Multicomponent Nanoparticles Synergistic One-Dimensional Nanofibers as Heterostructure Absorbers for Tunable and Efficient Microwave Absorption
Corresponding Author: Guanglei Wu
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 13
Abstract
Application of novel radio technologies and equipment inevitably leads to electromagnetic pollution. One-dimensional polymer-based composite membrane structures have been shown to be an effective strategy to obtain high-performance microwave absorbers. Herein, we reported a one-dimensional N-doped carbon nanofibers material which encapsulated the hollow Co3SnC0.7 nanocubes in the fiber lumen by electrospinning. Space charge stacking formed between nanoparticles can be channeled by longitudinal fibrous structures. The dielectric constant of the fibers is highly related to the carbonization temperature, and the great impedance matching can be achieved by synergetic effect between Co3SnC0.7 and carbon network. At 800 °C, the necklace-like Co3SnC0.7/CNF with 5% low load achieves an excellent RL value of − 51.2 dB at 2.3 mm and the effective absorption bandwidth of 7.44 GHz with matching thickness of 2.5 mm. The multiple electromagnetic wave (EMW) reflections and interfacial polarization between the fibers and the fibers internal contribute a major effect to attenuating the EMW. These strategies for regulating electromagnetic performance can be expanded to other electromagnetic functional materials which facilitate the development of emerging absorbers.
Highlights:
1 Heterogeneous interface engineering is designed by electrospinning.
2 The introduction of Co3SnC0.7 nanoparticles increased the loss mechanism.
3 Enhanced electromagnetic loss and improved impedance matching are achieved.
4 The absorbers exhibit high-efficient electromagnetic wave absorption performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Mu, G. Wei, H. Zhang, L. Gao, Y. Zhao et al., The dielectric behavior and efficient microwave absorption of doped nanoscale LaMnO3 at elevated temperature. Nano Res. 15, 7731–7741 (2022). https://doi.org/10.1007/s12274-022-4500-6
- Y. Liu, Z. Jia, J. Zhou, G. Wu, Multi-hierarchy heterostructure assembling on MnO2 nanowires for optimized electromagnetic response. Mater. Today Phys. 28, 100845 (2022). https://doi.org/10.1016/j.mtphys.2022.100845
- L. Wang, Z. Ma, Y. Zhang, H. Qiu, K. Ruan et al., Mechanically strong and folding-endurance Ti3C2Tx MXene/PBO nanofiber films for efficient electromagnetic interference shielding and thermal management. Carbon Energy 4, 200–210 (2022). https://doi.org/10.1002/cey2.174
- Y. Liu, X. Zhou, Z. Jia, H. Wu, G. Wu, Oxygen vacancy induced dielectric polarization prevails in electromagnetic wave absorbing mechanism for Mn-based MOFs-derived composites. Adv. Funct. Mater. 32(34), 2204499 (2012). https://doi.org/10.1002/adfm.202204499
- Y. Wu, Y. Zhao, M. Zhou, S. Tan, R. Peymanfar et al., Ultrabroad microwave absorption ability and infrared stealth property of nano-micro CuS@rGO lightweight aerogels. Nano-Micro Lett. 14, 172 (2022). https://doi.org/10.1007/s40820-022-00906-5
- J. Yan, Y. Huang, X. Zhang, X. Gong, C. Chen et al., MoS2-decorated/integrated carbon fiber: phase engineering well-regulated microwave absorber. Nano-Micro Lett. 13, 114 (2021). https://doi.org/10.1007/s40820-021-00646-y
- X. Chen, M. Zhou, Y. Zhao, W. Gu, Y. Wu et al., Morphology control of eco-friendly chitosan-derived carbon aerogels for efficient microwave absorption at thin thickness and thermal stealth. Green Chem. 24, 5280–5290 (2022). https://doi.org/10.1039/d2gc01604d
- Z. Jia, X. Liu, X. Zhou, Z. Zhou, G. Wu, A seed germination-inspired interface polarization augmentation strategy toward superior electromagnetic absorption performance. Compos. Commun. 34, 101269 (2022). https://doi.org/10.1016/j.coco.2022.101269
- B. Wen, H. Yang, Y. Lin, L. Ma, Y. Qiu et al., Synthesis of core–shell Co@S-doped carbon@mesoporous N-doped carbon nanosheets with a hierarchically porous structure for strong electromagnetic wave absorption. J. Mater. Chem. A 9(6), 3567–3575 (2021). https://doi.org/10.1039/D0TA09393A
