Advancements in Passive Wireless Sensing Systems in Monitoring Harsh Environment and Healthcare Applications
Corresponding Author: Nam‑Young Kim
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 106
Abstract
Recent advancements in passive wireless sensor technology have significantly extended the application scope of sensing, particularly in challenging environments for monitoring industry and healthcare applications. These systems are equipped with battery-free operation, wireless connectivity, and are designed to be both miniaturized and lightweight. Such features enable the safe, real-time monitoring of industrial environments and support high-precision physiological measurements in confined internal body spaces and on wearable epidermal devices. Despite the exploration into diverse application environments, the development of a systematic and comprehensive research framework for system architecture remains elusive, which hampers further optimization of these systems. This review, therefore, begins with an examination of application scenarios, progresses to evaluate current system architectures, and discusses the function of each component—specifically, the passive sensor module, the wireless communication model, and the readout module—within the context of key implementations in target sensing systems. Furthermore, we present case studies that demonstrate the feasibility of proposed classified components for sensing scenarios, derived from this systematic approach. By outlining a research trajectory for the application of passive wireless systems in sensing technologies, this paper aims to establish a foundation for more advanced, user-friendly applications.
Highlights:
1 This review comprehensively examines recent advancements in passive wireless systems applied to industrial environments and biomedical sensing, with a particular focus on the design strategies of passive wireless systems.
2 The design principles and operational mechanisms of passive wireless system components (sensing modules and readout modules) are systematically categorized.
3 Based on the latest research, the review highlights the innovative applications of passive wireless concepts in industrial environments, equipment safety, as well as in vivo and surface signal detection.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Lin, W. Yang, K.L. Wang, W. Zhao, Two-dimensional spintronics for low-power electronics. Nat. Electron. 2, 274–283 (2019). https://doi.org/10.1038/s41928-019-0273-7
- X. Tang, H. Shen, S. Zhao, N. Li, J. Liu, Flexible brain–computer interfaces. Nat. Electron. 6, 109–118 (2023). https://doi.org/10.1038/s41928-022-00913-9
- F. Zhou, Y. Chai, Near-sensor and in-sensor computing. Nat. Electron. 3, 664–671 (2020). https://doi.org/10.1038/s41928-020-00501-9
- K. Zhu, C. Wen, A.A. Aljarb, F. Xue, X. Xu et al., The development of integrated circuits based on two-dimensional materials. Nat. Electron. 4, 775–785 (2021). https://doi.org/10.1038/s41928-021-00672-z
- T.Q. Trung, N.-E. Lee, Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare. Adv. Mater. 28, 4338–4372 (2016). https://doi.org/10.1002/adma.201504244
- T. Wan, B. Shao, S. Ma, Y. Zhou, Q. Li et al., In-sensor computing: materials, devices, and integration technologies. Adv. Mater. 35, 2203830 (2023). https://doi.org/10.1002/adma.202203830
- C. Shi, Z. Zou, Z. Lei, P. Zhu, G. Nie et al., Stretchable, rehealable, recyclable, and reconfigurable integrated strain sensor for joint motion and respiration monitoring. Research 2021, 9846036 (2021). https://doi.org/10.34133/2021/9846036
- T. Xu, Q. Song, K. Liu, H. Liu, J. Pan et al., Nanocellulose-assisted construction of multifunctional MXene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode. Nano-Micro Lett. 15, 98 (2023). https://doi.org/10.1007/s40820-023-01073-x
- S. Chen, Z. Qiao, Y. Niu, J.C. Yeo, Y. Liu et al., Wearable flexible microfluidic sensing technologies. Nat. Rev. Bioeng. 1, 950–971 (2023). https://doi.org/10.1038/s44222-023-00094-w
- C.D. Flynn, D. Chang, A. Mahmud, H. Yousefi, J. Das et al., Biomolecular sensors for advanced physiological monitoring. Nat. Rev. Bioeng. 1, 560–575 (2023). https://doi.org/10.1038/s44222-023-00067-z
- R. He, H. Liu, Y. Niu, H. Zhang, G.M. Genin, F. Xu, Flexible miniaturized sensor technologies for long-term physiological monitoring. npj Flex. Electron. 6, 20 (2022). https://doi.org/10.1038/s41528-022-00146-y
- L. Portilla, K. Loganathan, H. Faber, A. Eid, J.G.D. Hester et al., Wirelessly powered large-area electronics for the internet of things. Nat. Electron. 6, 10–17 (2023). https://doi.org/10.1038/s41928-022-00898-5
- D. Li, J. Zhou, Z. Zhao, X. Huang, H. Li et al., Battery-free, wireless, and electricity-driven soft swimmer for water quality and virus monitoring. Sci. Adv. 10, eadk6301 (2024). https://doi.org/10.1126/sciadv.adk6301
- A. Lazaro, R. Villarino, M. Lazaro, N. Canellas, B. Prieto-Simon et al., Recent advances in batteryless NFC sensors for chemical sensing and biosensing. Biosensors 13, 775 (2023). https://doi.org/10.3390/bios13080775
- H. Kim, B. Rigo, G. Wong, Y.J. Lee, W.H. Yeo, Advances in wireless, batteryless, implantable electronics for real-time, continuous physiological monitoring. Nano-Micro Lett. 16, 52 (2024). https://doi.org/10.1007/s40820-023-01272-6
- G.-M. Ma, Z. Wu, H.-Y. Zhou, J. Jiang, W.-X. Chen et al., A wireless and passive online temperature monitoring system for GIS based on surface-acoustic-wave sensor. IEEE Trans. Power Deliv. 31, 1270–1280 (2016). https://doi.org/10.1109/TPWRD.2015.2482985
- C. Zhang, J. Wu, J. Li, K. Zhang, L. Xu et al., A self-powered instantaneous wireless sensing platform based on integrated triboelectric nanogenerator and negative resistance LC resonator. Measurement 235, 115032 (2024). https://doi.org/10.1016/j.measurement.2024.115032
- X. Tan, Z. Zhou, L. Zhang, X. Wang, Z. Lin et al., A passive wireless triboelectric sensor via a surface acoustic wave resonator (SAWR). Nano Energy 78, 105307 (2020). https://doi.org/10.1016/j.nanoen.2020.105307
- J. Deng, X. Sun, H. Peng, Power supplies for cardiovascular implantable electronic devices. EcoMat 5, e12343 (2023). https://doi.org/10.1002/eom2.12343
- X. Hu, W. Yin, F. Du, C. Zhang, P. Xiao et al., Biomedical applications and challenges of in-body implantable antenna for implantable medical devices: a review. AEU Int. J. Electron. Commun. 174, 155053 (2024). https://doi.org/10.1016/j.aeue.2023.155053
- C. Li, Q. Tan, P. Jia, W. Zhang, J. Liu et al., Review of research status and development trends of wireless passive LC resonant sensors for harsh environments. Sensors 15, 13097–13109 (2015). https://doi.org/10.3390/s150613097
- Y. Hamed, G. O’Donnell, N. Lishchenko, I. Munina, Strain sensing technology to enable next-generation industry and smart machines for the factories of the future: a review. IEEE Sens. J. 23, 25618–25649 (2023). https://doi.org/10.1109/JSEN.2023.3313013
- K.S.V. Idhaiam, J.A. Caswell, P.D. Pozo, K. Sabolsky, K.A. Sierros et al., All-ceramic passive wireless temperature sensor realized by tin-doped indium oxide (ITO) electrodes for harsh environment applications. Sensors 256, 110650 (2022). https://doi.org/10.3390/s22062165
- H. Gu, B. Lu, Z. Gao, S. Wu, L. Zhang et al., A battery-free wireless tactile sensor for multimodal force perception. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202410661
- Q.-A. Huang, L. Dong, L.-F. Wang, LC passive wireless sensors toward a wireless sensing platform: status, prospects, and challenges. J. Microelectromech. Syst. 25, 822–841 (2016). https://doi.org/10.1109/JMEMS.2016.2602298
- R. Wu, L. Ma, A. Patil, C. Hou, S. Zhu et al., All-textile electronic skin enabled by highly elastic spacer fabric and conductive fibers. ACS Appl. Mater. Interfaces 11, 33336–33346 (2019). https://doi.org/10.1021/acsami.9b10928
- R. Herbert, S. Mishra, H.-R. Lim, H. Yoo, W.-H. Yeo, Fully printed, wireless, stretchable implantable biosystem toward batteryless, real-time monitoring of cerebral aneurysm hemodynamics. Adv. Sci. 6, 1901034 (2019). https://doi.org/10.1002/advs.201901034
- J. Li, W. Yuan, S.-X. Luo, M.J. Bezdek, A. Peraire-Bueno et al., Wireless lateral flow device for biosensing. J. Am. Chem. Soc. 144, 15786–15792 (2022). https://doi.org/10.1021/jacs.2c06579
- J.M. Azzarelli, K.A. Mirica, J.B. Ravnsbæk, T.M. Swager, Wireless gas detection with a smartphone via RF communication. Proc. Natl. Acad. Sci. U.S.A. 111, 18162–18166 (2014). https://doi.org/10.1073/pnas.1415403111
- R.S. Hassan, Y. Lee, Fully passive sensor coated with phenylboronic acid hydrogel for continuous wireless glucose monitoring. IEEE Sens. J. 24, 12025–12033 (2024). https://doi.org/10.1109/JSEN.2024.3370552
- A.H. Kalhori, W.S. Kim, Printed wireless sensing devices using radio frequency communication. ACS Appl. Electron. Mater. 5, 1–10 (2023). https://doi.org/10.1021/acsaelm.2c01374
- M.R. Werner, W.R. Fahrner, Review on materials, microsensors, systems and devices for high-temperature and harsh-environment applications. IEEE Trans. Ind. Electron. 48, 249–257 (2001). https://doi.org/10.1109/41.915402
- J. Zhang, R. Das, J. Zhao, N. Mirzai, J. Mercer et al., Battery-free and wireless technologies for cardiovascular implantable medical devices. Adv. Mater. Technol. 7, 2101086 (2022). https://doi.org/10.1002/admt.202101086
- Y.G. Park, S. Lee, J.U. Park, Recent progress in wireless sensors for wearable electronics. Sensors 19, 4353 (2019). https://doi.org/10.3390/s19204353
- D. He, Y. Cui, F. Ming, W. Wu, Advancements in passive wireless sensors, materials, devices, and applications. Sensors 23, 8200 (2023). https://doi.org/10.3390/s23198200
- D. Lu, Y. Yan, R. Avila, I. Kandela, I. Stepien et al., Bioresorbable, wireless, passive sensors as temporary implants for monitoring regional body temperature. Adv. Healthc. Mater. 9, 2000942 (2020). https://doi.org/10.1002/adhm.202000942
- T. Stuart, L. Cai, A. Burton, P. Gutruf, Wireless, battery-free platforms for collection of biosignals. Biosens. Bioelectron. 178, 113007 (2021). https://doi.org/10.1016/j.bios.2021.113007
- R. Raju, G.E. Bridges, S. Bhadra, Wireless passive sensors for food quality monitoring: improving the safety of food products. IEEE Anntenas Propag. Mag. 62, 76–89 (2020). https://doi.org/10.1109/MAP.2020.3003216
- D.-Y. Chen, L. Dong, Q.-A. Huang, Inductor–capacitor passive wireless sensors using nonlinear parity-time symmetric configurations. Nat. Commun. 15, 9312 (2024). https://doi.org/10.1038/s41467-024-53655-x
- L. Rauter, J. Zikulnig, L. Neumaier, L.-M. Faller, H. Zangl et al., Printed wireless battery-free sensor tag for structural health monitoring of natural fiber composites, in 2022 IEEE Sensors Applications Symposium (SAS). August 1–3, 2022, Sundsvall, Sweden. IEEE, (2022), pp.1–5.
