"Three-in-One" Multi-Scale Structural Design of Carbon Fiber-Based Composites for Personal Electromagnetic Protection and Thermal Management
Corresponding Author: Shujuan Tan
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 176
Abstract
Wearable devices with efficient thermal management and electromagnetic interference (EMI) shielding are highly desirable for improving human comfort and safety. Herein, a multifunctional wearable carbon fibers (CF) @ polyaniline (PANI) / silver nanowires (Ag NWs) composites with a “branch-trunk” interlocked micro/nanostructure were achieved through "three-in-one" multi-scale design. The reasonable assembly of the three kinds of one-dimensional (1D) materials can fully exert their excellent properties i.e., the superior flexibility of CF, the robustness of PANI, and the splendid conductivity of AgNWs. Consequently, the constructed flexible composite demonstrates enhanced mechanical properties with a tensile stress of 1.2 MPa, which was almost 6 times that of the original material. This is mainly attributed to the fact that the PNAI (branch) was firmly attached to the CF (trunk) through polydopamine (PDA), forming a robust interlocked structure. Meanwhile, the composite possesses excellent thermal insulation and heat preservation capacity owing to the synergistically low thermal conductivity and emissivity. More importantly, the conductive path of the composite established by the three 1D materials greatly improved its EMI shielding property and Joule heating performance at low applied voltage. This work paves the way for rational utilization of the intrinsic properties of 1D materials, as well as provides a promising strategy for designing wearable electromagnetic protection and thermal energy management devices.
Highlights:
1 A multi-scale structural carbon fiber-based composite was synthesized through the assembly of one-dimensional materials.
2 The construction of multiple conductive networks makes the composite have a strong EMI shielding performance of 73.9 dB.
3 The reasonable design endows the composite with excellent positive and passive thermal management properties.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Xu, Z. Chen, Y. Liu, C. Ge, C. Gao et al., Hump-inspired hierarchical fabric for personal thermal protection and thermal comfort management. Adv. Funct. Mater. 33, 2212626 (2023). https://doi.org/10.1002/adfm.202212626
- M. Liu, X. Pu, C. Jiang, T. Liu, X. Huang et al., Large-area all-textile pressure sensors for monitoring human motion and physiological signals. Adv. Mater. 29, 1703700 (2017). https://doi.org/10.1002/adma.201703700
- Y. Yu, G. Zheng, K. Dai, W. Zhai, K. Zhou et al., Hollow-porous fibers for intrinsically thermally insulating textiles and wearable electronics with ultrahigh working sensitivity. Mater. Horiz. 8, 1037–1046 (2021). https://doi.org/10.1039/d0mh01818j
- Y. Peng, W. Li, B. Liu, W. Jin, J. Schaadt et al., Integrated cooling (i-Cool) textile of heat conduction and sweat transportation for personal perspiration management. Nat. Commun. 12, 6122 (2021). https://doi.org/10.1038/s41467-021-26384-8
- J. Dong, X. Tang, Y. Peng, C. Fan, L. Li et al., Highly permeable and ultrastretchable E-textiles with EGaIn-superlyophilicity for on-skin health monitoring, joule heating, and electromagnetic shielding. Nano Energy 108, 108194 (2023). https://doi.org/10.1016/j.nanoen.2023.108194
- X. Liu, X. Jin, L. Li, J. Wang, Y. Yang et al., Air-permeable, multifunctional, dual-energy-driven MXene-decorated polymeric textile-based wearable heaters with exceptional electrothermal and photothermal conversion performance. J. Mater. Chem. A 8, 12526–12537 (2020). https://doi.org/10.1039/d0ta03048a
- S. Gong, X. Sheng, X. Li, M. Sheng, H. Wu et al., A multifunctional flexible composite film with excellent multi-source driven thermal management, electromagnetic interference shielding, and fire safety performance, inspired by a “Brick–Mortar” sandwich structure. Adv. Funct. Mater. 32, 2200570 (2022). https://doi.org/10.1002/adfm.202200570
