Cationic Adsorption-Induced Microlevelling Effect: A Pathway to Dendrite-Free Zinc Anodes
Corresponding Author: Jiang Zhou
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 202
Abstract
Dendrite growth represents one of the most significant challenges that impede the development of aqueous zinc-ion batteries. Herein, Gd3+ ions are introduced into conventional electrolytes as a microlevelling agent to achieve dendrite-free zinc electrodeposition. Simulation and experimental results demonstrate that these Gd3+ ions are preferentially adsorbed onto the zinc surface, which enables dendrite-free zinc anodes by activating the microlevelling effect during electrodeposition. In addition, the Gd3+ additives effectively inhibit side reactions and facilitate the desolvation of [Zn(H2O)6]2+, leading to highly reversible zinc plating/stripping. Due to these improvements, the zinc anode demonstrates a significantly prolonged cycle life of 2100 h and achieves an exceptional average Coulombic efficiency of 99.72% over 1400 cycles. More importantly, the Zn//NH4V4O10 full cell shows a high capacity retention rate of 85.6% after 1000 cycles. This work not only broadens the application of metallic cations in battery electrolytes but also provides fundamental insights into their working mechanisms.
Highlights:
1 A microlevelling agent containing Gd3+ ions significantly enhances the reversibility and stability of zinc anodes.
2 Gd3+ ions are preferentially adsorbed onto zinc surface, shielding zinc deposition at protrusions.
3 Adsorbed Gd3+ ions establish a water-poor electric double layer, suppressing side reactions at the interface.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Pang, M. Wang, X. Wang, D. Xiong, S. Xu et al., Graphene-oxide-modified MnO2 composite electrode for high-performance flexible quasi-solid-state zinc-ion batteries. Mater. Sci. Eng. B 299, 116981 (2024). https://doi.org/10.1016/j.mseb.2023.116981
- L. Song, Y. Fan, H. Fan, X. Yang, K. Yan et al., Photo-assisted rechargeable metal batteries. Nano Energy 125, 109538 (2024). https://doi.org/10.1016/j.nanoen.2024.109538
- J. Shin, J. Lee, Y. Park, J.W. Choi, Aqueous zinc ion batteries: focus on zinc metal anodes. Chem. Sci. 11(8), 2028–2044 (2020). https://doi.org/10.1039/d0sc00022a
- S. Guo, L. Qin, T. Zhang, M. Zhou, J. Zhou et al., Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries. Energy Storage Mater. 34, 545–562 (2021). https://doi.org/10.1016/j.ensm.2020.10.019
- J. Abdulla, J. Cao, D. Zhang, X. Zhang, C. Sriprachuabwong et al., Elimination of zinc dendrites by graphene oxide electrolyte additive for zinc-ion batteries. ACS Appl. Energy Mater. 4, 4602–4609 (2021). https://doi.org/10.1021/acsaem.1c00224
- J. Yin, X. Feng, Z. Gan, Y. Gao, Y. Cheng et al., From anode to cell: synergistic protection strategies and perspectives for stabilized Zn metal in mild aqueous electrolytes. Energy Storage Mater. 54, 623–640 (2023). https://doi.org/10.1016/j.ensm.2022.11.006
- Y. Zuo, K. Wang, P. Pei, M. Wei, X. Liu et al., Zinc dendrite growth and inhibition strategies. Mater. Today Energy 20, 100692 (2021). https://doi.org/10.1016/j.mtener.2021.100692
- J. Zheng, Q. Zhao, T. Tang, J. Yin, C.D. Quilty et al., Reversible epitaxial electrodeposition of metals in battery anodes. Science 366, 645–648 (2019). https://doi.org/10.1126/science.aax6873
