All-Solid-State Thin-Film Lithium-Sulfur Batteries
Corresponding Author: Xinghui Wang
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 73
Abstract
Lithium-sulfur (Li–S) system coupled with thin-film solid electrolyte as a novel high-energy micro-battery has enormous potential for complementing embedded energy harvesters to enable the autonomy of the Internet of Things microdevice. However, the volatility in high vacuum and intrinsic sluggish kinetics of S hinder researchers from empirically integrating it into all-solid-state thin-film batteries, leading to inexperience in fabricating all-solid-state thin-film Li–S batteries (TFLSBs). Herein, for the first time, TFLSBs have been successfully constructed by stacking vertical graphene nanosheets-Li2S (VGs-Li2S) composite thin-film cathode, lithium-phosphorous-oxynitride (LiPON) thin-film solid electrolyte, and Li metal anode. Fundamentally eliminating Li-polysulfide shuttle effect and maintaining a stable VGs-Li2S/LiPON interface upon prolonged cycles have been well identified by employing the solid-state Li–S system with an “unlimited Li” reservoir, which exhibits excellent long-term cycling stability with a capacity retention of 81% for 3,000 cycles, and an exceptional high temperature tolerance up to 60 °C. More impressively, VGs-Li2S-based TFLSBs with evaporated-Li thin-film anode also demonstrate outstanding cycling performance over 500 cycles with a high Coulombic efficiency of 99.71%. Collectively, this study presents a new development strategy for secure and high-performance rechargeable all-solid-state thin-film batteries.
Highlights:
1 The all-solid-state thin-film Li-S battery has been successfully developed by stacking VGs-Li2S cathode, lithium-phosphorous-oxynitride (LiPON) solid electrolyte, and Li anode.
2 The obtained VGs-Li2S thin-film cathode exhibits excellent long-term cycling stability (more than 3,000 cycles), and an exceptional high temperature tolerance (up to 60 °C).
3 The superb electrochemical performance can be attributed to the favorable compatibility and outstanding interfacial stability between VGs-Li2S thin film and LiPON.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Portilla, G. Mujica, J.-S. Lee, T. Riesgo, The extreme edge at the bottom of the internet of things: a review. IEEE Sens J. 19(9), 3179–3190 (2019). https://doi.org/10.1109/JSEN.2019.2891911
- Z. Zhu, R. Kan, S. Hu, L. He, X. Hong et al., Recent advances in high-performance microbatteries: construction, application, and perspective. Small 16(39), 2003251 (2020). https://doi.org/10.1002/smll.202003251
- B. Dang, Q. Chen, L. Pancoast, Y. Luo, H. Zhang et al., Novel packaging structure and processes for micro-TFB (thin film battery) to enable miniaturized healthcare Internet-of-Things (IoT) devices. 2019 IEEE 69th Electronic Components and Technology Conference (ECTC). 1246–1251 (2019). https://doi.org/10.1109/ECTC.2019.00193
- Q. Liu, G. Zhang, N. Chen, X. Feng, C. Wang et al., The first flexible dual-ion microbattery demonstrates superior capacity and ultrahigh energy density: small and powerful. Adv. Funct. Mater. 30(38), 2002086 (2020). https://doi.org/10.1002/adfm.202002086
- S. Zheng, X. Shi, P. Das, Z.S. Wu, X. Bao, The road towards planar microbatteries and micro-supercapacitors: from 2D to 3D device geometries. Adv. Mater. 31(50), 1900583 (2019). https://doi.org/10.1002/adma.201900583
- Q. Xia, Q. Zhang, S. Sun, F. Hussain, C. Zhang et al., Tunnel intergrowth LixMnO2 nanosheet arrays as 3D cathode for high-performance all-solid-state thin film lithium microbatteries. Adv. Mater. 33(5), e2003524 (2021). https://doi.org/10.1002/adma.202003524
- A. Jetybayeva, B. Uzakbaiuly, A. Mukanova, S.-T. Myung, Z. Bakenov, Recent advancements in solid electrolytes integrated into all-solid-state 2D and 3D lithium-ion microbatteries. J. Mater. Chem. A 9(27), 15140–15178 (2021). https://doi.org/10.1039/D1TA02652F
- Y. Wang, Y. Yang, Z.L. Wang, Triboelectric nanogenerators as flexible power sources. npj Flex. Electron. 1(1), 10 (2017). https://doi.org/10.1038/s41528-017-007-8
- A. Aribia, J. Sastre, X. Chen, M.H. Futscher, M. Rumpel et al., Unlocking stable multi-electron cycling in NMC811 thin-films between 15-47 V. Adv. Energy Mater. (2022). https://doi.org/10.1002/aenm.202201750