- H. Lv, Z. Yang, S. Ong, C. Wei, H. Liao et al., A flexible microwave shield with tunable frequency-transmission and electromagnetic compatibility. Adv. Funct. Mater. 29(14), 1900163 (2019). https://doi.org/10.1002/adfm.201900163
- Y. Wang, B. Suo, Y. Shi, H. Yuan, C. Zhu et al., General fabrication of 3D hierarchically structured bamboo-like nitrogen-doped carbon nanotube arrays on 1D nitrogen-doped carbon skeletons for highly efficient electromagnetic wave energy attenuation. ACS Appl. Mater. Interfaces 12(36), 40692–40701 (2020). https://doi.org/10.1021/acsami.0c12413
- P. Liu, S. Gao, Y. Wang, Y. Huang, W. He et al., Carbon nanocages with N-doped carbon inner shell and Co/N-doped carbon outer shell as electromagnetic wave absorption materials. Chem. Eng. J. 381, 122653 (2020). https://doi.org/10.1016/j.cej.2019.122653
- Y. Liu, Y. Fu, L. Liu, W. Li, J. Guan et al., Low-cost carbothermal reduction preparation of monodisperse Fe3O4/C core-shell nanosheets for improved microwave absorption. ACS Appl. Mater. Interfaces 10(19), 16511–16520 (2018). https://doi.org/10.1021/acsami.8b02770
- X. Liang, Z. Man, B. Quan, J. Zheng, W. Gu et al., Environment-stable CoxNiy encapsulation in stacked porous carbon nanosheets for enhanced microwave. Nano-Micro Lett. 12, 102 (2020). https://doi.org/10.1007/s40820-020-00432-2
- N. He, Z. He, L. Liu, Y. Lu, F.Q. Wang et al., Ni2+ guided phase/structure evolution and ultra-wide bandwidth micro-wave absorption of CoxNi1-x alloy hollow microspheres. Chem. Eng. J. 381, 122743 (2020). https://doi.org/10.1016/j.cej.2019.122743
- J. Wang, L. Liu, S. Jiao, K. Ma, J. Lv et al., Hierarchical carbon fiber@MXene@MoS2 core-sheath synergistic microstructure for tunable and efficient microwave absorption. Adv. Funct. Mater. 30(45), 2002595 (2020). https://doi.org/10.1002/adfm.202002595
- F. Wu, Z. Liu, J. Wang, P. Liu, Q. Zhang et al., Template-free self-assembly of MXene and CoNi-bimetal MOF into intertwined one-dimensional heterostructure and its microwave absorbing properties. Chem. Eng. J. 422, 1305 (2021). https://doi.org/10.1016/j.cej.2021.130591
- H. Wang, F. Meng, F. Huang, C. Jing, Y. Li et al., Interface modulating CNTs@PANi hybrids by controlled unzipping of the walls of CNTs to achieve tunable high-performance microwave absorption. ACS Appl. Mater. Interfaces 11(12), 12142–12153 (2019). https://doi.org/10.1021/acsami.9b01122
- J. Xu, X. Zhang, H. Yuan, S. Zhang, C.L. Zhu et al., N-doped reduced graphene oxide aerogels containing pod-like N-doped carbon nanotubes and FeNi nanops for electromagnetic wave absorption. Carbon 159, 357–365 (2020). https://doi.org/10.1016/j.carbon.2019.12.020
- H. Wu, Y.M. Zhong, Y. Tang, Y. Tang, G. Liu et al., Precise regulation of weakly negative permittivity in CaCu3Ti4O12 meta composites by synergistic effects of carbon nanotubes and grapheme. Adv. Compos. Hybrid Mater. 5, 419–430 (2022). https://doi.org/10.1007/s42114-021-00378-y
- Y. Zhang, K. Ruan, J. Gu, Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 17(42), 2101951 (2021). https://doi.org/10.1002/smll.202101951
- H. Zhao, Y. Cheng, H. Lv, G. Ji, Y. Du, A novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorption. Carbon 142, 245–253 (2019). https://doi.org/10.1016/j.carbon.2018.10.027
- J. Xu, L. Xia, J. Luo, S. Lu, X. Huang et al., High-performance electromagnetic wave absorbing CNT/SiCf composites: synthesis, tuning, and mechanism. ACS Appl. Mater. Interfaces 12(18), 10775–10784 (2020). https://doi.org/10.1021/acsami.9b19281
- J. Qiao, X. Zhang, D. Xu, L. Kong, L. Lv et al., Design and synthesis of TiO2/Co/carbon nanofibers with tunable and efficient electromagnetic absorption. Chem. Eng. J. 380, 122591 (2020). https://doi.org/10.1016/j.cej.2019.122591
- M. Zhang, C. Han, W. Cao, M. Cao, H.J. Yang et al., A nano-micro engineering nanofiber for electromagnetic absorber, green shielding and sensor. Nano-Micro Lett. 13, 27 (2021). https://doi.org/10.1007/s40820-020-00552-9
