), 7366–7375 (2021). https://doi.org/10.1002/anie.202016531
- A. Mitha, A.Z. Yazdi, M. Ahmed, P. Chen, Surface adsorption of polyethylene glycol to suppress dendrite formation on zinc anodes in rechargeable aqueous batteries. ChemElectroChem 5(17), 2409–2418 (2018). https://doi.org/10.1002/celc.201800572
- Q. Zhang, J.Y. Luan, L. Fu, S.G. Wu, Y.G. Tang et al., The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive. Angew. Chem. Int. Ed. 58(44), 15841–15847 (2019). https://doi.org/10.1002/anie.201907830
- J. Abdulla, J. Cao, D. Zhang, X. Zhang, C. Sriprachuabwong et al., Elimination of zinc dendrites by graphene oxide electrolyte additive for zinc-ion batteries. ACS Appl. Energy Mater. 4(5), 4602–4609 (2021). https://doi.org/10.1021/acsaem.1c00224
References
T. Jin, H.X. Li, K.J. Zhu, P.F. Wang, P. Liu et al., Polyanion-type cathode materials for sodium-ion batteries. Chem. Soc. Rev. 49(8), 2342–2377 (2020). https://doi.org/10.1039/c9cs00846b
J.W. Li, Z. Kong, X.X. Liu, B.C. Zheng, Q.H. Fan et al., Strategies to anode protection in lithium metal battery: a review. InfoMat (2021). https://doi.org/10.1002/inf2.12189
X. Shi, Y. Zhang, G. Xu, S. Guo, A. Pan et al., Enlarged interlayer spacing and enhanced capacitive behavior of a carbon anode for superior potassium storage. Sci. Bull. 65(23), 2014–2021 (2020). https://doi.org/10.1016/j.scib.2020.07.001
X. Shi, Z. Xu, C. Han, R. Shi, X. Wu et al., Highly dispersed cobalt nanoparticles embedded in nitrogen-doped graphitized carbon for fast and durable potassium storage. Nano-Micro Lett. 13, 21 (2021). https://doi.org/10.1007/s40820-020-00534-x
G.A. Elia, K. Marquardt, K. Hoeppner, S. Fantini, R.Y. Lin et al., An overview and future perspectives of aluminum batteries. Adv. Mater. 28(35), 7564–7579 (2016). https://doi.org/10.1002/adma.201601357
J.T. Huang, J. Zhou, S.Q. Liang, Guest pre-intercalation strategy to boost the electrochemical performance of aqueous zinc-ion battery cathodes. Acta Phys. Chim. Sin. 37(3), 2005020 (2021). https://doi.org/10.3866/pku.whxb202005020
H.F. Li, L.T. Ma, C.P. Han, Z.F. Wang, Z.X. Liu et al., Advanced rechargeable zinc-based batteries: recent progress and future perspectives. Nano Energy 62, 550–587 (2019). https://doi.org/10.1016/j.nanoen.2019.05.059
X. Han, N. Li, P. Xiong, M.G. Jung, Y. Kang et al., Electronically coupled layered double hydroxide/MXene quantum dot metallic hybrids for high-performance flexible zinc–air batteries. InfoMat 3(10), 1134–1144 (2021). https://doi.org/10.1002/inf2.12226
P. Gu, M.B. Zheng, Q.X. Zhao, X. Xiao, H.G. Xue et al., Rechargeable zinc-air batteries: a promising way to green energy. J. Mater. Chem. A 5(17), 7651–7666 (2017). https://doi.org/10.1039/c7ta01693j
X.M. Xu, F.Y. Xiong, J.S. Meng, X.P. Wang, C.J. Niu et al., Vanadium-based nanomaterials: a promising family for emerging metal-ion batteries. Adv. Funct. Mater. 30(10), 1904398 (2020). https://doi.org/10.1002/adfm.201904398
Z.D. Zhao, M.Q. Sun, T.Q. Wu, J.J. Zhang, P. Wang et al., A bifunctional-modulated conformal Li/Mn-rich layered cathode for fast-charging, high volumetric density and durable Li-ion full cells. Nano-Micro Lett. 13, 118 (2021). https://doi.org/10.1007/s40820-021-00643-1