- Q. Xia, F. Zan, J. Xu, W. Liu, Q. Li et al., All-solid-state thin film lithium/lithium-ion microbatteries for powering the internet of things. Adv. Mater. (2022). https://doi.org/10.1002/adma.202200538
- Y. Yang, J. Cao, W. Li, Q. Zhang, Y. Xie et al., Ultrahigh-capacity and dendrite-free lithium metal anodes enabled by lithiophilic bimetallic oxides. J. Mater. Chem. A 10, 23896–23904 (2022). https://doi.org/10.1039/D2TA06841A
- Y. Lin, S. Huang, L. Zhong, S. Wang, D. Han et al., Organic liquid electrolytes in Li-S batteries: actualities and perspectives. Energy Storage Mater. 34, 128–147 (2021). https://doi.org/10.1016/j.ensm.2020.09.009
- M. Zhang, W. Chen, L. Xue, Y. Jiao, T. Lei et al., Adsorption-catalysis design in the lithium-sulfur battery. Adv. Energy Mater. 10(2), 1903008 (2020). https://doi.org/10.1002/aenm.201903008
- Y. Hu, W. Chen, T. Lei, B. Zhou, Y. Jiao et al., Carbon quantum dots-modified interfacial interactions and ion conductivity for enhanced high current density performance in Lithium-Sulfur batteries. Adv. Energy Mater. 9(7), 1802955 (2019). https://doi.org/10.1002/aenm.201802955
- R. Wang, R. Wu, C. Ding, Z. Chen, H. Xu et al., Porous carbon architecture assembled by cross-linked carbon leaves with implanted atomic cobalt for high-performance Li–S batteries. Nano-Micro Lett. 13(1), 151 (2021). https://doi.org/10.1007/s40820-021-00676-6
- S. Tian, Q. Zeng, G. Liu, J. Huang, X. Sun et al., Multi-dimensional composite frame as bifunctional catalytic medium for ultra-fast charging lithium–sulfur battery. Nano-Micro Lett. 14, 196 (2022). https://doi.org/10.1007/s40820-022-00941-2
- H. Wang, Z. Cui, S. He, J. Zhu, W. Luo et al., Construction of ultrathin layered MXene-TiN heterostructure enabling favorable catalytic ability for high-areal-capacity lithium–sulfur batteries. Nano-Micro Lett. 14, 189 (2022). https://doi.org/10.1007/s40820-022-00935-0
- T. Li, C. He, W. Zhang, Two-dimensional porous transition metal organic framework materials with strongly anchoring ability as lithium-sulfur cathode. Energy Storage Mater. 25, 866–875 (2020). https://doi.org/10.1016/j.ensm.2019.09.003
- T. Li, C. He, W. Zhang, Rational design of porous carbon allotropes as anchoring materials for lithium sulfur batteries. J. Energy Chem. 52, 121–129 (2021). https://doi.org/10.1016/j.jechem.2020.04.042
- Y. Xie, J. Ao, L. Zhang, Y. Shao, H. Zhang et al., Multi-functional bilayer carbon structures with micrometer-level physical encapsulation as a flexible cathode host for high-performance lithium-sulfur batteries. Chem. Eng. J. 451, 139017 (2023). https://doi.org/10.1016/j.cej.2022.139017
- F. Wang, M. Jiang, T. Zhao, P. Meng, J. Ren et al., Atomically dispersed iron active sites promoting reversible redox kinetics and suppressing shuttle effect in aluminum–sulfur batteries. Nano-Micro Lett. 14(1), 169 (2022). https://doi.org/10.1007/s40820-022-00915-4
- C. Zhang, Y. Lin, Y. Zhu, Z. Zhang, J. Liu, Improved lithium-ion and electrically conductive sulfur cathode for all-solid-state lithium–sulfur batteries. RSC Adv. 7(31), 19231–19236 (2017). https://doi.org/10.1039/c7ra02174g
- B. Ding, J. Wang, Z. Fan, S. Chen, Q. Lin et al., Solid-state lithium–sulfur batteries: advances, challenges and perspectives. Mater. Today 40, 114–131 (2020). https://doi.org/10.1016/j.mattod.2020.05.020
- A. Banerjee, X. Wang, C. Fang, E.A. Wu, Y.S. Meng, Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem. Rev. 120(14), 6878–6933 (2020). https://doi.org/10.1021/acs.chemrev.0c00101
- L.E. Camacho-Forero, P.B. Balbuena, Elucidating interfacial phenomena between solid-state electrolytes and the sulfur-cathode of lithium–sulfur batteries. Chem. Mater. 32(1), 360–373 (2019). https://doi.org/10.1021/acs.chemmater.9b03880
- R. Xu, J. Yue, S. Liu, J. Tu, F. Han et al., Cathode-supported all-solid-state lithium–sulfur batteries with high cell-level energy density. ACS Energy Lett. 4(5), 1073–1079 (2019). https://doi.org/10.1021/acsenergylett.9b00430
- C. Wang, X. Wang, Y. Wang, J. Chen, H. Zhou et al., Macroporous free-standing nano-sulfur/reduced graphene oxide paper as stable cathode for lithium-sulfur battery. Nano Energy 11, 678–686 (2015). https://doi.org/10.1016/j.nanoen.2014.11.060
- J. Cao, Y. Xie, Y. Yang, X. Wang, W. Li et al., Achieving uniform Li plating/stripping at ultrahigh currents and capacities by optimizing 3D nucleation sites and Li2Se-enriched SEI. Adv. Sci. 9(9), 2104689 (2022). https://doi.org/10.1002/advs.202104689