- M. Yang, Y. Yuan, Y. Li, X. Sun, S. Wang et al., Dramatically enhanced electromagnetic wave absorption of hierarchical CNT/Co/C fiber derived from cotton and metal-organic-framework. Carbon 161, 517–527 (2020). https://doi.org/10.1016/j.carbon.2020.01.073
- Z. Zhao, X. Zhou, K. Kou, H. Wu, PVP-assisted transformation of ZIF-67 into cobalt layered double hydroxide/carbon fiber as electromagnetic wave absorber. Carbon 173, 80–90 (2020). https://doi.org/10.1016/j.carbon.2020.11.009
- Z. Ma, X. Xiang, L. Shao, Y. Zhang, J. Gu, Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem. Int. Ed. 61(15), e202200705 (2022). https://doi.org/10.1002/anie.202200705
- X. Zhao, J. Yan, Y. Huang, X. Liu, L. Ding et al., Magnetic porous CoNi@C derived from bamboo fiber combined with metal-organic-framework for enhanced electromagnetic wave absorption. J. Colloid Interface Sci. 595, 78–87 (2021). https://doi.org/10.1016/j.jcis.2021.03.109
- X. Zhang, M. Liu, J. Xu, Q. Ouyang, C. Zhu et al., Flexible and waterproof nitrogen-doped carbon nanotube arrays on cotton-derived carbon fiber for electromagnetic wave absorption and electric-thermal conversion. Chem. Eng. J. 433, 133794 (2022). https://doi.org/10.1016/j.cej.2021.133794
- C. Wang, B. Wang, X. Cao, J. Zhao, L. Chen et al., 3D flower-like Co-based oxide composites with excellent wideband electromagnetic microwave absorption. Compos. Part B Eng. 205, 108529 (2021). https://doi.org/10.1016/j.compositesb.2020.108529
- M. Green, Z. Liu, P. Xiang, Y. Liu, M. Zhou, Doped, conductive SiO2 nanops for large microwave absorption. Light Sci. Appl. 7, 87 (2018). https://doi.org/10.1038/s41377-018-0088-8
- C. Chen, J. Xi, E. Zhou, L. Peng, C. Chen et al., Porous graphene microflowers for high-performance microwave absorption. Nano-Micro Lett. 10, 26 (2018). https://doi.org/10.1007/s40820-017-0179-8
- X. Li, M. Zhang, W. You, K. Pei, Q. Zeng et al., Magnetized MXene microspheres with multiscale magnetic coupling and enhanced polarized interfaces for distinct microwave absorption via a spray-drying method. ACS Appl. Mater. Interfaces 12(15), 18138–18147 (2020). https://doi.org/10.1021/acsami.0c00935
- P. Song, Z. Ma, H. Qiu, Y. Ru, J. Gu, High-efficiency electromagnetic interference shielding of rGO@FeNi/epoxy composites with regular honeycomb structures. Nano-Micro Lett. 14, 51 (2022). https://doi.org/10.1007/s40820-022-00798-5
- M. Cao, J. Yang, W. Song, D. Zhang, B. Wen et al., Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption. ACS Appl. Mater. Interfaces 4(12), 6949–6956 (2012). https://doi.org/10.1021/am3021069
- Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan et al., CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28(3), 486–490 (2016). https://doi.org/10.1002/adma.201503149
- X. Li, C. Wen, L. Yang, R. Zhang, X. Li et al., MXene/FeCo films with distinct and tunable electromagnetic wave absorption by morphology control and magnetic anisotropy. Carbon 175, 509–518 (2021). https://doi.org/10.1016/j.carbon.2020.11.089
- H. Li, S. Bao, Y. Li, Y. Huang, J. Chen et al., Optimizing the electromagnetic wave absorption performances of designed Co3Fe7@C yolk–shell structures. ACS Appl. Mater. Interfaces 10(340), 28839–28849 (2018). https://doi.org/10.1021/acsami.8b08040
- B. Zhang, Y. Wang, H. Shen, J. Song, H. Gao et al., Hollow porous CoSnOx nanocubes encapsulated in one-dimensional N-doped carbon nanofibers as anode material for high-performance lithium storage. ACS Appl. Mater. Interfaces 13(1), 660–670 (2021). https://doi.org/10.1021/acsami.0c17546
- F. Cao, F. Yan, J. Xu, C. Zhu, L. Qi et al., Tailing size and impedance matching characteristic of nitrogen-doped carbon nanotubes for electromagnetic wave absorption. Carbon 174, 79–89 (2021). https://doi.org/10.1016/j.carbon.2020.12.013
- H. Lv, Z. Yang, P. Wang, G. Ji, J. Song et al., A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 30(15), 170634 (2018). https://doi.org/10.1002/adma.201706343
- M. Zhang, X. Wang, W. Cao, J. Yuan, M. Cao, Electromagnetic functions of patterned 2D materials for micro-nano devices covering GHz, THz, and optical frequency. Adv. Opt. Mater. 7(19), 1900689 (2019). https://doi.org/10.1002/adom.201900689