- Y. Wu, S.J. Tan, T.C. Zhang, M. Zhou, G. Fang et al., Alkali and ion exchange co-modulation strategies to design magnetic-dielectric synergistic nano-absorbers for tailoring microwave absorption. Nano Res (2023). https://doi.org/10.1007/s12274-023-5799-3
- Z. Lou, Q. Wang, X. Zhou, U.I. Kara, R.S. Mamtani et al., An angle-insensitive electromagnetic absorber enabling a wideband absorption. J. Mater. Sci. Technol. 113, 33–39 (2022). https://doi.org/10.1016/j.jmst.2021.11.007
- X. Chen, M. Zhou, Y. Zhao, W. Gu, Y. Wu et al., Morphology control of eco-friendly chitosan-derived carbon aerogels for efficient microwave absorption at thin thickness and thermal stealth pdf. Green Chem. 24, 5280 (2022). https://doi.org/10.1039/d2gc01604d
- B. Zhao, Z. Yan, Y. Du, L. Rao, G. Chen et al., High-entropy enhanced microwave attenuation in titanate perovskites. Adv Mater. 35, e2210243 (2023). https://doi.org/10.1002/adma.202210243
- Z. Jia, X. Zhang, Z. Gu, G. Wu, MOF-derived Ni-Co bimetal/porous carbon composites as electromagnetic wave absorber. Adv. Compos. Hybrid Mater. (2022). https://doi.org/10.1007/s42114-022-00615-y
- B. Zhao, Y. Du, Z. Yan, L. Rao, G. Chen et al., Structural defects in phase-regulated high-entropy oxides toward superior microwave absorption properties. Adv. Funct. Mater. 33, 2209924 (2022). https://doi.org/10.1002/adfm.202209924
- Y. Zhang, S.J. Tan, T. Xu, Z.T. Zhou, G.B. Ji, Directionally tailoring micro-nano hierarchical tower structured Mn0.6Ni1.4Co2Oy toward solar interfacial evaporation. J. Mater. Sci. Technol. 158, 21–30 (2023). https://doi.org/10.1016/j.jmst.2023.02.038
- Y. Hu, Y. Jiang, L. Ni, Z. Huang, L. Liu et al., An elastic MOF/graphene aerogel with high photothermal efficiency for rapid removal of crude oil. J. Hazard. Mater. 443, 130339 (2023). https://doi.org/10.1016/j.jhazmat.2022.130339
- Y. Wu, Y. Zhao, M. Zhou, S. Tan, R. Peymanfar et al., Ultrabroad microwave absorption ability and infrared stealth property of nano-micro CuS@rGO lightweight aerogels. Nano-Micro Lett. 14, 171 (2022). https://doi.org/10.1007/s40820-022-00906-5
- Z. Bai, X. Wang, M. Huang, M. Zheng, O. Yue et al., Versatile nano–micro collagen fiber-based wearable electronics for health monitoring and thermal management. J. Mater. Chem. A 11, 726–741 (2023). https://doi.org/10.1039/d2ta08263b
- H.G. Shi, H.B. Zhao, B.W. Liu, Y.Z. Wang, Multifunctional Flame-Retardant Melamine-Based Hybrid Foam for Infrared Stealth, Thermal Insulation, and Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 13, 26505–26514 (2021). https://doi.org/10.1021/acsami.1c07363
- Y. Wu, X. Zhao, Y. Shang, S. Chang, L. Dai et al., Application-driven carbon nanotube functional materials. ACS Nano 15, 7946–7974 (2021). https://doi.org/10.1021/acsnano.0c10662
- Q. Wei, F. Xiong, S. Tan, L. Huang, E.H. Lan et al., Porous one-dimensional nanomaterials: design, fabrication and applications in electrochemical energy storage. Adv. Mater. 29, 1602300 (2017). https://doi.org/10.1002/adma.201602300
- Z. Xiang, Y. Shi, X. Zhu, L. Cai, W. Lu, Flexible and waterproof 2D/1D/0d construction of mxene-based nanocomposites for electromagnetic wave absorption, EMI shielding, and photothermal conversion. Nano-Micro Lett. 13, 150 (2021). https://doi.org/10.1007/s40820-021-00673-9
- C. Shi, K.A. Owusu, X. Xu, T. Zhu, G. Zhang et al., 1D carbon-based nanocomposites for electrochemical energy storage. Small 15, e1902348 (2019). https://doi.org/10.1002/smll.201902348
- C. Fu, Z. Sheng, X. Zhang, Laminated structural engineering strategy toward carbon nanotube-based aerogel films. ACS Nano 16, 9378–9388 (2022). https://doi.org/10.1021/acsnano.2c02193
- M. Touron, C. Celle, L. Orgeas, J.P. Simonato, Hybrid silver nanowire-CMC aerogels: from 1D nanomaterials to 3D electrically conductive and mechanically resistant lightweight architectures. ACS Nano 16, 14188–14197 (2022). https://doi.org/10.1021/acsnano.2c04288
- Y. Chen, L. Pang, Y. Li, H. Luo, G. Duan et al., Ultra-thin and highly flexible cellulose nanofiber/silver nanowire conductive paper for effective electromagnetic interference shielding. Compos. Pt. A-Appl. Sci. Manuf. 135, 105960 (2020). https://doi.org/10.1016/j.compositesa.2020.105960