- V. Yufit, F. Tariq, D.S. Eastwood, M. Biton, B. Wu et al., Operando visualization and multi-scale tomography studies of dendrite formation and dissolution in zinc batteries. Joule 3(2), 485–502 (2019). https://doi.org/10.1016/j.joule.2018.11.002
- K. Qi, P. Liang, S. Wei, H. Ao, X. Ding et al., Trade-off between H2O-rich and H2O-poor electric double layers enables highly reversible Zn anodes in aqueous Zn-ion batteries. Energy Environ. Sci. 17(7), 2566–2575 (2024). https://doi.org/10.1039/D4EE00147H
- S. Yang, H. Du, Y. Li, X. Wu, B. Xiao et al., Advances in the structure design of substrate materials for zinc anode of aqueous zinc ion batteries. Green Energy Environ. 8(6), 1531–1552 (2023). https://doi.org/10.1016/j.gee.2022.08.009
- Y. Liang, M. Qiu, P. Sun, W. Mai, Comprehensive review of electrolyte modification strategies for stabilizing Zn metal anodes. Adv. Funct. Mater. 33, 2304878 (2023). https://doi.org/10.1002/adfm.202304878
- Z. Xing, Y. Sun, X. Xie, Y. Tang, G. Xu et al., Zincophilic electrode interphase with appended proton reservoir ability stabilizes Zn metal anodes. Angew. Chem. Int. Ed. 62(5), e202215324 (2023). https://doi.org/10.1002/anie.202215324
- Z. Wang, H. Chen, H. Wang, W. Huang, H. Li et al., In situ growth of a metal–organic framework-based solid electrolyte interphase for highly reversible Zn anodes. ACS Energy Lett. 7(12), 4168–4176 (2022). https://doi.org/10.1021/acsenergylett.2c01958
- H. Du, R. Zhao, Y. Yang, Z. Liu, L. Qie et al., High-capacity and long-life zinc electrodeposition enabled by a self-healable and desolvation shield for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 61(10), e202114789 (2022). https://doi.org/10.1002/anie.202114789
- D. Li, Y. Tang, S. Liang, B. Lu, G. Chen et al., Self-assembled multilayers direct a buffer interphase for long-life aqueous zinc-ion batteries. Energy Environ. Sci. 16(8), 3381–3390 (2023). https://doi.org/10.1039/D3EE01098H
- Y. Zhang, Y. Zhang, J. Deng, R. Xue, S. Yang et al., In situ electrochemically-bonded self-adapting polymeric interface for durable aqueous zinc ion batteries. Adv. Funct. Mater. 34(6), 2310995 (2024). https://doi.org/10.1002/adfm.202310995
- Z. Liu, Z. Guo, L. Fan, C. Zhao, A. Chen et al., Construct robust epitaxial growth of (101) textured zinc metal anode for long life and high capacity in mild aqueous zinc-ion batteries. Adv. Mater. 36(5), 2305988 (2024). https://doi.org/10.1002/adma.202305988
- Y. Zhang, Z. Liu, X. Li, L. Fan, Y. Shuai et al., Loosening zinc ions from separator boosts stable Zn plating/striping behavior for aqueous zinc ion batteries. Adv. Energy Mater. 13(42), 2302126 (2023). https://doi.org/10.1002/aenm.202302126
- Y. Yuan, S.D. Pu, M.A. Pérez-Osorio, Z. Li, S. Zhang et al., Diagnosing the electrostatic shielding mechanism for dendrite suppression in aqueous zinc batteries. Adv. Mater. 36(9), e2307708 (2024). https://doi.org/10.1002/adma.202307708
- D. Feng, F. Cao, L. Hou, T. Li, Y. Jiao et al., Immunizing aqueous Zn batteries against dendrite formation and side reactions at various temperatures via electrolyte additives. Small 17(42), e2103195 (2021). https://doi.org/10.1002/smll.202103195
- J. Cao, X. Wang, D. Zhang, R. Chanajaree, L. Zhang et al., Boosting Zn metal anode stability with a dimethylformamide additive. J. Alloys Compd. 972, 172773 (2024). https://doi.org/10.1016/j.jallcom.2023.172773