C. Ma, W.F. Cui, X.Z. Liu, Y. Ding, Y.G. Wang, In situ preparation of gel polymer electrolyte for lithium batteries: progress and perspectives. InfoMat (2021). https://doi.org/10.1002/inf2.12232
D.L. Chao, W.H. Zhou, F.X. Xie, C. Ye, H. Li et al., Roadmap for advanced aqueous batteries: from design of materials to applications. Sci. Adv. 6(21), 4098 (2020). https://doi.org/10.1126/sciadv.aba4098
S.S. Zhang, Identifying rate limitation and a guide to design of fast-charging Li-ion battery. InfoMat 2(5), 942–949 (2019). https://doi.org/10.1002/inf2.12058
X. Guo, J. Zhou, C. Bai, X. Li, G. Fang et al., Zn/MnO2 battery chemistry with dissolution-deposition mechanism. Mater. Today Energy 16, 100396 (2020). https://doi.org/10.1016/j.mtener.2020.100396
D. Chao, C.R. Zhu, M. Song, P. Liang, X. Zhang et al., A high-rate and stable quasi-solid-state zinc-ion battery with novel 2D layered zinc orthovanadate array. Adv. Mater. 30(32), e1803181 (2018). https://doi.org/10.1002/adma.201803181
L. Gou, K.L. Mou, X.Y. Fan, M.J. Zhao, Y. Wang et al., Mn2O3/Al2O3 cathode material derived from a metal-organic framework with enhanced cycling performance for aqueous zinc-ion batteries. Dalton Trans. 49(3), 711–718 (2020). https://doi.org/10.1039/c9dt03995c
W. Zhou, M. Chen, A. Wang, A. Huang, J. Chen et al., Optimizing the electrolyte salt of aqueous zinc-ion batteries based on a high-performance calcium vanadate hydrate cathode material. J. Energy Chem. 52, 377–384 (2021). https://doi.org/10.1016/j.jechem.2020.05.005
P. Zhao, B.J. Yang, J.T. Chen, J.W. Lang, T.Y. Zhang et al., A safe, high-performance, and long-cycle life zinc-ion hybrid capacitor based on three-dimensional porous activated carbon. Acta Phys. Chim. Sin. 36(2), 1904050 (2020). https://doi.org/10.3866/pku.whxb201904050
Q. Zong, W. Du, C.F. Liu, H. Yang, Q.L. Zhang et al., Enhanced reversible zinc ion intercalation in deficient ammonium vanadate for high-performance aqueous zinc-ion battery. Nano-Micro Lett. 13, 116 (2021). https://doi.org/10.1007/s40820-021-00641-3
J.W. Gao, X.S. Xie, S.Q. Liang, B.A. Lu, J. Zhou, Inorganic colloidal electrolyte for highly robust zinc-ion batteries. Nano-Micro Lett. 13, 69 (2021). https://doi.org/10.1007/s40820-021-00595-6
X. Xu, Y. Chen, D. Zheng, P. Ruan, Y. Cai et al., Ultra-fast and scalable saline immersion strategy enabling uniform Zn nucleation and deposition for high-performance Zn-ion batteries. Small 17(33), 2101901 (2021). https://doi.org/10.1002/smll.202101901
C. Li, X. Xie, H. Liu, P. Wang, C. Deng et al., Integrated “all-in-one” strategy to stabilize zinc anodes for high-performance zinc-ion batteries. Natl. Sci. Rev. (2021). https://doi.org/10.1093/nsr/nwab177
F. Wang, O. Borodin, T. Gao, X.L. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17(6), 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z
T. Shoji, M. Hishinuma, T. Yamamoto, Zinc-manganese dioxide galvanic cell using zinc sulphate as electrolyte-rechargeability of the cell. J. Appl. Electrochem. 18(4), 521–526 (1988). https://doi.org/10.1007/bf01022245
Y. Cui, Q. Zhao, X. Wu, X. Chen, J. Yang et al., An interface-bridged organic-inorganic layer that suppresses dendrite formation and side reactions for ultra-long-life aqueous zinc metal anodes. Angew. Chem. Int. Ed. 59(38), 16594–16601 (2020). https://doi.org/10.1002/anie.202005472