- L. Liang, G. Han, Y. Li, B. Zhao, B. Zhou et al., Promising Ti3C2Tx MXene/Ni chain hybrid with excellent electromagnetic wave absorption and shielding capacity. ACS Appl. Mater. Interfaces 11(28), 25399–25409 (2019). https://doi.org/10.1021/acsami.9b07294
- C. Xu, F. Wu, L. Duan, Z. Xiong, Y. Xia et al., Dual-interfacial polarization enhancement to design tunable microwave absorption nanofibers of SiC@C@PPy. ACS Appl. Electron. Mater. 2(6), 1505–1513 (2020). https://doi.org/10.1021/acsaelm.0c00090
- X. Li, W.B. You, L. Wang, J.W. Liu, Z.C. Wu et al., Self-assembly-magnetized MXene avoid dual-agglomeration with enhanced interfaces for strong microwave absorption through a tunable electromagnetic property. ACS Appl. Mater. Interfaces 11(470), 4454–44536 (2019). https://doi.org/10.1021/acsami.9b11861
- J. Zhao, J. Zhang, L. Wang, J. Li, T. Feng et al., Superior wave-absorbing performances of silicone rubber composites via introducing covalently bonded SnO2@MWCNT absorbent with encapsulation structure. Compos. Commun. 24, 100653 (2021). https://doi.org/10.1016/j.coco.2020.100486
- X. Li, M. Li, X. Lu, W. Zhu, H. Xu et al., A sheath-core shaped ZrO2-SiC/SiO2 fiber felt with continuously distributed SiC for broad-band electromagnetic absorption. Chem. Eng. J. 419, 129414 (2021). https://doi.org/10.1016/j.cej.2021.129414
- J. Wang, Z. Jia, X. Liu, J. Dou, B. Xu et al., Construction of 1D heterostructure NiCo@C/ZnO nanorod with enhanced microwave absorption. Nano-Micro Lett. 13, 175 (2021). https://doi.org/10.1007/s40820-021-00704-5
- Z. Jia, M. Kong, B. Yu, Y. Ma, J. Pan et al., Tunable Co/ZnO/C@MWCNTs based on carbon nanotube-coated MOF with excellent microwave absorption properties. J. Mater. Sci. Technol. 127, 153–163 (2021). https://doi.org/10.1016/j.jmst.2022.04.005
- L. Tang, Y. Tang, J. Zhang, Y. Lin, J. Kong et al., High-strength super-hydrophobic double-layered PBO nanofiber-polytetrafluoroethylene nanocomposite paper for high-performance wave-transparent applications. Sci. Bull. (2022). https://doi.org/10.1016/j.scib.2022.10.011
- X. Guan, Z. Yang, M. Zhou, L. Yang, R. Peymanfar et al., 2D MXene nanomaterials: synthesis, mechanism, and multifunctional applications in microwave absorption. Small Struct. 3(10), 2200102 (2022). https://doi.org/10.1002/sstr.202200102
- J. Liu, Z. Jia, Y. Dong, J. Li, X. Cao et al., Structural engineering and compositional manipulation for high-efficiency electromagnetic microwave absorption. Mater. Today Phys. 27, 100801 (2022). https://doi.org/10.1016/j.mtphys.2022.100801
- J. Yan, Y. Huang, X. Liu, X. Zhao, T. Li et al., Polypyrrole-based composite materials for electromagnetic wave absorption. Polym. Rev. 61(3), 646–687 (2021). https://doi.org/10.1080/15583724.2020.1870490
- G. He, Y. Duan, H. Pang, Microwave absorption of crystalline Fe/MnO@C nanocapsules embedded in amorphous carbon. Nano-Micro Lett. 12, 57 (2020). https://doi.org/10.1007/s40820-202-0388-4
- Y. Zhan, L. Xia, H. Yang, N. Zhou, G. Ma et al., Tunable electromagnetic wave absorbing properties of carbon nanotubes/carbon fiber composites synthesized directly and rapidly via an innovative induction heating technique. Carbon 175, 101–111 (2021). https://doi.org/10.1016/j.carbon.2020.12.080
- Y. Liu, Z. Jia, Q. Zhan, Y. Dong, Q. Xu et al., Magnetic manganese-based composites with multiple loss mechanisms towards broadband absorption. Nano Res. 15, 5590–5600 (2022). https://doi.org/10.1007/s12274-022-4287-5
- M. Wang, H. Wang, L. An, B. Zhang, X. Huang et al., Facile fabrication of hildewintera-colademonis-like hexagonal boron nitride/carbon nanotube composite having light weight and enhanced microwave absorption. J. Colloid Interface Sci. 564, 454–466 (2020). https://doi.org/10.1016/j.jcis.2019.12.124
- S. Zhang, Z. Jia, B. Cheng, Z. Zhao, F. Lu et al., Recent progress of perovskite oxides and their hybrids for electromagnetic wave absorption: a mini-review. Adv. Compos. Hybrid Mater. 5, 2440–2460 (2022). https://doi.org/10.1007/s42114-022-00458-7