- P. Wang, X. Xie, Z. Xing, X. Chen, G. Fang et al., Mechanistic insights of Mg2+-electrolyte additive for high-energy and long-life zinc-ion hybrid capacitors. Adv. Energy Mater. 11, 2101158 (2021). https://doi.org/10.1002/aenm.202101158
- Z. Guo, Z. Liu, P. Wang, C. Zhao, X. Lu et al., Biomineralization inspired the construction of dense spherical stacks for dendrite-free zinc anodes. Nano Lett. 24(46), 14656–14662 (2024). https://doi.org/10.1021/acs.nanolett.4c03749
- K. Yan, Y. Fan, F. Hu, G. Li, X. Yang et al., A “polymer-in-salt” solid electrolyte enabled by fast phase transition route for stable Zn batteries. Adv. Funct. Mater. 34(2), 2307740 (2024). https://doi.org/10.1002/adfm.202307740
- H. Wang, A. Zhou, X. Hu, Z. Hu, F. Zhang et al., Bifunctional dynamic adaptive interphase reconfiguration for zinc deposition modulation and side reaction suppression in aqueous zinc ion batteries. ACS Nano 17(12), 11946–11956 (2023). https://doi.org/10.1021/acsnano.3c04155
- Z. Hu, F. Zhang, Y. Zhao, H. Wang, Y. Huang et al., A self-regulated electrostatic shielding layer toward dendrite-free Zn batteries. Adv. Mater. 34(37), e2203104 (2022). https://doi.org/10.1002/adma.202203104
- R. Zhao, H. Wang, H. Du, Y. Yang, Z. Gao et al., Lanthanum nitrate as aqueous electrolyte additive for favourable zinc metal electrodeposition. Nat. Commun. 13(1), 3252 (2022). https://doi.org/10.1038/s41467-022-30939-8
- Y. Chen, S. Zhou, J. Li, J. Kang, S. Lin et al., Non-expendable regulator enables durable and deep cycling aqueous zinc batteries. Adv. Energy Mater. 14(25), 2400398 (2024). https://doi.org/10.1002/aenm.202400398
- M. Forsyth, B. Hinton, Rare Earth-based Corrosion Inhibitors (Woodhead Publishing, Cambridge, 2014)
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865
- Y. Liu, S. Liu, X. Xie, A functionalized separator enables dendrite-free Zn anode via metal-polydopamine coordination chemistry. InfoMat 5(3), e12374 (2023). https://doi.org/10.1002/inf2.12374
- W. Xin, Y. Cui, Y. Qian, T. Liu, X.-Y. Kong et al., High-efficiency dysprosium-ion extraction enabled by a biomimetic nanofluidic channel. Nat. Commun. 15(1), 5876 (2024). https://doi.org/10.1038/s41467-024-50237-9
- W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics. J. Mol. Graph. 14(1), 33–38 (1996). https://doi.org/10.1016/0263-7855(96)00018-5
- T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012). https://doi.org/10.1002/jcc.22885
- F. Ming, Y. Zhu, G. Huang, A.-H. Emwas, H. Liang et al., Co-solvent electrolyte engineering for stable anode-free zinc metal batteries. J. Am. Chem. Soc. 144(16), 7160–7170 (2022). https://doi.org/10.1021/jacs.1c12764
- Y. Wang, Z. Wang, W.K. Pang, W. Lie, J.A. Yuwono et al., Solvent control of water O-H bonds for highly reversible zinc ion batteries. Nat. Commun. 14(1), 2720 (2023). https://doi.org/10.1038/s41467-023-38384-x
- S. Chen, P. Sun, J. Humphreys, P. Zou, M. Zhang et al., N, N-dimethylacetamide-diluted nitrate electrolyte for aqueous Zn//LiMn2O4 hybrid ion batteries. ACS Appl. Mater. Interfaces 13(39), 46634–46643 (2021). https://doi.org/10.1021/acsami.1c12911
- W. Ma, S. Wang, X. Wu, W. Liu, F. Yang et al., Tailoring desolvation strategies for aqueous zinc-ion batteries. Energy Environ. Sci. 17(14), 4819–4846 (2024). https://doi.org/10.1039/d4ee00313f
- C. Clavaguéra, F. Calvo, J.-P. Dognon, Theoretical study of the hydrated Gd3+ ion: structure, dynamics, and charge transfer. J. Chem. Phys. 124(7), 074505 (2006). https://doi.org/10.1063/1.2167647
