Strain-Induced Surface Interface Dual Polarization Constructs PML-Cu/Bi12O17Br2 High-Density Active Sites for CO2 Photoreduction
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 90
Abstract
The insufficient active sites and slow interfacial charge transfer of photocatalysts restrict the efficiency of CO2 photoreduction. The synchronized modulation of the above key issues is demanding and challenging. Herein, strain-induced strategy is developed to construct the Bi–O-bonded interface in Cu porphyrin-based monoatomic layer (PML-Cu) and Bi12O17Br2 (BOB), which triggers the surface interface dual polarization of PML-Cu/BOB (PBOB). In this multi-step polarization, the built-in electric field formed between the interfaces induces the electron transfer from conduction band (CB) of BOB to CB of PML-Cu and suppresses its reverse migration. Moreover, the surface polarization of PML-Cu further promotes the electron converge in Cu atoms. The introduction of PML-Cu endows a high density of dispersed Cu active sites on the surface of PBOB, significantly promoting the adsorption and activation of CO2 and CO desorption. The conversion rate of CO2 photoreduction to CO for PBOB can reach 584.3 μmol g−1, which is 7.83 times higher than BOB and 20.01 times than PML-Cu. This work offers valuable insights into multi-step polarization regulation and active site design for catalysts.
Highlights:
1 Strain induces coupling in Bi12O17Br2 and Cu porphyrin-based monoatomic layer (PML-Cu), constructing Bi–O bonding interface in PML-Cu/BOB (PBOB).
2 Surface interface dual polarization boosts internal electric field, promoting electron transfer.
3 PML-Cu provides high density of dispersed active Cu sites in PBOB, enhancing CO2 photoreduction.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Jiang, X. Xu, Y. Ma, H.S. Cho, D. Ding et al., Filling metal–organic framework mesopores with TiO2 for CO2 photoreduction. Nature 586, 549–554 (2020). https://doi.org/10.1038/s41586-020-2738-2
- Y. Zhao, G. Chen, T. Bian, C. Zhou, G.I.N. Waterhouse et al., Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets for efficient photoreduction of CO2 to CO with water. Adv. Mater. 27, 7824–7831 (2015). https://doi.org/10.1002/adma.201503730
- P. Madhusudan, R. Shi, S. Xiang, M. Jin, B.N. Chandrashekar et al., Construction of highly efficient Z-scheme ZnxCd1-xS/Au@g-C3N4 ternary heterojunction composite for visible-light-driven photocatalytic reduction of CO2 to solar fuel. Appl. Catal. B Environ. 282, 119600 (2021). https://doi.org/10.1016/j.apcatb.2020.119600
- V.-H. Nguyen, B.-S. Nguyen, Z. Jin, M. Shokouhimehr, H.W. Jang et al., Towards artificial photosynthesis: sustainable hydrogen utilization for photocatalytic reduction of CO2 to high-value renewable fuels. Chem. Eng. J. 402, 126184 (2020). https://doi.org/10.1016/j.cej.2020.126184
- C. Ban, Y. Duan, Y. Wang, J. Ma, K. Wang et al., Isotype heterojunction-boosted CO2 photoreduction to CO. Nano-Micro Lett. 14, 74 (2022). https://doi.org/10.1007/s40820-022-00821-9
- F. Zhang, Y.-H. Li, M.-Y. Qi, Y.M.A. Yamada, M. Anpo et al., Photothermal catalytic CO2 reduction over nanomaterials. Chem Catal. 1, 272–297 (2021). https://doi.org/10.1016/j.checat.2021.01.003
- A. Kumar, P. Singh, A.A.P. Khan, Q. Van Le, V.-H. Nguyen et al., CO2 photoreduction into solar fuels via vacancy engineered bismuth-based photocatalysts: Selectivity and mechanistic insights. Chem. Eng. J. 439, 135563 (2022). https://doi.org/10.1016/j.cej.2022.135563
- Y. Luo, H. Lee, Present and future of phase-selectively disordered blue TiO2 for energy and society sustainability. Nano-Micro Lett. 13, 45 (2021). https://doi.org/10.1007/s40820-020-00569-0
- H. Piao, G. Choi, X. Jin, S.J. Hwang, Y.J. Song et al., Monolayer graphitic carbon nitride as metal-free catalyst with enhanced performance in photo- and electro-catalysis. Nano-Micro Lett. 14, 55 (2022). https://doi.org/10.1007/s40820-022-00794-9