- H. Hallil, C. Dejous, S. Hage-Ali, O. Elmazria, J. Rossignol et al., Passive resonant sensors: trends and future prospects. IEEE Sens. J. 21, 12618 (2021). https://doi.org/10.1109/JSEN.2021.3065734
- S. Roy, Y.J. Chan, N.F. Reuel, N.M. Neihart, Low-cost portable readout system design for inductively coupled resonant sensors. IEEE Trans. Instrum. Meas. 71, 8003413 (2022). https://doi.org/10.1109/TIM.2022.3173277
- Z. Xie, R. Avila, Y. Huang, J.A. Rogers, Flexible and stretchable antennas for biointegrated electronics. Adv. Mater. 32, e1902767 (2020). https://doi.org/10.1002/adma.201902767
- R. Byrne, D. Diamond, Chemo/bio-sensor networks. Nat. Mater. 5, 421–424 (2006). https://doi.org/10.1038/nmat1661
- R. Herbert, H.R. Lim, B. Rigo, W.H. Yeo, Fully implantable wireless batteryless vascular electronics with printed soft sensors for multiplex sensing of hemodynamics. Sci. Adv. 8, eabm1175 (2022). https://doi.org/10.1126/sciadv.abm1175
- J. Philpott, J. Churm, V. Nasrollahi, S. Dimov, C. Anthony et al., Wireless measurement of the degradation rates of thin film bioresorbable metals using reflected impedance. IEEE Trans. Semicond. Manuf. 36, 14–21 (2023). https://doi.org/10.1109/TSM.2022.3221267
- S. Yoo, J. Lee, H. Joo, S.-H. Sunwoo, S. Kim et al., Wireless power transfer and telemetry for implantable bioelectronics. Adv. Healthc. Mater. 10, 2100614 (2021). https://doi.org/10.1002/adhm.202100614
- J. Kim, A.S. Campbell, B.E.-F. de Ávila, J. Wang, Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37, 389–406 (2019). https://doi.org/10.1038/s41587-019-0045-y
- S.H. Lee, Y.B. Lee, B.H. Kim, C. Lee, Y.M. Cho et al., Implantable batteryless device for on-demand and pulsatile insulin administration. Nat. Commun. 8, 15032 (2017). https://doi.org/10.1038/ncomms15032
- Y.J. Zhou, Q.L. Wen, Y.W. Mao, Passive wireless temperature sensors for harsh environment, in 2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), December 7–9, 2020, Hangzhou, China. IEEE, (2020), pp. 1–2.
- R. Salvati, V. Palazzi, L. Roselli, F. Alimenti, P. Mezzanotte, Emerging backscattering technologies for wireless sensing in harsh environments: unlocking the potential of RFID-based backscattering for reliable wireless sensing in challenging environments. IEEE Microw. Mag. 24, 14–23 (2023). https://doi.org/10.1109/MMM.2023.3293583
- G. Liu, Q.A. Wang, G. Jiao, P. Dang, G. Nie et al., Review of wireless rfid strain sensing technology in structural health monitoring. Sensors 23, 6925 (2023). https://doi.org/10.3390/s23156925
- Z. Khan, X. Chen, H. He, A. Mehmood, J. Virkki, A bending passive RFID tag as a sensor for high-temperature exposure. Int. J. Antennas Propag. (2021). https://doi.org/10.1155/2021/5541197
- P. Yeon, M.G. Kim, O. Brand, M. Ghoovanloo, Optimal design of passive resonating wireless sensors for wearable and implantable devices. IEEE Sens. J. 19, 7460–7470 (2019). https://doi.org/10.1109/JSEN.2019.2915299
- H. Mohammadbagherpoor, P. Ierymenko, M.H. Craver, J. Carlson, D. Dausch et al., An implantable wireless inductive sensor system designed to monitor prosthesis motion in total joint replacement surgery. IEEE Trans. Biomed. Eng. 67, 1718–1726 (2020). https://doi.org/10.1109/TBME.2019.2943808
- C. Tang, Z. Liu, Q. Hu, Z. Jiang, M. Zheng et al., Unconstrained piezoelectric vascular electronics for wireless monitoring of hemodynamics and cardiovascular health. Small 20, 2304752 (2024). https://doi.org/10.1002/smll.202304752
- A. Hajiaghajani, A.H. Afandizadeh Zargari, M. Dautta, A. Jimenez, F. Kurdahi et al., Textile-integrated metamaterials for near-field multibody area networks. Nat. Electron. 4, 808–817 (2021). https://doi.org/10.1038/s41928-021-00663-0
- R. Lin, H.-J. Kim, S. Achavananthadith, S.A. Kurt et al., Digitally-embroidered liquid metal electronic textiles for wearable wireless systems. Nat. Commun. 11, 444 (2020). https://doi.org/10.1038/s41467-020-14311-2
- N.K. Das, M. Ravipati, S. Badhulika, Nickel metal–organic framework/PVDF composite nanofibers-based self-powered wireless sensor for pulse monitoring of underwater divers via triboelectrically generated Maxwell’s displacement current. Adv. Funct. Mater. 33, 2303288 (2023). https://doi.org/10.1002/adfm.202303288
- M. Sun, P. Li, H. Qin, N. Liu, H. Ma et al., Liquid metal/CNTs hydrogel-based transparent strain sensor for wireless health monitoring of aquatic animals. Chem. Eng. J. 454, 140459 (2023). https://doi.org/10.1016/j.cej.2022.140459
- Z. Dong, Z. Li, F. Yang, C.-W. Qiu, J.S. Ho, Sensitive readout of implantable microsensors using a wireless system locked to an exceptional point. Nat. Electron. 2, 335–342 (2019). https://doi.org/10.1038/s41928-019-0284-4
- X. Zou, B. Hu, L. Wen, A passive wireless sensing method based on magnetic resonance coupling and bulk acoustic wave device. IEEE Sens. J. 23, 7031–7040 (2023). https://doi.org/10.1109/JSEN.2023.3242705
- L.Y. Chen, B.C.K. Tee, A.L. Chortos, G. Schwartz et al., Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care. Nat. Commun. 5, 5028 (2014). https://doi.org/10.1038/ncomms6028
- F.A. Alvarez del Castillo Manzanos, R.R. Hughes, A.J. Croxford, Passive wireless mechanical overload sensing: proof of concept using agarose hydrogels. IEEE Trans. Instrum. Meas. 72, 9509109 (2023). https://doi.org/10.1109/TIM.2023.3291741
- H. Hodaei, A.U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy et al., Enhanced sensitivity at higher-order exceptional points. Nature 548, 187–191 (2017). https://doi.org/10.1038/nature23280
- K.K.H. Dia, A. Hajiaghajani, A.R. Escobar, M. Dautta, P. Tseng, Broadside-coupled split ring resonators as a model construct for passive wireless sensing. Adv. Sens. Res. 2, 2300006 (2023). https://doi.org/10.1002/adsr.202300006
- H. Xue, W. Gao, J. Gao, G.F. Schneider, C. Wang, W. Fu, Radiofrequency sensing systems based on emerging two-dimensional materials and devices. Int. J. Extrem. Manuf. 5, 32010 (2023). https://doi.org/10.1088/2631-7990/acd88d
- J.-S. Hong, M.J. Lancaster, Microstrip Filters for RF/Microwave Applications (Wiley, Hoboken, 2001). https://doi.org/10.1002/0471221619
- P. Mehrotra, B. Chatterjee, S. Sen, EM-wave biosensors: a review of RF, microwave, mm-wave and optical sensing. Sensors 19, 1013 (2019). https://doi.org/10.3390/s19051013
- K. Jiang, H. Wang, Y. Long, Y. Han, H. Zhang et al., Injectable miniaturized shape-memory electronic device for continuous glucose monitoring. Device 1, 100117 (2023). https://doi.org/10.1016/j.device.2023.100117
- L. Zhang, Q. Tan, Y. Wang, Z. Fan, L. Lin et al., Wirelessly powered multi-functional wearable humidity sensor based on RGO-WS2 heterojunctions. Sens. Actuators B Chem. 329, 129077 (2021). https://doi.org/10.1016/j.snb.2020.129077
- Q. Huang, L. Dong, L. Wang, LC passive wireless sensors toward a wireless sensing platform: status, prospects, and challenges. J. Microelectromech. Syst. 296, 178–185 (2016). https://doi.org/10.1109/JMEMS.2016.2602298
- M. Dautta, A. Hajiaghajani, F. Ye, A.R. Escobar, A. Jimenez et al., Programmable multiwavelength radio frequency spectrometry of chemophysical environments through an adaptable network of flexible and environmentally responsive, passive wireless elements. Small Sci. 2, 2200013 (2022). https://doi.org/10.1002/smsc.202200013
- B.-B. Zhou, M.-N. Zhang, M.-Z. Xie, L.-F. Wang, Q.-A. Huang, Enhancing LC sensor telemetry via magnetic resonance coupling, in 2019 IEEE SENSORS, October 27–30, 2019, Montreal, QC, Canada. IEEE, (2019), pp. 1–4.
- Q. Tan, Y. Ji, W. Lv, F. Wu, H. Dong et al., Signal readout of LC pressure sensor operated in multi-dimensional rotating environment with dual-inductance resonator. Sens. Actuators A Phys. 296, 178–185 (2019). https://doi.org/10.1016/j.sna.2019.06.031
- M. Dautta, A. Jimenez, K.K.H. Dia, N. Rashid, M. Abdullah Al Faruque et al., Wireless Qi-powered, multinodal and multisensory body area network for mobile health. IEEE Internet Things J. 8, 7600–7609 (2021). https://doi.org/10.1109/jiot.2020.3040713
- C. Zhang, L.F. Wang, Q.A. Huang, Extending the remote distance of LC passive wireless sensors via strongly coupled magnetic resonances. J. Micromech. Microeng. 24, 125021 (2014). https://doi.org/10.1088/0960-1317/24/12/125021
- A. Seré, L. Steinfeld, S. Hemour, P. Pérez-Nicoli, Self-adaptive intermediate resonator in a 3-coil inductive link for power and data transmission. IEEE Trans. Circuits Syst. II Express Briefs 71, 4728–4732 (2024). https://doi.org/10.1109/TCSII.2024.3360369
- L. Dong, L.-F. Wang, C. Zhang, Q.-A. Huang, A cyclic scanning repeater for enhancing the remote distance of LC passive wireless sensors. IEEE Trans. Circuits Syst. I Regul. Pap. 63, 1426–1433 (2016). https://doi.org/10.1109/TCSI.2016.2572221
- C. Wu, L. Han, Y. Dong, M. Guo, R. Wang et al., Wireless battery-free flexible sensing system for continuous wearable health monitoring. Adv. Mater. Technol. 8, 2201662 (2023). https://doi.org/10.1002/admt.202201662
- Q. Tan, Y. Guo, G. Wu, T. Luo, T. Wei et al., Systematic theoretical analysis of dual-parameters RF readout by a novel LC-type passive sensor. Model. Simul. Eng. (2017). https://doi.org/10.1155/2017/4938732
- C. Wu, L. Han, Wireless multi-parameter sensing system for monitoring in the complex environment, in 2022 13th International Conference on Information and Communication Technology Convergence (ICTC), October 19–21, 2022, Jeju Island, Korea, Republic of. IEEE, (2022), pp. 14–18.