- T. Sun, Q. Nian, X. Ren, Z. Tao, Hydrogen-bond chemistry in rechargeable batteries. Joule 7(12), 2700–2731 (2023). https://doi.org/10.1016/j.joule.2023.10.010
- M. Zhou, S. Guo, J. Li, X. Luo, Z. Liu et al., Surface-preferred crystal plane for a stable and reversible zinc anode. Adv. Mater. 33, e2100187 (2021). https://doi.org/10.1002/adma.202100187
- Q. Nian, X. Luo, D. Ruan, Y. Li, B.-Q. Xiong et al., Highly reversible zinc metal anode enabled by strong Brønsted acid and hydrophobic interfacial chemistry. Nat. Commun. 15(1), 4303 (2024). https://doi.org/10.1038/s41467-024-48444-5
- E.R. Nightingale Jr., Phenomenological theory of ion solvation: effective radii of hydrated ions. J. Phys. Chem. 63(9), 1381–1387 (1959). https://doi.org/10.1021/j150579a011
- W. Zhang, Y. Dai, R. Chen, Z. Xu, J. Li et al., Highly reversible zinc metal anode in a dilute aqueous electrolyte enabled by a pH buffer additive. Angew. Chem. Int. Ed. 62(5), e202212695 (2023). https://doi.org/10.1002/anie.202212695
- Q. Zou, Z. Liang, W. Wang, D. Dong, Y.-C. Lu, A nuclei-rich strategy for highly reversible dendrite-free zinc metal anodes. Energy Environ. Sci. 16(12), 6026–6034 (2023). https://doi.org/10.1039/d3ee03246a
- Y. Zhu, J. Yin, X. Zheng, A.-H. Emwas, Y. Lei et al., Concentrated dual-cation electrolyte strategy for aqueous zinc-ion batteries. Energy Environ. Sci. 14(8), 4463–4473 (2021). https://doi.org/10.1039/d1ee01472b
- K.-H. Lee, S.-H. Byeon, Extended members of the layered rare-earth hydroxide family, RE2(OH)5NO3·nH2O (RE = Sm, Eu, and Gd): synthesis and anion-exchange behavior. Eur. J. Inorg. Chem. 2009(7), 929–936 (2009). https://doi.org/10.1002/ejic.200801052
- B. Wang, C. Gong, J. Wang, X. Wang, J.-G. Li, Oxysulfate, oxysulfide, and oxide red-phosphors from one single hydroxyl sulfate precursor (Gd,Eu)2(OH)4SO4⋅nH2O: phase evolution, and photoluminescence. Adv. Powder Technol. 34(12), 104271 (2023). https://doi.org/10.1016/j.apt.2023.104271
- W. Lim, X. Li, D. Reed. Understanding the role of zinc hydroxide sulfate and its analogues in mildly acidic aqueous zinc batteries: A review. Small Methods. 8, 2300965 (2024). https://doi.org/10.1002/smtd.202300965
- Y. Ding, X. Zhang, T. Wang, B. Lu, Z. Zeng et al., A dynamic electrostatic shielding layer toward highly reversible Zn metal anode. Energy Storage Mater. 62, 102949 (2023). https://doi.org/10.1016/j.ensm.2023.102949
- S. Yao, Y. Sun, L. Pan, Pre-removing partial ammonium ion induces vanadium vacancy assist NH4V4O10 as a high-performance aqueous zinc ion battery cathode. Appl. Surf. Sci. 672, 160785 (2024). https://doi.org/10.1016/j.apsusc.2024.160785
References
N. Pang, M. Wang, X. Wang, D. Xiong, S. Xu et al., Graphene-oxide-modified MnO2 composite electrode for high-performance flexible quasi-solid-state zinc-ion batteries. Mater. Sci. Eng. B 299, 116981 (2024). https://doi.org/10.1016/j.mseb.2023.116981
L. Song, Y. Fan, H. Fan, X. Yang, K. Yan et al., Photo-assisted rechargeable metal batteries. Nano Energy 125, 109538 (2024). https://doi.org/10.1016/j.nanoen.2024.109538
J. Shin, J. Lee, Y. Park, J.W. Choi, Aqueous zinc ion batteries: focus on zinc metal anodes. Chem. Sci. 11(8), 2028–2044 (2020). https://doi.org/10.1039/d0sc00022a
S. Guo, L. Qin, T. Zhang, M. Zhou, J. Zhou et al., Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries. Energy Storage Mater. 34, 545–562 (2021). https://doi.org/10.1016/j.ensm.2020.10.019