- V. Hasija, V.H. Nguyen, A. Kumar, P. Raizada, V. Krishnan et al., Advanced activation of persulfate by polymeric g-C3N4 based photocatalysts for environmental remediation: a review. J. Hazard. Mater. 413, 125324 (2021). https://doi.org/10.1016/j.jhazmat.2021.125324
- S. Yue, L. Chen, M. Zhang, Z. Liu, T. Chen et al., Electrostatic field enhanced photocatalytic CO2 conversion on BiVO4 nanowires. Nano-Micro Lett. 14, 15 (2021). https://doi.org/10.1007/s40820-021-00749-6
- M.G. Lee, J.W. Yang, H. Park, C.W. Moon, D.M. Andoshe et al., Crystal facet engineering of TiO2 nanostructures for enhancing photoelectrochemical water splitting with BiVO4 nanodots. Nano-Micro Lett. 14, 48 (2022). https://doi.org/10.1007/s40820-022-00795-8
- J. Wu, B.-Y. Deng, J. Liu, S.-R. Yang, M.-D. Li et al., Assembling CdSe quantum dots into polymeric micelles formed by a polyethylenimine-based amphiphilic polymer to enhance efficiency and selectivity of CO2-to-CO photoreduction in water. ACS Appl. Mater. Interfaces 14, 29945–29955 (2022). https://doi.org/10.1021/acsami.2c07656
- W. Xia, J. Wu, J.-C. Hu, S. Sun, M.-D. Li et al., Highly efficient photocatalytic conversion of CO2 to CO catalyzed by surface-ligand-removed and Cd-rich CdSe quantum dots. Chemsuschem 12, 4617–4622 (2019). https://doi.org/10.1002/cssc.201901633
- J. Wu, J. Liu, W. Xia, Y.-Y. Ren, F. Wang, Advances on photocatalytic CO2 reduction based on CdS and CdSe nano-semiconductors. Acta Phys. Chim. Sin. (2020). https://doi.org/10.3866/pku.whxb202008043
- K. Wang, Z. Hu, P. Yu, A.M. Balu, K. Li et al., Understanding bridging sites and accelerating quantum efficiency for photocatalytic CO2 reduction. Nano-Micro Lett. 16, 5 (2023). https://doi.org/10.1007/s40820-023-01221-3
- W. Zhan, L. Sun, X. Han, Recent progress on engineering highly efficient porous semiconductor photocatalysts derived from metal-organic frameworks. Nano-Micro Lett. 11, 1 (2019). https://doi.org/10.1007/s40820-018-0235-z
- Y. Sun, X. Meng, Y. Dall’Agnese, C. Dall’Aagnese, S. Duan et al., 2D MXenes as co-catalysts in photocatalysis: synthetic methods. Nano-Micro Lett. 11, 79 (2019). https://doi.org/10.1007/s40820-019-0309-6
- G. Yan, X. Sun, Y. Zhang, H. Li, H. Huang et al., Metal-free 2D/2D van der waals heterojunction based on covalent organic frameworks for highly efficient solar energy catalysis. Nano-Micro Lett. 15, 132 (2023). https://doi.org/10.1007/s40820-023-01100-x
- Y. Zhang, G. Zhang, J. Di, J. Xia, Bismuth-based materials for CO2 photoreduction. Curr. Opin. Green Sustain. Chem. 39, 100718 (2023). https://doi.org/10.1016/j.cogsc.2022.100718
- L. Zhang, W. Wang, D. Jiang, E. Gao, S. Sun, Photoreduction of CO2 on BiOCl nanoplates with the assistance of photoinduced oxygen vacancies. Nano Res. 8, 821–831 (2015). https://doi.org/10.1007/s12274-014-0564-2
- N. Han, W. Zhang, W. Guo, H. Pan, B. Jiang et al., Designing oxide catalysts for oxygen electrocatalysis: insights from mechanism to application. Nano-Micro Lett. 15, 185 (2023). https://doi.org/10.1007/s40820-023-01152-z
- D. Yang, S. Zuo, H. Yang, Y. Zhou, Q. Lu et al., Tailoring layer number of 2D porphyrin-based MOFs towards photocoupled electroreduction of CO2. Adv. Mater. 34, e2107293 (2022). https://doi.org/10.1002/adma.202107293
- D. Yang, S. Zuo, H. Yang, Y. Zhou, X. Wang, Freestanding millimeter-scale porphyrin-based monoatomic layers with 0.28 nm thickness for CO2 electrocatalysis. Angew. Chem. Int. Ed. 59, 18954–18959 (2020). https://doi.org/10.1002/anie.202006899
- F. Chen, H. Huang, L. Guo, Y. Zhang, T. Ma, The role of polarization in photocatalysis. Angew. Chem. Int. Ed. 58, 10061–10073 (2019). https://doi.org/10.1002/anie.201901361
- J. Di, W. Jiang, Z. Liu, Symmetry breaking for semiconductor photocatalysis. Trends Chem. 4, 1045–1055 (2022). https://doi.org/10.1016/j.trechm.2022.08.010