- H. Kou, Q. Tan, Y. Wang, G. Zhang, S. Su et al., A wireless slot-antenna integrated temperature–pressure–humidity sensor loaded with CSRR for harsh-environment applications. Sens. Actuators B Chem. 311, 127907 (2020). https://doi.org/10.1016/j.snb.2020.127907
- Y. Zhang, W. Tang, H. Chen, H. Li, Z. Xue et al., Flexible LC sensor array for wireless multizone pressure monitoring. IEEE Sens. J. 24, 2628–2636 (2024). https://doi.org/10.1109/JSEN.2023.3345633
- H. Wen, C. Chen, S. Li, Y. Shi, H. Wang et al., Array integration and far-field detection of biocompatible wireless LC pressure sensors. Small Methods 5, 2001055 (2021). https://doi.org/10.1002/smtd.202001055
- G.H. Lee, J.K. Park, J. Byun, J.C. Yang, S.Y. Kwon et al., Parallel signal processing of a wireless pressure-sensing platform combined with machine-learning-based cognition, inspired by the human somatosensory system. Adv. Mater. 32, e1906269 (2020). https://doi.org/10.1002/adma.201906269
- B. Xu, D. Chen, Y. Wang, R. Tang, L. Yang et al., Wireless and flexible tactile sensing array based on an adjustable resonator with machine-learning perception. Adv. Electron. Mater. 9, 2201334 (2023). https://doi.org/10.1002/aelm.202201334
- L. Lin, M. Ma, F. Zhang, F. Liu, Z. Liu et al., Integrated passive wireless pressure and temperature dual-parameter sensor based on LTCC technology. Ceram. Int. 44, 129 (2018). https://doi.org/10.1016/j.ceramint.2018.08.159
- T. Wei, Q. Tan, T. Luo, G. Wu, S. Tang et al., Modeling, simulation and coupling experiment for integrated passive wireless multi-parameters ceramic sensor. Sens. Rev. 36, 98 (2016). https://doi.org/10.1108/SR-03-2015-0045
- L. Dong, D.Y. Chen, P. Dai, L.-F. Wang, Q.A. Huang, PT-symmetric wireless sensing system of double parameters. IEEE Sens. J. 24, 2118–2124 (2024). https://doi.org/10.1109/JSEN.2023.3337836
- Y. Zhang, C. Chen, Y. Qiu, L. Ma, W. Qiu et al., Meso-reconstruction of silk fibroin based on molecular and nano-templates for electronic skin in medical applications. Adv. Funct. Mater. 31, 2100150 (2021). https://doi.org/10.1002/adfm.202100150
- H. Kou, L. Zhang, Q. Tan, G. Liu, H. Dong et al., Wireless wide-range pressure sensor based on graphene/PDMS sponge for tactile monitoring. Sci. Rep. 9, 3916 (2019). https://doi.org/10.1038/s41598-019-40828-8
- M. Li, L. Zhang, H. Dong, Y. Wang, X. Yan et al., Wireless passive flexible strain sensor based on aluminium nitride film. IEEE Sens. J. 22, 3074–3079 (2022). https://doi.org/10.1109/JSEN.2021.3138786
- A.R. Carr, Y.J. Chan, N.F. Reuel, Contact-free, passive, electromagnetic resonant sensors for enclosed biomedical applications: a perspective on opportunities and challenges. ACS Sens. 8, 943–955 (2023). https://doi.org/10.1021/acssensors.2c02552
- L. Zhang, Q. Tan, H. Kou, D. Wu, W. Zhang et al., Highly sensitive NH3 wireless sensor based on Ag-RGO composite operated at room-temperature. Sci. Rep. 9, 9942 (2019). https://doi.org/10.1038/s41598-019-46213-9
- W. Lv, Q. Tan, H. Kou, W. Zhang, J. Xiong, MWCNTs/WS2 nanocomposite sensor realized by LC wireless method for humidity monitoring. Sens. Actuators A Phys. 290, 207–214 (2019). https://doi.org/10.1016/j.sna.2019.03.032
- J. Luo, R. Xue, J. Cheong, X. Zhang, L. Yao, Design and optimization of planar spiral coils for powering implantable neural recording microsystem. Micromachines 14, 1221 (2023). https://doi.org/10.3390/mi14061221
- S.S. Mohan, M.M. Hershenson, S.P. Boyd, T.H. Lee, Simple accurate expressions for planar spiral inductances. IEEE J. Solid-State Circuits 34, 1419 (1999). https://doi.org/10.1109/4.792620
- P. Escobedo, A. Martínez-Olmos, J. Fernández-Salmerón, A. Rivadeneyra et al., Compact readout system for chipless passive LC tags and its application for humidity monitoring. Sens. Actuators A Phys. 280, 287–294 (2018). https://doi.org/10.1016/j.sna.2018.07.040
- K. Li, X. Cheng, F. Zhu, L. Li, Z. Xie et al., A generic soft encapsulation strategy for stretchable electronics. Adv. Funct. Mater. 29, 1806630 (2019). https://doi.org/10.1002/adfm.201806630
- Z. Sun, H. Fang, B. Xu, L. Yang, H. Niu et al., Flexible wireless passive LC pressure sensor with design methodology and cost-effective preparation. Micromachines 12, 976 (2021). https://doi.org/10.3390/mi12080976
- X. Li, R. Sun, J. Pan, Z. Shi, J. Lv et al., All-MXene-printed RF resonators as wireless plant wearable sensors for in situ ethylene detection. Small 19, 2207889 (2023). https://doi.org/10.1002/smll.202207889
- W.J. Deng, L.F. Wang, L. Dong, Q. Huang, LC wireless sensitive pressure sensors with microstructured PDMS dielectric layers for wound monitoring. IEEE Sens. J. 18, 4886–4892 (2018). https://doi.org/10.1109/JSEN.2018.2831229
- Y. Dong, T.L. Liu, S. Chen, P. Nithianandam, K. Mata et al., A “two-part” resonance circuit based detachable sweat patch for noninvasive biochemical and biophysical sensing. Adv. Funct. Mater. 33, 2210136 (2023). https://doi.org/10.1002/adfm.202210136
- K. Kwon, J.U. Kim, S.M. Won, J. Zhao, R. Avila et al., A battery-less wireless implant for the continuous monitoring of vascular pressure, flow rate and temperature. Nat. Biomed. Eng. 7, 1215–1228 (2023). https://doi.org/10.1038/s41551-023-01022-4
- K. Kim, H.J. Kim, H. Zhang, W. Park, D. Meyer et al., All-printed stretchable corneal sensor on soft contact lenses for noninvasive and painless ocular electrodiagnosis. Nat. Commun. 12, 1544 (2021). https://doi.org/10.1038/s41467-021-21916-8
- S. Li, D. Lu, S. Li, J. Liu, Y. Xu et al., Bioresorbable, wireless, passive sensors for continuous pH measurements and early detection of gastric leakage. Sci. Adv. 10, eadj0268 (2024). https://doi.org/10.1126/sciadv.adj0268
- T. Kim, C. Bao, M. Hausmann, G. Siqueira, W.S. Kim, 3D printed disposable wireless ion sensors with biocompatible cellulose composites. Adv. Electron. Mater. 5, 1800778 (2018). https://doi.org/10.1002/aelm.201800778
- X. Ma, P. Wang, L. Huang, R. Ding, K. Zhou et al., A monolithically integrated in-textile wristband for wireless epidermal biosensing. Sci. Adv. 9, eadj2763 (2023). https://doi.org/10.1126/sciadv.adj2763
- E. Shirzaei Sani, C. Xu, C. Wang, Y. Song, J. Min et al., A stretchable wireless wearable bioelectronic system for multiplexed monitoring and combination treatment of infected chronic wounds. Sci. Adv. 9, eadf7388 (2023). https://doi.org/10.1126/sciadv.adf7388
- C. Zhang, C. Pan, K. Chan, J. Gao, Z. Yang et al., Wirelessly powered deformable electronic stent for noninvasive electrical stimulation of lower esophageal sphincter. Sci. Adv. 9, eade8622 (2023). https://doi.org/10.1126/sciadv.ade8622
- Y. Zhai, J. Lee, Q. Hoang, D. Sievenpipper, H. Garudadri et al., A printed wireless fluidic pressure sensor. Flex. Print. Electron. 3, 035006 (2018). https://doi.org/10.1088/2058-8585/aae09e
- J. Lee, S.J. Ihle, G.S. Pellegrino, H. Kim, J. Yea et al., Stretchable and suturable fibre sensors for wireless monitoring of connective tissue strain. Nat. Electron. 4, 291–301 (2021). https://doi.org/10.1038/s41928-021-00557-1
- M.S. Mannoor, H. Tao, J.D. Clayton, A. Sengupta, D.L. Kaplan et al., Graphene-based wireless bacteria detection on tooth enamel. Nat. Commun. 3, 763 (2012). https://doi.org/10.1038/ncomms1767
- W.J. Deng, L.F. Wang, L. Dong, Q.A. Huang, Symmetric LC circuit configurations for passive wireless multifunctional sensors. J. Microelectromech. Syst. 28, 344–350 (2019). https://doi.org/10.1109/JMEMS.2019.2901818
- S. Charkhabi, Y.J. Chan, S. Roy, M.M. Islam, B.B. Duffield et al., Effects of fabrication materials and methods on flexible resonant sensor signal quality. Extrem. Mech. Lett. 41, 101027 (2020). https://doi.org/10.1016/j.eml.2020.101027
- A.M. Beierle, C.H. Quinn, H.R. Markert, A. Carr, R. Marayati et al., Rapid characterization of solid tumors using resonant sensors. ACS Omega 7, 32690–32700 (2022). https://doi.org/10.1021/acsomega.2c04345
- J.-C. Chiou, S.-H. Hsu, Y.-C. Huang, G.-T. Yeh, W.-T. Liou et al., A wirelessly powered smart contact lens with reconfigurable wide range and tunable sensitivity sensor readout circuitry. Sensors 17, 108 (2017). https://doi.org/10.3390/s17010108
- S. Roh, T.D. Nguyen, J.S. Lee, Applications of nanomaterials in RFID wireless sensor components. Appl. Sci. 14, 1216 (2024). https://doi.org/10.3390/app14031216
- M. Farooq, T. Iqbal, P. Vazquez, N. Farid, S. Thampi et al., Applications of nanomaterials in RFID wireless sensor components. Sensors 20, 6653 (2020). https://doi.org/10.3390/s20226653
- A.H. Kalhori, T. Kim, W.S. Kim, Enhanced RF response of 3D-printed wireless LC sensors using dielectrics with high permittivity. Flex. Print. Electron. 8, 015013 (2023). https://doi.org/10.1088/2058-8585/acb722
- S. Cho, H. Han, H. Park, S.U. Lee, J.H. Kim et al., Wireless, multimodal sensors for continuous measurement of pressure, temperature, and hydration of patients in wheelchair. npj Flex. Electron. 7, 8 (2023). https://doi.org/10.1038/s41528-023-00238-3
- Y. Shao, L. Wei, X. Wu, C. Jiang, Y. Yao et al., Room-temperature high-precision printing of flexible wireless electronics based on MXene inks. Nat. Commun. 13, 3223 (2022). https://doi.org/10.1038/s41467-022-30648-2
- H. Xue, W. Gao, J. Gao, G.F. Schneider, C. Wang et al., Radiofrequency sensing systems based on emerging two-dimensional materials and devices. Int. J. Extrem. Manuf. 5, 032010 (2023). https://doi.org/10.1088/2631-7990/acd88d
- S. Dhall, B.R. Mehta, A.K. Tyagi, K. Sood, A review on environmental gas sensors: materials and technologies. Sens. Int. 2, 100116 (2021). https://doi.org/10.1016/j.sintl.2021.100116
- A. Shakeel, K. Rizwan, U. Farooq, S. Iqbal, A.A. Altaf, Advanced polymeric/inorganic nanohybrids: an integrated platform for gas sensing applications. Chemosphere 294, 133772 (2022). https://doi.org/10.1016/j.chemosphere.2022.133772
- C. Wu, L. Han, J. Zhang, Y. Wang, R. Wang et al., Capacitive ammonia sensor based on graphene oxide/polyaniline nanocomposites. Adv. Mater. Technol. 7, 2101247 (2022). https://doi.org/10.1002/admt.202101247
- L. Zhang, H. Yang, Q. Tan, L. Jing, W. Zhang et al., Wireless detection of biogenic amines using a split-ring resonator with silver nanops-decorated molybdenum disulfide. Sens. Actuators B Chem. 343, 130155 (2021). https://doi.org/10.1016/j.snb.2021.130155
- W.C. Wilson, G.M. Atkinson, Passive wireless sensor applications for NASA’s extreme aeronautical environments. IEEE Sens. J. 14, 3745–3753 (2014). https://doi.org/10.1109/JSEN.2014.2322959
- L. Zhang, S. Su, F. Xu, T. Ren, J. Xiong, High sensitivity SIW-CSRR temperature sensor based on microwave scattering. IEEE Sens. J. 23, 13900–13908 (2023). https://doi.org/10.1109/JSEN.2023.3276426
- B.L. Chetty, T.M. Walingo, C.P. Kruger, S.J. Isaac, Experimental investigation into deploying a Wi-Fi6 mesh system for underground gold and platinum mine stopes. Mining 4, 567–587 (2024). https://doi.org/10.3390/mining4030032
- B. Wang, B. Han, K. Wang, S. Cao, Air vehicle humidity sensor based on PVA film humidity sensing principle. APL Mater. 12, 71116 (2024). https://doi.org/10.1063/5.0213766