B.T. Liu, S.J. Wang, Z.L. Wang, H. Lei, Z.T. Chen et al., Novel 3D nanoporous Zn-Cu alloy as long-life anode toward high-voltage double electrolyte aqueous zinc-ion batteries. Small 16(22), 2001323 (2020). https://doi.org/10.1002/smll.202001323
X.C. Pu, B.Z. Jiang, X.L. Wang, W.B. Liu, L.B. Dong et al., High-performance aqueous zinc-ion batteries realized by MOF materials. Nano-Micro Lett. 12, 152 (2020). https://doi.org/10.1007/s40820-020-00487-1
S.B. Wang, Q. Ran, R.Q. Yao, H. Shi, Z. Wen et al., Lamella-nanostructured eutectic zinc-aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries. Nat. Commun. 11(1), 1634 (2020). https://doi.org/10.1038/s41467-020-15478-4
N. Liu, B. Li, Z. He, L. Dai, H. Wang et al., Recent advances and perspectives on vanadium- and manganese-based cathode materials for aqueous zinc ion batteries. J. Energy Chem. 59, 134–159 (2021). https://doi.org/10.1016/j.jechem.2020.10.044
X.Y. Liu, J. Yi, K. Wu, Y. Jiang, Y.Y. Liu et al., Rechargeable Zn-MnO2 batteries: advances, challenges and perspectives. Nanotechnology 31(12), 122001 (2020). https://doi.org/10.1088/1361-6528/ab5b38
W.J. Zhou, J.Z. Chen, M.F. Chen, X.W. Xu, Q.H. Tian et al., Rod-like anhydrous V2O5 assembled by tiny nanosheets as a high-performance cathode material for aqueous zinc-ion batteries. RSC Adv. 9(52), 30556–30564 (2019). https://doi.org/10.1039/c9ra06143f
Y.Q. Yang, Y. Tang, S.Q. Liang, Z.X. Wu, G.Z. Fang et al., Transition metal ion-preintercalated V2O5 as high-performance aqueous zinc-ion battery cathode with broad temperature adaptability. Nano Energy 61, 617–625 (2019). https://doi.org/10.1016/j.nanoen.2019.05.005
F. Wu, Y. Wang, P. Ruan, X. Niu, D. Zheng et al., Fe-doping enabled a stable vanadium oxide cathode with rapid Zn diffusion channel for aqueous zinc-ion batteries. Mater. Today Energy 21, 100842 (2021). https://doi.org/10.1016/j.mtener.2021.100842
Y. Zhao, Y. Zhu, X. Zhang, Challenges and perspectives for manganese-based oxides for advanced aqueous zinc-ion batteries. InfoMat 2(2), 237–260 (2019). https://doi.org/10.1002/inf2.12042
W. Li, K.L. Wang, S.J. Cheng, K. Jiang, An ultrastable presodiated titanium disulfide anode for aqueous “rocking-chair” zinc ion battery. Adv. Energy Mater. 9(27), 1900993 (2019). https://doi.org/10.1002/aenm.201900993
Y.W. Cheng, L.L. Luo, L. Zhong, J.Z. Chen, B. Li et al., Highly reversible zinc-ion intercalation into chevrel phase Mo6S8 nanocubes and applications for advanced zinc-ion batteries. ACS Appl. Mater. Interfaces 8(22), 13673–13677 (2016). https://doi.org/10.1021/acsami.6b03197
M.S. Chae, J.W. Heo, S.C. Lim, S.T. Hong, Electrochemical zinc-ion intercalation properties and crystal structures of ZnMo6S8 and Zn2Mo6S8 chevrel phases in aqueous electrolytes. Inorg. Chem. 55(7), 3294–3301 (2016). https://doi.org/10.1021/acs.inorgchem.5b02362
T. Wang, C. Li, X. Xie, B. Lu, Z. He et al., Anode materials for aqueous zinc ion batteries: mechanisms, properties, and perspectives. ACS Nano 14(12), 16321–16347 (2020). https://doi.org/10.1021/acsnano.0c07041
N.Y. Ma, P.J. Wu, Y.X. Wu, D.H. Jiang, G.T. Lei, Progress and perspective of aqueous zinc-ion battery. Funct. Mater. Lett. 12(5), 1930003 (2019). https://doi.org/10.1142/s1793604719300032