- R. Zeng, C. Cheng, F. Xing, Y. Zou, K. Ding et al., Dual vacancies induced local polarization electric field for high-performance photocatalytic H2 production. Appl. Catal. B Environ. 316, 121680 (2022). https://doi.org/10.1016/j.apcatb.2022.121680
- J. Di, X. Zhu, G. Hao, C. Zhu, H. Chen et al., Vacancy pair-induced charge rebalancing with surface and interfacial dual polarization for CO2 photoreduction. ACS Catal. 12, 15728–15736 (2022). https://doi.org/10.1021/acscatal.2c04675
- J. Di, C. Zhu, M. Ji, M. Duan, R. Long et al., Defect-rich Bi12 O17 Cl2 nanotubes self-accelerating charge separation for boosting photocatalytic CO2 reduction. Angew. Chem. Int. Ed. 57, 14847–14851 (2018). https://doi.org/10.1002/anie.201809492
- F. Zhao, G. Zhan, S.-F. Zhou, Intercalation of laminar Cu–Al LDHs with molecular TCPP(M) (M = Zn Co, Ni, and Fe) towards high-performance CO2 hydrogenation catalysts. Nanoscale 12, 13145–13156 (2020). https://doi.org/10.1039/D0NR01916J
- M. Zhou, D.-P. Xu, T.-C. Liu, P. Zhang, S.-Q. Gao et al., Molecular spring washers: Raman scattering studies on Tpp J-aggregates under high pressure. J. Phys. Chem. B 112, 15562–15568 (2008). https://doi.org/10.1021/jp8071537
- J. Meng, Y. Duan, S. Jing, J. Ma, K. Wang et al., Facet junction of BiOBr nanosheets boosting spatial charge separation for CO2 photoreduction. Nano Energy 92, 106671 (2022). https://doi.org/10.1016/j.nanoen.2021.106671
- X. Zhang, Y. Wang, M. Gu, M. Wang, Z. Zhang et al., Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction. Nat. Energy 5, 684–692 (2020). https://doi.org/10.1038/s41560-020-0667-9
- H. Wang, S. Chen, D. Yong, X. Zhang, S. Li et al., Giant electron-hole interactions in confined layered structures for molecular oxygen activation. J. Am. Chem. Soc. 139, 4737–4742 (2017). https://doi.org/10.1021/jacs.6b12273
- Y. Zhang, F. Guo, K. Wang, J. Di, B. Min et al., Precisely modulate interfacial Bi-O bridge bond in Co-TCPP/Bi3O4Br to trigger long-lasting charge separation for boosting CO2 photoreduction. Chem. Eng. J. 465, 142663 (2023). https://doi.org/10.1016/j.cej.2023.142663
- L. Wang, S. Duan, P. Jin, H. She, J. Huang et al., Anchored Cu(II) tetra(4-carboxylphenyl)porphyrin to P25 (TiO2) for efficient photocatalytic ability in CO2 reduction. Appl. Catal. B Environ. 239, 599–608 (2018). https://doi.org/10.1016/j.apcatb.2018.08.007
- J. Li, X. Wu, W. Pan, G. Zhang, H. Chen, Vacancy-rich monolayer BiO2-x as a highly efficient UV, visible, and near-infrared responsive photocatalyst. Angew. Chem. Int. Ed. 57, 491–495 (2018). https://doi.org/10.1002/anie.201708709
- B.R. Chen, V.H. Nguyen, J.C.S. Wu, R. Martin, K. Kočí, Renewable fuel by photohydrogenation of CO2: impact of the nature of Cu species loaded TiO2. Phys. Chem. Chem. Phys. 18, 4942–4951 (2016). https://doi.org/10.1039/C5CP06999H
- T.M. Ivanova, K.I. Maslakov, A.A. Sidorov, M.A. Kiskin, R.V. Linko et al., XPS detection of unusual Cu(II) to Cu(I) transition on the surface of complexes with redox-active ligands. J. Electron Spectrosc. Relat. Phenom. 238, 146878 (2020). https://doi.org/10.1016/j.elspec.2019.06.010
- F. Xu, K. Meng, B. Cheng, S. Wang, J. Xu et al., Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction. Nat. Commun. 11, 4613 (2020). https://doi.org/10.1038/s41467-020-18350-7
- X. Sun, L. Li, S. Jin, W. Shao, H. Wang et al., Interface boosted highly efficient selective photooxidation in Bi3O4Br/Bi2O3 heterojunctions. eScience 3, 100095 (2023). https://doi.org/10.1016/j.esci.2023.100095
- F. Gao, E.D. Walter, E.M. Karp, J. Luo, R.G. Tonkyn et al., Structure–activity relationships in NH3-SCR over Cu-SSZ-13 as probed by reaction kinetics and EPR studies. J. Catal. 300, 20–29 (2013). https://doi.org/10.1016/j.jcat.2012.12.020
- Y.A. Wu, I. McNulty, C. Liu, K.C. Lau, Q. Liu et al., Facet-dependent active sites of a single Cu2O p photocatalyst for CO2 reduction to methanol. Nat. Energy 4, 957–968 (2019). https://doi.org/10.1038/s41560-019-0490-3
