Environment-Stable CoxNiy Encapsulation in Stacked Porous Carbon Nanosheets for Enhanced Microwave Absorption
Corresponding Author: Guangbin Ji
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 102
Abstract
Magnetic/dielectric@porous carbon composites, derived from metal–organic frameworks (MOFs) with adjustable composition ratio, have attracted wide attention due to their unique magnetoelectric properties. In addition, MOFs-derived porous carbon-based materials can meet the needs of lightweight feature. This paper reports a simple process for synthesizing stacked CoxNiy@C nanosheets derived from CoxNiy-MOFs nanosheets with multiple interfaces, which is good to the microwave response. The CoxNiy@C with controllable composition can be obtained by adjusting the ratio of Co2+ and Ni2+. It is supposed that the increased Co content is benefit to the dielectric and magnetic loss. Additionally, the bandwidth of CoNi@C nanosheets can take up almost the whole Ku band. Moreover, this composite has better environmental stability in air, which characteristic provides a sustainable potential for the practical application.
Highlights:
1 The microwave absorbing performance of alloy@C composites can be controlled through regulating ratio of metal ions.
2 Carbon-based alloy@C composites exhibit the potential stability of microwave absorption with almost the whole Ku band for the practical application.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.H. Luo, K. Zhang, M.L. Cheng, M.M. Gu, X.K. Sun, MoS2 spheres decorated on hollow porous ZnO microspheres with strong wideband microwave absorption. Chem. Eng. J. 380, 122625 (2020). https://doi.org/10.1016/j.cej.2019.122625
- M. Jahan, R.O. Inakpenu, K. Li, G.L. Zhao, Enhancing the mechanical strength for a microwave absorption composite based on graphene nanoplatelet/epoxy with carbon fibers. Sci. Res. 9, 230 (2019). https://doi.org/10.4236/ojcm.2019.92013
- X.H. Liang, B. Quan, Z.M. Man, B.C. Cao, N. Li, C.H. Wang, G.B. Ji, T. Yu, Self-assembly three-dimensional porous carbon networks for efficient dielectric attenuation. ACS Appl. Mater. Interfaces 11, 30228–30233 (2019). https://doi.org/10.1021/acsami.9b08365
- L.X. Huang, Y.P. Duan, X.H. Dai, Y.S. Zeng, G.J. Ma, Y. Liu, S.H. Gao, W.P. Zhang, Bioinspired metamaterials: multibands electromagnetic wave adaptability and hydrophobic characteristics. Small 15, 1902730 (2019). https://doi.org/10.1002/smll.201902730
- O. Balci, E.O. Polat, N. Kakenov, C. Kocabas, Graphene-enabled electrically switchable radar-absorbing surfaces. Nat. Commun. 6, 1–10 (2015). https://doi.org/10.1038/ncomms7628
- X.L. Li, X.W. Yin, C.Q. Song, M.K. Han, H.L. Xu, W.Y. Duan, L.F. Cheng, L.T. Zhang, Self-assembly core-shell graphene-bridged hollow Mxenes spheres 3D foam with ultrahigh specific EM absorption performance. Adv. Funct. Mater. 28, 1803938 (2018). https://doi.org/10.1002/adfm.201803938
- M.S. Cao, X.X. Wang, W.Q. Cao, X.Y. Fang, B. Wen, J. Yuan, Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small 14, 1800987 (2018). https://doi.org/10.1002/smll.201800987
- J.C. Shu, X.Y. Yang, X.R. Zhang, X.Y. Huang, M.S. Cao, L. Li, H.J. Yang, W.Q. Cao, Tailoring MOF-based materials to tune electromagnetic property for great microwave absorbers and devices. Carbon 162, 157–171 (2020). https://doi.org/10.1016/j.carbon.2020.02.047