- V.P. Phan, B. Pecquenard, F. Le Cras, High-performance all-solid-state cells fabricated with silicon electrodes. Adv. Funct. Mater. 22(12), 2580–2584 (2012). https://doi.org/10.1002/adfm.201200104
- W. Ji, X. Zhang, M. Liu, T. Ding, H. Qu et al., High-performance all-solid-state Li–S batteries enabled by an all-electrochem-active prelithiated Si anode. Energy Storage Mater. 53, 613–620 (2022). https://doi.org/10.1016/j.ensm.2022.10.003
- P. Zhu, C. Yan, J. Zhu, J. Zang, Y. Li et al., Flexible electrolyte-cathode bilayer framework with stabilized interface for room-temperature all-solid-state lithium-sulfur batteries. Energy Storage Mater. 17, 220–225 (2019). https://doi.org/10.1016/j.ensm.2018.11.009
- E. Umeshbabu, B. Zheng, Y. Yang, Recent progress in all-solid-state Lithium−Sulfur batteries using high Li-ion conductive solid electrolytes. Electrochem. Energy Rev. 2(2), 199–230 (2019). https://doi.org/10.1007/s41918-019-00029-3
- C. Wang, X. Wang, Y. Yang, A. Kushima, J. Chen et al., Slurryless Li2S/reduced graphene oxide cathode paper for high-performance lithium sulfur battery. Nano Lett. 15(3), 1796–1802 (2015). https://doi.org/10.1021/acs.nanolett.5b00112
- C. Yu, S. Ganapathy, N.J. De Klerk, I. Roslon, E.R. van Eck et al., Unravelling Li-ion transport from picoseconds to seconds: bulk versus interfaces in an argyrodite Li6PS5Cl–Li2S all-solid-state Li-ion battery. J. Am. Chem. Soc. 138(35), 11192–11201 (2016). https://doi.org/10.1021/jacs.6b05066
- X. Yao, D. Liu, C. Wang, P. Long, G. Peng et al., High-energy all-solid-state lithium batteries with ultralong cycle life. Nano Lett. 16(11), 7148–7154 (2016). https://doi.org/10.1021/acs.nanolett.6b03448
- A. Vlad, N. Singh, C. Galande, P.M. Ajayan, Design considerations for unconventional electrochemical energy storage architectures. Adv. Energy Mater. 5(19), 1402115 (2015). https://doi.org/10.1002/aenm.201402115
- Y.-N. Zhou, M.-Z. Xue, Z.-W. Fu, Nanostructured thin film electrodes for lithium storage and all-solid-state thin-film lithium batteries. J. Power Sour. 234, 310–332 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.183
- Y.-X. Song, Y. Shi, J. Wan, S.-Y. Lang, X.-C. Hu et al., Direct tracking of the polysulfide shuttling and interfacial evolution in all-solid-state lithium–sulfur batteries: a degradation mechanism study. Energy Environ. Sci. 12(8), 2496–2506 (2019). https://doi.org/10.1039/C9TA14003D
- M. Jiang, G. Liu, Q. Zhang, D. Zhou, X. Yao, Ultrasmall Li2S-carbon nanotube nanocomposites for high-rate all-solid-state lithium-sulfur batteries. ACS Appl. Mater. Interfaces 13(16), 18666–18672 (2021). https://doi.org/10.1021/acsami.1c00511
- M. Li, Z. Chen, T. Wu, J. Lu, Li2S-or S-based lithium-ion batteries. Adv. Mater. 30(48), 1801190 (2018). https://doi.org/10.1002/adma.201801190
- F. Han, J. Yue, X. Fan, T. Gao, C. Luo et al., High-performance all-solid-state lithium–sulfur battery enabled by a mixed-conductive Li2S nanocomposite. Nano Lett. 16(7), 4521–4527 (2016). https://doi.org/10.1021/acs.nanolett.6b01754
- P. Ji, J. Chen, T. Huang, C. Jin, L. Zhuge et al., Fast preparation of vertical graphene nanosheets by helicon wave plasma chemical vapor deposition and its electrochemical performance. Diam. Relat. Mater. 108, 107958 (2020). https://doi.org/10.1016/j.diamond.2020.107958
- Z. Hu, Z. Li, Z. Xia, T. Jiang, G. Wang et al., PECVD-derived graphene nanowall/lithium composite anodes towards highly stable lithium metal batteries. Energy Storage Mater. 22, 29–39 (2019). https://doi.org/10.1016/j.ensm.2018.12.020
- B. Wang, J. Bates, F. Hart, B. Sales, R. Zuhr et al., Characterization of thin-film rechargeable lithium batteries with lithium cobalt oxide cathodes. J. Electrochem. Soc. 143(10), 3203 (1996). https://doi.org/10.1149/1.1837188
- X. Yu, J. Bates, G. Jellison, F. Hart, A stable thin-film lithium electrolyte: lithium phosphorus oxynitride. J. Electrochem. Soc. 144(2), 524 (1997). https://doi.org/10.1149/1.1837443
- C. Choi, W. Cho, B. Cho, H. Kim, Y. Yoon et al., Radio-frequency magnetron sputtering power effect on the ionic conductivities of LiPON films. Electrochem. Solid-State Lett. 5(1), A14 (2001). https://doi.org/10.1149/1.1420926