- H. Gao, J. Wang, M. Jia, F. Yang, R.S. Andriamitantsoa et al., Construction of TiO2 nanosheets/tetra (4-carboxyphenyl) porphyrin hybrids for efficient visible-light photoreduction of CO2. Chem. Eng. J. 374, 684–693 (2019). https://doi.org/10.1016/j.cej.2019.06.002
- H. Lin, Y. Liu, Z. Wang, L. Ling, H. Huang et al., Enhanced CO2 photoreduction through spontaneous charge separation in end-capping assembly of heterostructured covalent-organic frameworks. Angew. Chem. Int. Ed. 61, e202214142 (2022). https://doi.org/10.1002/anie.202214142
- Y. Zhang, J. Di, X. Zhu, M. Ji, C. Chen et al., Chemical bonding interface in Bi2Sn2O7/BiOBr S-scheme heterojunction triggering efficient N2 photofixation. Appl. Catal. B Environ. 323, 122148 (2023). https://doi.org/10.1016/j.apcatb.2022.122148
- Y. Wang, F. Xie, R. Li, Z. Yu, X. Jian et al., Bi3O4Br/Ti3C2 Schottky junction with enhanced active species generation for boosting visible-light photodegradation bisphenol A activity. Sep. Purif. Technol. 318, 124001 (2023). https://doi.org/10.1016/j.seppur.2023.124001
- S. Xie, C. Deng, Q. Huang, C. Zhang, C. Chen et al., Facilitated photocatalytic CO2 reduction in aerobic environment on a copper-porphyrin metal-organic framework. Angew. Chem. Int. Ed. 62, e202216717 (2023). https://doi.org/10.1002/anie.202216717
- Y. Shi, G. Zhan, H. Li, X. Wang, X. Liu et al., Simultaneous manipulation of bulk excitons and surface defects for ultrastable and highly selective CO2 photoreduction. Adv. Mater. 33, e2100143 (2021). https://doi.org/10.1002/adma.202100143
- Y. Wang, K. Wang, J. Meng, C. Ban, Y. Duan et al., Constructing atomic surface concaves on Bi5O7Br nanotube for efficient photocatalytic CO2 reduction. Nano Energy 109, 108305 (2023). https://doi.org/10.1016/j.nanoen.2023.108305
- Y. Wang, J. Hu, T. Ge, F. Chen, Y. Lu et al., Gradient cationic vacancies enabling inner-to-outer tandem homojunctions: strong local internal electric field and reformed basic sites boosting CO2 photoreduction. Adv. Mater. 35, e2302538 (2023). https://doi.org/10.1002/adma.202302538
- L. Wang, X. Zhao, D. Lv, C. Liu, W. Lai et al., Promoted photocharge separation in 2D lateral epitaxial heterostructure for visible-light-driven CO2 photoreduction. Adv. Mater. 32, e2004311 (2020). https://doi.org/10.1002/adma.202004311
- J. Di, C. Chen, C. Zhu, R. Long, H. Chen et al., Surface local polarization induced by bismuth-oxygen vacancy pairs tuning non-covalent interaction for CO2 photoreduction. Adv. Energy Mater. 11, 2102389 (2021). https://doi.org/10.1002/aenm.202102389
- Y. Wang, Y. Qu, B. Qu, L. Bai, Y. Liu et al., Construction of six-oxygen-coordinated single Ni sites on g-C3 N4 with boron-oxo species for photocatalytic water-activation-induced CO2 reduction. Adv. Mater. 33, e2105482 (2021). https://doi.org/10.1002/adma.202105482
- H. Yu, F. Chen, X. Li, H. Huang, Q. Zhang et al., Synergy of ferroelectric polarization and oxygen vacancy to promote CO2 photoreduction. Nat. Commun. 12, 4594 (2021). https://doi.org/10.1038/s41467-021-24882-3
- G. Liu, B. Wang, X. Zhu, P. Ding, J. Zhao et al., Edge-site-rich ordered macroporous BiOCl triggers C=O activation for efficient CO2 photoreduction. Small 18, e2105228 (2022). https://doi.org/10.1002/smll.202105228
- B. Wang, W. Zhang, G. Liu, H. Chen, Y.-X. Weng et al., Excited electron-rich Bi(3–x)+ sites: a quantum well-like structure for highly promoted selective photocatalytic CO2 reduction performance. Adv. Funct. Mater. 32, 2202885 (2022). https://doi.org/10.1002/adfm.202202885
- F. Wang, S.X. Zhang, F.B. Yu, Y. Liu, L.J. Guo, Optimization strategy for producing carbon based fuels by photocatalytic CO2 reduction. CIESC J. 74, 29–44 (2023). https://doi.org/10.11949/0438-1157.20221120
- M. Liu, M. Peng, B. Dong, Y. Teng, L. Feng et al., Explicating the role of metal centers in porphyrin-based MOFs of PCN-222(M) for electrochemical reduction of CO2. Chin. J. Struct. Chem. 41(7), 2207046–2207052 (2022). https://doi.org/10.14102/j.cnki.0254-5861.2022-0057
