Single-Point Linkage Engineering in Conjugated Phthalocyanine-Based Covalent Organic Frameworks for Electrochemical CO2 Reduction
Corresponding Author: Zheng Meng
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 252
Abstract
The utilization of covalent organic frameworks (COFs) holds great potential for achieving tailorable tuning of catalytic performance through bottom-up modulation of the reticular structure. In this work, we show that a single-point structural alteration in the linkage within a nickel phthalocyanine (NiPc)-based series effectively modulates the catalytic performance of the COFs in electrochemical CO2 reduction reaction (CO2RR). A NiPc-based COF series with three members which possess the same NiPc unit but different linkages, including piperazine, dioxin, and dithiine, have been constructed by nucleophilic aromatic substitution reaction between octafluorophthalocyanine nickel and tetrasubstituted benzene linkers with different bridging groups. Among these COFs, the dioxin-linked COF showed the best activity of CO2RR with a current density of CO (jCO) = − 27.99 mA cm−2 at − 1.0 V (versus reversible hydrogen electrode, RHE), while the COF with piperazine linkage demonstrated an excellent selectivity of Faradaic efficiency for CO (FECO) up to 90.7% at a pretty low overpotential of 0.39 V. In addition, both a high FECO value close to 100% and a reasonable jCO of − 8.20 mA cm–2 at the potential of − 0.8 V (versus RHE) were obtained by the piperazine-linked COF, making it one of the most competitive candidates among COF-based materials. Mechanistic studies exhibited that single-point structural alteration could tailor the electron density in Ni sites and alter the interaction between the active sites and the key intermediates adsorbed and desorbed, thereby tuning the electrochemical performance during CO2RR process.
Highlights:
1 Three novel covalent organic frameworks (COFs) composed of nickel phthalocyanine units and different linkages, including dioxin, piperazine, and dithiine, were successfully constructed.
2 It was found that only a single-point structural variation of the linkage in the COFs could effectively modulate their performance in CO2 reduction reaction, where the piperazine-linked COF achieved a pretty high Faradaic efficiency for CO of 90.7% at a critically low overpotential of 0.39 V.
3 Theoretical calculations indicated that the COF with dioxin linkage stabilized the *COOH intermediate more effectively than the other two NiPc-based COFs.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Aresta, A. Dibenedetto, A. Angelini, Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels technological use of CO2. Chem. Rev. 114(3), 1709–1742 (2014). https://doi.org/10.1021/cr4002758
- Z. Sun, T. Ma, H. Tao, Q. Fan, B. Han, Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem 3(4), 560–587 (2017). https://doi.org/10.1016/j.chempr.2017.09.009
- C. Costentin, G. Passard, M. Robert, J.-M. Savéant, Ultraefficient homogeneous catalyst for the CO2-to-CO electrochemical conversion. Proc. Natl. Acad. Sci. 111, 14990–14994 (2014). https://doi.org/10.1073/pnas.1416697111
- A.J. Göttle, M.T.M. Koper, Determinant role of electrogenerated reactive nucleophilic species on selectivity during reduction of CO2 catalyzed by metalloporphyrins. J. Am. Chem. Soc. 140(14), 4826–4834 (2018). https://doi.org/10.1021/jacs.7b11267
- A.B. Sorokin, Phthalocyanine metal complexes in catalysis. Chem. Rev. 113(10), 8152–8191 (2013). https://doi.org/10.1021/cr4000072
- J.-M. Savéant, Molecular catalysis of electrochemical reactions mechanistic aspects. Chem. Rev. 108(7), 2348–2378 (2008). https://doi.org/10.1021/cr068079z
- J. Hawecker, J.-M. Lehn, R. Ziessel, Electrocatalytic reduction of carbon dioxide mediated by Re(bipy)(CO)3Cl (bipy = 2, 2’-bipyridine). J. Chem. Soc. Chem. Commun. 6, 328–330 (1984). https://doi.org/10.1039/c39840000328
- C. Costentin, S. Drouet, M. Robert, J.-M. Savéant, A local proton source enhances CO2 electroreduction to CO by a molecular Fe catalyst. Science 338(6103), 90–94 (2012). https://doi.org/10.1126/science.1224581