- W. Dai, Y. Qiao, Z. Ma, T. Wang, Z. Fu, All-solid-state thin-film batteries based on lithium phosphorus oxynitrides. Mater. Futures 1, 032101 (2022). https://doi.org/10.1088/2752-5724/ac7db2
- J. Li, C. Ma, M. Chi, C. Liang, N.J. Dudney, Solid electrolyte: the key for high-voltage lithium batteries. Adv. Energy Mater. 5(4), 1401408 (2015). https://doi.org/10.1002/aenm.201401408
- D. Cheng, T.A. Wynn, X. Wang, S. Wang, M. Zhang et al., Unveiling the Stable nature of the solid electrolyte interphase between lithium metal and LiPON via cryogenic electron microscopy. Joule 4(11), 2484–2500 (2020). https://doi.org/10.1016/j.joule.2020.08.013
- V. Pelé, F. Flamary, L. Bourgeois, B. Pecquenard, F. Le Cras, Perfect reversibility of the lithium insertion in FeS2: The combined effects of all-solid-state and thin film cell configurations. Electrochem. Commun. 51, 81–84 (2015). https://doi.org/10.1016/j.elecom.2014.12.009
- F.L. Cras, B. Pecquenard, V. Dubois, V.P. Phan, D. Guy-Bouyssou, All-solid-state lithium-ion microbatteries using silicon nanofilm anodes: high performance and memory effect. Adv. Energy Mater. 5(19), 1501061 (2015). https://doi.org/10.1002/aenm.201501061
- B. Ke, X. Wang, S. Cheng, W. Li, R. Deng et al., Ultrahigh-power iron oxysulfide thin films for microbatteries. Sci. China Mater. (2022). https://doi.org/10.1007/s40843-022-2152-3
- J. Wu, S. Liu, F. Han, X. Yao, C. Wang, Lithium/sulfide all-solid-state batteries using sulfide electrolytes. Adv. Mater. 33(6), 2000751 (2021). https://doi.org/10.1002/adma.202000751
- Y. Zhu, X. He, Y. Mo, Origin of outstanding stability in the lithium solid electrolyte materials: Insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces 7(42), 23685–23693 (2015). https://doi.org/10.1021/acsami.5b07517
- A.S. Westover, N.J. Dudney, R.L. Sacci, S. Kalnaus, Deposition and confinement of Li metal along an artificial lipon–lipon interface. ACS Energy Lett. 4(3), 651–655 (2019). https://doi.org/10.1021/acsenergylett.8b02542
- G. Zhou, L.-C. Yin, D.-W. Wang, L. Li, S. Pei et al., Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium–sulfur batteries. ACS Nano 7(6), 5367–5375 (2013). https://doi.org/10.1021/nn401228t
- M.-Q. Zhao, Q. Zhang, J.-Q. Huang, G.-L. Tian, J.-Q. Nie et al., Unstacked double-layer templated graphene for high-rate lithium–sulfur batteries. Nat. Commun. 5(1), 1–8 (2014). https://doi.org/10.1038/ncom
- S. Liang, C. Liang, Y. Xia, H. Xu, H. Huang et al., Facile synthesis of porous Li2S@C composites as cathode materials for lithium–sulfur batteries. J. Power Sources 306, 200–207 (2016). https://doi.org/10.1016/j.jpowsour.2015.12.030
- H. Yan, H. Wang, D. Wang, X. Li, Z. Gong et al., In situ generated Li2S–C nanocomposite for high-capacity and long-life all-solid-state lithium sulfur batteries with ultrahigh areal mass loading. Nano Lett. 19(5), 3280–3287 (2019). https://doi.org/10.1021/acs.nanolett.9b00882
- Y. Yang, G. Zheng, S. Misra, J. Nelson, M.F. Toney et al., High-capacity micrometer-sized Li2S ps as cathode materials for advanced rechargeable lithium-ion batteries. J. Am. Chem. Soc. 134(37), 15387–15394 (2012). https://doi.org/10.1021/ja3052206
- Y. An, C. Luo, D. Yao, S. Wen, P. Zheng, S. Chi et al., Natural cocoons enabling flexible and stable fabric lithium–sulfur full batteries. Nano-Micro Lett. 13, 84 (2021). https://doi.org/10.1007/s40820-021-00609-3
- Y. Xie, J. Cao, X. Wang, W. Li, L. Deng et al., MOF-derived bifunctional Co0.85Se nanops embedded in N-doped carbon nanosheet arrays as efficient sulfur hosts for lithium–sulfur batteries. Nano Lett. 21(20), 8579–8586 (2021). https://doi.org/10.1021/acs.nanolett.1c02037
- M. Eom, S. Son, C. Park, S. Noh, W.T. Nichols et al., High performance all-solid-state lithium-sulfur battery using a Li2S-VGCF nanocomposite. Electrochim. Acta 230, 279–284 (2017). https://doi.org/10.1016/j.electacta.2017.01.155
- S. Larfaillou, D. Guy-Bouyssou, F. Le Cras, S. Franger, Comprehensive characterization of all-solid-state thin films commercial microbatteries by electrochemical impedance spectroscopy. J. Power Sour. 319, 139–146 (2016). https://doi.org/10.1016/j.jpowsour.2016.04.0570378-7753
- Z. Wang, J.Z. Lee, H.L. Xin, L. Han, N. Grillon et al., Effects of cathode electrolyte interfacial (CEI) layer on long term cycling of all-solid-state thin-film batteries. J. Power Sour. 324, 342–348 (2016). https://doi.org/10.1016/j.jpowsour.2016.05.098