- Z. Xing, X. Hu, X. Feng, Tuning the microenvironment in gas-diffusion electrodes enables high-rate CO2 electrolysis to formate. ACS Energy Lett. 6, 1694–1702 (2021). https://doi.org/10.1021/acsenergylett.1c00612
- J. Di, W. Jiang, Recent progress of low-dimensional metal sulfides photocatalysts for energy and environmental applications. Mater. Today Catal. 1, 100001 (2023). https://doi.org/10.1016/j.mtcata.2023.100001
- S. Bai, H. Qiu, M. Song, G. He, F. Wang et al., Porous fixed-bed photoreactor for boosting C–C coupling in photocatalytic CO2 reduction. eScience 2, 428–437 (2022). https://doi.org/10.1016/j.esci.2022.06.006
- Y. Yu, X.-A. Dong, P. Chen, Q. Geng, H. Wang et al., Synergistic effect of Cu single atoms and Au–Cu alloy nanops on TiO2 for efficient CO2 photoreduction. ACS Nano 15, 14453–14464 (2021). https://doi.org/10.1021/acsnano.1c03961
References
Z. Jiang, X. Xu, Y. Ma, H.S. Cho, D. Ding et al., Filling metal–organic framework mesopores with TiO2 for CO2 photoreduction. Nature 586, 549–554 (2020). https://doi.org/10.1038/s41586-020-2738-2
Y. Zhao, G. Chen, T. Bian, C. Zhou, G.I.N. Waterhouse et al., Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets for efficient photoreduction of CO2 to CO with water. Adv. Mater. 27, 7824–7831 (2015). https://doi.org/10.1002/adma.201503730
P. Madhusudan, R. Shi, S. Xiang, M. Jin, B.N. Chandrashekar et al., Construction of highly efficient Z-scheme ZnxCd1-xS/Au@g-C3N4 ternary heterojunction composite for visible-light-driven photocatalytic reduction of CO2 to solar fuel. Appl. Catal. B Environ. 282, 119600 (2021). https://doi.org/10.1016/j.apcatb.2020.119600
V.-H. Nguyen, B.-S. Nguyen, Z. Jin, M. Shokouhimehr, H.W. Jang et al., Towards artificial photosynthesis: sustainable hydrogen utilization for photocatalytic reduction of CO2 to high-value renewable fuels. Chem. Eng. J. 402, 126184 (2020). https://doi.org/10.1016/j.cej.2020.126184
C. Ban, Y. Duan, Y. Wang, J. Ma, K. Wang et al., Isotype heterojunction-boosted CO2 photoreduction to CO. Nano-Micro Lett. 14, 74 (2022). https://doi.org/10.1007/s40820-022-00821-9
F. Zhang, Y.-H. Li, M.-Y. Qi, Y.M.A. Yamada, M. Anpo et al., Photothermal catalytic CO2 reduction over nanomaterials. Chem Catal. 1, 272–297 (2021). https://doi.org/10.1016/j.checat.2021.01.003
A. Kumar, P. Singh, A.A.P. Khan, Q. Van Le, V.-H. Nguyen et al., CO2 photoreduction into solar fuels via vacancy engineered bismuth-based photocatalysts: Selectivity and mechanistic insights. Chem. Eng. J. 439, 135563 (2022). https://doi.org/10.1016/j.cej.2022.135563
Y. Luo, H. Lee, Present and future of phase-selectively disordered blue TiO2 for energy and society sustainability. Nano-Micro Lett. 13, 45 (2021). https://doi.org/10.1007/s40820-020-00569-0
H. Piao, G. Choi, X. Jin, S.J. Hwang, Y.J. Song et al., Monolayer graphitic carbon nitride as metal-free catalyst with enhanced performance in photo- and electro-catalysis. Nano-Micro Lett. 14, 55 (2022). https://doi.org/10.1007/s40820-022-00794-9
V. Hasija, V.H. Nguyen, A. Kumar, P. Raizada, V. Krishnan et al., Advanced activation of persulfate by polymeric g-C3N4 based photocatalysts for environmental remediation: a review. J. Hazard. Mater. 413, 125324 (2021). https://doi.org/10.1016/j.jhazmat.2021.125324
S. Yue, L. Chen, M. Zhang, Z. Liu, T. Chen et al., Electrostatic field enhanced photocatalytic CO2 conversion on BiVO4 nanowires. Nano-Micro Lett. 14, 15 (2021). https://doi.org/10.1007/s40820-021-00749-6
M.G. Lee, J.W. Yang, H. Park, C.W. Moon, D.M. Andoshe et al., Crystal facet engineering of TiO2 nanostructures for enhancing photoelectrochemical water splitting with BiVO4 nanodots. Nano-Micro Lett. 14, 48 (2022). https://doi.org/10.1007/s40820-022-00795-8