- C.S. Diercks, Y. Liu, K.E. Cordova, O.M. Yaghi, The role of reticular chemistry in the design of CO2 reduction catalysts. Nat. Mater. 17(4), 301–307 (2018). https://doi.org/10.1038/s41563-018-0033-5
- M. Ding, R.W. Flaig, H.-L. Jiang, O.M. Yaghi, Carbon capture and conversion using metal-organic frameworks and MOF-based materials. Chem. Soc. Rev. 48(10), 2783–2828 (2019). https://doi.org/10.1039/c8cs00829a
- Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov et al., Combining theory and experiment in electrocatalysis: insights into materials design. Science 355(6321), eaaad4998 (2017). https://doi.org/10.1126/science.aad4998
- F. Li, L. Chen, G.P. Knowles, D.R. MacFarlane, J. Zhang, Hierarchical mesoporous SnO2 nanosheets on carbon cloth: a robust and flexible electrocatalyst for CO2 reduction with high efficiency and selectivity. Angew. Chem. Int. Ed. 56(2), 505–509 (2017). https://doi.org/10.1002/anie.201608279
- N. Sreekanth, M.A. Nazrulla, T.V. Vineesh, K. Sailaja, K.L. Phani, Metal-free boron-doped graphene for selective electroreduction of carbon dioxide to formic acid/formate. Chem. Commun. 51(89), 16061–16064 (2015). https://doi.org/10.1039/c5cc06051f
- J.J. Leung, J.A. Vigil, J. Warnan, E. Edwardes Moore, E. Reisner, Rational design of polymers for selective CO2 reduction catalysis. Angew. Chem. Int. Ed. 58(23), 7697–7701 (2019). https://doi.org/10.1002/anie.201902218
- D. Azaiza-Dabbah, C. Vogt, F. Wang, A. Masip-Sánchez, C. de Graaf et al., Molecular transition metal oxide electrocatalysts for the reversible carbon dioxide-carbon monoxide transformation. Angew. Chem. Int. Ed. 61(5), e202112915 (2022). https://doi.org/10.1002/anie.202112915
- S.-Y. Ding, W. Wang, Covalent organic frameworks (COFs): from design to applications. Chem. Soc. Rev. 42(2), 548–568 (2013). https://doi.org/10.1039/C2CS35072F
- S. Lin, C.S. Diercks, Y.-B. Zhang, N. Kornienko, E.M. Nichols et al., Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349(6253), 1208–1213 (2015). https://doi.org/10.1126/science.aac8343
- J. Jiang, Y. Zhao, O.M. Yaghi, Covalent chemistry beyond molecules. J. Am. Chem. Soc. 138(10), 3255–3265 (2016). https://doi.org/10.1021/jacs.5b10666
- Y. Xue, Y. Guo, H. Cui, Z. Zhou, Catalyst design for electrochemical reduction of CO2 to multicarbon products. Small Methods 5(10), e2100736 (2021). https://doi.org/10.1002/smtd.202100736
- J. Qiao, Y. Liu, F. Hong, J. Zhang, A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 43(2), 631–675 (2014). https://doi.org/10.1039/c3cs60323g
- M. Liu, S. Yang, X. Yang, C.X. Cui, G. Liu et al., Post-synthetic modification of covalent organic frameworks for CO2 electroreduction. Nat. Commun. 14(1), 3800 (2023). https://doi.org/10.1038/s41467-023-39544-9
- Y. Zhang, X. Zhang, L. Jiao, Z. Meng, H.-L. Jiang, Conductive covalent organic frameworks of polymetallophthalocyanines as a tunable platform for electrocatalysis. J. Am. Chem. Soc. 145(44), 24230–24239 (2023). https://doi.org/10.1021/jacs.3c08594
- Y. Yue, H. Li, H. Chen, N. Huang, Piperazine-linked covalent organic frameworks with high electrical conductivity. J. Am. Chem. Soc. 144(7), 2873–2878 (2022). https://doi.org/10.1021/jacs.1c13012
- Z. Tian, Q. Zhang, T. Liu, Y. Chen, M. Antonietti, Emerging two-dimensional carbonaceous materials for electrocatalytic energy conversions: rational design of active structures through high-temperature chemistry. ACS Nano 18(8), 6111–6129 (2024). https://doi.org/10.1021/acsnano.3c12198
- C.S. Diercks, S. Lin, N. Kornienko, E.A. Kapustin, E.M. Nichols et al., Reticular electronic tuning of porphyrin active sites in covalent organic frameworks for electrocatalytic carbon dioxide reduction. J. Am. Chem. Soc. 140(3), 1116–1122 (2018). https://doi.org/10.1021/jacs.7b11940
- M. Wang, K. Torbensen, D. Salvatore, S. Ren, D. Joulié et al., CO2 electrochemical catalytic reduction with a highly active cobalt phthalocyanine. Nat. Commun. 10(1), 3602 (2019). https://doi.org/10.1038/s41467-019-11542-w