X. Zeng, J. Hao, Z. Wang, J. Mao, Z. Guo, Recent progress and perspectives on aqueous Zn-based rechargeable batteries with mild aqueous electrolytes. Energy Storage Mater. 20, 410–437 (2019). https://doi.org/10.1016/j.ensm.2019.04.022
L.N. Chen, Q.Y. An, L.Q. Mai, Recent advances and prospects of cathode materials for rechargeable aqueous zinc-ion batteries. Adv. Mater. Interfaces 6(17), 1900387 (2019). https://doi.org/10.1002/admi.201900387
Y. Zhang, A. Chen, J. Sun, Promise and challenge of vanadium-based cathodes for aqueous zinc-ion batteries. J. Energy Chem. 54, 655–667 (2021). https://doi.org/10.1016/j.jechem.2020.06.013
X.Z. Zhai, J. Qu, S.M. Hao, Y.Q. Jing, W. Chang et al., Layered birnessite cathode with a displacement/intercalation mechanism for high-performance aqueous zinc-ion batteries. Nano-Micro Lett. 12, 56 (2020). https://doi.org/10.1007/s40820-020-0397-3
Q. Zhang, J.Y. Luan, Y.G. Tang, X.B. Ji, H.Y. Wang, Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 59(32), 13180–13191 (2020). https://doi.org/10.1002/anie.202000162
Z.W. Tie, Z.Q. Niu, Design strategies for high-performance aqueous Zn/organic batteries. Angew. Chem. Int. Ed. 59(48), 21293–21303 (2020). https://doi.org/10.1002/anie.202008960
K.N. Zhao, C.X. Wang, Y.H. Yu, M.Y. Yan, Q.L. Wei et al., Ultrathin surface coating enables stabilized zinc metal anode. Adv. Mater. Interfaces 5(16), 1800848 (2018). https://doi.org/10.1002/admi.201800848
L.T. Ma, S.M. Chen, N. Li, Z.X. Liu, Z.J. Tang et al., Hydrogen-free and dendrite-free all-solid-state Zn-ion batteries. Adv. Mater. 32(14), 1908121 (2020). https://doi.org/10.1002/adma.201908121
G.Z. Fang, J. Zhou, A.Q. Pan, S.Q. Liang, Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 3, 2480–2501 (2018). https://doi.org/10.1021/acsenergylett.8b01426
B. Sun, P. Xiong, U. Maitra, D. Langsdorf, K. Yan et al., Design strategies to enable the efficient use of sodium metal anodes in high-energy batteries. Adv. Mater. 32(18), 1903891 (2020). https://doi.org/10.1002/adma.201903891
Y. Tian, Y.L. An, C.L. Wei, B.J. Xi, S.L.L. Xiong et al., Flexible and free-standing Ti3C2Tx MXene@Zn paper for dendrite-free aqueous zinc metal batteries and nonaqueous lithium metal batteries. ACS Nano 13(10), 11676–11685 (2019). https://doi.org/10.1021/acsnano.9b05599
J. Hao, X. Li, X. Zeng, D. Li, J. Mao et al., Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries. Energy Environ. Sci. 13(11), 3917–3949 (2020). https://doi.org/10.1039/d0ee02162h
H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1(5), 16039 (2016). https://doi.org/10.1038/nenergy.2016.39
H. Jia, Z.Q. Wang, B. Tawiah, Y.D. Wang, C.Y. Chan et al., Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries. Nano Energy 70, 104523 (2020). https://doi.org/10.1016/j.nanoen.2020.104523
P.C. Liang, J. Yi, X.Y. Liu, K. Wu, Z. Wang et al., Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn-based batteries. Adv. Funct. Mater. 30(13), 1908528 (2020). https://doi.org/10.1002/adfm.201908528
Y.X. Zeng, X.Y. Zhang, R.F. Qin, X.Q. Liu, P.P. Fang et al., Dendrite-free Zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Adv. Mater. 31(36), 1903675 (2019). https://doi.org/10.1002/adma.201903675