J. Wu, B.-Y. Deng, J. Liu, S.-R. Yang, M.-D. Li et al., Assembling CdSe quantum dots into polymeric micelles formed by a polyethylenimine-based amphiphilic polymer to enhance efficiency and selectivity of CO2-to-CO photoreduction in water. ACS Appl. Mater. Interfaces 14, 29945–29955 (2022). https://doi.org/10.1021/acsami.2c07656
W. Xia, J. Wu, J.-C. Hu, S. Sun, M.-D. Li et al., Highly efficient photocatalytic conversion of CO2 to CO catalyzed by surface-ligand-removed and Cd-rich CdSe quantum dots. Chemsuschem 12, 4617–4622 (2019). https://doi.org/10.1002/cssc.201901633
J. Wu, J. Liu, W. Xia, Y.-Y. Ren, F. Wang, Advances on photocatalytic CO2 reduction based on CdS and CdSe nano-semiconductors. Acta Phys. Chim. Sin. (2020). https://doi.org/10.3866/pku.whxb202008043
K. Wang, Z. Hu, P. Yu, A.M. Balu, K. Li et al., Understanding bridging sites and accelerating quantum efficiency for photocatalytic CO2 reduction. Nano-Micro Lett. 16, 5 (2023). https://doi.org/10.1007/s40820-023-01221-3
W. Zhan, L. Sun, X. Han, Recent progress on engineering highly efficient porous semiconductor photocatalysts derived from metal-organic frameworks. Nano-Micro Lett. 11, 1 (2019). https://doi.org/10.1007/s40820-018-0235-z
Y. Sun, X. Meng, Y. Dall’Agnese, C. Dall’Aagnese, S. Duan et al., 2D MXenes as co-catalysts in photocatalysis: synthetic methods. Nano-Micro Lett. 11, 79 (2019). https://doi.org/10.1007/s40820-019-0309-6
G. Yan, X. Sun, Y. Zhang, H. Li, H. Huang et al., Metal-free 2D/2D van der waals heterojunction based on covalent organic frameworks for highly efficient solar energy catalysis. Nano-Micro Lett. 15, 132 (2023). https://doi.org/10.1007/s40820-023-01100-x
Y. Zhang, G. Zhang, J. Di, J. Xia, Bismuth-based materials for CO2 photoreduction. Curr. Opin. Green Sustain. Chem. 39, 100718 (2023). https://doi.org/10.1016/j.cogsc.2022.100718
L. Zhang, W. Wang, D. Jiang, E. Gao, S. Sun, Photoreduction of CO2 on BiOCl nanoplates with the assistance of photoinduced oxygen vacancies. Nano Res. 8, 821–831 (2015). https://doi.org/10.1007/s12274-014-0564-2
N. Han, W. Zhang, W. Guo, H. Pan, B. Jiang et al., Designing oxide catalysts for oxygen electrocatalysis: insights from mechanism to application. Nano-Micro Lett. 15, 185 (2023). https://doi.org/10.1007/s40820-023-01152-z
D. Yang, S. Zuo, H. Yang, Y. Zhou, Q. Lu et al., Tailoring layer number of 2D porphyrin-based MOFs towards photocoupled electroreduction of CO2. Adv. Mater. 34, e2107293 (2022). https://doi.org/10.1002/adma.202107293
D. Yang, S. Zuo, H. Yang, Y. Zhou, X. Wang, Freestanding millimeter-scale porphyrin-based monoatomic layers with 0.28 nm thickness for CO2 electrocatalysis. Angew. Chem. Int. Ed. 59, 18954–18959 (2020). https://doi.org/10.1002/anie.202006899
F. Chen, H. Huang, L. Guo, Y. Zhang, T. Ma, The role of polarization in photocatalysis. Angew. Chem. Int. Ed. 58, 10061–10073 (2019). https://doi.org/10.1002/anie.201901361
J. Di, W. Jiang, Z. Liu, Symmetry breaking for semiconductor photocatalysis. Trends Chem. 4, 1045–1055 (2022). https://doi.org/10.1016/j.trechm.2022.08.010
R. Zeng, C. Cheng, F. Xing, Y. Zou, K. Ding et al., Dual vacancies induced local polarization electric field for high-performance photocatalytic H2 production. Appl. Catal. B Environ. 316, 121680 (2022). https://doi.org/10.1016/j.apcatb.2022.121680
J. Di, X. Zhu, G. Hao, C. Zhu, H. Chen et al., Vacancy pair-induced charge rebalancing with surface and interfacial dual polarization for CO2 photoreduction. ACS Catal. 12, 15728–15736 (2022). https://doi.org/10.1021/acscatal.2c04675
J. Di, C. Zhu, M. Ji, M. Duan, R. Long et al., Defect-rich Bi12 O17 Cl2 nanotubes self-accelerating charge separation for boosting photocatalytic CO2 reduction. Angew. Chem. Int. Ed. 57, 14847–14851 (2018). https://doi.org/10.1002/anie.201809492
F. Zhao, G. Zhan, S.-F. Zhou, Intercalation of laminar Cu–Al LDHs with molecular TCPP(M) (M = Zn Co, Ni, and Fe) towards high-performance CO2 hydrogenation catalysts. Nanoscale 12, 13145–13156 (2020). https://doi.org/10.1039/D0NR01916J