- M. Lu, M. Zhang, C.-G. Liu, J. Liu, L.-J. Shang et al., Stable dioxin-linked metallophthalocyanine covalent organic frameworks (COFs) as photo-coupled electrocatalysts for CO2 reduction. Angew. Chem. Int. Ed. 60(9), 4864–4871 (2021). https://doi.org/10.1002/anie.202011722
- B. Han, X. Ding, B. Yu, H. Wu, W. Zhou et al., Two-dimensional covalent organic frameworks with cobalt(II)-phthalocyanine sites for efficient electrocatalytic carbon dioxide reduction. J. Am. Chem. Soc. 143(18), 7104–7113 (2021). https://doi.org/10.1021/jacs.1c02145
- S. Huang, K. Chen, T.-T. Li, Porphyrin and phthalocyanine based covalent organic frameworks for electrocatalysis. Coord. Chem. Rev. 464, 214563 (2022). https://doi.org/10.1016/j.ccr.2022.214563
- X. Yang, X. Li, M. Liu, S. Yang, Q. Xu et al., Quantitative construction of boronic-ester linkages in covalent organic frameworks for the carbon dioxide reduction. Angew. Chem. Int. Ed. 63, e202317785 (2024). https://doi.org/10.1002/anie.202317785
- T. Xie, S. Chen, Y. Yue, T. Sheng, N. Huang et al., Biomimetic phthalocyanine-based covalent organic frameworks with tunable pendant groups for electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 63(43), e202411188 (2024). https://doi.org/10.1002/anie.202411188
- S. Haldar, M. Wang, P. Bhauriyal, A. Hazra, A.H. Khan et al., Porous dithiine-linked covalent organic framework as a dynamic platform for covalent polysulfide anchoring in lithium-sulfur battery cathodes. J. Am. Chem. Soc. 144(20), 9101–9112 (2022). https://doi.org/10.1021/jacs.2c02346
- Q. Zhi, R. Jiang, X. Yang, Y. Jin, D. Qi et al., Dithiine-linked metalphthalocyanine framework with undulated layers for highly efficient and stable H2O2 electroproduction. Nat. Commun. 15(1), 678 (2024). https://doi.org/10.1038/s41467-024-44899-8
- Y. Wang, J. Chen, C. Jiang, N. Ding, C. Wang et al., Tetra-β-nitro-substituted phthalocyanines: a new organic electrode material for lithium batteries. J. Solid State Electrochem. 21(4), 947–954 (2017). https://doi.org/10.1007/s10008-016-3419-9
- X. Chen, M. Zeng, J. Yang, N. Hu, X. Duan et al., Two-dimensional bimetallic phthalocyanine covalent-organic-framework-based chemiresistive gas sensor for ppb-level NO2 detection. Nanomaterials 13(10), 1660 (2023). https://doi.org/10.3390/nano13101660
- Z. Meng, J. Luo, W. Li, K.A. Mirica, Hierarchical tuning of the performance of electrochemical carbon dioxide reduction using conductive two-dimensional metallophthalocyanine based metal-organic frameworks. J. Am. Chem. Soc. 142(52), 21656–21669 (2020). https://doi.org/10.1021/jacs.0c07041
- X. Yang, X. Li, M. Liu, S. Yang, Q. Niu et al., Modulating electrochemical CO2 reduction performance via sulfur-containing linkages engineering in metallophthalocyanine based covalent organic frameworks. ACS Mater. Lett. 5(6), 1611–1618 (2023). https://doi.org/10.1021/acsmaterialslett.3c00168
- Z. Meng, A. Aykanat, K.A. Mirica, Welding metallophthalocyanines into bimetallic molecular meshes for ultrasensitive, low-power chemiresistive detection of gases. J. Am. Chem. Soc. 141(5), 2046–2053 (2019). https://doi.org/10.1021/jacs.8b11257
- L. Wei, K. Zhang, R. Zhao, L. Zhang, Y. Zhang et al., Modulating redox transition kinetics by anion regulation in Ni−Fe−X (X = O, S, Se, N, and P) electrocatalyst for efficient water oxidation. Nano Res. 17(6), 4720–4728 (2024). https://doi.org/10.1007/s12274-023-6400-9
- S. Ye, Probing electronic structures of transition metal complexes using electron paramagnetic resonance spectroscopy. Magn. Reson. Lett. 3(1), 43–60 (2023). https://doi.org/10.1016/j.mrl.2022.06.002
- A. Aykanat, Z. Meng, G. Benedetto, K.A. Mirica, Molecular engineering of multifunctional metallophthalocyanine-containing framework materials. Chem. Mater. 32(13), 5372–5409 (2020). https://doi.org/10.1021/acs.chemmater.9b05289
- J. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen et al., Metal–organic framework materials as catalysts. Chem. Soc. Rev. 38(5), 1450 (2009). https://doi.org/10.1039/b807080f
- L. Ye, J. Liu, Y. Gao, C. Gong, M. Addicoat et al., Highly oriented MOF thin film-based electrocatalytic device for the reduction of CO2 to CO exhibiting high faradaic efficiency. J. Mater. Chem. A 4(40), 15320–15326 (2016). https://doi.org/10.1039/C6TA04801C