- W. Liu, L. Liu, G.B. Ji, D.R. Li, Y.N. Zhang, J.N. Ma, Y.W. Du, Composition design and structural characterization of MOF-derived composites with controllable electromagnetic properties. ACS Sustain. Chem. Eng. 5, 7961–7971 (2017). https://doi.org/10.1021/acssuschemeng.7b01514
- X. Bai, Y.H. Zhai, Y. Zhang, Green approach to prepare graphene-based composites with high microwave absorption capacity. J. Phys. Chem. C 115, 11673–11677 (2011). https://doi.org/10.1021/jp202475m
- H.T. Guan, H.Y. Wang, Y.L. Zhang, C.J. Dong, G. Chen, Y.D. Wang, J.B. Xie, Microwave absorption performance of Ni(OH)2 decorating biomass carbon composites from jackfruit peel. Appl. Surf. Sci. 447, 261–268 (2018). https://doi.org/10.1016/j.apsusc.2018.03.225
- C.H. Zhou, C. Wu, M.A. Yan, Versatile strategy towards magnetic/dielectric porous heterostructure with confinement effect for lightweight and broadband electromagnetic wave absorption. Chem. Eng. J. 370, 988–996 (2019). https://doi.org/10.1016/j.cej.2019.03.295
- B. Quan, X.H. Liang, G.B. Ji, Y.N. Zhang, G.Y. Xu, Y.W. Du, Cross-linking-derived synthesis of porous CoxNiy/C nanocomposites for excellent electromagnetic behaviors. ACS Appl. Mater. Interfaces 9, 38814–38823 (2017). https://doi.org/10.1021/acsami.7b13411
- Q.H. Liu, Q. Cao, H. Bi, C.Y. Liang, K.P. Yuan, W. She, Y.J. Yang, R.C. Che, CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28, 486–490 (2016). https://doi.org/10.1002/adma.201503149
- J. Feng, F.Z. Pu, Z.X. Li, X.H. Li, X.Y. Hu, J.T. Bai, Interfacial interactions and synergistic effect of CoNi nanocrystals and nitrogen-doped graphene in a composite microwave absorber. Carbon 104, 214–225 (2016). https://doi.org/10.1016/j.carbon.2016.04.006
- B. Quan, W.H. Shi, S.J.H. Ong, X.C. Lu, P.L.Y. Wang et al., Defect engineering in two common types of dielectric materials for electromagnetic absorption applications. Adv. Funct. Mater. 29, 1901236 (2019). https://doi.org/10.1002/adfm.201901236
- H.Q. Zhao, Y. Cheng, W. Liu, L.J. Yang, B.S. Zhang, L.Y.P. Wang, G.B. Ji, Z.C.J. Xu, Biomass-derived porous carbon-based nanostructures for microwave absorption. Nano-Micro Lett. 11, 24 (2019). https://doi.org/10.1007/s40820-019-0255-3
- G. Li, T. Xie, S. Yang, J.H. Jin, J.M. Jiang, Microwave absorption enhancement of porous carbon fibers compared with carbon nanofibers. J. Phys. Chem. C 116, 9196–9201 (2012). https://doi.org/10.1021/jp300050u
- X. Qiu, L. Wang, H. Zhu, Y.K. Guan, Q.T. Zhang, Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon. Nanoscale 9, 7408–7418 (2017). https://doi.org/10.1039/C7NR02628E
- Y. Liang, R. Fu, D. Wu, Reactive template-induced self-assembly to ordered mesoporous polymeric and carbonaceous materials. ACS Nano 7, 1748–1754 (2013). https://doi.org/10.1021/nn305841e
- Z. Wu, Q. Li, D. Feng, P. Webley, D. Zhao, Ordered mesoporous crystalline γ-Al2O3 with variable architecture porosity from a single hard template. J. Am. Chem. Soc. 132, 12042–12050 (2010). https://doi.org/10.1021/ja104379a