J. Abdulla, J. Cao, D. Zhang, X. Zhang, C. Sriprachuabwong et al., Elimination of zinc dendrites by graphene oxide electrolyte additive for zinc-ion batteries. ACS Appl. Energy Mater. 4, 4602–4609 (2021). https://doi.org/10.1021/acsaem.1c00224
J. Yin, X. Feng, Z. Gan, Y. Gao, Y. Cheng et al., From anode to cell: synergistic protection strategies and perspectives for stabilized Zn metal in mild aqueous electrolytes. Energy Storage Mater. 54, 623–640 (2023). https://doi.org/10.1016/j.ensm.2022.11.006
Y. Zuo, K. Wang, P. Pei, M. Wei, X. Liu et al., Zinc dendrite growth and inhibition strategies. Mater. Today Energy 20, 100692 (2021). https://doi.org/10.1016/j.mtener.2021.100692
J. Zheng, Q. Zhao, T. Tang, J. Yin, C.D. Quilty et al., Reversible epitaxial electrodeposition of metals in battery anodes. Science 366, 645–648 (2019). https://doi.org/10.1126/science.aax6873
V. Yufit, F. Tariq, D.S. Eastwood, M. Biton, B. Wu et al., Operando visualization and multi-scale tomography studies of dendrite formation and dissolution in zinc batteries. Joule 3(2), 485–502 (2019). https://doi.org/10.1016/j.joule.2018.11.002
K. Qi, P. Liang, S. Wei, H. Ao, X. Ding et al., Trade-off between H2O-rich and H2O-poor electric double layers enables highly reversible Zn anodes in aqueous Zn-ion batteries. Energy Environ. Sci. 17(7), 2566–2575 (2024). https://doi.org/10.1039/D4EE00147H
S. Yang, H. Du, Y. Li, X. Wu, B. Xiao et al., Advances in the structure design of substrate materials for zinc anode of aqueous zinc ion batteries. Green Energy Environ. 8(6), 1531–1552 (2023). https://doi.org/10.1016/j.gee.2022.08.009
Y. Liang, M. Qiu, P. Sun, W. Mai, Comprehensive review of electrolyte modification strategies for stabilizing Zn metal anodes. Adv. Funct. Mater. 33, 2304878 (2023). https://doi.org/10.1002/adfm.202304878
Z. Xing, Y. Sun, X. Xie, Y. Tang, G. Xu et al., Zincophilic electrode interphase with appended proton reservoir ability stabilizes Zn metal anodes. Angew. Chem. Int. Ed. 62(5), e202215324 (2023). https://doi.org/10.1002/anie.202215324
Z. Wang, H. Chen, H. Wang, W. Huang, H. Li et al., In situ growth of a metal–organic framework-based solid electrolyte interphase for highly reversible Zn anodes. ACS Energy Lett. 7(12), 4168–4176 (2022). https://doi.org/10.1021/acsenergylett.2c01958
H. Du, R. Zhao, Y. Yang, Z. Liu, L. Qie et al., High-capacity and long-life zinc electrodeposition enabled by a self-healable and desolvation shield for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 61(10), e202114789 (2022). https://doi.org/10.1002/anie.202114789
D. Li, Y. Tang, S. Liang, B. Lu, G. Chen et al., Self-assembled multilayers direct a buffer interphase for long-life aqueous zinc-ion batteries. Energy Environ. Sci. 16(8), 3381–3390 (2023). https://doi.org/10.1039/D3EE01098H
Y. Zhang, Y. Zhang, J. Deng, R. Xue, S. Yang et al., In situ electrochemically-bonded self-adapting polymeric interface for durable aqueous zinc ion batteries. Adv. Funct. Mater. 34(6), 2310995 (2024). https://doi.org/10.1002/adfm.202310995
Z. Liu, Z. Guo, L. Fan, C. Zhao, A. Chen et al., Construct robust epitaxial growth of (101) textured zinc metal anode for long life and high capacity in mild aqueous zinc-ion batteries. Adv. Mater. 36(5), 2305988 (2024). https://doi.org/10.1002/adma.202305988
Y. Zhang, Z. Liu, X. Li, L. Fan, Y. Shuai et al., Loosening zinc ions from separator boosts stable Zn plating/striping behavior for aqueous zinc ion batteries. Adv. Energy Mater. 13(42), 2302126 (2023). https://doi.org/10.1002/aenm.202302126