- J. Huang, Diffusion impedance of electroactive materials, electrolytic solutions and porous electrodes: warburg impedance and beyond. Electrochim. Acta 281, 170–188 (2018). https://doi.org/10.1016/j.electacta.2018.05.136
- A. Schwöbel, R. Hausbrand, W. Jaegermann, Interface reactions between LiPON and lithium studied by in-situ X-ray photoemission. Solid State Ionics 273, 51–54 (2015). https://doi.org/10.1016/j.ssi.2014.10.017
- S. Sicolo, M. Fingerle, R. Hausbrand, K. Albe, Interfacial instability of amorphous LiPON against lithium: a combined density functional theory and spectroscopic study. J. Power Sources 354, 124–133 (2017). https://doi.org/10.1016/j.jpowsour.2017.04.005
- L. Wu, H. Fu, S. Li, J. Zhu, J. Zhou et al., Phase-engineered cathode for super-stable potassium storage. Nat. Commun. 14(1), 644 (2023). https://doi.org/10.1038/s41467-023-36385-4
- D. Adekoya, S. Qian, X. Gu, W. Wen, D. Li et al., DFT-guided design and fabrication of carbon-nitride-based materials for energy storage devices: a review. Nano-Micro Lett. 13, 13 (2021). https://doi.org/10.1007/s40820-020-00522-1
References
J. Portilla, G. Mujica, J.-S. Lee, T. Riesgo, The extreme edge at the bottom of the internet of things: a review. IEEE Sens J. 19(9), 3179–3190 (2019). https://doi.org/10.1109/JSEN.2019.2891911
Z. Zhu, R. Kan, S. Hu, L. He, X. Hong et al., Recent advances in high-performance microbatteries: construction, application, and perspective. Small 16(39), 2003251 (2020). https://doi.org/10.1002/smll.202003251
B. Dang, Q. Chen, L. Pancoast, Y. Luo, H. Zhang et al., Novel packaging structure and processes for micro-TFB (thin film battery) to enable miniaturized healthcare Internet-of-Things (IoT) devices. 2019 IEEE 69th Electronic Components and Technology Conference (ECTC). 1246–1251 (2019). https://doi.org/10.1109/ECTC.2019.00193
Q. Liu, G. Zhang, N. Chen, X. Feng, C. Wang et al., The first flexible dual-ion microbattery demonstrates superior capacity and ultrahigh energy density: small and powerful. Adv. Funct. Mater. 30(38), 2002086 (2020). https://doi.org/10.1002/adfm.202002086
S. Zheng, X. Shi, P. Das, Z.S. Wu, X. Bao, The road towards planar microbatteries and micro-supercapacitors: from 2D to 3D device geometries. Adv. Mater. 31(50), 1900583 (2019). https://doi.org/10.1002/adma.201900583
Q. Xia, Q. Zhang, S. Sun, F. Hussain, C. Zhang et al., Tunnel intergrowth LixMnO2 nanosheet arrays as 3D cathode for high-performance all-solid-state thin film lithium microbatteries. Adv. Mater. 33(5), e2003524 (2021). https://doi.org/10.1002/adma.202003524
A. Jetybayeva, B. Uzakbaiuly, A. Mukanova, S.-T. Myung, Z. Bakenov, Recent advancements in solid electrolytes integrated into all-solid-state 2D and 3D lithium-ion microbatteries. J. Mater. Chem. A 9(27), 15140–15178 (2021). https://doi.org/10.1039/D1TA02652F
Y. Wang, Y. Yang, Z.L. Wang, Triboelectric nanogenerators as flexible power sources. npj Flex. Electron. 1(1), 10 (2017). https://doi.org/10.1038/s41528-017-007-8
A. Aribia, J. Sastre, X. Chen, M.H. Futscher, M. Rumpel et al., Unlocking stable multi-electron cycling in NMC811 thin-films between 15-47 V. Adv. Energy Mater. (2022). https://doi.org/10.1002/aenm.202201750
Q. Xia, F. Zan, J. Xu, W. Liu, Q. Li et al., All-solid-state thin film lithium/lithium-ion microbatteries for powering the internet of things. Adv. Mater. (2022). https://doi.org/10.1002/adma.202200538
Y. Yang, J. Cao, W. Li, Q. Zhang, Y. Xie et al., Ultrahigh-capacity and dendrite-free lithium metal anodes enabled by lithiophilic bimetallic oxides. J. Mater. Chem. A 10, 23896–23904 (2022). https://doi.org/10.1039/D2TA06841A
Y. Lin, S. Huang, L. Zhong, S. Wang, D. Han et al., Organic liquid electrolytes in Li-S batteries: actualities and perspectives. Energy Storage Mater. 34, 128–147 (2021). https://doi.org/10.1016/j.ensm.2020.09.009
M. Zhang, W. Chen, L. Xue, Y. Jiao, T. Lei et al., Adsorption-catalysis design in the lithium-sulfur battery. Adv. Energy Mater. 10(2), 1903008 (2020). https://doi.org/10.1002/aenm.201903008
Y. Hu, W. Chen, T. Lei, B. Zhou, Y. Jiao et al., Carbon quantum dots-modified interfacial interactions and ion conductivity for enhanced high current density performance in Lithium-Sulfur batteries. Adv. Energy Mater. 9(7), 1802955 (2019). https://doi.org/10.1002/aenm.201802955