C. Sun, C.P. Wu, X.X. Gu, C. Wang, Q.H. Wang, Interface engineering via Ti3C2Tx MXene electrolyte additive toward dendrite-free Zinc deposition. Nano-Micro Lett. 13, 89 (2021). https://doi.org/10.1007/s40820-021-00612-8
P. Gao, Q. Ru, H. Yan, S. Cheng, Y. Liu et al., A durable Na0.56V2O5 nanobelt cathode material assisted by hybrid cationic electrolyte for high-performance aqueous zinc-ion batteries. ChemElectroChem 7(1), 283–288 (2020). https://doi.org/10.1002/celc.201901851
W. Li, K.L. Wang, S.J. Cheng, K. Jiang, A long-life aqueous Zn-ion battery based on Na3V2(PO4)2F3 cathode. Energy Storage Mater. 15, 14–21 (2018). https://doi.org/10.1016/j.ensm.2018.03.003
W.J. Lu, C.X. Xie, H.M. Zhang, X.F. Li, Inhibition of zinc dendrite growth in zinc-based batteries. Chemsuschem 11(23), 3996–4006 (2018). https://doi.org/10.1002/cssc.201801657
C.A. Laska, M. Auinger, P.U. Biedermann, D. Iqbal, N. Laska et al., Effect of hydrogen carbonate and chloride on zinc corrosion investigated by a scanning flow cell system. Electrochim. Acta 159, 198–209 (2015). https://doi.org/10.1016/j.electacta.2015.01.217
B.Y. Tang, L.T. Shan, S.Q. Liang, J. Zhou, Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci. 12(11), 3288–3304 (2019). https://doi.org/10.1039/c9ee02526j
S. Guo, L.P. Qin, T.S. Zhang, M. Zhou, J. Zhou et al., Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries. Energy Storage Mater. 34, 545–562 (2021). https://doi.org/10.1016/j.ensm.2020.10.019
Z.Y. Cao, P.Y. Zhuang, X. Zhang, M.X. Ye, J.F. Shen et al., Strategies for dendrite-free anode in aqueous rechargeable zinc ion batteries. Adv. Energy Mater. 10(30), 2001599 (2020). https://doi.org/10.1002/aenm.202001599
G. Jiang, N. Jiang, N. Zheng, X. Chen, J. Mao et al., MOF-derived porous Co3O4-NC nanoflake arrays on carbon fiber cloth as stable hosts for dendrite-free Li metal anodes. Energy Storage Mater. 23, 181–189 (2019). https://doi.org/10.1016/j.ensm.2019.05.014
A. Pei, G.Y. Zheng, F.F. Shi, Y.Z. Li, Y. Cui, Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett. 17(2), 1132–1139 (2017). https://doi.org/10.1021/acs.nanolett.6b04755
F. Xie, H. Li, X. Wang, X. Zhi, D. Chao et al., Mechanism for zincophilic sites on zinc-metal anode hosts in aqueous batteries. Adv. Energy Mater. 11(9), 2003419 (2021). https://doi.org/10.1002/aenm.202003419
X.S. Xie, S.Q. Liang, J.W. Gao, S. Guo, J.B. Guo et al., Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ. Sci. 13(2), 503–510 (2020). https://doi.org/10.1039/c9ee03545a
A.L. Xia, X.M. Pu, Y.Y. Tao, H.M. Liu, Y.G. Wang, Graphene oxide spontaneous reduction and self-assembly on the zinc metal surface enabling a dendrite-free anode for long-life zinc rechargeable aqueous batteries. Appl. Surf. Sci. 481, 852–859 (2019). https://doi.org/10.1016/j.apsusc.2019.03.197
F. Wan, L. Zhang, X. Dai, X. Wang, Z. Niu et al., Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 9, 1656 (2018). https://doi.org/10.1038/s41467-018-04060-8
W. Xu, K. Zhao, W. Huo, Y. Wang, G. Yao et al., Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries. Nano Energy 62, 275–281 (2019). https://doi.org/10.1016/j.nanoen.2019.05.042
K.E.K. Sun, T.K.A. Hoang, T.N.L. Doan, Y. Yu, P. Chen, Highly sustainable zinc anodes for a rechargeable hybrid aqueous battery. Chem. Eur. J. 24(7), 1667–1673 (2018). https://doi.org/10.1002/chem.201704440