- K. Jiang, S. Xue, L. Xie, G. Wan, Z. Yi et al., A wireless passive sensor based on U-shaped resonators for bidirectional deformation sensing. IEEE Sens. J. 24, 36467–36476 (2024). https://doi.org/10.1109/JSEN.2024.3459097
- L. Lasantha, N.C. Karmakar, B. Ray, Chipless RFID for IoT sensing and potential applications in underground mining—a review. IEEE Sens. J. 23, 9033–9048 (2023). https://doi.org/10.1109/JSEN.2023.3259973
- K. Huang, Q. Xu, Q. Ying, B. Gu, W. Yuan, Wireless strain sensing using carbon nanotube composite film. Compos. Part B Eng. 10, e2301807 (2023). https://doi.org/10.1016/j.compositesb.2023.110650
- H. Nesser, H.A. Mahmoud, G. Lubineau, High-sensitivity RFID sensor for structural health monitoring. Adv. Sci. 22, 2165 (2023). https://doi.org/10.1002/advs.202301807
- Q. Tan, W. Lv, Y. Ji, R. Song, F. Lu et al., A LC wireless passive temperature-pressure-humidity (TPH) sensor integrated on LTCC ceramic for harsh monitoring. Sens. Actuators B Chem. 270, 433–442 (2018). https://doi.org/10.1016/j.snb.2018.04.094
- L. Lin, M. Ma, F. Zhang, F. Liu, Z. Liu et al., Integrated passive wireless pressure and temperature dual-parameter sensor based on LTCC technology. Ceram. Int. 44, S129–S132 (2018). https://doi.org/10.1016/j.ceramint.2018.08.159
- J. Lin, X. Chen, P. Zhang, Y. Xue, Y. Feng et al., Wireless bioelectronics for in vivo pressure monitoring with mechanically-compliant hydrogel biointerfaces. Adv. Mater. 36, 2400181 (2024). https://doi.org/10.1002/adma.202400181
- C. Girerd, Q. Zhang, A. Gupta, M. Dunna, D. Bharadia et al., Towards a wireless force sensor based on wave backscattering for medical applications. IEEE Sens. J. 21, 8903–8915 (2021). https://doi.org/10.1109/JSEN.2021.3049225
- N.E. Oyunbaatar, D.S. Kim, G. Prasad, Y.J. Jeong, D.W. Lee, Self-rollable polymer stent integrated with wireless pressure sensor for real-time monitoring of cardiovascular pressure. Sens. Actuators A Phys. 346, 113869 (2022). https://doi.org/10.1016/j.sna.2022.113869
- S.R.A. Ruth, M.-G. Kim, H. Oda, Z. Wang, Y. Khan et al., Post-surgical wireless monitoring of arterial health progression. iScience 24, 103079 (2021). https://doi.org/10.1016/j.isci.2021.103079
- A. Bhatia, J. Hanna, T. Stuart, K.A. Kasper, D.M. Clausen et al., Wireless battery-free and fully implantable organ interfaces. Chem. Rev. 124, 2205–2280 (2024). https://doi.org/10.1021/acs.chemrev.3c00425
- D. Lu, Y. Yan, Y. Deng, Q. Yang, J. Zhao et al., Bioresorbable wireless sensors as temporary implants for in vivo measurements of pressure. Adv. Funct. Mater. 30, 2003754 (2020). https://doi.org/10.1002/adfm.202003754
- J.H. Lee, T.-M. Jang, J.-W. Shin, B.H. Lim, K. Rajaram et al., Wireless, fully implantable and expandable electronic system for bidirectional electrical neuromodulation of the urinary bladder. ACS Nano 17, 8511–8520 (2023). https://doi.org/10.1021/acsnano.3c00755
- M.R. Yousefi Darestani, D. Lange, B.H. Chew, K. Takahata, Electromechanically functionalized ureteral stents for wireless obstruction monitoring. ACS Biomater. Sci. Eng. 9, 4392–4403 (2023). https://doi.org/10.1021/acsbiomaterials.3c00114
- M. Dautta, M. Alshetaiwi, J. Escobar, P. Tseng, Passive and wireless, implantable glucose sensing with phenylboronic acid hydrogel-interlayer RF resonators. Biosens. Bioelectron. 151, 112004 (2020). https://doi.org/10.1016/j.bios.2020.112004
- J. Lee, H.R. Cho, G.D. Cha, H. Seo, S. Lee et al., Flexible, sticky, and biodegradable wireless device for drug delivery to brain tumors. Nat. Commun. 10, 5205 (2019). https://doi.org/10.1038/s41467-019-13198-y
- J. Ausra, M. Madrid, R.T. Yin, J. Hanna, S. Arnott et al., Wireless, fully implantable cardiac stimulation and recording with on-device computation for closed-loop pacing and defibrillation. Sci. Adv. 8, eabq7469 (2022). https://doi.org/10.1126/sciadv.abq7469
- G.H. Lee, C. Jeon, J.W. Mok, S. Shin, S.K. Kim et al., Smart wireless near-infrared light emitting contact lens for the treatment of diabetic retinopathy. Adv. Sci. 9, 2103254 (2022). https://doi.org/10.1002/advs.202103254
- T.Y. Kim, J.W. Mok, S.H. Hong, S.H. Jeong, H. Choi et al., Wireless theranostic smart contact lens for monitoring and control of intraocular pressure in glaucoma. Nat. Commun. 13, 6801 (2022). https://doi.org/10.1038/s41467-022-34597-8
- H. Zhu, H. Yang, L. Zhan, Y. Chen, J. Wang et al., Hydrogel-based smart contact lens for highly sensitive wireless intraocular pressure monitoring. ACS Sens. 7, 3014–3022 (2022). https://doi.org/10.1021/acssensors.2c01299
- J. Zhang, K. Kim, H.J. Kim, D. Meyer, W. Park et al., Smart soft contact lenses for continuous 24-hour monitoring of intraocular pressure in glaucoma care. Nat. Commun. 13, 5518 (2022). https://doi.org/10.1038/s41467-022-33254-4
- H. Yang, H. Zhu, H. Liu, Z. Mao, J. Luo et al., Intraocular pressure monitoring smart contact lens with high environmental stability. Adv. Funct. Mater. 34, 2400722 (2024). https://doi.org/10.1002/adfm.202400722
- Y. Yang, T. Cui, D. Li, S. Ji, Z. Chen et al., Breathable electronic skins for daily physiological signal monitoring. Nano-Micro Lett. 14, 161 (2022). https://doi.org/10.1007/s40820-022-00911-8
- M. Guess, I. Soltis, B. Rigo, N. Zavanelli, S. Kapasi et al., Wireless batteryless soft sensors for ambulatory cardiovascular health monitoring. Soft Sci. 3, 23 (2023). https://doi.org/10.20517/ss.2023.17
- J. Alberto, C. Leal, C. Fernandes, P.A. Lopes, H. Paisana et al., Fully untethered battery-free biomonitoring electronic tattoo with wireless energy harvesting. Sci. Rep. 10, 5539 (2020). https://doi.org/10.1038/s41598-020-62097-6
- P. Hajiaghajani, Tseng, Microelectronics-free, augmented telemetry from body-worn passive wireless sensors. Adv. Mater. Technol. 6, 2001127 (2021). https://doi.org/10.1002/admt.202001127
- Y. Tai, Z. Yang, Toward flexible wireless pressure-sensing device via ionic hydrogel microsphere for continuously mapping human-skin signals. Adv. Mater. Interfaces 4, 1700496 (2017). https://doi.org/10.1002/admi.201700496
- Y. Guo, F. Yin, Y. Li, G. Shen, J.-C. Lee, Incorporating wireless strategies to wearable devices enabled by a photocurable hydrogelfor monitoring pressure information. Adv. Mater. 35, 2370208 (2023). https://doi.org/10.1002/adma.202370208
- L. Ma, R. Wu, A. Patil, S. Zhu, Z. Meng et al., Full-textile wireless flexible humidity sensor for human physiological monitoring. Adv. Funct. Mater. 29, 1904549 (2019). https://doi.org/10.1002/adfm.201904549
- S. Gopalakrishnan, S. Sedaghat, A. Krishnakumar, Z. He, H. Wang et al., Wireless humidity sensor for smart packaging via one-step laser-induced patterning and nanop formation on metallized paper. Adv. Electron. Mater. 8, 2101149 (2022). https://doi.org/10.1002/aelm.202101149
- G.H. Lee, G.S. Lee, J. Byun, J.C. Yang, C. Jang et al., Deep-learning-based deconvolution of mechanical stimuli with Ti3C2Tx MXene electromagnetic shield architecture via dual-mode wireless signal variation mechanism. ACS Nano 14, 11962–11972 (2020). https://doi.org/10.1021/acsnano.0c05105
- T. Kim, A.H. Kalhori, T.H. Kim, C. Bao, W.S. Kim, 3D designed battery-free wireless origami pressure sensor. Microsys. Nanoeng. 8, 120 (2022). https://doi.org/10.1038/s41378-022-00465-0
- Q. Qu, J. Yan, S. Liu, X. Xiao, Y. Zhang et al., Wireless human motion monitoring by a wearable 3D spiral liquid metal sensor with a spinning top-shaped structure. Adv. Mater. Technol. (2023). https://doi.org/10.1002/admt.202300896
- H. Kou, L. Zhang, Q. Tan, G. Liu, W. Lv et al., Wireless flexible pressure sensor based on micro-patterned Graphene/PDMS composite. Sens. Actuators A Phys. 277, 150–156 (2018). https://doi.org/10.1016/j.sna.2018.05.015
- J. Yan, J. Liu, Q. Qu, X. Chen, J. Liu et al., Wireless human motion detection with a highly sensitive wearable pressure sensing technology. Adv. Mater. Technol. 8, 2201936 (2023). https://doi.org/10.1002/admt.202201936
- B. Nie, R. Huang, T. Yao, Y. Zhang, Y. Miao et al., Textile-based wireless pressure sensor array for human-interactive sensing. Adv. Funct. Mater. 29, 1808786 (2019). https://doi.org/10.1002/adfm.201808786
- A. Hajiaghajani, P. Rwei, A.H. Afandizadeh Zargari, A.R. Escobar, F. Kurdahi et al., Amphibious epidermal area networks for uninterrupted wireless data and power transfer. Nat. Commun. 14, 7522 (2023). https://doi.org/10.1038/s41467-023-43344-6
- V. Galli, S.K. Sailapu, T.J. Cuthbert, C. Ahmadizadeh, B.C. Hannigan et al., Passive and wireless all-textile wearable sensor system. Adv. Sci. 10, 206665 (2023). https://doi.org/10.1002/advs.202206665
- Z. He, Y. Wang, H. Xiao, Y. Wu, X. Xia et al., Highly stretchable, deformation-stable wireless powering antenna for wearable electronics. Nano Energy 112, 108461 (2023). https://doi.org/10.1016/j.nanoen.2023.108461
- J. Park, J. Kim, S.Y. Kim, W.H. Cheong, J. Jang et al., Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Sci. Adv. 4, eaap9841 (2018). https://doi.org/10.1126/sciadv.aap9841
- J. Kim, M. Kim, M.S. Lee, K. Kim, S. Ji et al., Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nat. Commun. 8, 14997 (2017). https://doi.org/10.1038/ncomms14997
- P. Tseng, B. Napier, L. Garbarini, D.L. Kaplan, F.G. Omenetto, Functional, RF-trilayer sensors for tooth-mounted, wireless monitoring of the oral cavity and food consumption. Adv. Mater. 30, e1703257 (2018). https://doi.org/10.1002/adma.201703257
- Z. Shi, Y. Lu, S. Shen, Y. Xu, C. Shu et al., Wearable battery-free theranostic dental patch for wireless intraoral sensing and drug delivery. npj Flex. Electron. 6, 49 (2022). https://doi.org/10.1038/s41528-022-00185-5
- S. Chen, T.-L. Liu, Y. Dong, J. Li, A wireless, regeneratable cocaine sensing scheme enabled by allosteric regulation of pH sensitive aptamers. ACS Nano 16, 20922–20936 (2022). https://doi.org/10.1021/acsnano.2c08511
- T.-L. Liu, Y. Dong, S. Chen, J. Zhou, Z. Ma et al., Battery-free, tuning circuit-inspired wireless sensor systems for detection of multiple biomarkers in bodily fluids. Sci. Adv. 8, eabo7049 (2022). https://doi.org/10.1126/sciadv.abo7049
- S. Cho, J. Ha, J. Ahn, H. Han, Y. Jeong et al., Wireless, battery-free, optoelectronic diagnostic sensor integrated colorimetric dressing for advanced wound care. Adv. Funct. Mater. 34, 2316196 (2024). https://doi.org/10.1002/adfm.202316196
- S. NajafiKhoshnoo, T. Kim, J.A. Tavares-Negrete, X. Pei, P. Das et al., A 3D nanomaterials-printed wearable, battery-free, biocompatible, flexible, and wireless pH sensor system for real-time health monitoring. Adv. Mater. Technol. 8, 2201655 (2023). https://doi.org/10.1002/admt.202201655
- Z. Xiong, S. Achavananthadith, S. Lian, L.E. Madden, Z.X. Ong et al., A wireless and battery-free wound infection sensor based on DNA hydrogel. Sci. Adv. 7, eabj1617 (2021). https://doi.org/10.1126/sciadv.abj1617
- S. Charkhabi, K.J. Jackson, A.M. Beierle, A.R. Carr, E.M. Zellner et al., Monitoring wound health through bandages with passive LC resonant sensors. ACS Sens. 6, 111–122 (2021). https://doi.org/10.1021/acssensors.0c01912