- Y. Zheng, Y. Song, T. Gao, S. Yan, H. Hu et al., Lightweight and hydrophobic three-dimensional wood-derived anisotropic magnetic porous carbon for highly efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces 12, 40802–40814 (2020). https://doi.org/10.1021/acsami.0c11530
- X. Liu, H. Xu, F. Xie, C. Fasel, X. Yin et al., Highly flexible and ultrathin Mo2C film via in-situ growth on graphene oxide for electromagnetic shielding application. Carbon 163, 254–264 (2020). https://doi.org/10.1016/j.carbon.2020.03.003
- M. Huang, L. Wang, X. Li, Z. Wu, B. Zhao et al., Magnetic interacted interaction effect in mxene skeleton: enhanced thermal-generation for electromagnetic interference shielding. Small 18, e2201587 (2022). https://doi.org/10.1002/smll.202201587
- H.J. Meredith, C.L. Jenkins, J.J. Wilker, Enhancing the adhesion of a biomimetic polymer yields performance rivaling commercial glues. Adv. Funct. Mater. 24, 3259–3267 (2014). https://doi.org/10.1002/adfm.201303536
- G.P. Maier, M.V. Rapp, J.H. Waite, J.N. Israelachvili, A. Butler, Adaptive synergy between catecholand lysine promotes wet adhesion bysurface salt displacement. Science 349, 628–632 (2015). https://doi.org/10.1126/science.aab0556
- Z. Zhang, G. Wang, W. Gu, Y. Zhao, S. Tang et al., A breathable and flexible fiber cloth based on cellulose/polyaniline cellular membrane for microwave shielding and absorbing applications. J. Colloid. Interface Sci. 605, 193–203 (2022). https://doi.org/10.1016/j.jcis.2021.07.085
- Y. Han, K. Ruan, J. Gu, Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances. Nano Res. 15, 4747–4755 (2022). https://doi.org/10.1007/s12274-022-4159-z
- M. Wajahat, S. Lee, J.H. Kim, J. Ahn, H.H. Sim et al., Three-dimensional printing of silver nanop-decorated graphene microarchitectures. Addit. Manuf. 60, 103249 (2022). https://doi.org/10.1016/j.addma.2022.103249
- M. Zhou, J. Wang, G. Wang, Y. Zhao, J. Tang et al., Lotus leaf-inspired and multifunctional Janus carbon felt@Ag composites enabled by in situ asymmetric modification for electromagnetic protection and low-voltage joule heating. Compos Part B-Eng. 242, 110110 (2022). https://doi.org/10.1016/j.compositesb.2022.110110
- Z. Wang, J. Chang, H. Zhi, C. Li, L. Feng, A PDA functionalized CNT/PANI self-powered sensing system for meat spoilage biomarker NH3 monitoring. Sensor Actuat. B-Chem. 356, 131292 (2022). https://doi.org/10.1016/j.snb.2021.131292
- C.O. Baker, X. Huang, W. Nelson, R.B. Kaner, Polyaniline nanofibers: broadening applications for conducting polymers. Chem. Soc. Rev. 46, 1510–1525 (2017). https://doi.org/10.1039/c6cs00555a
- C.W. Lin, R.L. Li, S. Robbennolt, M.T. Yeung, G. Akopov et al., Furthering our understanding of the doping mechanism in conjugated polymers using tetraaniline. Macromolecules 50, 5892–5897 (2017). https://doi.org/10.1021/acs.macromol.7b00633
- H. Zhang, K. Sun, K. Sun, L. Chen, G. Wu, Core–shell Ni3Sn2@C ps anchored on 3D N-doped porous carbon skeleton for modulated electromagnetic wave absorption. J. Mater. Sci. Technol. 158, 242–252 (2023). https://doi.org/10.1016/j.jmst.2023.01.053
- L. Sun, Q. Zhu, Z. Jia, Z. Guo, W. Zhao et al., CrN attached multi-component carbon nanotube composites with superior electromagnetic wave absorption performance. Carbon 208, 1–9 (2023). https://doi.org/10.1016/j.carbon.2023.03.021
- Y. Wang, S. Wu, Q. Yin, K. Du, Q. Yin et al., Novel hybrid p- and n-type organic thermoelectric materials based on mussel-inspired polydopamine. ACS Appl. Mater. Interfaces 13, 23970–23982 (2021). https://doi.org/10.1021/acsami.1c01457
- S. Wang, S. Huang, M. Yao, Y. Zhang, Z. Niu, Engineering active sites of polyaniline for AlCl(2) (+) storage in an aluminum-ion battery. Angew. Chem. Int. Ed. 59, 11800–11807 (2020). https://doi.org/10.1002/anie.202002132
- M. Zhou, J. Wang, S. Tan, G. Ji, Top-down construction strategy toward sustainable cellulose composite paper with tunable electromagnetic interference shielding. Mater. Today Phys. 31, 100962 (2023). https://doi.org/10.1016/j.mtphys.2022.100962
- X. Ma, J. Pan, H. Guo, J. Wang, C. Zhang et al., Ultrathin wood-derived conductive carbon composite film for electromagnetic shielding and electric heating management. Adv. Funct. Mater. 33, 2213431 (2023). https://doi.org/10.1002/adfm.202213431