- H. Lv, Y. Guo, Z. Yang, T. Guo, H. Wu et al., Doping strategy to boost the electromagnetic wave attenuation ability of hollow carbon spheres at elevated temperatures. ACS Sustain. Chem. Eng. 6(2), 1539–1544 (2018). https://doi.org/10.1021/acssuschemeng.7b03857
- X. Ren, Y. Song, Z. Gao, Y. Wu, Z. Jia et al., Rational manipulation of composition and construction toward Zn/Co bimetal hybrids for electromagnetic wave absorption. J. Mater. Sci. Technol. 134, 254–261 (2023). https://doi.org/10.1016/j.jmst.2022.07.004
- M. Cao, X. Wang, M. Zhang, W. Cao, X. Fang et al., Variable temperature electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy. Adv. Mater. 32(10), 1907156 (2020). https://doi.org/10.1002/adma.201907156
- X. Ren, Z. Gao, G. Wu, Tunable nano-effect of Cu clusters derived from MOF-on-MOF hybrids for electromagnetic wave absorption. Compos. Commun. 35, 101292 (2022). https://doi.org/10.1016/j.coco.2022.101292
References
Z. Mu, G. Wei, H. Zhang, L. Gao, Y. Zhao et al., The dielectric behavior and efficient microwave absorption of doped nanoscale LaMnO3 at elevated temperature. Nano Res. 15, 7731–7741 (2022). https://doi.org/10.1007/s12274-022-4500-6
Y. Liu, Z. Jia, J. Zhou, G. Wu, Multi-hierarchy heterostructure assembling on MnO2 nanowires for optimized electromagnetic response. Mater. Today Phys. 28, 100845 (2022). https://doi.org/10.1016/j.mtphys.2022.100845
L. Wang, Z. Ma, Y. Zhang, H. Qiu, K. Ruan et al., Mechanically strong and folding-endurance Ti3C2Tx MXene/PBO nanofiber films for efficient electromagnetic interference shielding and thermal management. Carbon Energy 4, 200–210 (2022). https://doi.org/10.1002/cey2.174
Y. Liu, X. Zhou, Z. Jia, H. Wu, G. Wu, Oxygen vacancy induced dielectric polarization prevails in electromagnetic wave absorbing mechanism for Mn-based MOFs-derived composites. Adv. Funct. Mater. 32(34), 2204499 (2012). https://doi.org/10.1002/adfm.202204499
Y. Wu, Y. Zhao, M. Zhou, S. Tan, R. Peymanfar et al., Ultrabroad microwave absorption ability and infrared stealth property of nano-micro CuS@rGO lightweight aerogels. Nano-Micro Lett. 14, 172 (2022). https://doi.org/10.1007/s40820-022-00906-5
J. Yan, Y. Huang, X. Zhang, X. Gong, C. Chen et al., MoS2-decorated/integrated carbon fiber: phase engineering well-regulated microwave absorber. Nano-Micro Lett. 13, 114 (2021). https://doi.org/10.1007/s40820-021-00646-y
X. Chen, M. Zhou, Y. Zhao, W. Gu, Y. Wu et al., Morphology control of eco-friendly chitosan-derived carbon aerogels for efficient microwave absorption at thin thickness and thermal stealth. Green Chem. 24, 5280–5290 (2022). https://doi.org/10.1039/d2gc01604d
Z. Jia, X. Liu, X. Zhou, Z. Zhou, G. Wu, A seed germination-inspired interface polarization augmentation strategy toward superior electromagnetic absorption performance. Compos. Commun. 34, 101269 (2022). https://doi.org/10.1016/j.coco.2022.101269
B. Wen, H. Yang, Y. Lin, L. Ma, Y. Qiu et al., Synthesis of core–shell Co@S-doped carbon@mesoporous N-doped carbon nanosheets with a hierarchically porous structure for strong electromagnetic wave absorption. J. Mater. Chem. A 9(6), 3567–3575 (2021). https://doi.org/10.1039/D0TA09393A
H. Lv, Z. Yang, S. Ong, C. Wei, H. Liao et al., A flexible microwave shield with tunable frequency-transmission and electromagnetic compatibility. Adv. Funct. Mater. 29(14), 1900163 (2019). https://doi.org/10.1002/adfm.201900163
Y. Wang, B. Suo, Y. Shi, H. Yuan, C. Zhu et al., General fabrication of 3D hierarchically structured bamboo-like nitrogen-doped carbon nanotube arrays on 1D nitrogen-doped carbon skeletons for highly efficient electromagnetic wave energy attenuation. ACS Appl. Mater. Interfaces 12(36), 40692–40701 (2020). https://doi.org/10.1021/acsami.0c12413
P. Liu, S. Gao, Y. Wang, Y. Huang, W. He et al., Carbon nanocages with N-doped carbon inner shell and Co/N-doped carbon outer shell as electromagnetic wave absorption materials. Chem. Eng. J. 381, 122653 (2020). https://doi.org/10.1016/j.cej.2019.122653