- H. Qin, A. Hajiaghajani, A.R. Escobar, A.H.A. Zargari, A. Jimenez et al., Laser-induced graphene-based smart textiles for wireless cross-body metrics. ACS Appl. Nano Mater. 6, 19158–19167 (2023). https://doi.org/10.1021/acsanm.3c03582
- Y.S. Oh, J.H. Kim, Z. Xie, S. Cho, H. Han et al., Battery-free, wireless soft sensors for continuous multi-site measurements of pressure and temperature from patients at risk for pressure injuries. Nat. Commun. 12, 5008 (2021). https://doi.org/10.1038/s41467-021-25324-w
- H. Jeong, L. Wang, T. Ha, R. Mitbander, X. Yang et al., Modular and reconfigurable wireless E-Tattoos for personalized sensing. Adv. Mater. Technol. 4, 1900117 (2019). https://doi.org/10.1002/admt.201900117
References
X. Lin, W. Yang, K.L. Wang, W. Zhao, Two-dimensional spintronics for low-power electronics. Nat. Electron. 2, 274–283 (2019). https://doi.org/10.1038/s41928-019-0273-7
X. Tang, H. Shen, S. Zhao, N. Li, J. Liu, Flexible brain–computer interfaces. Nat. Electron. 6, 109–118 (2023). https://doi.org/10.1038/s41928-022-00913-9
F. Zhou, Y. Chai, Near-sensor and in-sensor computing. Nat. Electron. 3, 664–671 (2020). https://doi.org/10.1038/s41928-020-00501-9
K. Zhu, C. Wen, A.A. Aljarb, F. Xue, X. Xu et al., The development of integrated circuits based on two-dimensional materials. Nat. Electron. 4, 775–785 (2021). https://doi.org/10.1038/s41928-021-00672-z
T.Q. Trung, N.-E. Lee, Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare. Adv. Mater. 28, 4338–4372 (2016). https://doi.org/10.1002/adma.201504244
T. Wan, B. Shao, S. Ma, Y. Zhou, Q. Li et al., In-sensor computing: materials, devices, and integration technologies. Adv. Mater. 35, 2203830 (2023). https://doi.org/10.1002/adma.202203830
C. Shi, Z. Zou, Z. Lei, P. Zhu, G. Nie et al., Stretchable, rehealable, recyclable, and reconfigurable integrated strain sensor for joint motion and respiration monitoring. Research 2021, 9846036 (2021). https://doi.org/10.34133/2021/9846036
T. Xu, Q. Song, K. Liu, H. Liu, J. Pan et al., Nanocellulose-assisted construction of multifunctional MXene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode. Nano-Micro Lett. 15, 98 (2023). https://doi.org/10.1007/s40820-023-01073-x
S. Chen, Z. Qiao, Y. Niu, J.C. Yeo, Y. Liu et al., Wearable flexible microfluidic sensing technologies. Nat. Rev. Bioeng. 1, 950–971 (2023). https://doi.org/10.1038/s44222-023-00094-w
C.D. Flynn, D. Chang, A. Mahmud, H. Yousefi, J. Das et al., Biomolecular sensors for advanced physiological monitoring. Nat. Rev. Bioeng. 1, 560–575 (2023). https://doi.org/10.1038/s44222-023-00067-z
R. He, H. Liu, Y. Niu, H. Zhang, G.M. Genin, F. Xu, Flexible miniaturized sensor technologies for long-term physiological monitoring. npj Flex. Electron. 6, 20 (2022). https://doi.org/10.1038/s41528-022-00146-y
L. Portilla, K. Loganathan, H. Faber, A. Eid, J.G.D. Hester et al., Wirelessly powered large-area electronics for the internet of things. Nat. Electron. 6, 10–17 (2023). https://doi.org/10.1038/s41928-022-00898-5
D. Li, J. Zhou, Z. Zhao, X. Huang, H. Li et al., Battery-free, wireless, and electricity-driven soft swimmer for water quality and virus monitoring. Sci. Adv. 10, eadk6301 (2024). https://doi.org/10.1126/sciadv.adk6301
A. Lazaro, R. Villarino, M. Lazaro, N. Canellas, B. Prieto-Simon et al., Recent advances in batteryless NFC sensors for chemical sensing and biosensing. Biosensors 13, 775 (2023). https://doi.org/10.3390/bios13080775
H. Kim, B. Rigo, G. Wong, Y.J. Lee, W.H. Yeo, Advances in wireless, batteryless, implantable electronics for real-time, continuous physiological monitoring. Nano-Micro Lett. 16, 52 (2024). https://doi.org/10.1007/s40820-023-01272-6
G.-M. Ma, Z. Wu, H.-Y. Zhou, J. Jiang, W.-X. Chen et al., A wireless and passive online temperature monitoring system for GIS based on surface-acoustic-wave sensor. IEEE Trans. Power Deliv. 31, 1270–1280 (2016). https://doi.org/10.1109/TPWRD.2015.2482985
C. Zhang, J. Wu, J. Li, K. Zhang, L. Xu et al., A self-powered instantaneous wireless sensing platform based on integrated triboelectric nanogenerator and negative resistance LC resonator. Measurement 235, 115032 (2024). https://doi.org/10.1016/j.measurement.2024.115032
X. Tan, Z. Zhou, L. Zhang, X. Wang, Z. Lin et al., A passive wireless triboelectric sensor via a surface acoustic wave resonator (SAWR). Nano Energy 78, 105307 (2020). https://doi.org/10.1016/j.nanoen.2020.105307
J. Deng, X. Sun, H. Peng, Power supplies for cardiovascular implantable electronic devices. EcoMat 5, e12343 (2023). https://doi.org/10.1002/eom2.12343
X. Hu, W. Yin, F. Du, C. Zhang, P. Xiao et al., Biomedical applications and challenges of in-body implantable antenna for implantable medical devices: a review. AEU Int. J. Electron. Commun. 174, 155053 (2024). https://doi.org/10.1016/j.aeue.2023.155053
C. Li, Q. Tan, P. Jia, W. Zhang, J. Liu et al., Review of research status and development trends of wireless passive LC resonant sensors for harsh environments. Sensors 15, 13097–13109 (2015). https://doi.org/10.3390/s150613097
Y. Hamed, G. O’Donnell, N. Lishchenko, I. Munina, Strain sensing technology to enable next-generation industry and smart machines for the factories of the future: a review. IEEE Sens. J. 23, 25618–25649 (2023). https://doi.org/10.1109/JSEN.2023.3313013
K.S.V. Idhaiam, J.A. Caswell, P.D. Pozo, K. Sabolsky, K.A. Sierros et al., All-ceramic passive wireless temperature sensor realized by tin-doped indium oxide (ITO) electrodes for harsh environment applications. Sensors 256, 110650 (2022). https://doi.org/10.3390/s22062165
H. Gu, B. Lu, Z. Gao, S. Wu, L. Zhang et al., A battery-free wireless tactile sensor for multimodal force perception. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202410661
Q.-A. Huang, L. Dong, L.-F. Wang, LC passive wireless sensors toward a wireless sensing platform: status, prospects, and challenges. J. Microelectromech. Syst. 25, 822–841 (2016). https://doi.org/10.1109/JMEMS.2016.2602298
R. Wu, L. Ma, A. Patil, C. Hou, S. Zhu et al., All-textile electronic skin enabled by highly elastic spacer fabric and conductive fibers. ACS Appl. Mater. Interfaces 11, 33336–33346 (2019). https://doi.org/10.1021/acsami.9b10928
R. Herbert, S. Mishra, H.-R. Lim, H. Yoo, W.-H. Yeo, Fully printed, wireless, stretchable implantable biosystem toward batteryless, real-time monitoring of cerebral aneurysm hemodynamics. Adv. Sci. 6, 1901034 (2019). https://doi.org/10.1002/advs.201901034
J. Li, W. Yuan, S.-X. Luo, M.J. Bezdek, A. Peraire-Bueno et al., Wireless lateral flow device for biosensing. J. Am. Chem. Soc. 144, 15786–15792 (2022). https://doi.org/10.1021/jacs.2c06579
J.M. Azzarelli, K.A. Mirica, J.B. Ravnsbæk, T.M. Swager, Wireless gas detection with a smartphone via RF communication. Proc. Natl. Acad. Sci. U.S.A. 111, 18162–18166 (2014). https://doi.org/10.1073/pnas.1415403111
R.S. Hassan, Y. Lee, Fully passive sensor coated with phenylboronic acid hydrogel for continuous wireless glucose monitoring. IEEE Sens. J. 24, 12025–12033 (2024). https://doi.org/10.1109/JSEN.2024.3370552
A.H. Kalhori, W.S. Kim, Printed wireless sensing devices using radio frequency communication. ACS Appl. Electron. Mater. 5, 1–10 (2023). https://doi.org/10.1021/acsaelm.2c01374
M.R. Werner, W.R. Fahrner, Review on materials, microsensors, systems and devices for high-temperature and harsh-environment applications. IEEE Trans. Ind. Electron. 48, 249–257 (2001). https://doi.org/10.1109/41.915402
J. Zhang, R. Das, J. Zhao, N. Mirzai, J. Mercer et al., Battery-free and wireless technologies for cardiovascular implantable medical devices. Adv. Mater. Technol. 7, 2101086 (2022). https://doi.org/10.1002/admt.202101086
Y.G. Park, S. Lee, J.U. Park, Recent progress in wireless sensors for wearable electronics. Sensors 19, 4353 (2019). https://doi.org/10.3390/s19204353
D. He, Y. Cui, F. Ming, W. Wu, Advancements in passive wireless sensors, materials, devices, and applications. Sensors 23, 8200 (2023). https://doi.org/10.3390/s23198200
D. Lu, Y. Yan, R. Avila, I. Kandela, I. Stepien et al., Bioresorbable, wireless, passive sensors as temporary implants for monitoring regional body temperature. Adv. Healthc. Mater. 9, 2000942 (2020). https://doi.org/10.1002/adhm.202000942
T. Stuart, L. Cai, A. Burton, P. Gutruf, Wireless, battery-free platforms for collection of biosignals. Biosens. Bioelectron. 178, 113007 (2021). https://doi.org/10.1016/j.bios.2021.113007
R. Raju, G.E. Bridges, S. Bhadra, Wireless passive sensors for food quality monitoring: improving the safety of food products. IEEE Anntenas Propag. Mag. 62, 76–89 (2020). https://doi.org/10.1109/MAP.2020.3003216
D.-Y. Chen, L. Dong, Q.-A. Huang, Inductor–capacitor passive wireless sensors using nonlinear parity-time symmetric configurations. Nat. Commun. 15, 9312 (2024). https://doi.org/10.1038/s41467-024-53655-x
L. Rauter, J. Zikulnig, L. Neumaier, L.-M. Faller, H. Zangl et al., Printed wireless battery-free sensor tag for structural health monitoring of natural fiber composites, in 2022 IEEE Sensors Applications Symposium (SAS). August 1–3, 2022, Sundsvall, Sweden. IEEE, (2022), pp.1–5.
H. Hallil, C. Dejous, S. Hage-Ali, O. Elmazria, J. Rossignol et al., Passive resonant sensors: trends and future prospects. IEEE Sens. J. 21, 12618 (2021). https://doi.org/10.1109/JSEN.2021.3065734
S. Roy, Y.J. Chan, N.F. Reuel, N.M. Neihart, Low-cost portable readout system design for inductively coupled resonant sensors. IEEE Trans. Instrum. Meas. 71, 8003413 (2022). https://doi.org/10.1109/TIM.2022.3173277
Z. Xie, R. Avila, Y. Huang, J.A. Rogers, Flexible and stretchable antennas for biointegrated electronics. Adv. Mater. 32, e1902767 (2020). https://doi.org/10.1002/adma.201902767
R. Byrne, D. Diamond, Chemo/bio-sensor networks. Nat. Mater. 5, 421–424 (2006). https://doi.org/10.1038/nmat1661
R. Herbert, H.R. Lim, B. Rigo, W.H. Yeo, Fully implantable wireless batteryless vascular electronics with printed soft sensors for multiplex sensing of hemodynamics. Sci. Adv. 8, eabm1175 (2022). https://doi.org/10.1126/sciadv.abm1175
J. Philpott, J. Churm, V. Nasrollahi, S. Dimov, C. Anthony et al., Wireless measurement of the degradation rates of thin film bioresorbable metals using reflected impedance. IEEE Trans. Semicond. Manuf. 36, 14–21 (2023). https://doi.org/10.1109/TSM.2022.3221267
S. Yoo, J. Lee, H. Joo, S.-H. Sunwoo, S. Kim et al., Wireless power transfer and telemetry for implantable bioelectronics. Adv. Healthc. Mater. 10, 2100614 (2021). https://doi.org/10.1002/adhm.202100614
J. Kim, A.S. Campbell, B.E.-F. de Ávila, J. Wang, Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37, 389–406 (2019). https://doi.org/10.1038/s41587-019-0045-y
S.H. Lee, Y.B. Lee, B.H. Kim, C. Lee, Y.M. Cho et al., Implantable batteryless device for on-demand and pulsatile insulin administration. Nat. Commun. 8, 15032 (2017). https://doi.org/10.1038/ncomms15032
Y.J. Zhou, Q.L. Wen, Y.W. Mao, Passive wireless temperature sensors for harsh environment, in 2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), December 7–9, 2020, Hangzhou, China. IEEE, (2020), pp. 1–2.