- C.W. Abney, K.M.L. Taylor-Pashow, S.R. Russell, Y. Chen, R. Samantaray, J.V. Lockard, W.B. Lin, Topotactic transformations of metal-organic frameworks to highly porous and stable inorganic sorbents for efficient radionuclide sequestration. Chem. Mater. 26, 5231–5243 (2014). https://doi.org/10.1021/cm501894h
- P. Falcaro, R. Ricco, C.M. Doherty, K. Liang, A.J. Hillb, M.J. Styles, MOF positioning technology and device fabrication. Chem. Soc. Rev. 43, 5513–5560 (2014). https://doi.org/10.1039/C4CS00089G
- X.M. Zhang, G.B. Ji, W. Liu, B. Quan, X.H. Liang, C.M. Shang, Y. Cheng, Y.W. Du, Thermal conversion of an Fe3O4@metal-organic framework: a new method for an efficient Fe-Co/nanoporous carbon microwave absorbing material. Nanoscale 7, 12932–12942 (2015). https://doi.org/10.1039/C5NR03176A
- J.C. Shu, M.S. Cao, M. Zhang, X.X. Wang, W.Q. Cao, X.Y. Fang, M.Q. Cao, Molecular patching engineering to drive energy conversion as efficient and environment-friendly cell toward wireless power transmission. Adv. Funct. Mater. (2020). https://doi.org/10.1002/adfm.201908299
- M.S. Cao, X.X. Wang, M. Zhang, W.Q. Cao, X.Y. Fang, J. Yuan, Variable-temperature electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy. Adv. Mater. (2020). https://doi.org/10.1002/adma.201907156
- Y.F. Wang, D.L. Chen, X. Yin, P. Xu, F. Wu, M. He, Hybrid of MoS2 and reduced graphene oxide: a lightweight and broadband electromagnetic wave absorber. ACS Appl. Mater. Interfaces 7, 26226–26234 (2015). https://doi.org/10.1021/acsami.5b08410
- J.P. Xie, Y.Q. Zhu, N. Zhuang, H. Lei, W.L. Zhu et al., Rational design of metal organic framework derived FeS2 hollow nanocages@reduced graphene oxide for K-ion storage. Nanoscale 10, 17092–17098 (2018). https://doi.org/10.1039/c8nr05239e
- Z.M. Man, P. Li, D. Zhou, R. Zang, S.J. Wang et al., High-performance lithium-organic batteries by achieving 16 lithium storage in poly (imine-anthraquinone). J. Mater. Chem. A 7, 2368–2375 (2019). https://doi.org/10.1039/C8TA11230D
- R. Kuchi, H.M. Nguyen, V. Dongquoc, P.C. Van, S. Surabhi, S.G. Yoon, D. Kim, J.R. Jeong, In-situ Co-arc discharge synthesis of Fe3O4/SWCNT composites for highly effective microwave absorption. Phys. Status Solidi A 215, 1700989 (2018). https://doi.org/10.1002/pssa.201700989
- W.H. Gu, B. Quan, X.H. Liang, W. Liu, G.B. Ji, Y.W. Du, Composition and structure design of Co3O4 nanowires network by nickel foam with effective electromagnetic performance in C and X Band. ACS Sustain. Chem. Eng. 7, 5543–5552 (2019). https://doi.org/10.1021/acssuschemeng.9b00017
- X. Yang, Y.P. Duan, Y.S. Zeng, H.F. Pang, G.J. Ma, X.H. Dai, Experimental and theoretical evidence for temperature driving an electric-magnetic complementary effect in magnetic microwave absorbing materials. J. Mater. Chem. C 8, 1583–1590 (2020). https://doi.org/10.1039/c9tc06551b
- L.L. Song, Y.P. Duan, J. Liu, H.F. Pang, Transformation between nanosheets and nanowires structure in MnO2 upon providing Co2+ ions and applications for microwave absorption. Nano Res. 13, 95–104 (2020). https://doi.org/10.1007/s12274-019-2578-2
- X.J. Zhang, J.Q. Zhu, P.G. Yin, A.P. Guo, A.P. Huang, L. Guo, G.S. Wang, Tunable high-performance microwave absorption of Co1−xS hollow spheres constructed by nanosheets within ultralow filler loading. Adv. Funct. Mater. 28, 1800761 (2018). https://doi.org/10.1002/adfm.201800761