M. Zhou, D.-P. Xu, T.-C. Liu, P. Zhang, S.-Q. Gao et al., Molecular spring washers: Raman scattering studies on Tpp J-aggregates under high pressure. J. Phys. Chem. B 112, 15562–15568 (2008). https://doi.org/10.1021/jp8071537
J. Meng, Y. Duan, S. Jing, J. Ma, K. Wang et al., Facet junction of BiOBr nanosheets boosting spatial charge separation for CO2 photoreduction. Nano Energy 92, 106671 (2022). https://doi.org/10.1016/j.nanoen.2021.106671
X. Zhang, Y. Wang, M. Gu, M. Wang, Z. Zhang et al., Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction. Nat. Energy 5, 684–692 (2020). https://doi.org/10.1038/s41560-020-0667-9
H. Wang, S. Chen, D. Yong, X. Zhang, S. Li et al., Giant electron-hole interactions in confined layered structures for molecular oxygen activation. J. Am. Chem. Soc. 139, 4737–4742 (2017). https://doi.org/10.1021/jacs.6b12273
Y. Zhang, F. Guo, K. Wang, J. Di, B. Min et al., Precisely modulate interfacial Bi-O bridge bond in Co-TCPP/Bi3O4Br to trigger long-lasting charge separation for boosting CO2 photoreduction. Chem. Eng. J. 465, 142663 (2023). https://doi.org/10.1016/j.cej.2023.142663
L. Wang, S. Duan, P. Jin, H. She, J. Huang et al., Anchored Cu(II) tetra(4-carboxylphenyl)porphyrin to P25 (TiO2) for efficient photocatalytic ability in CO2 reduction. Appl. Catal. B Environ. 239, 599–608 (2018). https://doi.org/10.1016/j.apcatb.2018.08.007
J. Li, X. Wu, W. Pan, G. Zhang, H. Chen, Vacancy-rich monolayer BiO2-x as a highly efficient UV, visible, and near-infrared responsive photocatalyst. Angew. Chem. Int. Ed. 57, 491–495 (2018). https://doi.org/10.1002/anie.201708709
B.R. Chen, V.H. Nguyen, J.C.S. Wu, R. Martin, K. Kočí, Renewable fuel by photohydrogenation of CO2: impact of the nature of Cu species loaded TiO2. Phys. Chem. Chem. Phys. 18, 4942–4951 (2016). https://doi.org/10.1039/C5CP06999H
T.M. Ivanova, K.I. Maslakov, A.A. Sidorov, M.A. Kiskin, R.V. Linko et al., XPS detection of unusual Cu(II) to Cu(I) transition on the surface of complexes with redox-active ligands. J. Electron Spectrosc. Relat. Phenom. 238, 146878 (2020). https://doi.org/10.1016/j.elspec.2019.06.010
F. Xu, K. Meng, B. Cheng, S. Wang, J. Xu et al., Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction. Nat. Commun. 11, 4613 (2020). https://doi.org/10.1038/s41467-020-18350-7
X. Sun, L. Li, S. Jin, W. Shao, H. Wang et al., Interface boosted highly efficient selective photooxidation in Bi3O4Br/Bi2O3 heterojunctions. eScience 3, 100095 (2023). https://doi.org/10.1016/j.esci.2023.100095
F. Gao, E.D. Walter, E.M. Karp, J. Luo, R.G. Tonkyn et al., Structure–activity relationships in NH3-SCR over Cu-SSZ-13 as probed by reaction kinetics and EPR studies. J. Catal. 300, 20–29 (2013). https://doi.org/10.1016/j.jcat.2012.12.020
Y.A. Wu, I. McNulty, C. Liu, K.C. Lau, Q. Liu et al., Facet-dependent active sites of a single Cu2O p photocatalyst for CO2 reduction to methanol. Nat. Energy 4, 957–968 (2019). https://doi.org/10.1038/s41560-019-0490-3
H. Gao, J. Wang, M. Jia, F. Yang, R.S. Andriamitantsoa et al., Construction of TiO2 nanosheets/tetra (4-carboxyphenyl) porphyrin hybrids for efficient visible-light photoreduction of CO2. Chem. Eng. J. 374, 684–693 (2019). https://doi.org/10.1016/j.cej.2019.06.002
H. Lin, Y. Liu, Z. Wang, L. Ling, H. Huang et al., Enhanced CO2 photoreduction through spontaneous charge separation in end-capping assembly of heterostructured covalent-organic frameworks. Angew. Chem. Int. Ed. 61, e202214142 (2022). https://doi.org/10.1002/anie.202214142
Y. Zhang, J. Di, X. Zhu, M. Ji, C. Chen et al., Chemical bonding interface in Bi2Sn2O7/BiOBr S-scheme heterojunction triggering efficient N2 photofixation. Appl. Catal. B Environ. 323, 122148 (2023). https://doi.org/10.1016/j.apcatb.2022.122148
Y. Wang, F. Xie, R. Li, Z. Yu, X. Jian et al., Bi3O4Br/Ti3C2 Schottky junction with enhanced active species generation for boosting visible-light photodegradation bisphenol A activity. Sep. Purif. Technol. 318, 124001 (2023). https://doi.org/10.1016/j.seppur.2023.124001