D. Yuan, J. Zhao, H. Ren, Y.Q. Chen, R. Chua et al., Anion texturing towards dendrite-free Zn anode for aqueous rechargeable batteries. Angew. Chem. Int. Ed. 60(13), 7213–7219 (2021). https://doi.org/10.1002/anie.202015488
J. Zhou, M. Xie, F. Wu, Y. Mei, Y. Hao et al., Ultrathin surface coating of nitrogen-doped graphene enables stable zinc anodes for aqueous zinc-ion batteries. Adv. Mater. 33(33), 2101649 (2021). https://doi.org/10.1002/adma.202101649
W.W. Xu, Y. Wang, Recent progress on zinc-ion rechargeable batteries. Nano-Micro Lett. 11, 90 (2019). https://doi.org/10.1007/s40820-019-0322-9
F. Wan, L.L. Zhang, X.Y. Wang, S.S. Bi, Z.Q. Niu et al., An aqueous rechargeable zinc-organic battery with hybrid mechanism. Adv. Funct. Mater. 28(45), 1804975 (2018). https://doi.org/10.1002/adfm.201804975
F. Wang, E.Y. Hu, W. Sun, T. Gao, X. Ji et al., A rechargeable aqueous Zn2+-battery with high power density and a long cycle-life. Energy Environ. Sci. 11(11), 3168–3175 (2018). https://doi.org/10.1039/c8ee01883a
H.J. Yang, Z. Chang, Y. Qiao, H. Deng, X.W. Mu et al., Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 59(24), 9377–9381 (2020). https://doi.org/10.1002/anie.202001844
D. Kundu, S.H. Vajargah, L.W. Wan, B. Adams, D. Prendergast et al., nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface. Energy Environ. Sci. 11(4), 881–892 (2018). https://doi.org/10.1039/c8ee00378e
Z.M. Zhao, J.W. Zhao, Z.L. Hu, J.D. Li, J.J. Li et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12(6), 1938–1949 (2019). https://doi.org/10.1039/c9ee00596j
L.E. Blanc, D. Kundu, L.F. Nazar, Scientific challenges for the implementation of Zn-ion batteries. Joule 4(4), 771–799 (2020). https://doi.org/10.1016/j.joule.2020.03.002
Y. Jin, L. Zou, L. Liu, M.H. Engelhard, R.L. Patel et al., Joint charge storage for high-rate aqueous zinc–manganese dioxide batteries. Adv. Mater. 31(29), 1900567 (2019). https://doi.org/10.1002/adma.201900567
L. Cao, D. Li, E. Hu, J. Xu, T. Deng et al., Solvation structure design for aqueous Zn metal batteries. J. Am. Chem. Soc. 142(51), 21404–21409 (2020). https://doi.org/10.1021/jacs.0c09794
S. Liu, J. Mao, W.K. Pang, J. Vongsvivut, X. Zeng et al., Tuning the electrolyte solvation structure to suppress cathode dissolution, water reactivity, and Zn dendrite growth in zinc-ion batteries. Adv. Funct. Mater. 31(38), 2104281 (2021). https://doi.org/10.1002/adfm.202104281
A. Bhatnagar, W. Hogland, M. Marques, M. Sillanpää, An overview of the modification methods of activated carbon for its water treatment applications. Chem. Eng. J. 219, 499–511 (2013). https://doi.org/10.1016/j.cej.2012.12.038
G. Pognon, T. Brousse, L. Demarconnay, D. Bélanger, Performance and stability of electrochemical capacitor based on anthraquinone modified activated carbon. J. Power Sources 196(8), 4117–4122 (2010). https://doi.org/10.1016/j.jpowsour.2010.09.097
C. Shen, X. Li, N. Li, K.Y. Xie, J.G. Wang et al., Graphene-boosted, high-performance aqueous Zn-ion battery. ACS Appl. Mater. Interfaces 10(30), 25446–25453 (2018). https://doi.org/10.1021/acsami.8b07781
J.X. Zheng, Q. Zhao, T. Tang, J.F. Yin, C.D. Quilty et al., Reversible epitaxial electrodeposition of metals in battery anodes. Science 366(6465), 645–648 (2019). https://doi.org/10.1126/science.aax6873