Y. Liu, Y. Fu, L. Liu, W. Li, J. Guan et al., Low-cost carbothermal reduction preparation of monodisperse Fe3O4/C core-shell nanosheets for improved microwave absorption. ACS Appl. Mater. Interfaces 10(19), 16511–16520 (2018). https://doi.org/10.1021/acsami.8b02770
X. Liang, Z. Man, B. Quan, J. Zheng, W. Gu et al., Environment-stable CoxNiy encapsulation in stacked porous carbon nanosheets for enhanced microwave. Nano-Micro Lett. 12, 102 (2020). https://doi.org/10.1007/s40820-020-00432-2
N. He, Z. He, L. Liu, Y. Lu, F.Q. Wang et al., Ni2+ guided phase/structure evolution and ultra-wide bandwidth micro-wave absorption of CoxNi1-x alloy hollow microspheres. Chem. Eng. J. 381, 122743 (2020). https://doi.org/10.1016/j.cej.2019.122743
J. Wang, L. Liu, S. Jiao, K. Ma, J. Lv et al., Hierarchical carbon fiber@MXene@MoS2 core-sheath synergistic microstructure for tunable and efficient microwave absorption. Adv. Funct. Mater. 30(45), 2002595 (2020). https://doi.org/10.1002/adfm.202002595
F. Wu, Z. Liu, J. Wang, P. Liu, Q. Zhang et al., Template-free self-assembly of MXene and CoNi-bimetal MOF into intertwined one-dimensional heterostructure and its microwave absorbing properties. Chem. Eng. J. 422, 1305 (2021). https://doi.org/10.1016/j.cej.2021.130591
H. Wang, F. Meng, F. Huang, C. Jing, Y. Li et al., Interface modulating CNTs@PANi hybrids by controlled unzipping of the walls of CNTs to achieve tunable high-performance microwave absorption. ACS Appl. Mater. Interfaces 11(12), 12142–12153 (2019). https://doi.org/10.1021/acsami.9b01122
J. Xu, X. Zhang, H. Yuan, S. Zhang, C.L. Zhu et al., N-doped reduced graphene oxide aerogels containing pod-like N-doped carbon nanotubes and FeNi nanops for electromagnetic wave absorption. Carbon 159, 357–365 (2020). https://doi.org/10.1016/j.carbon.2019.12.020
H. Wu, Y.M. Zhong, Y. Tang, Y. Tang, G. Liu et al., Precise regulation of weakly negative permittivity in CaCu3Ti4O12 meta composites by synergistic effects of carbon nanotubes and grapheme. Adv. Compos. Hybrid Mater. 5, 419–430 (2022). https://doi.org/10.1007/s42114-021-00378-y
Y. Zhang, K. Ruan, J. Gu, Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 17(42), 2101951 (2021). https://doi.org/10.1002/smll.202101951
H. Zhao, Y. Cheng, H. Lv, G. Ji, Y. Du, A novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorption. Carbon 142, 245–253 (2019). https://doi.org/10.1016/j.carbon.2018.10.027
J. Xu, L. Xia, J. Luo, S. Lu, X. Huang et al., High-performance electromagnetic wave absorbing CNT/SiCf composites: synthesis, tuning, and mechanism. ACS Appl. Mater. Interfaces 12(18), 10775–10784 (2020). https://doi.org/10.1021/acsami.9b19281
J. Qiao, X. Zhang, D. Xu, L. Kong, L. Lv et al., Design and synthesis of TiO2/Co/carbon nanofibers with tunable and efficient electromagnetic absorption. Chem. Eng. J. 380, 122591 (2020). https://doi.org/10.1016/j.cej.2019.122591
M. Zhang, C. Han, W. Cao, M. Cao, H.J. Yang et al., A nano-micro engineering nanofiber for electromagnetic absorber, green shielding and sensor. Nano-Micro Lett. 13, 27 (2021). https://doi.org/10.1007/s40820-020-00552-9
M. Yang, Y. Yuan, Y. Li, X. Sun, S. Wang et al., Dramatically enhanced electromagnetic wave absorption of hierarchical CNT/Co/C fiber derived from cotton and metal-organic-framework. Carbon 161, 517–527 (2020). https://doi.org/10.1016/j.carbon.2020.01.073
Z. Zhao, X. Zhou, K. Kou, H. Wu, PVP-assisted transformation of ZIF-67 into cobalt layered double hydroxide/carbon fiber as electromagnetic wave absorber. Carbon 173, 80–90 (2020). https://doi.org/10.1016/j.carbon.2020.11.009
Z. Ma, X. Xiang, L. Shao, Y. Zhang, J. Gu, Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem. Int. Ed. 61(15), e202200705 (2022). https://doi.org/10.1002/anie.202200705
X. Zhao, J. Yan, Y. Huang, X. Liu, L. Ding et al., Magnetic porous CoNi@C derived from bamboo fiber combined with metal-organic-framework for enhanced electromagnetic wave absorption. J. Colloid Interface Sci. 595, 78–87 (2021). https://doi.org/10.1016/j.jcis.2021.03.109