- S. Yun, A. Kirakosyan, S. Surabhi, J.R. Jeong, J. Choi, Controlled morphology of MWCNTs driven by polymer-grafted nanoparticles for enhanced microwave absorption. J. Mater. Chem. C 5, 8436–8443 (2017). https://doi.org/10.1039/C7TC02892J
- X.F. Zhang, X.L. Dong, H. Huang, B. Lv, J.P. Lei, C.J. Choi, Microstructure and microwave absorption properties of carbon-coated iron nanocapsules. J. Phys. D: Appl. Phys. 40, 5383–5387 (2007). https://doi.org/10.1088/0022-3727/40/17/056
- J. Ma, J.G. Li, X. Ni, X.D. Zhang, J.J. Huang, Microwave resonance in Fe/SiO2 nanocomposite. Appl. Phys. Lett. 95, 102505 (2009). https://doi.org/10.1063/1.3224883
- X.Q. Cui, X.H. Liang, W. Liu, W.H. Gu, G.B. Ji, Y.W. Du, Stable microwave absorber derived from 1D customized heterogeneous structures of Fe3N@C. Chem. Eng. J. 381, 122589 (2020). https://doi.org/10.1016/j.cej.2019.122589
- Z.G. An, S.L. Pan, J.J. Zhang, Facile preparation and electromagnetic properties of core-shell composite spheres composed of aloe-like nickel flowers assembled on hollow glass spheres. J. Phys. Chem. C 113, 2715–2721 (2009). https://doi.org/10.1021/jp809199s
- B.H. An, B.C. Park, H.A. Yassi, J.S. Lee, J.R. Park, Y.K. Kim, J.E. Ryu, D.S. Choi, Fabrication of graphene-magnetite multi-granule nanocluster composites for microwave absorption application. J. Compos. Mater. 53, 28–30 (2019). https://doi.org/10.1177/0021998319853032
- J.S. Deng, X. Zhang, B. Zhao, Z.Y. Bai, S.M. Wen et al., Fluffy microrods to heighten the microwave absorption properties through tuning the electronic state of Co/CoO. J. Mater. Chem. C 6, 7128–7140 (2018). https://doi.org/10.1039/C8TC02520G
- M.S. Cao, W.L. Song, Z.L. Hou, B. Wen, J. Yuan, The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48, 788–796 (2010). https://doi.org/10.1016/j.carbon.2009.10.028
- B. Wen, M.S. Cao, Z.L. Hou, W.L. Song, L. Zhang et al., Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 65, 124–139 (2013). https://doi.org/10.1016/j.carbon.2013.07.110
- W.Q. Cao, X.X. Wang, J. Yuan, W.Z. Wang, M.S. Cao, Temperature dependent microwave absorption of ultrathin graphene composites. J. Mater. Chem. C 3, 10017–10022 (2015). https://doi.org/10.1039/c5tc02185e
- B. Wen, M.S. Cao, M.M. Lu, W.Q. Cao, H.L. Shi et al., Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26, 3484–3489 (2014). https://doi.org/10.1002/adma.201400108
References
J.H. Luo, K. Zhang, M.L. Cheng, M.M. Gu, X.K. Sun, MoS2 spheres decorated on hollow porous ZnO microspheres with strong wideband microwave absorption. Chem. Eng. J. 380, 122625 (2020). https://doi.org/10.1016/j.cej.2019.122625
M. Jahan, R.O. Inakpenu, K. Li, G.L. Zhao, Enhancing the mechanical strength for a microwave absorption composite based on graphene nanoplatelet/epoxy with carbon fibers. Sci. Res. 9, 230 (2019). https://doi.org/10.4236/ojcm.2019.92013
X.H. Liang, B. Quan, Z.M. Man, B.C. Cao, N. Li, C.H. Wang, G.B. Ji, T. Yu, Self-assembly three-dimensional porous carbon networks for efficient dielectric attenuation. ACS Appl. Mater. Interfaces 11, 30228–30233 (2019). https://doi.org/10.1021/acsami.9b08365