L. Hongfei, X. Chengjun, H. Cuiping, C. Yanyi, W. Chunguang et al., Enhancement on cycle performance of Zn anodes by activated carbon modification for neutral rechargeable zinc ion batteries. J. Electrochem. Soc. 162(8), A1439–A1444 (2015). https://doi.org/10.1149/2.0141508jes
L. Wei, W. Kangli, Z. Min, Z. Houchao, C. Shijie et al., Advanced low-cost, high-voltage, long-life aqueous hybrid sodium/zinc batteries enabled by a dendrite-free zinc anode and concentrated electrolyte. ACS Appl. Mater. Interfaces 10, 22059–22066 (2018). https://doi.org/10.1021/acsami.8b04085
L. Dong, W. Yang, W. Yang, H. Tian, Y. Huang et al., Flexible and conductive scaffold-stabilized zinc metal anodes for ultralong-life zinc-ion batteries and zinc-ion hybrid capacitors. Chem. Eng. J. 384, 123355 (2020). https://doi.org/10.1016/j.cej.2019.123355
W. Anran, Z. Weijun, H. Aixiang, C. Minfeng, C. Jizhang et al., Modifying the Zn anode with carbon black coating and nanofibrillated cellulose binder: a strategy to realize dendrite-free Zn-MnO2 batteries. J. Colloid Interf. Sci. 577, 256–264 (2020). https://doi.org/10.1016/j.jcis.2020.05.102
D.L. Han, S.C. Wu, S.W. Zhang, Y.Q. Deng, C.J. Cui et al., A corrosion-resistant and dendrite-free zinc metal anode in aqueous systems. Small 16(29), 2001736 (2020). https://doi.org/10.1002/smll.202001736
M.W. Cui, Y. Xiao, L.T. Kang, W. Du, Y.F. Gao et al., Quasi-isolated Au particles as heterogeneous seeds to guide uniform Zn deposition for aqueous zinc-ion batteries. ACS Appl. Energy Mater. 2(9), 6490–6496 (2019). https://doi.org/10.1021/acsaem.9b01063
Q. Zhang, J. Luan, X. Huang, Q. Wang, D. Sun et al., Revealing the role of crystal orientation of protective layers for stable zinc anode. Nat. Commun. 11(1), 3961 (2020). https://doi.org/10.1038/s41467-020-17752-x
H. He, H. Tong, X. Song, X. Song, J. Liu, Highly stable Zn metal anodes enabled by atomic layer deposited Al2O3 coating for aqueous zinc-ion batteries. J. Mater. Chem. A 8(16), 7836–7846 (2020). https://doi.org/10.1039/d0ta00748j
M. Zhou, S. Guo, G. Fang, H. Sun, X. Cao et al., Suppressing by-product via stratified adsorption effect to assist highly reversible zinc anode in aqueous electrolyte. J. Energy Chem. 55, 549–556 (2021). https://doi.org/10.1016/j.jechem.2020.07.021
C. Deng, X. Xie, J. Han, Y. Tang, J. Gao et al., A sieve-functional and uniform-porous kaolin layer toward stable zinc metal anode. Adv. Funct. Mater. 30(21), 2000599 (2020). https://doi.org/10.1002/adfm.202000599
L. Kang, M. Cui, F. Jiang, Y. Gao, H. Luo et al., Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv. Energy Mater. 8(25), 1801090 (2018). https://doi.org/10.1002/aenm.201801090
M. Liu, J. Cai, H. Ao, Z. Hou, Y. Zhu et al., NaTi2(PO4)3 solid-state electrolyte protection layer on Zn metal anode for superior long-life aqueous zinc-ion batteries. Adv. Funct. Mater. 30(50), 2004885 (2020). https://doi.org/10.1002/adfm.202004885
X. Zeng, J. Mao, J. Hao, J. Liu, S. Liu et al., Electrolyte design for in situ construction of highly Zn2+-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions. Adv. Mater. 33(11), 2007416 (2021). https://doi.org/10.1002/adma.202007416
Z. Cao, X. Zhu, D. Xu, P. Dong, M.O.L. Chee et al., Eliminating Zn dendrites by commercial cyanoacrylate adhesive for zinc ion battery. Energy Storage Mater. 36, 132–138 (2021). https://doi.org/10.1016/j.ensm.2020.12.022