R. Wang, R. Wu, C. Ding, Z. Chen, H. Xu et al., Porous carbon architecture assembled by cross-linked carbon leaves with implanted atomic cobalt for high-performance Li–S batteries. Nano-Micro Lett. 13(1), 151 (2021). https://doi.org/10.1007/s40820-021-00676-6
S. Tian, Q. Zeng, G. Liu, J. Huang, X. Sun et al., Multi-dimensional composite frame as bifunctional catalytic medium for ultra-fast charging lithium–sulfur battery. Nano-Micro Lett. 14, 196 (2022). https://doi.org/10.1007/s40820-022-00941-2
H. Wang, Z. Cui, S. He, J. Zhu, W. Luo et al., Construction of ultrathin layered MXene-TiN heterostructure enabling favorable catalytic ability for high-areal-capacity lithium–sulfur batteries. Nano-Micro Lett. 14, 189 (2022). https://doi.org/10.1007/s40820-022-00935-0
T. Li, C. He, W. Zhang, Two-dimensional porous transition metal organic framework materials with strongly anchoring ability as lithium-sulfur cathode. Energy Storage Mater. 25, 866–875 (2020). https://doi.org/10.1016/j.ensm.2019.09.003
T. Li, C. He, W. Zhang, Rational design of porous carbon allotropes as anchoring materials for lithium sulfur batteries. J. Energy Chem. 52, 121–129 (2021). https://doi.org/10.1016/j.jechem.2020.04.042
Y. Xie, J. Ao, L. Zhang, Y. Shao, H. Zhang et al., Multi-functional bilayer carbon structures with micrometer-level physical encapsulation as a flexible cathode host for high-performance lithium-sulfur batteries. Chem. Eng. J. 451, 139017 (2023). https://doi.org/10.1016/j.cej.2022.139017
F. Wang, M. Jiang, T. Zhao, P. Meng, J. Ren et al., Atomically dispersed iron active sites promoting reversible redox kinetics and suppressing shuttle effect in aluminum–sulfur batteries. Nano-Micro Lett. 14(1), 169 (2022). https://doi.org/10.1007/s40820-022-00915-4
C. Zhang, Y. Lin, Y. Zhu, Z. Zhang, J. Liu, Improved lithium-ion and electrically conductive sulfur cathode for all-solid-state lithium–sulfur batteries. RSC Adv. 7(31), 19231–19236 (2017). https://doi.org/10.1039/c7ra02174g
B. Ding, J. Wang, Z. Fan, S. Chen, Q. Lin et al., Solid-state lithium–sulfur batteries: advances, challenges and perspectives. Mater. Today 40, 114–131 (2020). https://doi.org/10.1016/j.mattod.2020.05.020
A. Banerjee, X. Wang, C. Fang, E.A. Wu, Y.S. Meng, Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem. Rev. 120(14), 6878–6933 (2020). https://doi.org/10.1021/acs.chemrev.0c00101
L.E. Camacho-Forero, P.B. Balbuena, Elucidating interfacial phenomena between solid-state electrolytes and the sulfur-cathode of lithium–sulfur batteries. Chem. Mater. 32(1), 360–373 (2019). https://doi.org/10.1021/acs.chemmater.9b03880
R. Xu, J. Yue, S. Liu, J. Tu, F. Han et al., Cathode-supported all-solid-state lithium–sulfur batteries with high cell-level energy density. ACS Energy Lett. 4(5), 1073–1079 (2019). https://doi.org/10.1021/acsenergylett.9b00430
C. Wang, X. Wang, Y. Wang, J. Chen, H. Zhou et al., Macroporous free-standing nano-sulfur/reduced graphene oxide paper as stable cathode for lithium-sulfur battery. Nano Energy 11, 678–686 (2015). https://doi.org/10.1016/j.nanoen.2014.11.060
J. Cao, Y. Xie, Y. Yang, X. Wang, W. Li et al., Achieving uniform Li plating/stripping at ultrahigh currents and capacities by optimizing 3D nucleation sites and Li2Se-enriched SEI. Adv. Sci. 9(9), 2104689 (2022). https://doi.org/10.1002/advs.202104689
V.P. Phan, B. Pecquenard, F. Le Cras, High-performance all-solid-state cells fabricated with silicon electrodes. Adv. Funct. Mater. 22(12), 2580–2584 (2012). https://doi.org/10.1002/adfm.201200104
W. Ji, X. Zhang, M. Liu, T. Ding, H. Qu et al., High-performance all-solid-state Li–S batteries enabled by an all-electrochem-active prelithiated Si anode. Energy Storage Mater. 53, 613–620 (2022). https://doi.org/10.1016/j.ensm.2022.10.003
P. Zhu, C. Yan, J. Zhu, J. Zang, Y. Li et al., Flexible electrolyte-cathode bilayer framework with stabilized interface for room-temperature all-solid-state lithium-sulfur batteries. Energy Storage Mater. 17, 220–225 (2019). https://doi.org/10.1016/j.ensm.2018.11.009
E. Umeshbabu, B. Zheng, Y. Yang, Recent progress in all-solid-state Lithium−Sulfur batteries using high Li-ion conductive solid electrolytes. Electrochem. Energy Rev. 2(2), 199–230 (2019). https://doi.org/10.1007/s41918-019-00029-3