L.X. Huang, Y.P. Duan, X.H. Dai, Y.S. Zeng, G.J. Ma, Y. Liu, S.H. Gao, W.P. Zhang, Bioinspired metamaterials: multibands electromagnetic wave adaptability and hydrophobic characteristics. Small 15, 1902730 (2019). https://doi.org/10.1002/smll.201902730
O. Balci, E.O. Polat, N. Kakenov, C. Kocabas, Graphene-enabled electrically switchable radar-absorbing surfaces. Nat. Commun. 6, 1–10 (2015). https://doi.org/10.1038/ncomms7628
X.L. Li, X.W. Yin, C.Q. Song, M.K. Han, H.L. Xu, W.Y. Duan, L.F. Cheng, L.T. Zhang, Self-assembly core-shell graphene-bridged hollow Mxenes spheres 3D foam with ultrahigh specific EM absorption performance. Adv. Funct. Mater. 28, 1803938 (2018). https://doi.org/10.1002/adfm.201803938
M.S. Cao, X.X. Wang, W.Q. Cao, X.Y. Fang, B. Wen, J. Yuan, Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small 14, 1800987 (2018). https://doi.org/10.1002/smll.201800987
J.C. Shu, X.Y. Yang, X.R. Zhang, X.Y. Huang, M.S. Cao, L. Li, H.J. Yang, W.Q. Cao, Tailoring MOF-based materials to tune electromagnetic property for great microwave absorbers and devices. Carbon 162, 157–171 (2020). https://doi.org/10.1016/j.carbon.2020.02.047
W. Liu, L. Liu, G.B. Ji, D.R. Li, Y.N. Zhang, J.N. Ma, Y.W. Du, Composition design and structural characterization of MOF-derived composites with controllable electromagnetic properties. ACS Sustain. Chem. Eng. 5, 7961–7971 (2017). https://doi.org/10.1021/acssuschemeng.7b01514
X. Bai, Y.H. Zhai, Y. Zhang, Green approach to prepare graphene-based composites with high microwave absorption capacity. J. Phys. Chem. C 115, 11673–11677 (2011). https://doi.org/10.1021/jp202475m
H.T. Guan, H.Y. Wang, Y.L. Zhang, C.J. Dong, G. Chen, Y.D. Wang, J.B. Xie, Microwave absorption performance of Ni(OH)2 decorating biomass carbon composites from jackfruit peel. Appl. Surf. Sci. 447, 261–268 (2018). https://doi.org/10.1016/j.apsusc.2018.03.225
C.H. Zhou, C. Wu, M.A. Yan, Versatile strategy towards magnetic/dielectric porous heterostructure with confinement effect for lightweight and broadband electromagnetic wave absorption. Chem. Eng. J. 370, 988–996 (2019). https://doi.org/10.1016/j.cej.2019.03.295
B. Quan, X.H. Liang, G.B. Ji, Y.N. Zhang, G.Y. Xu, Y.W. Du, Cross-linking-derived synthesis of porous CoxNiy/C nanocomposites for excellent electromagnetic behaviors. ACS Appl. Mater. Interfaces 9, 38814–38823 (2017). https://doi.org/10.1021/acsami.7b13411
Q.H. Liu, Q. Cao, H. Bi, C.Y. Liang, K.P. Yuan, W. She, Y.J. Yang, R.C. Che, CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28, 486–490 (2016). https://doi.org/10.1002/adma.201503149
J. Feng, F.Z. Pu, Z.X. Li, X.H. Li, X.Y. Hu, J.T. Bai, Interfacial interactions and synergistic effect of CoNi nanocrystals and nitrogen-doped graphene in a composite microwave absorber. Carbon 104, 214–225 (2016). https://doi.org/10.1016/j.carbon.2016.04.006
B. Quan, W.H. Shi, S.J.H. Ong, X.C. Lu, P.L.Y. Wang et al., Defect engineering in two common types of dielectric materials for electromagnetic absorption applications. Adv. Funct. Mater. 29, 1901236 (2019). https://doi.org/10.1002/adfm.201901236
H.Q. Zhao, Y. Cheng, W. Liu, L.J. Yang, B.S. Zhang, L.Y.P. Wang, G.B. Ji, Z.C.J. Xu, Biomass-derived porous carbon-based nanostructures for microwave absorption. Nano-Micro Lett. 11, 24 (2019). https://doi.org/10.1007/s40820-019-0255-3