R. Salvati, V. Palazzi, L. Roselli, F. Alimenti, P. Mezzanotte, Emerging backscattering technologies for wireless sensing in harsh environments: unlocking the potential of RFID-based backscattering for reliable wireless sensing in challenging environments. IEEE Microw. Mag. 24, 14–23 (2023). https://doi.org/10.1109/MMM.2023.3293583
G. Liu, Q.A. Wang, G. Jiao, P. Dang, G. Nie et al., Review of wireless rfid strain sensing technology in structural health monitoring. Sensors 23, 6925 (2023). https://doi.org/10.3390/s23156925
Z. Khan, X. Chen, H. He, A. Mehmood, J. Virkki, A bending passive RFID tag as a sensor for high-temperature exposure. Int. J. Antennas Propag. (2021). https://doi.org/10.1155/2021/5541197
P. Yeon, M.G. Kim, O. Brand, M. Ghoovanloo, Optimal design of passive resonating wireless sensors for wearable and implantable devices. IEEE Sens. J. 19, 7460–7470 (2019). https://doi.org/10.1109/JSEN.2019.2915299
H. Mohammadbagherpoor, P. Ierymenko, M.H. Craver, J. Carlson, D. Dausch et al., An implantable wireless inductive sensor system designed to monitor prosthesis motion in total joint replacement surgery. IEEE Trans. Biomed. Eng. 67, 1718–1726 (2020). https://doi.org/10.1109/TBME.2019.2943808
C. Tang, Z. Liu, Q. Hu, Z. Jiang, M. Zheng et al., Unconstrained piezoelectric vascular electronics for wireless monitoring of hemodynamics and cardiovascular health. Small 20, 2304752 (2024). https://doi.org/10.1002/smll.202304752
A. Hajiaghajani, A.H. Afandizadeh Zargari, M. Dautta, A. Jimenez, F. Kurdahi et al., Textile-integrated metamaterials for near-field multibody area networks. Nat. Electron. 4, 808–817 (2021). https://doi.org/10.1038/s41928-021-00663-0
R. Lin, H.-J. Kim, S. Achavananthadith, S.A. Kurt et al., Digitally-embroidered liquid metal electronic textiles for wearable wireless systems. Nat. Commun. 11, 444 (2020). https://doi.org/10.1038/s41467-020-14311-2
N.K. Das, M. Ravipati, S. Badhulika, Nickel metal–organic framework/PVDF composite nanofibers-based self-powered wireless sensor for pulse monitoring of underwater divers via triboelectrically generated Maxwell’s displacement current. Adv. Funct. Mater. 33, 2303288 (2023). https://doi.org/10.1002/adfm.202303288
M. Sun, P. Li, H. Qin, N. Liu, H. Ma et al., Liquid metal/CNTs hydrogel-based transparent strain sensor for wireless health monitoring of aquatic animals. Chem. Eng. J. 454, 140459 (2023). https://doi.org/10.1016/j.cej.2022.140459
Z. Dong, Z. Li, F. Yang, C.-W. Qiu, J.S. Ho, Sensitive readout of implantable microsensors using a wireless system locked to an exceptional point. Nat. Electron. 2, 335–342 (2019). https://doi.org/10.1038/s41928-019-0284-4
X. Zou, B. Hu, L. Wen, A passive wireless sensing method based on magnetic resonance coupling and bulk acoustic wave device. IEEE Sens. J. 23, 7031–7040 (2023). https://doi.org/10.1109/JSEN.2023.3242705
L.Y. Chen, B.C.K. Tee, A.L. Chortos, G. Schwartz et al., Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care. Nat. Commun. 5, 5028 (2014). https://doi.org/10.1038/ncomms6028
F.A. Alvarez del Castillo Manzanos, R.R. Hughes, A.J. Croxford, Passive wireless mechanical overload sensing: proof of concept using agarose hydrogels. IEEE Trans. Instrum. Meas. 72, 9509109 (2023). https://doi.org/10.1109/TIM.2023.3291741
H. Hodaei, A.U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy et al., Enhanced sensitivity at higher-order exceptional points. Nature 548, 187–191 (2017). https://doi.org/10.1038/nature23280
K.K.H. Dia, A. Hajiaghajani, A.R. Escobar, M. Dautta, P. Tseng, Broadside-coupled split ring resonators as a model construct for passive wireless sensing. Adv. Sens. Res. 2, 2300006 (2023). https://doi.org/10.1002/adsr.202300006
H. Xue, W. Gao, J. Gao, G.F. Schneider, C. Wang, W. Fu, Radiofrequency sensing systems based on emerging two-dimensional materials and devices. Int. J. Extrem. Manuf. 5, 32010 (2023). https://doi.org/10.1088/2631-7990/acd88d
J.-S. Hong, M.J. Lancaster, Microstrip Filters for RF/Microwave Applications (Wiley, Hoboken, 2001). https://doi.org/10.1002/0471221619
P. Mehrotra, B. Chatterjee, S. Sen, EM-wave biosensors: a review of RF, microwave, mm-wave and optical sensing. Sensors 19, 1013 (2019). https://doi.org/10.3390/s19051013
K. Jiang, H. Wang, Y. Long, Y. Han, H. Zhang et al., Injectable miniaturized shape-memory electronic device for continuous glucose monitoring. Device 1, 100117 (2023). https://doi.org/10.1016/j.device.2023.100117
L. Zhang, Q. Tan, Y. Wang, Z. Fan, L. Lin et al., Wirelessly powered multi-functional wearable humidity sensor based on RGO-WS2 heterojunctions. Sens. Actuators B Chem. 329, 129077 (2021). https://doi.org/10.1016/j.snb.2020.129077
Q. Huang, L. Dong, L. Wang, LC passive wireless sensors toward a wireless sensing platform: status, prospects, and challenges. J. Microelectromech. Syst. 296, 178–185 (2016). https://doi.org/10.1109/JMEMS.2016.2602298
M. Dautta, A. Hajiaghajani, F. Ye, A.R. Escobar, A. Jimenez et al., Programmable multiwavelength radio frequency spectrometry of chemophysical environments through an adaptable network of flexible and environmentally responsive, passive wireless elements. Small Sci. 2, 2200013 (2022). https://doi.org/10.1002/smsc.202200013
B.-B. Zhou, M.-N. Zhang, M.-Z. Xie, L.-F. Wang, Q.-A. Huang, Enhancing LC sensor telemetry via magnetic resonance coupling, in 2019 IEEE SENSORS, October 27–30, 2019, Montreal, QC, Canada. IEEE, (2019), pp. 1–4.
Q. Tan, Y. Ji, W. Lv, F. Wu, H. Dong et al., Signal readout of LC pressure sensor operated in multi-dimensional rotating environment with dual-inductance resonator. Sens. Actuators A Phys. 296, 178–185 (2019). https://doi.org/10.1016/j.sna.2019.06.031
M. Dautta, A. Jimenez, K.K.H. Dia, N. Rashid, M. Abdullah Al Faruque et al., Wireless Qi-powered, multinodal and multisensory body area network for mobile health. IEEE Internet Things J. 8, 7600–7609 (2021). https://doi.org/10.1109/jiot.2020.3040713
C. Zhang, L.F. Wang, Q.A. Huang, Extending the remote distance of LC passive wireless sensors via strongly coupled magnetic resonances. J. Micromech. Microeng. 24, 125021 (2014). https://doi.org/10.1088/0960-1317/24/12/125021
A. Seré, L. Steinfeld, S. Hemour, P. Pérez-Nicoli, Self-adaptive intermediate resonator in a 3-coil inductive link for power and data transmission. IEEE Trans. Circuits Syst. II Express Briefs 71, 4728–4732 (2024). https://doi.org/10.1109/TCSII.2024.3360369
L. Dong, L.-F. Wang, C. Zhang, Q.-A. Huang, A cyclic scanning repeater for enhancing the remote distance of LC passive wireless sensors. IEEE Trans. Circuits Syst. I Regul. Pap. 63, 1426–1433 (2016). https://doi.org/10.1109/TCSI.2016.2572221
C. Wu, L. Han, Y. Dong, M. Guo, R. Wang et al., Wireless battery-free flexible sensing system for continuous wearable health monitoring. Adv. Mater. Technol. 8, 2201662 (2023). https://doi.org/10.1002/admt.202201662
Q. Tan, Y. Guo, G. Wu, T. Luo, T. Wei et al., Systematic theoretical analysis of dual-parameters RF readout by a novel LC-type passive sensor. Model. Simul. Eng. (2017). https://doi.org/10.1155/2017/4938732
C. Wu, L. Han, Wireless multi-parameter sensing system for monitoring in the complex environment, in 2022 13th International Conference on Information and Communication Technology Convergence (ICTC), October 19–21, 2022, Jeju Island, Korea, Republic of. IEEE, (2022), pp. 14–18.