C. Wang, X. Wang, Y. Yang, A. Kushima, J. Chen et al., Slurryless Li2S/reduced graphene oxide cathode paper for high-performance lithium sulfur battery. Nano Lett. 15(3), 1796–1802 (2015). https://doi.org/10.1021/acs.nanolett.5b00112
C. Yu, S. Ganapathy, N.J. De Klerk, I. Roslon, E.R. van Eck et al., Unravelling Li-ion transport from picoseconds to seconds: bulk versus interfaces in an argyrodite Li6PS5Cl–Li2S all-solid-state Li-ion battery. J. Am. Chem. Soc. 138(35), 11192–11201 (2016). https://doi.org/10.1021/jacs.6b05066
X. Yao, D. Liu, C. Wang, P. Long, G. Peng et al., High-energy all-solid-state lithium batteries with ultralong cycle life. Nano Lett. 16(11), 7148–7154 (2016). https://doi.org/10.1021/acs.nanolett.6b03448
A. Vlad, N. Singh, C. Galande, P.M. Ajayan, Design considerations for unconventional electrochemical energy storage architectures. Adv. Energy Mater. 5(19), 1402115 (2015). https://doi.org/10.1002/aenm.201402115
Y.-N. Zhou, M.-Z. Xue, Z.-W. Fu, Nanostructured thin film electrodes for lithium storage and all-solid-state thin-film lithium batteries. J. Power Sour. 234, 310–332 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.183
Y.-X. Song, Y. Shi, J. Wan, S.-Y. Lang, X.-C. Hu et al., Direct tracking of the polysulfide shuttling and interfacial evolution in all-solid-state lithium–sulfur batteries: a degradation mechanism study. Energy Environ. Sci. 12(8), 2496–2506 (2019). https://doi.org/10.1039/C9TA14003D
M. Jiang, G. Liu, Q. Zhang, D. Zhou, X. Yao, Ultrasmall Li2S-carbon nanotube nanocomposites for high-rate all-solid-state lithium-sulfur batteries. ACS Appl. Mater. Interfaces 13(16), 18666–18672 (2021). https://doi.org/10.1021/acsami.1c00511
M. Li, Z. Chen, T. Wu, J. Lu, Li2S-or S-based lithium-ion batteries. Adv. Mater. 30(48), 1801190 (2018). https://doi.org/10.1002/adma.201801190
F. Han, J. Yue, X. Fan, T. Gao, C. Luo et al., High-performance all-solid-state lithium–sulfur battery enabled by a mixed-conductive Li2S nanocomposite. Nano Lett. 16(7), 4521–4527 (2016). https://doi.org/10.1021/acs.nanolett.6b01754
P. Ji, J. Chen, T. Huang, C. Jin, L. Zhuge et al., Fast preparation of vertical graphene nanosheets by helicon wave plasma chemical vapor deposition and its electrochemical performance. Diam. Relat. Mater. 108, 107958 (2020). https://doi.org/10.1016/j.diamond.2020.107958
Z. Hu, Z. Li, Z. Xia, T. Jiang, G. Wang et al., PECVD-derived graphene nanowall/lithium composite anodes towards highly stable lithium metal batteries. Energy Storage Mater. 22, 29–39 (2019). https://doi.org/10.1016/j.ensm.2018.12.020
B. Wang, J. Bates, F. Hart, B. Sales, R. Zuhr et al., Characterization of thin-film rechargeable lithium batteries with lithium cobalt oxide cathodes. J. Electrochem. Soc. 143(10), 3203 (1996). https://doi.org/10.1149/1.1837188
X. Yu, J. Bates, G. Jellison, F. Hart, A stable thin-film lithium electrolyte: lithium phosphorus oxynitride. J. Electrochem. Soc. 144(2), 524 (1997). https://doi.org/10.1149/1.1837443
C. Choi, W. Cho, B. Cho, H. Kim, Y. Yoon et al., Radio-frequency magnetron sputtering power effect on the ionic conductivities of LiPON films. Electrochem. Solid-State Lett. 5(1), A14 (2001). https://doi.org/10.1149/1.1420926
W. Dai, Y. Qiao, Z. Ma, T. Wang, Z. Fu, All-solid-state thin-film batteries based on lithium phosphorus oxynitrides. Mater. Futures 1, 032101 (2022). https://doi.org/10.1088/2752-5724/ac7db2
J. Li, C. Ma, M. Chi, C. Liang, N.J. Dudney, Solid electrolyte: the key for high-voltage lithium batteries. Adv. Energy Mater. 5(4), 1401408 (2015). https://doi.org/10.1002/aenm.201401408
D. Cheng, T.A. Wynn, X. Wang, S. Wang, M. Zhang et al., Unveiling the Stable nature of the solid electrolyte interphase between lithium metal and LiPON via cryogenic electron microscopy. Joule 4(11), 2484–2500 (2020). https://doi.org/10.1016/j.joule.2020.08.013
V. Pelé, F. Flamary, L. Bourgeois, B. Pecquenard, F. Le Cras, Perfect reversibility of the lithium insertion in FeS2: The combined effects of all-solid-state and thin film cell configurations. Electrochem. Commun. 51, 81–84 (2015). https://doi.org/10.1016/j.elecom.2014.12.009
F.L. Cras, B. Pecquenard, V. Dubois, V.P. Phan, D. Guy-Bouyssou, All-solid-state lithium-ion microbatteries using silicon nanofilm anodes: high performance and memory effect. Adv. Energy Mater. 5(19), 1501061 (2015). https://doi.org/10.1002/aenm.201501061