G. Li, T. Xie, S. Yang, J.H. Jin, J.M. Jiang, Microwave absorption enhancement of porous carbon fibers compared with carbon nanofibers. J. Phys. Chem. C 116, 9196–9201 (2012). https://doi.org/10.1021/jp300050u
X. Qiu, L. Wang, H. Zhu, Y.K. Guan, Q.T. Zhang, Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon. Nanoscale 9, 7408–7418 (2017). https://doi.org/10.1039/C7NR02628E
Y. Liang, R. Fu, D. Wu, Reactive template-induced self-assembly to ordered mesoporous polymeric and carbonaceous materials. ACS Nano 7, 1748–1754 (2013). https://doi.org/10.1021/nn305841e
Z. Wu, Q. Li, D. Feng, P. Webley, D. Zhao, Ordered mesoporous crystalline γ-Al2O3 with variable architecture porosity from a single hard template. J. Am. Chem. Soc. 132, 12042–12050 (2010). https://doi.org/10.1021/ja104379a
C.W. Abney, K.M.L. Taylor-Pashow, S.R. Russell, Y. Chen, R. Samantaray, J.V. Lockard, W.B. Lin, Topotactic transformations of metal-organic frameworks to highly porous and stable inorganic sorbents for efficient radionuclide sequestration. Chem. Mater. 26, 5231–5243 (2014). https://doi.org/10.1021/cm501894h
P. Falcaro, R. Ricco, C.M. Doherty, K. Liang, A.J. Hillb, M.J. Styles, MOF positioning technology and device fabrication. Chem. Soc. Rev. 43, 5513–5560 (2014). https://doi.org/10.1039/C4CS00089G
X.M. Zhang, G.B. Ji, W. Liu, B. Quan, X.H. Liang, C.M. Shang, Y. Cheng, Y.W. Du, Thermal conversion of an Fe3O4@metal-organic framework: a new method for an efficient Fe-Co/nanoporous carbon microwave absorbing material. Nanoscale 7, 12932–12942 (2015). https://doi.org/10.1039/C5NR03176A
J.C. Shu, M.S. Cao, M. Zhang, X.X. Wang, W.Q. Cao, X.Y. Fang, M.Q. Cao, Molecular patching engineering to drive energy conversion as efficient and environment-friendly cell toward wireless power transmission. Adv. Funct. Mater. (2020). https://doi.org/10.1002/adfm.201908299
M.S. Cao, X.X. Wang, M. Zhang, W.Q. Cao, X.Y. Fang, J. Yuan, Variable-temperature electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy. Adv. Mater. (2020). https://doi.org/10.1002/adma.201907156
Y.F. Wang, D.L. Chen, X. Yin, P. Xu, F. Wu, M. He, Hybrid of MoS2 and reduced graphene oxide: a lightweight and broadband electromagnetic wave absorber. ACS Appl. Mater. Interfaces 7, 26226–26234 (2015). https://doi.org/10.1021/acsami.5b08410
J.P. Xie, Y.Q. Zhu, N. Zhuang, H. Lei, W.L. Zhu et al., Rational design of metal organic framework derived FeS2 hollow nanocages@reduced graphene oxide for K-ion storage. Nanoscale 10, 17092–17098 (2018). https://doi.org/10.1039/c8nr05239e
Z.M. Man, P. Li, D. Zhou, R. Zang, S.J. Wang et al., High-performance lithium-organic batteries by achieving 16 lithium storage in poly (imine-anthraquinone). J. Mater. Chem. A 7, 2368–2375 (2019). https://doi.org/10.1039/C8TA11230D
R. Kuchi, H.M. Nguyen, V. Dongquoc, P.C. Van, S. Surabhi, S.G. Yoon, D. Kim, J.R. Jeong, In-situ Co-arc discharge synthesis of Fe3O4/SWCNT composites for highly effective microwave absorption. Phys. Status Solidi A 215, 1700989 (2018). https://doi.org/10.1002/pssa.201700989
W.H. Gu, B. Quan, X.H. Liang, W. Liu, G.B. Ji, Y.W. Du, Composition and structure design of Co3O4 nanowires network by nickel foam with effective electromagnetic performance in C and X Band. ACS Sustain. Chem. Eng. 7, 5543–5552 (2019). https://doi.org/10.1021/acssuschemeng.9b00017