H. Kou, Q. Tan, Y. Wang, G. Zhang, S. Su et al., A wireless slot-antenna integrated temperature–pressure–humidity sensor loaded with CSRR for harsh-environment applications. Sens. Actuators B Chem. 311, 127907 (2020). https://doi.org/10.1016/j.snb.2020.127907
Y. Zhang, W. Tang, H. Chen, H. Li, Z. Xue et al., Flexible LC sensor array for wireless multizone pressure monitoring. IEEE Sens. J. 24, 2628–2636 (2024). https://doi.org/10.1109/JSEN.2023.3345633
H. Wen, C. Chen, S. Li, Y. Shi, H. Wang et al., Array integration and far-field detection of biocompatible wireless LC pressure sensors. Small Methods 5, 2001055 (2021). https://doi.org/10.1002/smtd.202001055
G.H. Lee, J.K. Park, J. Byun, J.C. Yang, S.Y. Kwon et al., Parallel signal processing of a wireless pressure-sensing platform combined with machine-learning-based cognition, inspired by the human somatosensory system. Adv. Mater. 32, e1906269 (2020). https://doi.org/10.1002/adma.201906269
B. Xu, D. Chen, Y. Wang, R. Tang, L. Yang et al., Wireless and flexible tactile sensing array based on an adjustable resonator with machine-learning perception. Adv. Electron. Mater. 9, 2201334 (2023). https://doi.org/10.1002/aelm.202201334
L. Lin, M. Ma, F. Zhang, F. Liu, Z. Liu et al., Integrated passive wireless pressure and temperature dual-parameter sensor based on LTCC technology. Ceram. Int. 44, 129 (2018). https://doi.org/10.1016/j.ceramint.2018.08.159
T. Wei, Q. Tan, T. Luo, G. Wu, S. Tang et al., Modeling, simulation and coupling experiment for integrated passive wireless multi-parameters ceramic sensor. Sens. Rev. 36, 98 (2016). https://doi.org/10.1108/SR-03-2015-0045
L. Dong, D.Y. Chen, P. Dai, L.-F. Wang, Q.A. Huang, PT-symmetric wireless sensing system of double parameters. IEEE Sens. J. 24, 2118–2124 (2024). https://doi.org/10.1109/JSEN.2023.3337836
Y. Zhang, C. Chen, Y. Qiu, L. Ma, W. Qiu et al., Meso-reconstruction of silk fibroin based on molecular and nano-templates for electronic skin in medical applications. Adv. Funct. Mater. 31, 2100150 (2021). https://doi.org/10.1002/adfm.202100150
H. Kou, L. Zhang, Q. Tan, G. Liu, H. Dong et al., Wireless wide-range pressure sensor based on graphene/PDMS sponge for tactile monitoring. Sci. Rep. 9, 3916 (2019). https://doi.org/10.1038/s41598-019-40828-8
M. Li, L. Zhang, H. Dong, Y. Wang, X. Yan et al., Wireless passive flexible strain sensor based on aluminium nitride film. IEEE Sens. J. 22, 3074–3079 (2022). https://doi.org/10.1109/JSEN.2021.3138786
A.R. Carr, Y.J. Chan, N.F. Reuel, Contact-free, passive, electromagnetic resonant sensors for enclosed biomedical applications: a perspective on opportunities and challenges. ACS Sens. 8, 943–955 (2023). https://doi.org/10.1021/acssensors.2c02552
L. Zhang, Q. Tan, H. Kou, D. Wu, W. Zhang et al., Highly sensitive NH3 wireless sensor based on Ag-RGO composite operated at room-temperature. Sci. Rep. 9, 9942 (2019). https://doi.org/10.1038/s41598-019-46213-9
W. Lv, Q. Tan, H. Kou, W. Zhang, J. Xiong, MWCNTs/WS2 nanocomposite sensor realized by LC wireless method for humidity monitoring. Sens. Actuators A Phys. 290, 207–214 (2019). https://doi.org/10.1016/j.sna.2019.03.032
J. Luo, R. Xue, J. Cheong, X. Zhang, L. Yao, Design and optimization of planar spiral coils for powering implantable neural recording microsystem. Micromachines 14, 1221 (2023). https://doi.org/10.3390/mi14061221
S.S. Mohan, M.M. Hershenson, S.P. Boyd, T.H. Lee, Simple accurate expressions for planar spiral inductances. IEEE J. Solid-State Circuits 34, 1419 (1999). https://doi.org/10.1109/4.792620
P. Escobedo, A. Martínez-Olmos, J. Fernández-Salmerón, A. Rivadeneyra et al., Compact readout system for chipless passive LC tags and its application for humidity monitoring. Sens. Actuators A Phys. 280, 287–294 (2018). https://doi.org/10.1016/j.sna.2018.07.040
K. Li, X. Cheng, F. Zhu, L. Li, Z. Xie et al., A generic soft encapsulation strategy for stretchable electronics. Adv. Funct. Mater. 29, 1806630 (2019). https://doi.org/10.1002/adfm.201806630
Z. Sun, H. Fang, B. Xu, L. Yang, H. Niu et al., Flexible wireless passive LC pressure sensor with design methodology and cost-effective preparation. Micromachines 12, 976 (2021). https://doi.org/10.3390/mi12080976
X. Li, R. Sun, J. Pan, Z. Shi, J. Lv et al., All-MXene-printed RF resonators as wireless plant wearable sensors for in situ ethylene detection. Small 19, 2207889 (2023). https://doi.org/10.1002/smll.202207889
W.J. Deng, L.F. Wang, L. Dong, Q. Huang, LC wireless sensitive pressure sensors with microstructured PDMS dielectric layers for wound monitoring. IEEE Sens. J. 18, 4886–4892 (2018). https://doi.org/10.1109/JSEN.2018.2831229
Y. Dong, T.L. Liu, S. Chen, P. Nithianandam, K. Mata et al., A “two-part” resonance circuit based detachable sweat patch for noninvasive biochemical and biophysical sensing. Adv. Funct. Mater. 33, 2210136 (2023). https://doi.org/10.1002/adfm.202210136
K. Kwon, J.U. Kim, S.M. Won, J. Zhao, R. Avila et al., A battery-less wireless implant for the continuous monitoring of vascular pressure, flow rate and temperature. Nat. Biomed. Eng. 7, 1215–1228 (2023). https://doi.org/10.1038/s41551-023-01022-4
K. Kim, H.J. Kim, H. Zhang, W. Park, D. Meyer et al., All-printed stretchable corneal sensor on soft contact lenses for noninvasive and painless ocular electrodiagnosis. Nat. Commun. 12, 1544 (2021). https://doi.org/10.1038/s41467-021-21916-8
S. Li, D. Lu, S. Li, J. Liu, Y. Xu et al., Bioresorbable, wireless, passive sensors for continuous pH measurements and early detection of gastric leakage. Sci. Adv. 10, eadj0268 (2024). https://doi.org/10.1126/sciadv.adj0268
T. Kim, C. Bao, M. Hausmann, G. Siqueira, W.S. Kim, 3D printed disposable wireless ion sensors with biocompatible cellulose composites. Adv. Electron. Mater. 5, 1800778 (2018). https://doi.org/10.1002/aelm.201800778
X. Ma, P. Wang, L. Huang, R. Ding, K. Zhou et al., A monolithically integrated in-textile wristband for wireless epidermal biosensing. Sci. Adv. 9, eadj2763 (2023). https://doi.org/10.1126/sciadv.adj2763
E. Shirzaei Sani, C. Xu, C. Wang, Y. Song, J. Min et al., A stretchable wireless wearable bioelectronic system for multiplexed monitoring and combination treatment of infected chronic wounds. Sci. Adv. 9, eadf7388 (2023). https://doi.org/10.1126/sciadv.adf7388
C. Zhang, C. Pan, K. Chan, J. Gao, Z. Yang et al., Wirelessly powered deformable electronic stent for noninvasive electrical stimulation of lower esophageal sphincter. Sci. Adv. 9, eade8622 (2023). https://doi.org/10.1126/sciadv.ade8622
Y. Zhai, J. Lee, Q. Hoang, D. Sievenpipper, H. Garudadri et al., A printed wireless fluidic pressure sensor. Flex. Print. Electron. 3, 035006 (2018). https://doi.org/10.1088/2058-8585/aae09e
J. Lee, S.J. Ihle, G.S. Pellegrino, H. Kim, J. Yea et al., Stretchable and suturable fibre sensors for wireless monitoring of connective tissue strain. Nat. Electron. 4, 291–301 (2021). https://doi.org/10.1038/s41928-021-00557-1
M.S. Mannoor, H. Tao, J.D. Clayton, A. Sengupta, D.L. Kaplan et al., Graphene-based wireless bacteria detection on tooth enamel. Nat. Commun. 3, 763 (2012). https://doi.org/10.1038/ncomms1767
W.J. Deng, L.F. Wang, L. Dong, Q.A. Huang, Symmetric LC circuit configurations for passive wireless multifunctional sensors. J. Microelectromech. Syst. 28, 344–350 (2019). https://doi.org/10.1109/JMEMS.2019.2901818
S. Charkhabi, Y.J. Chan, S. Roy, M.M. Islam, B.B. Duffield et al., Effects of fabrication materials and methods on flexible resonant sensor signal quality. Extrem. Mech. Lett. 41, 101027 (2020). https://doi.org/10.1016/j.eml.2020.101027
A.M. Beierle, C.H. Quinn, H.R. Markert, A. Carr, R. Marayati et al., Rapid characterization of solid tumors using resonant sensors. ACS Omega 7, 32690–32700 (2022). https://doi.org/10.1021/acsomega.2c04345
J.-C. Chiou, S.-H. Hsu, Y.-C. Huang, G.-T. Yeh, W.-T. Liou et al., A wirelessly powered smart contact lens with reconfigurable wide range and tunable sensitivity sensor readout circuitry. Sensors 17, 108 (2017). https://doi.org/10.3390/s17010108
S. Roh, T.D. Nguyen, J.S. Lee, Applications of nanomaterials in RFID wireless sensor components. Appl. Sci. 14, 1216 (2024). https://doi.org/10.3390/app14031216
M. Farooq, T. Iqbal, P. Vazquez, N. Farid, S. Thampi et al., Applications of nanomaterials in RFID wireless sensor components. Sensors 20, 6653 (2020). https://doi.org/10.3390/s20226653
A.H. Kalhori, T. Kim, W.S. Kim, Enhanced RF response of 3D-printed wireless LC sensors using dielectrics with high permittivity. Flex. Print. Electron. 8, 015013 (2023). https://doi.org/10.1088/2058-8585/acb722
S. Cho, H. Han, H. Park, S.U. Lee, J.H. Kim et al., Wireless, multimodal sensors for continuous measurement of pressure, temperature, and hydration of patients in wheelchair. npj Flex. Electron. 7, 8 (2023). https://doi.org/10.1038/s41528-023-00238-3
Y. Shao, L. Wei, X. Wu, C. Jiang, Y. Yao et al., Room-temperature high-precision printing of flexible wireless electronics based on MXene inks. Nat. Commun. 13, 3223 (2022). https://doi.org/10.1038/s41467-022-30648-2
H. Xue, W. Gao, J. Gao, G.F. Schneider, C. Wang et al., Radiofrequency sensing systems based on emerging two-dimensional materials and devices. Int. J. Extrem. Manuf. 5, 032010 (2023). https://doi.org/10.1088/2631-7990/acd88d
S. Dhall, B.R. Mehta, A.K. Tyagi, K. Sood, A review on environmental gas sensors: materials and technologies. Sens. Int. 2, 100116 (2021). https://doi.org/10.1016/j.sintl.2021.100116
A. Shakeel, K. Rizwan, U. Farooq, S. Iqbal, A.A. Altaf, Advanced polymeric/inorganic nanohybrids: an integrated platform for gas sensing applications. Chemosphere 294, 133772 (2022). https://doi.org/10.1016/j.chemosphere.2022.133772
C. Wu, L. Han, J. Zhang, Y. Wang, R. Wang et al., Capacitive ammonia sensor based on graphene oxide/polyaniline nanocomposites. Adv. Mater. Technol. 7, 2101247 (2022). https://doi.org/10.1002/admt.202101247
L. Zhang, H. Yang, Q. Tan, L. Jing, W. Zhang et al., Wireless detection of biogenic amines using a split-ring resonator with silver nanops-decorated molybdenum disulfide. Sens. Actuators B Chem. 343, 130155 (2021). https://doi.org/10.1016/j.snb.2021.130155
W.C. Wilson, G.M. Atkinson, Passive wireless sensor applications for NASA’s extreme aeronautical environments. IEEE Sens. J. 14, 3745–3753 (2014). https://doi.org/10.1109/JSEN.2014.2322959
L. Zhang, S. Su, F. Xu, T. Ren, J. Xiong, High sensitivity SIW-CSRR temperature sensor based on microwave scattering. IEEE Sens. J. 23, 13900–13908 (2023). https://doi.org/10.1109/JSEN.2023.3276426
B.L. Chetty, T.M. Walingo, C.P. Kruger, S.J. Isaac, Experimental investigation into deploying a Wi-Fi6 mesh system for underground gold and platinum mine stopes. Mining 4, 567–587 (2024). https://doi.org/10.3390/mining4030032
B. Wang, B. Han, K. Wang, S. Cao, Air vehicle humidity sensor based on PVA film humidity sensing principle. APL Mater. 12, 71116 (2024). https://doi.org/10.1063/5.0213766
K. Jiang, S. Xue, L. Xie, G. Wan, Z. Yi et al., A wireless passive sensor based on U-shaped resonators for bidirectional deformation sensing. IEEE Sens. J. 24, 36467–36476 (2024). https://doi.org/10.1109/JSEN.2024.3459097
L. Lasantha, N.C. Karmakar, B. Ray, Chipless RFID for IoT sensing and potential applications in underground mining—a review. IEEE Sens. J. 23, 9033–9048 (2023). https://doi.org/10.1109/JSEN.2023.3259973