- G. Wang, Y. Zhao, F. Yang, Y. Zhang, M. Zhou et al., Multifunctional integrated transparent film for efficient electromagnetic protection. Nano-Micro Lett. 14, 65 (2022). https://doi.org/10.1007/s40820-022-00810-y
- M. Zhou, J. Wang, Y. Zhao, G. Wang, W. Gu et al., Hierarchically porous wood-derived carbon scaffold embedded phase change materials for integrated thermal energy management, electromagnetic interference shielding and multifunctional application. Carbon 183, 515–524 (2021). https://doi.org/10.1016/j.carbon.2021.07.051
- W. Gu, S.J.H. Ong, Y. Shen, W. Guo, Y. Fang et al., A lightweight, elastic, and thermally insulating stealth foam with high infrared-radar compatibility. Adv. Sci. 9, e2204165 (2022). https://doi.org/10.1002/advs.202204165
- A. Iqbal, P. Sambyal, C.M. Koo, 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater. 30, 2000883 (2020). https://doi.org/10.1002/adfm.202000883
- B. Zhao, Y. Li, Q. Zeng, L. Wang, J. Ding et al., Galvanic replacement reaction involving core-shell magnetic chains and orientation-tunable microwave absorption properties. Small 16, e2003502 (2020). https://doi.org/10.1002/smll.202003502
- C. Wen, X. Li, R. Zhang, C. Xu, W. You et al., High-density anisotropy magnetism enhanced microwave absorption performance in Ti3C2Tx MXene@Ni microspheres. ACS Nano 16, 1150–1159 (2022). https://doi.org/10.1021/acsnano.1c08957
- Y. Pan, Q. Zhu, J. Zhu, Y. Cheng, B. Yu et al., Macroscopic electromagnetic synergy network-enhanced N-doped Ni/C gigahertz microwave absorber with regulable microtopography. Nano Res. (2023). https://doi.org/10.1007/s12274-023-5687-x
- B. Zhao, Y. Du, H. Lv, Z. Yan, H. Jian et al., Liquid-metal-assisted programmed galvanic engineering of core–shell nanohybrids for microwave absorption. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202302172
- T.K. Gupta, B.P. Singh, V.N. Singh, S. Teotia, A.P. Singh et al., MnO2 decorated graphene nanoribbons with superior permittivity and excellent microwave shielding properties. J. Mater. Chem. A 2, 4256 (2014). https://doi.org/10.1039/c3ta14854h
- T. Zhang, S. Zeng, H. Jiang, Z. Li, D. Bai et al., Leather solid Waste/Poly(vinyl alcohol)/polyaniline aerogel with mechanical robustness, flame retardancy, and enhanced electromagnetic interference shielding. ACS Appl. Mater. Interfaces 13, 11332–11343 (2021). https://doi.org/10.1021/acsami.1c00880
- Y. Zhang, M. Qiu, Y. Yu, B. Wen, L. Cheng, A novel polyaniline-coated bagasse fiber composite with core-shell heterostructure provides effective electromagnetic shielding performance. ACS Appl. Mater. Interfaces 9, 809–818 (2017). https://doi.org/10.1021/acsami.6b11989
- D.A. Gopakumar, A.R. Pai, Y.B. Pottathara, D. Pasquini, L. Carlos de Morais et al., Cellulose nanofiber-based polyaniline flexible papers as sustainable microwave absorbers in the X-band. ACS Appl. Mater. Interfaces 10, 20032–20043 (2018). https://doi.org/10.1021/acsami.8b04549
- Y. Zhang, T. Pan, Z. Yang, Flexible polyethylene terephthalate/polyaniline composite paper with bending durability and effective electromagnetic shielding performance. Chem. Eng. J. 389, 124433 (2020). https://doi.org/10.1016/j.cej.2020.124433
- P. Saini, M. Arora, G. Gupta, B.K. Gupta, V.N. Singh et al., High permittivity polyaniline-barium titanate nanocomposites with excellent electromagnetic interference shielding response. Nanoscale 5, 4330–4336 (2013). https://doi.org/10.1039/c3nr00634d
- T. Pan, Y. Zhang, C. Wang, H. Gao, B. Wen et al., Mulberry-like polyaniline-based flexible composite fabrics with effective electromagnetic shielding capability. Compos. Sci. Technol. 188, 107991 (2020). https://doi.org/10.1016/j.compscitech.2020.107991
- A.R. Pai, T. Binumol, D.A. Gopakumar, D. Pasquini, B. Seantier et al., Ultra-fast heat dissipating aerogels derived from polyaniline anchored cellulose nanofibers as sustainable microwave absorbers. Carbohydr. Polym. 246, 116663 (2020). https://doi.org/10.1016/j.carbpol.2020.116663