Y. Yuan, S.D. Pu, M.A. Pérez-Osorio, Z. Li, S. Zhang et al., Diagnosing the electrostatic shielding mechanism for dendrite suppression in aqueous zinc batteries. Adv. Mater. 36(9), e2307708 (2024). https://doi.org/10.1002/adma.202307708
D. Feng, F. Cao, L. Hou, T. Li, Y. Jiao et al., Immunizing aqueous Zn batteries against dendrite formation and side reactions at various temperatures via electrolyte additives. Small 17(42), e2103195 (2021). https://doi.org/10.1002/smll.202103195
J. Cao, X. Wang, D. Zhang, R. Chanajaree, L. Zhang et al., Boosting Zn metal anode stability with a dimethylformamide additive. J. Alloys Compd. 972, 172773 (2024). https://doi.org/10.1016/j.jallcom.2023.172773
P. Wang, X. Xie, Z. Xing, X. Chen, G. Fang et al., Mechanistic insights of Mg2+-electrolyte additive for high-energy and long-life zinc-ion hybrid capacitors. Adv. Energy Mater. 11, 2101158 (2021). https://doi.org/10.1002/aenm.202101158
Z. Guo, Z. Liu, P. Wang, C. Zhao, X. Lu et al., Biomineralization inspired the construction of dense spherical stacks for dendrite-free zinc anodes. Nano Lett. 24(46), 14656–14662 (2024). https://doi.org/10.1021/acs.nanolett.4c03749
K. Yan, Y. Fan, F. Hu, G. Li, X. Yang et al., A “polymer-in-salt” solid electrolyte enabled by fast phase transition route for stable Zn batteries. Adv. Funct. Mater. 34(2), 2307740 (2024). https://doi.org/10.1002/adfm.202307740
H. Wang, A. Zhou, X. Hu, Z. Hu, F. Zhang et al., Bifunctional dynamic adaptive interphase reconfiguration for zinc deposition modulation and side reaction suppression in aqueous zinc ion batteries. ACS Nano 17(12), 11946–11956 (2023). https://doi.org/10.1021/acsnano.3c04155
Z. Hu, F. Zhang, Y. Zhao, H. Wang, Y. Huang et al., A self-regulated electrostatic shielding layer toward dendrite-free Zn batteries. Adv. Mater. 34(37), e2203104 (2022). https://doi.org/10.1002/adma.202203104
R. Zhao, H. Wang, H. Du, Y. Yang, Z. Gao et al., Lanthanum nitrate as aqueous electrolyte additive for favourable zinc metal electrodeposition. Nat. Commun. 13(1), 3252 (2022). https://doi.org/10.1038/s41467-022-30939-8
Y. Chen, S. Zhou, J. Li, J. Kang, S. Lin et al., Non-expendable regulator enables durable and deep cycling aqueous zinc batteries. Adv. Energy Mater. 14(25), 2400398 (2024). https://doi.org/10.1002/aenm.202400398
M. Forsyth, B. Hinton, Rare Earth-based Corrosion Inhibitors (Woodhead Publishing, Cambridge, 2014)
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865
Y. Liu, S. Liu, X. Xie, A functionalized separator enables dendrite-free Zn anode via metal-polydopamine coordination chemistry. InfoMat 5(3), e12374 (2023). https://doi.org/10.1002/inf2.12374
W. Xin, Y. Cui, Y. Qian, T. Liu, X.-Y. Kong et al., High-efficiency dysprosium-ion extraction enabled by a biomimetic nanofluidic channel. Nat. Commun. 15(1), 5876 (2024). https://doi.org/10.1038/s41467-024-50237-9
W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics. J. Mol. Graph. 14(1), 33–38 (1996). https://doi.org/10.1016/0263-7855(96)00018-5
T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012). https://doi.org/10.1002/jcc.22885
F. Ming, Y. Zhu, G. Huang, A.-H. Emwas, H. Liang et al., Co-solvent electrolyte engineering for stable anode-free zinc metal batteries. J. Am. Chem. Soc. 144(16), 7160–7170 (2022). https://doi.org/10.1021/jacs.1c12764