- R. Matheu, E. Gutierrez-Puebla, M. Ángeles Monge, C.S. Diercks, J. Kang et al., Three-dimensional phthalocyanine metal-catecholates for high electrochemical carbon dioxide reduction. J. Am. Chem. Soc. 141(43), 17081–17085 (2019). https://doi.org/10.1021/jacs.9b09298
- H. Zhong, M. Ghorbani-Asl, K.H. Ly, J. Zhang, J. Ge et al., Synergistic electroreduction of carbon dioxide to carbon monoxide on bimetallic layered conjugated metal-organic frameworks. Nat. Commun. 11(1), 1409 (2020). https://doi.org/10.1038/s41467-020-15141-y
- N. Huang, K.H. Lee, Y. Yue, X. Xu, S. Irle et al., A stable and conductive metallophthalocyanine framework for electrocatalytic carbon dioxide reduction in water. Angew. Chem. Int. Ed. 59(38), 16587–16593 (2020). https://doi.org/10.1002/anie.202005274
- H.-J. Zhu, M. Lu, Y.-R. Wang, S.-J. Yao, M. Zhang et al., Efficient electron transmission in covalent organic framework nanosheets for highly active electrocatalytic carbon dioxide reduction. Nat. Commun. 11, 497 (2020). https://doi.org/10.1038/s41467-019-14237-4
- S. Wan, F. Gándara, A. Asano, H. Furukawa, A. Saeki et al., Covalent organic frameworks with high charge carrier mobility. Chem. Mater. 23(18), 4094–4097 (2011). https://doi.org/10.1021/cm201140r
- J. Shen, R. Kortlever, R. Kas, Y.Y. Birdja, O. Diaz-Morales et al., Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin. Nat. Commun. 6, 8177 (2015). https://doi.org/10.1038/ncomms9177
- Z. Weng, J. Jiang, Y. Wu, Z. Wu, X. Guo et al., Electrochemical CO2 reduction to hydrocarbons on a heterogeneous molecular Cu catalyst in aqueous solution. J. Am. Chem. Soc. 138(26), 8076–8079 (2016). https://doi.org/10.1021/jacs.6b04746
- Z. Zhang, J. Xiao, X.-J. Chen, S. Yu, L. Yu et al., Reaction mechanisms of well-defined metal-N4 sites in electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 57(50), 16339–16342 (2018). https://doi.org/10.1002/anie.201808593
- W.W. Kramer, C.L. McCrory, Polymer coordination promotes selective CO2 reduction by cobalt phthalocyanine. Chem. Sci. 7(4), 2506–2515 (2016). https://doi.org/10.1039/c5sc04015a
- N. Han, Y. Wang, L. Ma, J. Wen, J. Li et al., Supported cobalt polyphthalocyanine for high-performance electrocatalytic CO2 reduction. Chem 3(4), 652–664 (2017). https://doi.org/10.1016/j.chempr.2017.08.002
- X.-M. Hu, M.H. Rønne, S.U. Pedersen, T. Skrydstrup, K. Daasbjerg, Enhanced catalytic activity of cobalt porphyrin in CO2 electroreduction upon immobilization on carbon materials. Angew. Chem. Int. Ed. 56, 6468–6472 (2017). https://doi.org/10.1002/anie.201701104
- Y. Wu, Z. Jiang, X. Lu, Y. Liang, H. Wang, Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 575(7784), 639–642 (2019). https://doi.org/10.1038/s41586-019-1760-8
- Y. Yue, P. Cai, K. Xu, H. Li, H. Chen et al., Stable bimetallic polyphthalocyanine covalent organic frameworks as superior electrocatalysts. J. Am. Chem. Soc. 143(43), 18052–18060 (2021). https://doi.org/10.1021/jacs.1c06238
- J. Yuan, S. Chen, Y. Zhang, R. Li, J. Zhang et al., Structural regulation of coupled phthalocyanine–porphyrin covalent organic frameworks to highly active and selective electrocatalytic CO2 reduction. Adv. Mater. 34(30), 2203139 (2022). https://doi.org/10.1002/adma.202203139
- S. Aoi, K. Mase, K. Ohkubo, S. Fukuzumi, Selective electrochemical reduction of CO2 to CO with a cobalt chlorin complex adsorbed on multi-walled carbon nanotubes in water. Chem. Commun. 51(50), 10226–10228 (2015). https://doi.org/10.1039/C5CC03340C
- Y. Cao, S. Chen, S. Bo, W. Fan, J. Li et al., Single atom Bi decorated copper alloy enables C–C coupling for electrocatalytic reduction of CO2 into C2+ products. Angew. Chem. Int. Ed. 62(30), e202303048 (2023). https://doi.org/10.1002/anie.202303048
- W. Ren, X. Tan, W. Yang, C. Jia, S. Xu et al., Isolated diatomic Ni-Fe metal-nitrogen sites for synergistic electroreduction of CO2. Angew. Chem. Int. Ed. 58(21), 6972–6976 (2019). https://doi.org/10.1002/anie.201901575
- A. Rendón-Calle, S. Builes, F. Calle-Vallejo, A brief review of the computational modeling of CO2 electroreduction on Cu electrodes. Curr. Opin. Electrochem. 9, 158–165 (2018). https://doi.org/10.1016/j.coelec.2018.03.012