- X. Chen, Z. Wang, M. Zhou, Y. Zhao, S. Tang et al., Multilevel structure carbon aerogels with 99,999 % electromagnetic wave absorptivity at 1,8 mm and efficient thermal stealth. Chem. Eng. J. 452, 139110 (2023). https://doi.org/10.1016/j.cej.2022.139110
- Y. Wu, S. Tan, Y. Zhao, L. Liang, M. Zhou et al., Broadband multispectral compatible absorbers for radar, infrared and visible stealth application. Prog. Mater. Sci. 135, 101088 (2023). https://doi.org/10.1016/j.pmatsci.2023.101088
- Y. Shi, Z. Xiang, L. Cai, F. Pan, Y. Dong et al., Multi-interface assembled N-doped MXene/HCFG/AgNW films for wearable electromagnetic shielding devices with multimodal energy conversion and healthcare monitoring performances. ACS Nano 16, 7816–7833 (2022). https://doi.org/10.1021/acsnano.2c00448
- P. Hu, J. Lyu, C. Fu, W.B. Gong, J. Liao et al., Multifunctional aramid nanofiber/carbon nanotube hybrid aerogel films. ACS Nano 14, 688–697 (2020). https://doi.org/10.1021/acsnano.9b07459
- R. Zhang, B. Xiang, Y. Wang, S. Tang, X. Meng, A lotus-inspired 3D biomimetic design toward an advanced solar steam evaporator with ultrahigh efficiency and remarkable stability. Mater. Horiz. 9, 1232–1242 (2022). https://doi.org/10.1039/d1mh02020j
References
D. Xu, Z. Chen, Y. Liu, C. Ge, C. Gao et al., Hump-inspired hierarchical fabric for personal thermal protection and thermal comfort management. Adv. Funct. Mater. 33, 2212626 (2023). https://doi.org/10.1002/adfm.202212626
M. Liu, X. Pu, C. Jiang, T. Liu, X. Huang et al., Large-area all-textile pressure sensors for monitoring human motion and physiological signals. Adv. Mater. 29, 1703700 (2017). https://doi.org/10.1002/adma.201703700
Y. Yu, G. Zheng, K. Dai, W. Zhai, K. Zhou et al., Hollow-porous fibers for intrinsically thermally insulating textiles and wearable electronics with ultrahigh working sensitivity. Mater. Horiz. 8, 1037–1046 (2021). https://doi.org/10.1039/d0mh01818j
Y. Peng, W. Li, B. Liu, W. Jin, J. Schaadt et al., Integrated cooling (i-Cool) textile of heat conduction and sweat transportation for personal perspiration management. Nat. Commun. 12, 6122 (2021). https://doi.org/10.1038/s41467-021-26384-8
J. Dong, X. Tang, Y. Peng, C. Fan, L. Li et al., Highly permeable and ultrastretchable E-textiles with EGaIn-superlyophilicity for on-skin health monitoring, joule heating, and electromagnetic shielding. Nano Energy 108, 108194 (2023). https://doi.org/10.1016/j.nanoen.2023.108194
X. Liu, X. Jin, L. Li, J. Wang, Y. Yang et al., Air-permeable, multifunctional, dual-energy-driven MXene-decorated polymeric textile-based wearable heaters with exceptional electrothermal and photothermal conversion performance. J. Mater. Chem. A 8, 12526–12537 (2020). https://doi.org/10.1039/d0ta03048a
S. Gong, X. Sheng, X. Li, M. Sheng, H. Wu et al., A multifunctional flexible composite film with excellent multi-source driven thermal management, electromagnetic interference shielding, and fire safety performance, inspired by a “Brick–Mortar” sandwich structure. Adv. Funct. Mater. 32, 2200570 (2022). https://doi.org/10.1002/adfm.202200570
Y. Wu, S.J. Tan, T.C. Zhang, M. Zhou, G. Fang et al., Alkali and ion exchange co-modulation strategies to design magnetic-dielectric synergistic nano-absorbers for tailoring microwave absorption. Nano Res (2023). https://doi.org/10.1007/s12274-023-5799-3
Z. Lou, Q. Wang, X. Zhou, U.I. Kara, R.S. Mamtani et al., An angle-insensitive electromagnetic absorber enabling a wideband absorption. J. Mater. Sci. Technol. 113, 33–39 (2022). https://doi.org/10.1016/j.jmst.2021.11.007
X. Chen, M. Zhou, Y. Zhao, W. Gu, Y. Wu et al., Morphology control of eco-friendly chitosan-derived carbon aerogels for efficient microwave absorption at thin thickness and thermal stealth pdf. Green Chem. 24, 5280 (2022). https://doi.org/10.1039/d2gc01604d
B. Zhao, Z. Yan, Y. Du, L. Rao, G. Chen et al., High-entropy enhanced microwave attenuation in titanate perovskites. Adv Mater. 35, e2210243 (2023). https://doi.org/10.1002/adma.202210243
Z. Jia, X. Zhang, Z. Gu, G. Wu, MOF-derived Ni-Co bimetal/porous carbon composites as electromagnetic wave absorber. Adv. Compos. Hybrid Mater. (2022). https://doi.org/10.1007/s42114-022-00615-y