J. Hao, X. Li, S. Zhang, F. Yang, X. Zeng et al., Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv. Funct. Mater. 30(30), 2001263 (2020). https://doi.org/10.1002/adfm.202001263
P. Chen, X. Yuan, Y. Xia, Y. Zhang, L. Fu et al., An artificial polyacrylonitrile coating layer confining zinc dendrite growth for highly reversible aqueous zinc-based batteries. Adv. Sci. 8(11), 2100309 (2021). https://doi.org/10.1002/advs.202100309
M. Liu, L. Yang, H. Liu, A. Amine, Q. Zhao et al., Artificial solid-electrolyte interface facilitating dendrite-free zinc metal anodes via nanowetting effect. ACS Appl. Mater. Interfaces 11(35), 32046–32051 (2019). https://doi.org/10.1021/acsami.9b11243
H. He, J. Liu, Suppressing Zn dendrite growth by molecular layer deposition to enable long-life and deeply rechargeable aqueous Zn anodes. J. Mater. Chem. A 8(42), 22100–22110 (2020). https://doi.org/10.1039/d0ta07232j
A. Bayaguud, X. Luo, Y. Fu, C. Zhu, Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries. ACS Energy Lett. 5(9), 3012–3020 (2020). https://doi.org/10.1021/acsenergylett.0c01792
Z. Ma, J. Kan, Study of cylindrical Zn/PANI secondary batteries with the electrolyte containing alkylimidazolium ionic liquid. Synthetic Met. 174, 58–62 (2013). https://doi.org/10.1016/j.synthmet.2013.04.005
Y. Song, J. Hu, J. Tang, W. Gu, L. He et al., Real-time X-ray imaging reveals interfacial growth, suppression, and dissolution of zinc dendrites dependent on anions of ionic liquid additives for rechargeable battery applications. ACS Appl. Mater. Interfaces 8(46), 32031–32040 (2016). https://doi.org/10.1021/acsami.6b11098
L. Qian, W. Yao, R. Yao, Y. Sui, H. Zhu et al., Cations coordination-regulated reversibility enhancement for aqueous Zn-ion battery. Adv. Funct. Mater. 31(40), 2105736 (2021). https://doi.org/10.1002/adfm.202105736
Z. Hou, X. Zhang, X. Li, Y. Zhu, J. Liang et al., Surfactant widens the electrochemical window of an aqueous electrolyte for better rechargeable aqueous sodium/zinc battery. J. Mater. Chem. A 5(2), 730–738 (2017). https://doi.org/10.1039/c6ta08736a
P. Sun, L. Ma, W.H. Zhou, M.J. Qiu, Z.L. Wang et al., Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew. Chem. Int. Ed. 60(33), 18247–18255 (2021). https://doi.org/10.1002/anie.202105756
J.N. Hao, L.B. Yuan, C. Ye, D.L. Chao, K. Davey et al., Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents. Angew. Chem. Int. Ed. 60(13), 7366–7375 (2021). https://doi.org/10.1002/anie.202016531
A. Mitha, A.Z. Yazdi, M. Ahmed, P. Chen, Surface adsorption of polyethylene glycol to suppress dendrite formation on zinc anodes in rechargeable aqueous batteries. ChemElectroChem 5(17), 2409–2418 (2018). https://doi.org/10.1002/celc.201800572
Q. Zhang, J.Y. Luan, L. Fu, S.G. Wu, Y.G. Tang et al., The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive. Angew. Chem. Int. Ed. 58(44), 15841–15847 (2019). https://doi.org/10.1002/anie.201907830
J. Abdulla, J. Cao, D. Zhang, X. Zhang, C. Sriprachuabwong et al., Elimination of zinc dendrites by graphene oxide electrolyte additive for zinc-ion batteries. ACS Appl. Energy Mater. 4(5), 4602–4609 (2021). https://doi.org/10.1021/acsaem.1c00224