- J. Li, H. Zeng, X. Dong, Y. Ding, S. Hu et al., Selective CO2 electrolysis to CO using isolated antimony alloyed copper. Nat. Commun. 14(1), 340 (2023). https://doi.org/10.1038/s41467-023-35960-z
- L. Wang, Y. Kong, H. Cai, J. Sun, X. Jiang et al., Modulation of d-band electron enables efficient CO2 electroreduction towards CO on Ni nanops. J. Mater. Chem. A 12(27), 16403–16409 (2024). https://doi.org/10.1039/D4TA02800G
- J.K. Nørskov, T. Bligaard, J. Rossmeisl, C.H. Christensen, Towards the computational design of solid catalysts. Nat. Chem. 1(1), 37–46 (2009). https://doi.org/10.1038/nchem.121
- Y. Yao, X. Wei, H. Zhou et al., Regulating the d-band center of metal–organic frameworks for efficient nitrate reduction reaction and zinc-nitrate battery. ACS Catal. 14(21), 16205–16213 (2024). https://doi.org/10.1021/acscatal.4c04340
- X. Zhang, Y. Wang, M. Gu, M. Wang, Z. Zhang et al., Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction. Nat. Energy 5(9), 684–692 (2020). https://doi.org/10.1038/s41560-020-0667-9
- K. Chen, M. Cao, Y. Lin, J. Fu, H. Liao et al., Ligand engineering in nickel phthalocyanine to boost the electrocatalytic reduction of CO2. Adv. Funct. Mater. 32(10), 2111322 (2022). https://doi.org/10.1002/adfm.202111322
References
M. Aresta, A. Dibenedetto, A. Angelini, Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels technological use of CO2. Chem. Rev. 114(3), 1709–1742 (2014). https://doi.org/10.1021/cr4002758
Z. Sun, T. Ma, H. Tao, Q. Fan, B. Han, Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem 3(4), 560–587 (2017). https://doi.org/10.1016/j.chempr.2017.09.009
C. Costentin, G. Passard, M. Robert, J.-M. Savéant, Ultraefficient homogeneous catalyst for the CO2-to-CO electrochemical conversion. Proc. Natl. Acad. Sci. 111, 14990–14994 (2014). https://doi.org/10.1073/pnas.1416697111
A.J. Göttle, M.T.M. Koper, Determinant role of electrogenerated reactive nucleophilic species on selectivity during reduction of CO2 catalyzed by metalloporphyrins. J. Am. Chem. Soc. 140(14), 4826–4834 (2018). https://doi.org/10.1021/jacs.7b11267
A.B. Sorokin, Phthalocyanine metal complexes in catalysis. Chem. Rev. 113(10), 8152–8191 (2013). https://doi.org/10.1021/cr4000072
J.-M. Savéant, Molecular catalysis of electrochemical reactions mechanistic aspects. Chem. Rev. 108(7), 2348–2378 (2008). https://doi.org/10.1021/cr068079z
J. Hawecker, J.-M. Lehn, R. Ziessel, Electrocatalytic reduction of carbon dioxide mediated by Re(bipy)(CO)3Cl (bipy = 2, 2’-bipyridine). J. Chem. Soc. Chem. Commun. 6, 328–330 (1984). https://doi.org/10.1039/c39840000328
C. Costentin, S. Drouet, M. Robert, J.-M. Savéant, A local proton source enhances CO2 electroreduction to CO by a molecular Fe catalyst. Science 338(6103), 90–94 (2012). https://doi.org/10.1126/science.1224581
C.S. Diercks, Y. Liu, K.E. Cordova, O.M. Yaghi, The role of reticular chemistry in the design of CO2 reduction catalysts. Nat. Mater. 17(4), 301–307 (2018). https://doi.org/10.1038/s41563-018-0033-5
M. Ding, R.W. Flaig, H.-L. Jiang, O.M. Yaghi, Carbon capture and conversion using metal-organic frameworks and MOF-based materials. Chem. Soc. Rev. 48(10), 2783–2828 (2019). https://doi.org/10.1039/c8cs00829a
Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov et al., Combining theory and experiment in electrocatalysis: insights into materials design. Science 355(6321), eaaad4998 (2017). https://doi.org/10.1126/science.aad4998
F. Li, L. Chen, G.P. Knowles, D.R. MacFarlane, J. Zhang, Hierarchical mesoporous SnO2 nanosheets on carbon cloth: a robust and flexible electrocatalyst for CO2 reduction with high efficiency and selectivity. Angew. Chem. Int. Ed. 56(2), 505–509 (2017). https://doi.org/10.1002/anie.201608279
N. Sreekanth, M.A. Nazrulla, T.V. Vineesh, K. Sailaja, K.L. Phani, Metal-free boron-doped graphene for selective electroreduction of carbon dioxide to formic acid/formate. Chem. Commun. 51(89), 16061–16064 (2015). https://doi.org/10.1039/c5cc06051f