B. Zhao, Y. Du, Z. Yan, L. Rao, G. Chen et al., Structural defects in phase-regulated high-entropy oxides toward superior microwave absorption properties. Adv. Funct. Mater. 33, 2209924 (2022). https://doi.org/10.1002/adfm.202209924
Y. Zhang, S.J. Tan, T. Xu, Z.T. Zhou, G.B. Ji, Directionally tailoring micro-nano hierarchical tower structured Mn0.6Ni1.4Co2Oy toward solar interfacial evaporation. J. Mater. Sci. Technol. 158, 21–30 (2023). https://doi.org/10.1016/j.jmst.2023.02.038
Y. Hu, Y. Jiang, L. Ni, Z. Huang, L. Liu et al., An elastic MOF/graphene aerogel with high photothermal efficiency for rapid removal of crude oil. J. Hazard. Mater. 443, 130339 (2023). https://doi.org/10.1016/j.jhazmat.2022.130339
Y. Wu, Y. Zhao, M. Zhou, S. Tan, R. Peymanfar et al., Ultrabroad microwave absorption ability and infrared stealth property of nano-micro CuS@rGO lightweight aerogels. Nano-Micro Lett. 14, 171 (2022). https://doi.org/10.1007/s40820-022-00906-5
Z. Bai, X. Wang, M. Huang, M. Zheng, O. Yue et al., Versatile nano–micro collagen fiber-based wearable electronics for health monitoring and thermal management. J. Mater. Chem. A 11, 726–741 (2023). https://doi.org/10.1039/d2ta08263b
H.G. Shi, H.B. Zhao, B.W. Liu, Y.Z. Wang, Multifunctional Flame-Retardant Melamine-Based Hybrid Foam for Infrared Stealth, Thermal Insulation, and Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 13, 26505–26514 (2021). https://doi.org/10.1021/acsami.1c07363
Y. Wu, X. Zhao, Y. Shang, S. Chang, L. Dai et al., Application-driven carbon nanotube functional materials. ACS Nano 15, 7946–7974 (2021). https://doi.org/10.1021/acsnano.0c10662
Q. Wei, F. Xiong, S. Tan, L. Huang, E.H. Lan et al., Porous one-dimensional nanomaterials: design, fabrication and applications in electrochemical energy storage. Adv. Mater. 29, 1602300 (2017). https://doi.org/10.1002/adma.201602300
Z. Xiang, Y. Shi, X. Zhu, L. Cai, W. Lu, Flexible and waterproof 2D/1D/0d construction of mxene-based nanocomposites for electromagnetic wave absorption, EMI shielding, and photothermal conversion. Nano-Micro Lett. 13, 150 (2021). https://doi.org/10.1007/s40820-021-00673-9
C. Shi, K.A. Owusu, X. Xu, T. Zhu, G. Zhang et al., 1D carbon-based nanocomposites for electrochemical energy storage. Small 15, e1902348 (2019). https://doi.org/10.1002/smll.201902348
C. Fu, Z. Sheng, X. Zhang, Laminated structural engineering strategy toward carbon nanotube-based aerogel films. ACS Nano 16, 9378–9388 (2022). https://doi.org/10.1021/acsnano.2c02193
M. Touron, C. Celle, L. Orgeas, J.P. Simonato, Hybrid silver nanowire-CMC aerogels: from 1D nanomaterials to 3D electrically conductive and mechanically resistant lightweight architectures. ACS Nano 16, 14188–14197 (2022). https://doi.org/10.1021/acsnano.2c04288
Y. Chen, L. Pang, Y. Li, H. Luo, G. Duan et al., Ultra-thin and highly flexible cellulose nanofiber/silver nanowire conductive paper for effective electromagnetic interference shielding. Compos. Pt. A-Appl. Sci. Manuf. 135, 105960 (2020). https://doi.org/10.1016/j.compositesa.2020.105960
Y. Zheng, Y. Song, T. Gao, S. Yan, H. Hu et al., Lightweight and hydrophobic three-dimensional wood-derived anisotropic magnetic porous carbon for highly efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces 12, 40802–40814 (2020). https://doi.org/10.1021/acsami.0c11530
X. Liu, H. Xu, F. Xie, C. Fasel, X. Yin et al., Highly flexible and ultrathin Mo2C film via in-situ growth on graphene oxide for electromagnetic shielding application. Carbon 163, 254–264 (2020). https://doi.org/10.1016/j.carbon.2020.03.003
M. Huang, L. Wang, X. Li, Z. Wu, B. Zhao et al., Magnetic interacted interaction effect in mxene skeleton: enhanced thermal-generation for electromagnetic interference shielding. Small 18, e2201587 (2022). https://doi.org/10.1002/smll.202201587
H.J. Meredith, C.L. Jenkins, J.J. Wilker, Enhancing the adhesion of a biomimetic polymer yields performance rivaling commercial glues. Adv. Funct. Mater. 24, 3259–3267 (2014). https://doi.org/10.1002/adfm.201303536
G.P. Maier, M.V. Rapp, J.H. Waite, J.N. Israelachvili, A. Butler, Adaptive synergy between catecholand lysine promotes wet adhesion bysurface salt displacement. Science 349, 628–632 (2015). https://doi.org/10.1126/science.aab0556