X. Zhang, M. Liu, J. Xu, Q. Ouyang, C. Zhu et al., Flexible and waterproof nitrogen-doped carbon nanotube arrays on cotton-derived carbon fiber for electromagnetic wave absorption and electric-thermal conversion. Chem. Eng. J. 433, 133794 (2022). https://doi.org/10.1016/j.cej.2021.133794
C. Wang, B. Wang, X. Cao, J. Zhao, L. Chen et al., 3D flower-like Co-based oxide composites with excellent wideband electromagnetic microwave absorption. Compos. Part B Eng. 205, 108529 (2021). https://doi.org/10.1016/j.compositesb.2020.108529
M. Green, Z. Liu, P. Xiang, Y. Liu, M. Zhou, Doped, conductive SiO2 nanops for large microwave absorption. Light Sci. Appl. 7, 87 (2018). https://doi.org/10.1038/s41377-018-0088-8
C. Chen, J. Xi, E. Zhou, L. Peng, C. Chen et al., Porous graphene microflowers for high-performance microwave absorption. Nano-Micro Lett. 10, 26 (2018). https://doi.org/10.1007/s40820-017-0179-8
X. Li, M. Zhang, W. You, K. Pei, Q. Zeng et al., Magnetized MXene microspheres with multiscale magnetic coupling and enhanced polarized interfaces for distinct microwave absorption via a spray-drying method. ACS Appl. Mater. Interfaces 12(15), 18138–18147 (2020). https://doi.org/10.1021/acsami.0c00935
P. Song, Z. Ma, H. Qiu, Y. Ru, J. Gu, High-efficiency electromagnetic interference shielding of rGO@FeNi/epoxy composites with regular honeycomb structures. Nano-Micro Lett. 14, 51 (2022). https://doi.org/10.1007/s40820-022-00798-5
M. Cao, J. Yang, W. Song, D. Zhang, B. Wen et al., Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption. ACS Appl. Mater. Interfaces 4(12), 6949–6956 (2012). https://doi.org/10.1021/am3021069
Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan et al., CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28(3), 486–490 (2016). https://doi.org/10.1002/adma.201503149
X. Li, C. Wen, L. Yang, R. Zhang, X. Li et al., MXene/FeCo films with distinct and tunable electromagnetic wave absorption by morphology control and magnetic anisotropy. Carbon 175, 509–518 (2021). https://doi.org/10.1016/j.carbon.2020.11.089
H. Li, S. Bao, Y. Li, Y. Huang, J. Chen et al., Optimizing the electromagnetic wave absorption performances of designed Co3Fe7@C yolk–shell structures. ACS Appl. Mater. Interfaces 10(340), 28839–28849 (2018). https://doi.org/10.1021/acsami.8b08040
B. Zhang, Y. Wang, H. Shen, J. Song, H. Gao et al., Hollow porous CoSnOx nanocubes encapsulated in one-dimensional N-doped carbon nanofibers as anode material for high-performance lithium storage. ACS Appl. Mater. Interfaces 13(1), 660–670 (2021). https://doi.org/10.1021/acsami.0c17546
F. Cao, F. Yan, J. Xu, C. Zhu, L. Qi et al., Tailing size and impedance matching characteristic of nitrogen-doped carbon nanotubes for electromagnetic wave absorption. Carbon 174, 79–89 (2021). https://doi.org/10.1016/j.carbon.2020.12.013
H. Lv, Z. Yang, P. Wang, G. Ji, J. Song et al., A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 30(15), 170634 (2018). https://doi.org/10.1002/adma.201706343
M. Zhang, X. Wang, W. Cao, J. Yuan, M. Cao, Electromagnetic functions of patterned 2D materials for micro-nano devices covering GHz, THz, and optical frequency. Adv. Opt. Mater. 7(19), 1900689 (2019). https://doi.org/10.1002/adom.201900689
L. Liang, G. Han, Y. Li, B. Zhao, B. Zhou et al., Promising Ti3C2Tx MXene/Ni chain hybrid with excellent electromagnetic wave absorption and shielding capacity. ACS Appl. Mater. Interfaces 11(28), 25399–25409 (2019). https://doi.org/10.1021/acsami.9b07294
C. Xu, F. Wu, L. Duan, Z. Xiong, Y. Xia et al., Dual-interfacial polarization enhancement to design tunable microwave absorption nanofibers of SiC@C@PPy. ACS Appl. Electron. Mater. 2(6), 1505–1513 (2020). https://doi.org/10.1021/acsaelm.0c00090
X. Li, W.B. You, L. Wang, J.W. Liu, Z.C. Wu et al., Self-assembly-magnetized MXene avoid dual-agglomeration with enhanced interfaces for strong microwave absorption through a tunable electromagnetic property. ACS Appl. Mater. Interfaces 11(470), 4454–44536 (2019). https://doi.org/10.1021/acsami.9b11861