J.J. Leung, J.A. Vigil, J. Warnan, E. Edwardes Moore, E. Reisner, Rational design of polymers for selective CO2 reduction catalysis. Angew. Chem. Int. Ed. 58(23), 7697–7701 (2019). https://doi.org/10.1002/anie.201902218
D. Azaiza-Dabbah, C. Vogt, F. Wang, A. Masip-Sánchez, C. de Graaf et al., Molecular transition metal oxide electrocatalysts for the reversible carbon dioxide-carbon monoxide transformation. Angew. Chem. Int. Ed. 61(5), e202112915 (2022). https://doi.org/10.1002/anie.202112915
S.-Y. Ding, W. Wang, Covalent organic frameworks (COFs): from design to applications. Chem. Soc. Rev. 42(2), 548–568 (2013). https://doi.org/10.1039/C2CS35072F
S. Lin, C.S. Diercks, Y.-B. Zhang, N. Kornienko, E.M. Nichols et al., Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349(6253), 1208–1213 (2015). https://doi.org/10.1126/science.aac8343
J. Jiang, Y. Zhao, O.M. Yaghi, Covalent chemistry beyond molecules. J. Am. Chem. Soc. 138(10), 3255–3265 (2016). https://doi.org/10.1021/jacs.5b10666
Y. Xue, Y. Guo, H. Cui, Z. Zhou, Catalyst design for electrochemical reduction of CO2 to multicarbon products. Small Methods 5(10), e2100736 (2021). https://doi.org/10.1002/smtd.202100736
J. Qiao, Y. Liu, F. Hong, J. Zhang, A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 43(2), 631–675 (2014). https://doi.org/10.1039/c3cs60323g
M. Liu, S. Yang, X. Yang, C.X. Cui, G. Liu et al., Post-synthetic modification of covalent organic frameworks for CO2 electroreduction. Nat. Commun. 14(1), 3800 (2023). https://doi.org/10.1038/s41467-023-39544-9
Y. Zhang, X. Zhang, L. Jiao, Z. Meng, H.-L. Jiang, Conductive covalent organic frameworks of polymetallophthalocyanines as a tunable platform for electrocatalysis. J. Am. Chem. Soc. 145(44), 24230–24239 (2023). https://doi.org/10.1021/jacs.3c08594
Y. Yue, H. Li, H. Chen, N. Huang, Piperazine-linked covalent organic frameworks with high electrical conductivity. J. Am. Chem. Soc. 144(7), 2873–2878 (2022). https://doi.org/10.1021/jacs.1c13012
Z. Tian, Q. Zhang, T. Liu, Y. Chen, M. Antonietti, Emerging two-dimensional carbonaceous materials for electrocatalytic energy conversions: rational design of active structures through high-temperature chemistry. ACS Nano 18(8), 6111–6129 (2024). https://doi.org/10.1021/acsnano.3c12198
C.S. Diercks, S. Lin, N. Kornienko, E.A. Kapustin, E.M. Nichols et al., Reticular electronic tuning of porphyrin active sites in covalent organic frameworks for electrocatalytic carbon dioxide reduction. J. Am. Chem. Soc. 140(3), 1116–1122 (2018). https://doi.org/10.1021/jacs.7b11940
M. Wang, K. Torbensen, D. Salvatore, S. Ren, D. Joulié et al., CO2 electrochemical catalytic reduction with a highly active cobalt phthalocyanine. Nat. Commun. 10(1), 3602 (2019). https://doi.org/10.1038/s41467-019-11542-w
M. Lu, M. Zhang, C.-G. Liu, J. Liu, L.-J. Shang et al., Stable dioxin-linked metallophthalocyanine covalent organic frameworks (COFs) as photo-coupled electrocatalysts for CO2 reduction. Angew. Chem. Int. Ed. 60(9), 4864–4871 (2021). https://doi.org/10.1002/anie.202011722
B. Han, X. Ding, B. Yu, H. Wu, W. Zhou et al., Two-dimensional covalent organic frameworks with cobalt(II)-phthalocyanine sites for efficient electrocatalytic carbon dioxide reduction. J. Am. Chem. Soc. 143(18), 7104–7113 (2021). https://doi.org/10.1021/jacs.1c02145
S. Huang, K. Chen, T.-T. Li, Porphyrin and phthalocyanine based covalent organic frameworks for electrocatalysis. Coord. Chem. Rev. 464, 214563 (2022). https://doi.org/10.1016/j.ccr.2022.214563
X. Yang, X. Li, M. Liu, S. Yang, Q. Xu et al., Quantitative construction of boronic-ester linkages in covalent organic frameworks for the carbon dioxide reduction. Angew. Chem. Int. Ed. 63, e202317785 (2024). https://doi.org/10.1002/anie.202317785
T. Xie, S. Chen, Y. Yue, T. Sheng, N. Huang et al., Biomimetic phthalocyanine-based covalent organic frameworks with tunable pendant groups for electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 63(43), e202411188 (2024). https://doi.org/10.1002/anie.202411188
S. Haldar, M. Wang, P. Bhauriyal, A. Hazra, A.H. Khan et al., Porous dithiine-linked covalent organic framework as a dynamic platform for covalent polysulfide anchoring in lithium-sulfur battery cathodes. J. Am. Chem. Soc. 144(20), 9101–9112 (2022). https://doi.org/10.1021/jacs.2c02346