Y. Wang, Z. Wang, W.K. Pang, W. Lie, J.A. Yuwono et al., Solvent control of water O-H bonds for highly reversible zinc ion batteries. Nat. Commun. 14(1), 2720 (2023). https://doi.org/10.1038/s41467-023-38384-x
S. Chen, P. Sun, J. Humphreys, P. Zou, M. Zhang et al., N, N-dimethylacetamide-diluted nitrate electrolyte for aqueous Zn//LiMn2O4 hybrid ion batteries. ACS Appl. Mater. Interfaces 13(39), 46634–46643 (2021). https://doi.org/10.1021/acsami.1c12911
W. Ma, S. Wang, X. Wu, W. Liu, F. Yang et al., Tailoring desolvation strategies for aqueous zinc-ion batteries. Energy Environ. Sci. 17(14), 4819–4846 (2024). https://doi.org/10.1039/d4ee00313f
C. Clavaguéra, F. Calvo, J.-P. Dognon, Theoretical study of the hydrated Gd3+ ion: structure, dynamics, and charge transfer. J. Chem. Phys. 124(7), 074505 (2006). https://doi.org/10.1063/1.2167647
T. Sun, Q. Nian, X. Ren, Z. Tao, Hydrogen-bond chemistry in rechargeable batteries. Joule 7(12), 2700–2731 (2023). https://doi.org/10.1016/j.joule.2023.10.010
M. Zhou, S. Guo, J. Li, X. Luo, Z. Liu et al., Surface-preferred crystal plane for a stable and reversible zinc anode. Adv. Mater. 33, e2100187 (2021). https://doi.org/10.1002/adma.202100187
Q. Nian, X. Luo, D. Ruan, Y. Li, B.-Q. Xiong et al., Highly reversible zinc metal anode enabled by strong Brønsted acid and hydrophobic interfacial chemistry. Nat. Commun. 15(1), 4303 (2024). https://doi.org/10.1038/s41467-024-48444-5
E.R. Nightingale Jr., Phenomenological theory of ion solvation: effective radii of hydrated ions. J. Phys. Chem. 63(9), 1381–1387 (1959). https://doi.org/10.1021/j150579a011
W. Zhang, Y. Dai, R. Chen, Z. Xu, J. Li et al., Highly reversible zinc metal anode in a dilute aqueous electrolyte enabled by a pH buffer additive. Angew. Chem. Int. Ed. 62(5), e202212695 (2023). https://doi.org/10.1002/anie.202212695
Q. Zou, Z. Liang, W. Wang, D. Dong, Y.-C. Lu, A nuclei-rich strategy for highly reversible dendrite-free zinc metal anodes. Energy Environ. Sci. 16(12), 6026–6034 (2023). https://doi.org/10.1039/d3ee03246a
Y. Zhu, J. Yin, X. Zheng, A.-H. Emwas, Y. Lei et al., Concentrated dual-cation electrolyte strategy for aqueous zinc-ion batteries. Energy Environ. Sci. 14(8), 4463–4473 (2021). https://doi.org/10.1039/d1ee01472b
K.-H. Lee, S.-H. Byeon, Extended members of the layered rare-earth hydroxide family, RE2(OH)5NO3·nH2O (RE = Sm, Eu, and Gd): synthesis and anion-exchange behavior. Eur. J. Inorg. Chem. 2009(7), 929–936 (2009). https://doi.org/10.1002/ejic.200801052
B. Wang, C. Gong, J. Wang, X. Wang, J.-G. Li, Oxysulfate, oxysulfide, and oxide red-phosphors from one single hydroxyl sulfate precursor (Gd,Eu)2(OH)4SO4⋅nH2O: phase evolution, and photoluminescence. Adv. Powder Technol. 34(12), 104271 (2023). https://doi.org/10.1016/j.apt.2023.104271
W. Lim, X. Li, D. Reed. Understanding the role of zinc hydroxide sulfate and its analogues in mildly acidic aqueous zinc batteries: A review. Small Methods. 8, 2300965 (2024). https://doi.org/10.1002/smtd.202300965
Y. Ding, X. Zhang, T. Wang, B. Lu, Z. Zeng et al., A dynamic electrostatic shielding layer toward highly reversible Zn metal anode. Energy Storage Mater. 62, 102949 (2023). https://doi.org/10.1016/j.ensm.2023.102949
S. Yao, Y. Sun, L. Pan, Pre-removing partial ammonium ion induces vanadium vacancy assist NH4V4O10 as a high-performance aqueous zinc ion battery cathode. Appl. Surf. Sci. 672, 160785 (2024). https://doi.org/10.1016/j.apsusc.2024.160785