Z. Zhang, G. Wang, W. Gu, Y. Zhao, S. Tang et al., A breathable and flexible fiber cloth based on cellulose/polyaniline cellular membrane for microwave shielding and absorbing applications. J. Colloid. Interface Sci. 605, 193–203 (2022). https://doi.org/10.1016/j.jcis.2021.07.085
Y. Han, K. Ruan, J. Gu, Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances. Nano Res. 15, 4747–4755 (2022). https://doi.org/10.1007/s12274-022-4159-z
M. Wajahat, S. Lee, J.H. Kim, J. Ahn, H.H. Sim et al., Three-dimensional printing of silver nanop-decorated graphene microarchitectures. Addit. Manuf. 60, 103249 (2022). https://doi.org/10.1016/j.addma.2022.103249
M. Zhou, J. Wang, G. Wang, Y. Zhao, J. Tang et al., Lotus leaf-inspired and multifunctional Janus carbon felt@Ag composites enabled by in situ asymmetric modification for electromagnetic protection and low-voltage joule heating. Compos Part B-Eng. 242, 110110 (2022). https://doi.org/10.1016/j.compositesb.2022.110110
Z. Wang, J. Chang, H. Zhi, C. Li, L. Feng, A PDA functionalized CNT/PANI self-powered sensing system for meat spoilage biomarker NH3 monitoring. Sensor Actuat. B-Chem. 356, 131292 (2022). https://doi.org/10.1016/j.snb.2021.131292
C.O. Baker, X. Huang, W. Nelson, R.B. Kaner, Polyaniline nanofibers: broadening applications for conducting polymers. Chem. Soc. Rev. 46, 1510–1525 (2017). https://doi.org/10.1039/c6cs00555a
C.W. Lin, R.L. Li, S. Robbennolt, M.T. Yeung, G. Akopov et al., Furthering our understanding of the doping mechanism in conjugated polymers using tetraaniline. Macromolecules 50, 5892–5897 (2017). https://doi.org/10.1021/acs.macromol.7b00633
H. Zhang, K. Sun, K. Sun, L. Chen, G. Wu, Core–shell Ni3Sn2@C ps anchored on 3D N-doped porous carbon skeleton for modulated electromagnetic wave absorption. J. Mater. Sci. Technol. 158, 242–252 (2023). https://doi.org/10.1016/j.jmst.2023.01.053
L. Sun, Q. Zhu, Z. Jia, Z. Guo, W. Zhao et al., CrN attached multi-component carbon nanotube composites with superior electromagnetic wave absorption performance. Carbon 208, 1–9 (2023). https://doi.org/10.1016/j.carbon.2023.03.021
Y. Wang, S. Wu, Q. Yin, K. Du, Q. Yin et al., Novel hybrid p- and n-type organic thermoelectric materials based on mussel-inspired polydopamine. ACS Appl. Mater. Interfaces 13, 23970–23982 (2021). https://doi.org/10.1021/acsami.1c01457
S. Wang, S. Huang, M. Yao, Y. Zhang, Z. Niu, Engineering active sites of polyaniline for AlCl(2) (+) storage in an aluminum-ion battery. Angew. Chem. Int. Ed. 59, 11800–11807 (2020). https://doi.org/10.1002/anie.202002132
M. Zhou, J. Wang, S. Tan, G. Ji, Top-down construction strategy toward sustainable cellulose composite paper with tunable electromagnetic interference shielding. Mater. Today Phys. 31, 100962 (2023). https://doi.org/10.1016/j.mtphys.2022.100962
X. Ma, J. Pan, H. Guo, J. Wang, C. Zhang et al., Ultrathin wood-derived conductive carbon composite film for electromagnetic shielding and electric heating management. Adv. Funct. Mater. 33, 2213431 (2023). https://doi.org/10.1002/adfm.202213431
G. Wang, Y. Zhao, F. Yang, Y. Zhang, M. Zhou et al., Multifunctional integrated transparent film for efficient electromagnetic protection. Nano-Micro Lett. 14, 65 (2022). https://doi.org/10.1007/s40820-022-00810-y
M. Zhou, J. Wang, Y. Zhao, G. Wang, W. Gu et al., Hierarchically porous wood-derived carbon scaffold embedded phase change materials for integrated thermal energy management, electromagnetic interference shielding and multifunctional application. Carbon 183, 515–524 (2021). https://doi.org/10.1016/j.carbon.2021.07.051
W. Gu, S.J.H. Ong, Y. Shen, W. Guo, Y. Fang et al., A lightweight, elastic, and thermally insulating stealth foam with high infrared-radar compatibility. Adv. Sci. 9, e2204165 (2022). https://doi.org/10.1002/advs.202204165
A. Iqbal, P. Sambyal, C.M. Koo, 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater. 30, 2000883 (2020). https://doi.org/10.1002/adfm.202000883