B. Ke, X. Wang, S. Cheng, W. Li, R. Deng et al., Ultrahigh-power iron oxysulfide thin films for microbatteries. Sci. China Mater. (2022). https://doi.org/10.1007/s40843-022-2152-3
J. Wu, S. Liu, F. Han, X. Yao, C. Wang, Lithium/sulfide all-solid-state batteries using sulfide electrolytes. Adv. Mater. 33(6), 2000751 (2021). https://doi.org/10.1002/adma.202000751
Y. Zhu, X. He, Y. Mo, Origin of outstanding stability in the lithium solid electrolyte materials: Insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces 7(42), 23685–23693 (2015). https://doi.org/10.1021/acsami.5b07517
A.S. Westover, N.J. Dudney, R.L. Sacci, S. Kalnaus, Deposition and confinement of Li metal along an artificial lipon–lipon interface. ACS Energy Lett. 4(3), 651–655 (2019). https://doi.org/10.1021/acsenergylett.8b02542
G. Zhou, L.-C. Yin, D.-W. Wang, L. Li, S. Pei et al., Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium–sulfur batteries. ACS Nano 7(6), 5367–5375 (2013). https://doi.org/10.1021/nn401228t
M.-Q. Zhao, Q. Zhang, J.-Q. Huang, G.-L. Tian, J.-Q. Nie et al., Unstacked double-layer templated graphene for high-rate lithium–sulfur batteries. Nat. Commun. 5(1), 1–8 (2014). https://doi.org/10.1038/ncom
S. Liang, C. Liang, Y. Xia, H. Xu, H. Huang et al., Facile synthesis of porous Li2S@C composites as cathode materials for lithium–sulfur batteries. J. Power Sources 306, 200–207 (2016). https://doi.org/10.1016/j.jpowsour.2015.12.030
H. Yan, H. Wang, D. Wang, X. Li, Z. Gong et al., In situ generated Li2S–C nanocomposite for high-capacity and long-life all-solid-state lithium sulfur batteries with ultrahigh areal mass loading. Nano Lett. 19(5), 3280–3287 (2019). https://doi.org/10.1021/acs.nanolett.9b00882
Y. Yang, G. Zheng, S. Misra, J. Nelson, M.F. Toney et al., High-capacity micrometer-sized Li2S ps as cathode materials for advanced rechargeable lithium-ion batteries. J. Am. Chem. Soc. 134(37), 15387–15394 (2012). https://doi.org/10.1021/ja3052206
Y. An, C. Luo, D. Yao, S. Wen, P. Zheng, S. Chi et al., Natural cocoons enabling flexible and stable fabric lithium–sulfur full batteries. Nano-Micro Lett. 13, 84 (2021). https://doi.org/10.1007/s40820-021-00609-3
Y. Xie, J. Cao, X. Wang, W. Li, L. Deng et al., MOF-derived bifunctional Co0.85Se nanops embedded in N-doped carbon nanosheet arrays as efficient sulfur hosts for lithium–sulfur batteries. Nano Lett. 21(20), 8579–8586 (2021). https://doi.org/10.1021/acs.nanolett.1c02037
M. Eom, S. Son, C. Park, S. Noh, W.T. Nichols et al., High performance all-solid-state lithium-sulfur battery using a Li2S-VGCF nanocomposite. Electrochim. Acta 230, 279–284 (2017). https://doi.org/10.1016/j.electacta.2017.01.155
S. Larfaillou, D. Guy-Bouyssou, F. Le Cras, S. Franger, Comprehensive characterization of all-solid-state thin films commercial microbatteries by electrochemical impedance spectroscopy. J. Power Sour. 319, 139–146 (2016). https://doi.org/10.1016/j.jpowsour.2016.04.0570378-7753
Z. Wang, J.Z. Lee, H.L. Xin, L. Han, N. Grillon et al., Effects of cathode electrolyte interfacial (CEI) layer on long term cycling of all-solid-state thin-film batteries. J. Power Sour. 324, 342–348 (2016). https://doi.org/10.1016/j.jpowsour.2016.05.098
J. Huang, Diffusion impedance of electroactive materials, electrolytic solutions and porous electrodes: warburg impedance and beyond. Electrochim. Acta 281, 170–188 (2018). https://doi.org/10.1016/j.electacta.2018.05.136
A. Schwöbel, R. Hausbrand, W. Jaegermann, Interface reactions between LiPON and lithium studied by in-situ X-ray photoemission. Solid State Ionics 273, 51–54 (2015). https://doi.org/10.1016/j.ssi.2014.10.017
S. Sicolo, M. Fingerle, R. Hausbrand, K. Albe, Interfacial instability of amorphous LiPON against lithium: a combined density functional theory and spectroscopic study. J. Power Sources 354, 124–133 (2017). https://doi.org/10.1016/j.jpowsour.2017.04.005
L. Wu, H. Fu, S. Li, J. Zhu, J. Zhou et al., Phase-engineered cathode for super-stable potassium storage. Nat. Commun. 14(1), 644 (2023). https://doi.org/10.1038/s41467-023-36385-4
D. Adekoya, S. Qian, X. Gu, W. Wen, D. Li et al., DFT-guided design and fabrication of carbon-nitride-based materials for energy storage devices: a review. Nano-Micro Lett. 13, 13 (2021). https://doi.org/10.1007/s40820-020-00522-1