J. Zhao, J. Zhang, L. Wang, J. Li, T. Feng et al., Superior wave-absorbing performances of silicone rubber composites via introducing covalently bonded SnO2@MWCNT absorbent with encapsulation structure. Compos. Commun. 24, 100653 (2021). https://doi.org/10.1016/j.coco.2020.100486
X. Li, M. Li, X. Lu, W. Zhu, H. Xu et al., A sheath-core shaped ZrO2-SiC/SiO2 fiber felt with continuously distributed SiC for broad-band electromagnetic absorption. Chem. Eng. J. 419, 129414 (2021). https://doi.org/10.1016/j.cej.2021.129414
J. Wang, Z. Jia, X. Liu, J. Dou, B. Xu et al., Construction of 1D heterostructure NiCo@C/ZnO nanorod with enhanced microwave absorption. Nano-Micro Lett. 13, 175 (2021). https://doi.org/10.1007/s40820-021-00704-5
Z. Jia, M. Kong, B. Yu, Y. Ma, J. Pan et al., Tunable Co/ZnO/C@MWCNTs based on carbon nanotube-coated MOF with excellent microwave absorption properties. J. Mater. Sci. Technol. 127, 153–163 (2021). https://doi.org/10.1016/j.jmst.2022.04.005
L. Tang, Y. Tang, J. Zhang, Y. Lin, J. Kong et al., High-strength super-hydrophobic double-layered PBO nanofiber-polytetrafluoroethylene nanocomposite paper for high-performance wave-transparent applications. Sci. Bull. (2022). https://doi.org/10.1016/j.scib.2022.10.011
X. Guan, Z. Yang, M. Zhou, L. Yang, R. Peymanfar et al., 2D MXene nanomaterials: synthesis, mechanism, and multifunctional applications in microwave absorption. Small Struct. 3(10), 2200102 (2022). https://doi.org/10.1002/sstr.202200102
J. Liu, Z. Jia, Y. Dong, J. Li, X. Cao et al., Structural engineering and compositional manipulation for high-efficiency electromagnetic microwave absorption. Mater. Today Phys. 27, 100801 (2022). https://doi.org/10.1016/j.mtphys.2022.100801
J. Yan, Y. Huang, X. Liu, X. Zhao, T. Li et al., Polypyrrole-based composite materials for electromagnetic wave absorption. Polym. Rev. 61(3), 646–687 (2021). https://doi.org/10.1080/15583724.2020.1870490
G. He, Y. Duan, H. Pang, Microwave absorption of crystalline Fe/MnO@C nanocapsules embedded in amorphous carbon. Nano-Micro Lett. 12, 57 (2020). https://doi.org/10.1007/s40820-202-0388-4
Y. Zhan, L. Xia, H. Yang, N. Zhou, G. Ma et al., Tunable electromagnetic wave absorbing properties of carbon nanotubes/carbon fiber composites synthesized directly and rapidly via an innovative induction heating technique. Carbon 175, 101–111 (2021). https://doi.org/10.1016/j.carbon.2020.12.080
Y. Liu, Z. Jia, Q. Zhan, Y. Dong, Q. Xu et al., Magnetic manganese-based composites with multiple loss mechanisms towards broadband absorption. Nano Res. 15, 5590–5600 (2022). https://doi.org/10.1007/s12274-022-4287-5
M. Wang, H. Wang, L. An, B. Zhang, X. Huang et al., Facile fabrication of hildewintera-colademonis-like hexagonal boron nitride/carbon nanotube composite having light weight and enhanced microwave absorption. J. Colloid Interface Sci. 564, 454–466 (2020). https://doi.org/10.1016/j.jcis.2019.12.124
S. Zhang, Z. Jia, B. Cheng, Z. Zhao, F. Lu et al., Recent progress of perovskite oxides and their hybrids for electromagnetic wave absorption: a mini-review. Adv. Compos. Hybrid Mater. 5, 2440–2460 (2022). https://doi.org/10.1007/s42114-022-00458-7
H. Lv, Y. Guo, Z. Yang, T. Guo, H. Wu et al., Doping strategy to boost the electromagnetic wave attenuation ability of hollow carbon spheres at elevated temperatures. ACS Sustain. Chem. Eng. 6(2), 1539–1544 (2018). https://doi.org/10.1021/acssuschemeng.7b03857
X. Ren, Y. Song, Z. Gao, Y. Wu, Z. Jia et al., Rational manipulation of composition and construction toward Zn/Co bimetal hybrids for electromagnetic wave absorption. J. Mater. Sci. Technol. 134, 254–261 (2023). https://doi.org/10.1016/j.jmst.2022.07.004
M. Cao, X. Wang, M. Zhang, W. Cao, X. Fang et al., Variable temperature electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy. Adv. Mater. 32(10), 1907156 (2020). https://doi.org/10.1002/adma.201907156
X. Ren, Z. Gao, G. Wu, Tunable nano-effect of Cu clusters derived from MOF-on-MOF hybrids for electromagnetic wave absorption. Compos. Commun. 35, 101292 (2022). https://doi.org/10.1016/j.coco.2022.101292