K. Huang, Q. Xu, Q. Ying, B. Gu, W. Yuan, Wireless strain sensing using carbon nanotube composite film. Compos. Part B Eng. 10, e2301807 (2023). https://doi.org/10.1016/j.compositesb.2023.110650
H. Nesser, H.A. Mahmoud, G. Lubineau, High-sensitivity RFID sensor for structural health monitoring. Adv. Sci. 22, 2165 (2023). https://doi.org/10.1002/advs.202301807
Q. Tan, W. Lv, Y. Ji, R. Song, F. Lu et al., A LC wireless passive temperature-pressure-humidity (TPH) sensor integrated on LTCC ceramic for harsh monitoring. Sens. Actuators B Chem. 270, 433–442 (2018). https://doi.org/10.1016/j.snb.2018.04.094
L. Lin, M. Ma, F. Zhang, F. Liu, Z. Liu et al., Integrated passive wireless pressure and temperature dual-parameter sensor based on LTCC technology. Ceram. Int. 44, S129–S132 (2018). https://doi.org/10.1016/j.ceramint.2018.08.159
J. Lin, X. Chen, P. Zhang, Y. Xue, Y. Feng et al., Wireless bioelectronics for in vivo pressure monitoring with mechanically-compliant hydrogel biointerfaces. Adv. Mater. 36, 2400181 (2024). https://doi.org/10.1002/adma.202400181
C. Girerd, Q. Zhang, A. Gupta, M. Dunna, D. Bharadia et al., Towards a wireless force sensor based on wave backscattering for medical applications. IEEE Sens. J. 21, 8903–8915 (2021). https://doi.org/10.1109/JSEN.2021.3049225
N.E. Oyunbaatar, D.S. Kim, G. Prasad, Y.J. Jeong, D.W. Lee, Self-rollable polymer stent integrated with wireless pressure sensor for real-time monitoring of cardiovascular pressure. Sens. Actuators A Phys. 346, 113869 (2022). https://doi.org/10.1016/j.sna.2022.113869
S.R.A. Ruth, M.-G. Kim, H. Oda, Z. Wang, Y. Khan et al., Post-surgical wireless monitoring of arterial health progression. iScience 24, 103079 (2021). https://doi.org/10.1016/j.isci.2021.103079
A. Bhatia, J. Hanna, T. Stuart, K.A. Kasper, D.M. Clausen et al., Wireless battery-free and fully implantable organ interfaces. Chem. Rev. 124, 2205–2280 (2024). https://doi.org/10.1021/acs.chemrev.3c00425
D. Lu, Y. Yan, Y. Deng, Q. Yang, J. Zhao et al., Bioresorbable wireless sensors as temporary implants for in vivo measurements of pressure. Adv. Funct. Mater. 30, 2003754 (2020). https://doi.org/10.1002/adfm.202003754
J.H. Lee, T.-M. Jang, J.-W. Shin, B.H. Lim, K. Rajaram et al., Wireless, fully implantable and expandable electronic system for bidirectional electrical neuromodulation of the urinary bladder. ACS Nano 17, 8511–8520 (2023). https://doi.org/10.1021/acsnano.3c00755
M.R. Yousefi Darestani, D. Lange, B.H. Chew, K. Takahata, Electromechanically functionalized ureteral stents for wireless obstruction monitoring. ACS Biomater. Sci. Eng. 9, 4392–4403 (2023). https://doi.org/10.1021/acsbiomaterials.3c00114
M. Dautta, M. Alshetaiwi, J. Escobar, P. Tseng, Passive and wireless, implantable glucose sensing with phenylboronic acid hydrogel-interlayer RF resonators. Biosens. Bioelectron. 151, 112004 (2020). https://doi.org/10.1016/j.bios.2020.112004
J. Lee, H.R. Cho, G.D. Cha, H. Seo, S. Lee et al., Flexible, sticky, and biodegradable wireless device for drug delivery to brain tumors. Nat. Commun. 10, 5205 (2019). https://doi.org/10.1038/s41467-019-13198-y
J. Ausra, M. Madrid, R.T. Yin, J. Hanna, S. Arnott et al., Wireless, fully implantable cardiac stimulation and recording with on-device computation for closed-loop pacing and defibrillation. Sci. Adv. 8, eabq7469 (2022). https://doi.org/10.1126/sciadv.abq7469
G.H. Lee, C. Jeon, J.W. Mok, S. Shin, S.K. Kim et al., Smart wireless near-infrared light emitting contact lens for the treatment of diabetic retinopathy. Adv. Sci. 9, 2103254 (2022). https://doi.org/10.1002/advs.202103254
T.Y. Kim, J.W. Mok, S.H. Hong, S.H. Jeong, H. Choi et al., Wireless theranostic smart contact lens for monitoring and control of intraocular pressure in glaucoma. Nat. Commun. 13, 6801 (2022). https://doi.org/10.1038/s41467-022-34597-8
H. Zhu, H. Yang, L. Zhan, Y. Chen, J. Wang et al., Hydrogel-based smart contact lens for highly sensitive wireless intraocular pressure monitoring. ACS Sens. 7, 3014–3022 (2022). https://doi.org/10.1021/acssensors.2c01299
J. Zhang, K. Kim, H.J. Kim, D. Meyer, W. Park et al., Smart soft contact lenses for continuous 24-hour monitoring of intraocular pressure in glaucoma care. Nat. Commun. 13, 5518 (2022). https://doi.org/10.1038/s41467-022-33254-4
H. Yang, H. Zhu, H. Liu, Z. Mao, J. Luo et al., Intraocular pressure monitoring smart contact lens with high environmental stability. Adv. Funct. Mater. 34, 2400722 (2024). https://doi.org/10.1002/adfm.202400722
Y. Yang, T. Cui, D. Li, S. Ji, Z. Chen et al., Breathable electronic skins for daily physiological signal monitoring. Nano-Micro Lett. 14, 161 (2022). https://doi.org/10.1007/s40820-022-00911-8
M. Guess, I. Soltis, B. Rigo, N. Zavanelli, S. Kapasi et al., Wireless batteryless soft sensors for ambulatory cardiovascular health monitoring. Soft Sci. 3, 23 (2023). https://doi.org/10.20517/ss.2023.17
J. Alberto, C. Leal, C. Fernandes, P.A. Lopes, H. Paisana et al., Fully untethered battery-free biomonitoring electronic tattoo with wireless energy harvesting. Sci. Rep. 10, 5539 (2020). https://doi.org/10.1038/s41598-020-62097-6
P. Hajiaghajani, Tseng, Microelectronics-free, augmented telemetry from body-worn passive wireless sensors. Adv. Mater. Technol. 6, 2001127 (2021). https://doi.org/10.1002/admt.202001127
Y. Tai, Z. Yang, Toward flexible wireless pressure-sensing device via ionic hydrogel microsphere for continuously mapping human-skin signals. Adv. Mater. Interfaces 4, 1700496 (2017). https://doi.org/10.1002/admi.201700496
Y. Guo, F. Yin, Y. Li, G. Shen, J.-C. Lee, Incorporating wireless strategies to wearable devices enabled by a photocurable hydrogelfor monitoring pressure information. Adv. Mater. 35, 2370208 (2023). https://doi.org/10.1002/adma.202370208
L. Ma, R. Wu, A. Patil, S. Zhu, Z. Meng et al., Full-textile wireless flexible humidity sensor for human physiological monitoring. Adv. Funct. Mater. 29, 1904549 (2019). https://doi.org/10.1002/adfm.201904549
S. Gopalakrishnan, S. Sedaghat, A. Krishnakumar, Z. He, H. Wang et al., Wireless humidity sensor for smart packaging via one-step laser-induced patterning and nanop formation on metallized paper. Adv. Electron. Mater. 8, 2101149 (2022). https://doi.org/10.1002/aelm.202101149
G.H. Lee, G.S. Lee, J. Byun, J.C. Yang, C. Jang et al., Deep-learning-based deconvolution of mechanical stimuli with Ti3C2Tx MXene electromagnetic shield architecture via dual-mode wireless signal variation mechanism. ACS Nano 14, 11962–11972 (2020). https://doi.org/10.1021/acsnano.0c05105
T. Kim, A.H. Kalhori, T.H. Kim, C. Bao, W.S. Kim, 3D designed battery-free wireless origami pressure sensor. Microsys. Nanoeng. 8, 120 (2022). https://doi.org/10.1038/s41378-022-00465-0
Q. Qu, J. Yan, S. Liu, X. Xiao, Y. Zhang et al., Wireless human motion monitoring by a wearable 3D spiral liquid metal sensor with a spinning top-shaped structure. Adv. Mater. Technol. (2023). https://doi.org/10.1002/admt.202300896
H. Kou, L. Zhang, Q. Tan, G. Liu, W. Lv et al., Wireless flexible pressure sensor based on micro-patterned Graphene/PDMS composite. Sens. Actuators A Phys. 277, 150–156 (2018). https://doi.org/10.1016/j.sna.2018.05.015
J. Yan, J. Liu, Q. Qu, X. Chen, J. Liu et al., Wireless human motion detection with a highly sensitive wearable pressure sensing technology. Adv. Mater. Technol. 8, 2201936 (2023). https://doi.org/10.1002/admt.202201936
B. Nie, R. Huang, T. Yao, Y. Zhang, Y. Miao et al., Textile-based wireless pressure sensor array for human-interactive sensing. Adv. Funct. Mater. 29, 1808786 (2019). https://doi.org/10.1002/adfm.201808786
A. Hajiaghajani, P. Rwei, A.H. Afandizadeh Zargari, A.R. Escobar, F. Kurdahi et al., Amphibious epidermal area networks for uninterrupted wireless data and power transfer. Nat. Commun. 14, 7522 (2023). https://doi.org/10.1038/s41467-023-43344-6
V. Galli, S.K. Sailapu, T.J. Cuthbert, C. Ahmadizadeh, B.C. Hannigan et al., Passive and wireless all-textile wearable sensor system. Adv. Sci. 10, 206665 (2023). https://doi.org/10.1002/advs.202206665
Z. He, Y. Wang, H. Xiao, Y. Wu, X. Xia et al., Highly stretchable, deformation-stable wireless powering antenna for wearable electronics. Nano Energy 112, 108461 (2023). https://doi.org/10.1016/j.nanoen.2023.108461
J. Park, J. Kim, S.Y. Kim, W.H. Cheong, J. Jang et al., Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Sci. Adv. 4, eaap9841 (2018). https://doi.org/10.1126/sciadv.aap9841
J. Kim, M. Kim, M.S. Lee, K. Kim, S. Ji et al., Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nat. Commun. 8, 14997 (2017). https://doi.org/10.1038/ncomms14997
P. Tseng, B. Napier, L. Garbarini, D.L. Kaplan, F.G. Omenetto, Functional, RF-trilayer sensors for tooth-mounted, wireless monitoring of the oral cavity and food consumption. Adv. Mater. 30, e1703257 (2018). https://doi.org/10.1002/adma.201703257
Z. Shi, Y. Lu, S. Shen, Y. Xu, C. Shu et al., Wearable battery-free theranostic dental patch for wireless intraoral sensing and drug delivery. npj Flex. Electron. 6, 49 (2022). https://doi.org/10.1038/s41528-022-00185-5
S. Chen, T.-L. Liu, Y. Dong, J. Li, A wireless, regeneratable cocaine sensing scheme enabled by allosteric regulation of pH sensitive aptamers. ACS Nano 16, 20922–20936 (2022). https://doi.org/10.1021/acsnano.2c08511
T.-L. Liu, Y. Dong, S. Chen, J. Zhou, Z. Ma et al., Battery-free, tuning circuit-inspired wireless sensor systems for detection of multiple biomarkers in bodily fluids. Sci. Adv. 8, eabo7049 (2022). https://doi.org/10.1126/sciadv.abo7049
S. Cho, J. Ha, J. Ahn, H. Han, Y. Jeong et al., Wireless, battery-free, optoelectronic diagnostic sensor integrated colorimetric dressing for advanced wound care. Adv. Funct. Mater. 34, 2316196 (2024). https://doi.org/10.1002/adfm.202316196
S. NajafiKhoshnoo, T. Kim, J.A. Tavares-Negrete, X. Pei, P. Das et al., A 3D nanomaterials-printed wearable, battery-free, biocompatible, flexible, and wireless pH sensor system for real-time health monitoring. Adv. Mater. Technol. 8, 2201655 (2023). https://doi.org/10.1002/admt.202201655
Z. Xiong, S. Achavananthadith, S. Lian, L.E. Madden, Z.X. Ong et al., A wireless and battery-free wound infection sensor based on DNA hydrogel. Sci. Adv. 7, eabj1617 (2021). https://doi.org/10.1126/sciadv.abj1617
S. Charkhabi, K.J. Jackson, A.M. Beierle, A.R. Carr, E.M. Zellner et al., Monitoring wound health through bandages with passive LC resonant sensors. ACS Sens. 6, 111–122 (2021). https://doi.org/10.1021/acssensors.0c01912
H. Qin, A. Hajiaghajani, A.R. Escobar, A.H.A. Zargari, A. Jimenez et al., Laser-induced graphene-based smart textiles for wireless cross-body metrics. ACS Appl. Nano Mater. 6, 19158–19167 (2023). https://doi.org/10.1021/acsanm.3c03582
Y.S. Oh, J.H. Kim, Z. Xie, S. Cho, H. Han et al., Battery-free, wireless soft sensors for continuous multi-site measurements of pressure and temperature from patients at risk for pressure injuries. Nat. Commun. 12, 5008 (2021). https://doi.org/10.1038/s41467-021-25324-w
H. Jeong, L. Wang, T. Ha, R. Mitbander, X. Yang et al., Modular and reconfigurable wireless E-Tattoos for personalized sensing. Adv. Mater. Technol. 4, 1900117 (2019). https://doi.org/10.1002/admt.201900117