S. Xie, C. Deng, Q. Huang, C. Zhang, C. Chen et al., Facilitated photocatalytic CO2 reduction in aerobic environment on a copper-porphyrin metal-organic framework. Angew. Chem. Int. Ed. 62, e202216717 (2023). https://doi.org/10.1002/anie.202216717
Y. Shi, G. Zhan, H. Li, X. Wang, X. Liu et al., Simultaneous manipulation of bulk excitons and surface defects for ultrastable and highly selective CO2 photoreduction. Adv. Mater. 33, e2100143 (2021). https://doi.org/10.1002/adma.202100143
Y. Wang, K. Wang, J. Meng, C. Ban, Y. Duan et al., Constructing atomic surface concaves on Bi5O7Br nanotube for efficient photocatalytic CO2 reduction. Nano Energy 109, 108305 (2023). https://doi.org/10.1016/j.nanoen.2023.108305
Y. Wang, J. Hu, T. Ge, F. Chen, Y. Lu et al., Gradient cationic vacancies enabling inner-to-outer tandem homojunctions: strong local internal electric field and reformed basic sites boosting CO2 photoreduction. Adv. Mater. 35, e2302538 (2023). https://doi.org/10.1002/adma.202302538
L. Wang, X. Zhao, D. Lv, C. Liu, W. Lai et al., Promoted photocharge separation in 2D lateral epitaxial heterostructure for visible-light-driven CO2 photoreduction. Adv. Mater. 32, e2004311 (2020). https://doi.org/10.1002/adma.202004311
J. Di, C. Chen, C. Zhu, R. Long, H. Chen et al., Surface local polarization induced by bismuth-oxygen vacancy pairs tuning non-covalent interaction for CO2 photoreduction. Adv. Energy Mater. 11, 2102389 (2021). https://doi.org/10.1002/aenm.202102389
Y. Wang, Y. Qu, B. Qu, L. Bai, Y. Liu et al., Construction of six-oxygen-coordinated single Ni sites on g-C3 N4 with boron-oxo species for photocatalytic water-activation-induced CO2 reduction. Adv. Mater. 33, e2105482 (2021). https://doi.org/10.1002/adma.202105482
H. Yu, F. Chen, X. Li, H. Huang, Q. Zhang et al., Synergy of ferroelectric polarization and oxygen vacancy to promote CO2 photoreduction. Nat. Commun. 12, 4594 (2021). https://doi.org/10.1038/s41467-021-24882-3
G. Liu, B. Wang, X. Zhu, P. Ding, J. Zhao et al., Edge-site-rich ordered macroporous BiOCl triggers C=O activation for efficient CO2 photoreduction. Small 18, e2105228 (2022). https://doi.org/10.1002/smll.202105228
B. Wang, W. Zhang, G. Liu, H. Chen, Y.-X. Weng et al., Excited electron-rich Bi(3–x)+ sites: a quantum well-like structure for highly promoted selective photocatalytic CO2 reduction performance. Adv. Funct. Mater. 32, 2202885 (2022). https://doi.org/10.1002/adfm.202202885
F. Wang, S.X. Zhang, F.B. Yu, Y. Liu, L.J. Guo, Optimization strategy for producing carbon based fuels by photocatalytic CO2 reduction. CIESC J. 74, 29–44 (2023). https://doi.org/10.11949/0438-1157.20221120
M. Liu, M. Peng, B. Dong, Y. Teng, L. Feng et al., Explicating the role of metal centers in porphyrin-based MOFs of PCN-222(M) for electrochemical reduction of CO2. Chin. J. Struct. Chem. 41(7), 2207046–2207052 (2022). https://doi.org/10.14102/j.cnki.0254-5861.2022-0057
Z. Xing, X. Hu, X. Feng, Tuning the microenvironment in gas-diffusion electrodes enables high-rate CO2 electrolysis to formate. ACS Energy Lett. 6, 1694–1702 (2021). https://doi.org/10.1021/acsenergylett.1c00612
J. Di, W. Jiang, Recent progress of low-dimensional metal sulfides photocatalysts for energy and environmental applications. Mater. Today Catal. 1, 100001 (2023). https://doi.org/10.1016/j.mtcata.2023.100001
S. Bai, H. Qiu, M. Song, G. He, F. Wang et al., Porous fixed-bed photoreactor for boosting C–C coupling in photocatalytic CO2 reduction. eScience 2, 428–437 (2022). https://doi.org/10.1016/j.esci.2022.06.006
Y. Yu, X.-A. Dong, P. Chen, Q. Geng, H. Wang et al., Synergistic effect of Cu single atoms and Au–Cu alloy nanops on TiO2 for efficient CO2 photoreduction. ACS Nano 15, 14453–14464 (2021). https://doi.org/10.1021/acsnano.1c03961