Q. Zhi, R. Jiang, X. Yang, Y. Jin, D. Qi et al., Dithiine-linked metalphthalocyanine framework with undulated layers for highly efficient and stable H2O2 electroproduction. Nat. Commun. 15(1), 678 (2024). https://doi.org/10.1038/s41467-024-44899-8
Y. Wang, J. Chen, C. Jiang, N. Ding, C. Wang et al., Tetra-β-nitro-substituted phthalocyanines: a new organic electrode material for lithium batteries. J. Solid State Electrochem. 21(4), 947–954 (2017). https://doi.org/10.1007/s10008-016-3419-9
X. Chen, M. Zeng, J. Yang, N. Hu, X. Duan et al., Two-dimensional bimetallic phthalocyanine covalent-organic-framework-based chemiresistive gas sensor for ppb-level NO2 detection. Nanomaterials 13(10), 1660 (2023). https://doi.org/10.3390/nano13101660
Z. Meng, J. Luo, W. Li, K.A. Mirica, Hierarchical tuning of the performance of electrochemical carbon dioxide reduction using conductive two-dimensional metallophthalocyanine based metal-organic frameworks. J. Am. Chem. Soc. 142(52), 21656–21669 (2020). https://doi.org/10.1021/jacs.0c07041
X. Yang, X. Li, M. Liu, S. Yang, Q. Niu et al., Modulating electrochemical CO2 reduction performance via sulfur-containing linkages engineering in metallophthalocyanine based covalent organic frameworks. ACS Mater. Lett. 5(6), 1611–1618 (2023). https://doi.org/10.1021/acsmaterialslett.3c00168
Z. Meng, A. Aykanat, K.A. Mirica, Welding metallophthalocyanines into bimetallic molecular meshes for ultrasensitive, low-power chemiresistive detection of gases. J. Am. Chem. Soc. 141(5), 2046–2053 (2019). https://doi.org/10.1021/jacs.8b11257
L. Wei, K. Zhang, R. Zhao, L. Zhang, Y. Zhang et al., Modulating redox transition kinetics by anion regulation in Ni−Fe−X (X = O, S, Se, N, and P) electrocatalyst for efficient water oxidation. Nano Res. 17(6), 4720–4728 (2024). https://doi.org/10.1007/s12274-023-6400-9
S. Ye, Probing electronic structures of transition metal complexes using electron paramagnetic resonance spectroscopy. Magn. Reson. Lett. 3(1), 43–60 (2023). https://doi.org/10.1016/j.mrl.2022.06.002
A. Aykanat, Z. Meng, G. Benedetto, K.A. Mirica, Molecular engineering of multifunctional metallophthalocyanine-containing framework materials. Chem. Mater. 32(13), 5372–5409 (2020). https://doi.org/10.1021/acs.chemmater.9b05289
J. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen et al., Metal–organic framework materials as catalysts. Chem. Soc. Rev. 38(5), 1450 (2009). https://doi.org/10.1039/b807080f
L. Ye, J. Liu, Y. Gao, C. Gong, M. Addicoat et al., Highly oriented MOF thin film-based electrocatalytic device for the reduction of CO2 to CO exhibiting high faradaic efficiency. J. Mater. Chem. A 4(40), 15320–15326 (2016). https://doi.org/10.1039/C6TA04801C
R. Matheu, E. Gutierrez-Puebla, M. Ángeles Monge, C.S. Diercks, J. Kang et al., Three-dimensional phthalocyanine metal-catecholates for high electrochemical carbon dioxide reduction. J. Am. Chem. Soc. 141(43), 17081–17085 (2019). https://doi.org/10.1021/jacs.9b09298
H. Zhong, M. Ghorbani-Asl, K.H. Ly, J. Zhang, J. Ge et al., Synergistic electroreduction of carbon dioxide to carbon monoxide on bimetallic layered conjugated metal-organic frameworks. Nat. Commun. 11(1), 1409 (2020). https://doi.org/10.1038/s41467-020-15141-y
N. Huang, K.H. Lee, Y. Yue, X. Xu, S. Irle et al., A stable and conductive metallophthalocyanine framework for electrocatalytic carbon dioxide reduction in water. Angew. Chem. Int. Ed. 59(38), 16587–16593 (2020). https://doi.org/10.1002/anie.202005274
H.-J. Zhu, M. Lu, Y.-R. Wang, S.-J. Yao, M. Zhang et al., Efficient electron transmission in covalent organic framework nanosheets for highly active electrocatalytic carbon dioxide reduction. Nat. Commun. 11, 497 (2020). https://doi.org/10.1038/s41467-019-14237-4
S. Wan, F. Gándara, A. Asano, H. Furukawa, A. Saeki et al., Covalent organic frameworks with high charge carrier mobility. Chem. Mater. 23(18), 4094–4097 (2011). https://doi.org/10.1021/cm201140r