X. Yang, Y.P. Duan, Y.S. Zeng, H.F. Pang, G.J. Ma, X.H. Dai, Experimental and theoretical evidence for temperature driving an electric-magnetic complementary effect in magnetic microwave absorbing materials. J. Mater. Chem. C 8, 1583–1590 (2020). https://doi.org/10.1039/c9tc06551b
L.L. Song, Y.P. Duan, J. Liu, H.F. Pang, Transformation between nanosheets and nanowires structure in MnO2 upon providing Co2+ ions and applications for microwave absorption. Nano Res. 13, 95–104 (2020). https://doi.org/10.1007/s12274-019-2578-2
X.J. Zhang, J.Q. Zhu, P.G. Yin, A.P. Guo, A.P. Huang, L. Guo, G.S. Wang, Tunable high-performance microwave absorption of Co1−xS hollow spheres constructed by nanosheets within ultralow filler loading. Adv. Funct. Mater. 28, 1800761 (2018). https://doi.org/10.1002/adfm.201800761
S. Yun, A. Kirakosyan, S. Surabhi, J.R. Jeong, J. Choi, Controlled morphology of MWCNTs driven by polymer-grafted nanoparticles for enhanced microwave absorption. J. Mater. Chem. C 5, 8436–8443 (2017). https://doi.org/10.1039/C7TC02892J
X.F. Zhang, X.L. Dong, H. Huang, B. Lv, J.P. Lei, C.J. Choi, Microstructure and microwave absorption properties of carbon-coated iron nanocapsules. J. Phys. D: Appl. Phys. 40, 5383–5387 (2007). https://doi.org/10.1088/0022-3727/40/17/056
J. Ma, J.G. Li, X. Ni, X.D. Zhang, J.J. Huang, Microwave resonance in Fe/SiO2 nanocomposite. Appl. Phys. Lett. 95, 102505 (2009). https://doi.org/10.1063/1.3224883
X.Q. Cui, X.H. Liang, W. Liu, W.H. Gu, G.B. Ji, Y.W. Du, Stable microwave absorber derived from 1D customized heterogeneous structures of Fe3N@C. Chem. Eng. J. 381, 122589 (2020). https://doi.org/10.1016/j.cej.2019.122589
Z.G. An, S.L. Pan, J.J. Zhang, Facile preparation and electromagnetic properties of core-shell composite spheres composed of aloe-like nickel flowers assembled on hollow glass spheres. J. Phys. Chem. C 113, 2715–2721 (2009). https://doi.org/10.1021/jp809199s
B.H. An, B.C. Park, H.A. Yassi, J.S. Lee, J.R. Park, Y.K. Kim, J.E. Ryu, D.S. Choi, Fabrication of graphene-magnetite multi-granule nanocluster composites for microwave absorption application. J. Compos. Mater. 53, 28–30 (2019). https://doi.org/10.1177/0021998319853032
J.S. Deng, X. Zhang, B. Zhao, Z.Y. Bai, S.M. Wen et al., Fluffy microrods to heighten the microwave absorption properties through tuning the electronic state of Co/CoO. J. Mater. Chem. C 6, 7128–7140 (2018). https://doi.org/10.1039/C8TC02520G
M.S. Cao, W.L. Song, Z.L. Hou, B. Wen, J. Yuan, The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48, 788–796 (2010). https://doi.org/10.1016/j.carbon.2009.10.028
B. Wen, M.S. Cao, Z.L. Hou, W.L. Song, L. Zhang et al., Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 65, 124–139 (2013). https://doi.org/10.1016/j.carbon.2013.07.110
W.Q. Cao, X.X. Wang, J. Yuan, W.Z. Wang, M.S. Cao, Temperature dependent microwave absorption of ultrathin graphene composites. J. Mater. Chem. C 3, 10017–10022 (2015). https://doi.org/10.1039/c5tc02185e
B. Wen, M.S. Cao, M.M. Lu, W.Q. Cao, H.L. Shi et al., Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26, 3484–3489 (2014). https://doi.org/10.1002/adma.201400108