B. Zhao, Y. Li, Q. Zeng, L. Wang, J. Ding et al., Galvanic replacement reaction involving core-shell magnetic chains and orientation-tunable microwave absorption properties. Small 16, e2003502 (2020). https://doi.org/10.1002/smll.202003502
C. Wen, X. Li, R. Zhang, C. Xu, W. You et al., High-density anisotropy magnetism enhanced microwave absorption performance in Ti3C2Tx MXene@Ni microspheres. ACS Nano 16, 1150–1159 (2022). https://doi.org/10.1021/acsnano.1c08957
Y. Pan, Q. Zhu, J. Zhu, Y. Cheng, B. Yu et al., Macroscopic electromagnetic synergy network-enhanced N-doped Ni/C gigahertz microwave absorber with regulable microtopography. Nano Res. (2023). https://doi.org/10.1007/s12274-023-5687-x
B. Zhao, Y. Du, H. Lv, Z. Yan, H. Jian et al., Liquid-metal-assisted programmed galvanic engineering of core–shell nanohybrids for microwave absorption. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202302172
T.K. Gupta, B.P. Singh, V.N. Singh, S. Teotia, A.P. Singh et al., MnO2 decorated graphene nanoribbons with superior permittivity and excellent microwave shielding properties. J. Mater. Chem. A 2, 4256 (2014). https://doi.org/10.1039/c3ta14854h
T. Zhang, S. Zeng, H. Jiang, Z. Li, D. Bai et al., Leather solid Waste/Poly(vinyl alcohol)/polyaniline aerogel with mechanical robustness, flame retardancy, and enhanced electromagnetic interference shielding. ACS Appl. Mater. Interfaces 13, 11332–11343 (2021). https://doi.org/10.1021/acsami.1c00880
Y. Zhang, M. Qiu, Y. Yu, B. Wen, L. Cheng, A novel polyaniline-coated bagasse fiber composite with core-shell heterostructure provides effective electromagnetic shielding performance. ACS Appl. Mater. Interfaces 9, 809–818 (2017). https://doi.org/10.1021/acsami.6b11989
D.A. Gopakumar, A.R. Pai, Y.B. Pottathara, D. Pasquini, L. Carlos de Morais et al., Cellulose nanofiber-based polyaniline flexible papers as sustainable microwave absorbers in the X-band. ACS Appl. Mater. Interfaces 10, 20032–20043 (2018). https://doi.org/10.1021/acsami.8b04549
Y. Zhang, T. Pan, Z. Yang, Flexible polyethylene terephthalate/polyaniline composite paper with bending durability and effective electromagnetic shielding performance. Chem. Eng. J. 389, 124433 (2020). https://doi.org/10.1016/j.cej.2020.124433
P. Saini, M. Arora, G. Gupta, B.K. Gupta, V.N. Singh et al., High permittivity polyaniline-barium titanate nanocomposites with excellent electromagnetic interference shielding response. Nanoscale 5, 4330–4336 (2013). https://doi.org/10.1039/c3nr00634d
T. Pan, Y. Zhang, C. Wang, H. Gao, B. Wen et al., Mulberry-like polyaniline-based flexible composite fabrics with effective electromagnetic shielding capability. Compos. Sci. Technol. 188, 107991 (2020). https://doi.org/10.1016/j.compscitech.2020.107991
A.R. Pai, T. Binumol, D.A. Gopakumar, D. Pasquini, B. Seantier et al., Ultra-fast heat dissipating aerogels derived from polyaniline anchored cellulose nanofibers as sustainable microwave absorbers. Carbohydr. Polym. 246, 116663 (2020). https://doi.org/10.1016/j.carbpol.2020.116663
X. Chen, Z. Wang, M. Zhou, Y. Zhao, S. Tang et al., Multilevel structure carbon aerogels with 99,999 % electromagnetic wave absorptivity at 1,8 mm and efficient thermal stealth. Chem. Eng. J. 452, 139110 (2023). https://doi.org/10.1016/j.cej.2022.139110
Y. Wu, S. Tan, Y. Zhao, L. Liang, M. Zhou et al., Broadband multispectral compatible absorbers for radar, infrared and visible stealth application. Prog. Mater. Sci. 135, 101088 (2023). https://doi.org/10.1016/j.pmatsci.2023.101088
Y. Shi, Z. Xiang, L. Cai, F. Pan, Y. Dong et al., Multi-interface assembled N-doped MXene/HCFG/AgNW films for wearable electromagnetic shielding devices with multimodal energy conversion and healthcare monitoring performances. ACS Nano 16, 7816–7833 (2022). https://doi.org/10.1021/acsnano.2c00448
P. Hu, J. Lyu, C. Fu, W.B. Gong, J. Liao et al., Multifunctional aramid nanofiber/carbon nanotube hybrid aerogel films. ACS Nano 14, 688–697 (2020). https://doi.org/10.1021/acsnano.9b07459
R. Zhang, B. Xiang, Y. Wang, S. Tang, X. Meng, A lotus-inspired 3D biomimetic design toward an advanced solar steam evaporator with ultrahigh efficiency and remarkable stability. Mater. Horiz. 9, 1232–1242 (2022). https://doi.org/10.1039/d1mh02020j