J. Shen, R. Kortlever, R. Kas, Y.Y. Birdja, O. Diaz-Morales et al., Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin. Nat. Commun. 6, 8177 (2015). https://doi.org/10.1038/ncomms9177
Z. Weng, J. Jiang, Y. Wu, Z. Wu, X. Guo et al., Electrochemical CO2 reduction to hydrocarbons on a heterogeneous molecular Cu catalyst in aqueous solution. J. Am. Chem. Soc. 138(26), 8076–8079 (2016). https://doi.org/10.1021/jacs.6b04746
Z. Zhang, J. Xiao, X.-J. Chen, S. Yu, L. Yu et al., Reaction mechanisms of well-defined metal-N4 sites in electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 57(50), 16339–16342 (2018). https://doi.org/10.1002/anie.201808593
W.W. Kramer, C.L. McCrory, Polymer coordination promotes selective CO2 reduction by cobalt phthalocyanine. Chem. Sci. 7(4), 2506–2515 (2016). https://doi.org/10.1039/c5sc04015a
N. Han, Y. Wang, L. Ma, J. Wen, J. Li et al., Supported cobalt polyphthalocyanine for high-performance electrocatalytic CO2 reduction. Chem 3(4), 652–664 (2017). https://doi.org/10.1016/j.chempr.2017.08.002
X.-M. Hu, M.H. Rønne, S.U. Pedersen, T. Skrydstrup, K. Daasbjerg, Enhanced catalytic activity of cobalt porphyrin in CO2 electroreduction upon immobilization on carbon materials. Angew. Chem. Int. Ed. 56, 6468–6472 (2017). https://doi.org/10.1002/anie.201701104
Y. Wu, Z. Jiang, X. Lu, Y. Liang, H. Wang, Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 575(7784), 639–642 (2019). https://doi.org/10.1038/s41586-019-1760-8
Y. Yue, P. Cai, K. Xu, H. Li, H. Chen et al., Stable bimetallic polyphthalocyanine covalent organic frameworks as superior electrocatalysts. J. Am. Chem. Soc. 143(43), 18052–18060 (2021). https://doi.org/10.1021/jacs.1c06238
J. Yuan, S. Chen, Y. Zhang, R. Li, J. Zhang et al., Structural regulation of coupled phthalocyanine–porphyrin covalent organic frameworks to highly active and selective electrocatalytic CO2 reduction. Adv. Mater. 34(30), 2203139 (2022). https://doi.org/10.1002/adma.202203139
S. Aoi, K. Mase, K. Ohkubo, S. Fukuzumi, Selective electrochemical reduction of CO2 to CO with a cobalt chlorin complex adsorbed on multi-walled carbon nanotubes in water. Chem. Commun. 51(50), 10226–10228 (2015). https://doi.org/10.1039/C5CC03340C
Y. Cao, S. Chen, S. Bo, W. Fan, J. Li et al., Single atom Bi decorated copper alloy enables C–C coupling for electrocatalytic reduction of CO2 into C2+ products. Angew. Chem. Int. Ed. 62(30), e202303048 (2023). https://doi.org/10.1002/anie.202303048
W. Ren, X. Tan, W. Yang, C. Jia, S. Xu et al., Isolated diatomic Ni-Fe metal-nitrogen sites for synergistic electroreduction of CO2. Angew. Chem. Int. Ed. 58(21), 6972–6976 (2019). https://doi.org/10.1002/anie.201901575
A. Rendón-Calle, S. Builes, F. Calle-Vallejo, A brief review of the computational modeling of CO2 electroreduction on Cu electrodes. Curr. Opin. Electrochem. 9, 158–165 (2018). https://doi.org/10.1016/j.coelec.2018.03.012
J. Li, H. Zeng, X. Dong, Y. Ding, S. Hu et al., Selective CO2 electrolysis to CO using isolated antimony alloyed copper. Nat. Commun. 14(1), 340 (2023). https://doi.org/10.1038/s41467-023-35960-z
L. Wang, Y. Kong, H. Cai, J. Sun, X. Jiang et al., Modulation of d-band electron enables efficient CO2 electroreduction towards CO on Ni nanops. J. Mater. Chem. A 12(27), 16403–16409 (2024). https://doi.org/10.1039/D4TA02800G
J.K. Nørskov, T. Bligaard, J. Rossmeisl, C.H. Christensen, Towards the computational design of solid catalysts. Nat. Chem. 1(1), 37–46 (2009). https://doi.org/10.1038/nchem.121
Y. Yao, X. Wei, H. Zhou et al., Regulating the d-band center of metal–organic frameworks for efficient nitrate reduction reaction and zinc-nitrate battery. ACS Catal. 14(21), 16205–16213 (2024). https://doi.org/10.1021/acscatal.4c04340
X. Zhang, Y. Wang, M. Gu, M. Wang, Z. Zhang et al., Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction. Nat. Energy 5(9), 684–692 (2020). https://doi.org/10.1038/s41560-020-0667-9
K. Chen, M. Cao, Y. Lin, J. Fu, H. Liao et al., Ligand engineering in nickel phthalocyanine to boost the electrocatalytic reduction of CO2. Adv. Funct. Mater. 32(10), 2111322 (2022). https://doi.org/10.1002/adfm.202111322